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THE CONTINUOUS COUPLED CLUSTER FORMULATION
FOR THE ELECTRONIC SCHRODINGER EQUATION *

THORSTEN ROHWEDDER!

Abstract. Nowadays, the Coupled Cluster (CC) method is the probably most widely used high
precision method for the solution of the main equation of electronic structure calculation, the station-
ary electronic Schridinger equation. Traditionally, the equations of CC are formulated as a nonlinear
approximation of a Galerkin solution of the electronic Schrodinger equation, i.e. within a given discrete
subspace. Unfortunately, this concept prohibits the direct application of concepts of nonlinear numeri-
cal analysis to obtain e.g. existence and uniqueness results or estimates on the convergence of discrete
solutions to the full solution. Here, this shortcoming is approached by showing that based on the
choice of an N-dimensional reference subspace R of H'(R® x {+1}), the original, continuous electronic
Schrédinger equation can be reformulated equivalently as a root equation for an infinite-dimensional
nonlinear Coupled Cluster operator. The canonical projected CC equations may then be understood as
discretizations of this operator. As the main step, continuity properties of the cluster operator S and
its adjoint ST as mappings on the antisymmetric energy space H' are established.
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1. INTRODUCTION

The Coupled Cluster (CC) approach was derived around 1960 in the field of atomic physics [13, 14,28, 45],
and later introduced in the context of quantum chemistry (see [12]). It is today the probably most widely
applied tool in the calculation of ground state solutions of the stationary N-electron Schrédinger equation when
high-accuracy results are demanded. In the variant of the CCSD(T) method [34], which can be applied to small
to medium-sized molecules with reasonable computational effort, CC often provides results which are within the
error bars of corresponding practical experiments [30]. CCSD(T) is therefore often referred to as the “golden
standard of quantum chemistry”.

The ground state problem for the electronic Schrédinger equation, for the numerical treatment of which
the CC method is used, governs the physical behaviour of N electrons in the Coulomb field of a fixed set of
nuclei, see [23,42,48] for some main results. To admit for a sensible discretization and a mathematically sound
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algorithmic treatment, it is in the context of numerical analysis best phrased as a weak operator eigenproblem
for an eigenfunction ¥ describing the electronic ground state [48], i.e. “Find ¥ € H! and E € R such that

(®, HYV) = E(®, V) for all @ € H', (1.1)

and such that F is the lowest eigenvalue of H”. In this, the solution space H' is a suitable energy (Sobolev) space
consisting of antisymmetric functions, and the operator H : H' — H™! is the weak N-electron Hamiltonian,
mapping to the dual space of H! (see Sect. 2). To treat the Schrédinger equation (1.1) in the way the CC
method is canonically used (see e.g. the quantum chemical standard work [21]), three steps are taken:

(a) Galerkin discretization of (1.1): restriction to a discrete subspace H}, gives a (usually extremely high-
dimensional) discrete eigenvalue problem for a function ¥p € Hb,

(®p, HVp) = Ep{®p, ¥p) for all &p € H. (1.2)

By quantum chemists, ¥p is called the “full Configuration Interaction (full CI) solution” of the discrete
system (1.2).

(b) In a second step, the full-CI equation is equivalently re-parametrized by an exponential ansatz as follows:
from a preliminary Hartree-Fock calculation (see e.g. [21]), one has an antisymmetrized rank-1-approximation
Yy at hand (a Slater determinant, see Sect. 2), being in most cases a rather good approximation to the sought
solution ¥p. ¥p is then written as a so-called excitation of the reference solution ¥,

Up = I+ 9%,

in which S is a linear operator, namely a so-called cluster operator that maps the reference ¥, to the sought
correction ¥* = ¥p — ¥y (also c¢f. Sect. 2 for the exact definition). ¥y fixed, solution of (1.2) is thus equivalent
to the computation of a cluster operator S such that

(®p, H(I + S)Wy) = Ep(®p, (I+5)%) for all &p € Hb. (1.3)

By standard matrix algebra (see e.g. [40,45]), every cluster operator of the form I + .S can also be expressed
as the exponential of a cluster operator T, so that (1.3) can in a second step be rephrased as determination of
T such that

(Bp, HeTWy) = Ep(dp, eTWp) for all &p € H, (1.4)

T

or alternatively, because e~ * is invertible, as the solution of

&p, e THeTW,) = Ep(Pp, ¥ for all &p € HL,. 1.5
D

for T'. These are the nonlinear “full-CC” equations (1.5) which are equivalent to the “full-CI”-formulation (1.2)
on the space H}, and which define a nonlinear root equation for a coefficient vector of so-called cluster amplitudes
(ta)acm determining T'. In contrast to the terms occurring in (1.4), (1.5) can be evaluated exactly [16,21, 36]
and is therefore the formulation almost exclusively used in practice.

(c) In a final step, only certain of the amplitudes ¢, determining 7" are used in the calculation. This corresponds
to a further reduction of the test space H}, to a subspace H}i, usually pushing practically relevant problems into
the range of computability. The result is a reduced set of CC equations

(B, e TH W) = Eyg(Py, W) for all &4 € HY. (1.6)

The selection criteria for basis functions included in the calculation normally base on the so-called “excitation
level” of the basis functions, leading then e.g. to the often used Coupled Cluster Singles Doubles (CCSD)
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equations. In practice, the resulting equations are then evaluated with the aid of the Second Quantization
formalism (see [16] for a comprehensible treatment) and then usually solved by Newton-type methods [21],
often enhanced by the DIIS acceleration method [37].

In contrast to (1.5), the equations (1.6) are no longer equivalent to the CI (Galerkin) discretization of (1.1) on
H, but preferable over the CI method due to various favourable properties: The CC method enjoys a wide range
of applicability in a black-box style and converges quickly and systematically to the full-CI energy limit £p when
applied to relatively well-behaved systems as typically C-H-chains, rings, alcohols, ketones and amino acids are.
It also usually outperforms the correspondingly truncated CI method, see e.g. [15,26]. As another important
feature truncated CC has, in contrast to truncated CI methods, the property of being size-consistent [2,4,32,40],
making CC the tool of choice when describing reaction mechanisms. For a review on Coupled Cluster theory,
the reader is referred to [3,29] and the abundance of references given therein, as well as to the article [7] for
a broader scope on the applications in physics; for some recent developments, see [5,10,27,31] as well as the
references given in Section 2.

In spite of the CC method’s practical utility and popularity, theoretical results from the mathematical point
of view are rather scarce. Only recently a first approach has been undertaken in [40], where the approximation
properties of the truncation step from the discrete full-CI equations (1.3) to the projected Coupled Cluster
equation (1.6) was analyzed. Thus, the problems associated with the direct re-formulation of the original,
infinite-dimensional problem (1.1) as an infinite-dimensional nonlinear Coupled Cluster method approached in
this work are circumvented; the flipside of this proceeding is that the results do not allow for direct estimates
with respect to the true solution ¥ € H', and convergence to ¥ can only be proved under certain uniformity
assumptions for the discrete equations. Also, the approach a priori excludes the analysis of methods where the
size of the underlying one-particle basis is varied. The latter are of interest in the context of error estimation
though, especially in view of the fact that convergence of different CC models towards the limit within the full
Cl-space usually is rather fast, while the convergence of the full-CI solutions ¥ € H} to the continuous limit
W € H' is often rather slow with respect to the size of the underlying one-particle basis set.

As a first step towards such statements and error estimates, it is the goal of the present work to show that
under suitable assumptions, the electronic Schrodinger equation (1.1) can in a mathematically rigorous fashion
be equivalently re-formulated as Coupled Cluster equations in a coefficient space reflecting the continuous space
H'. The resulting method will be termed “the continuous Coupled Cluster method”, expressing the task of
solving the eigenvalue equation (1.1) as that of determining a suitably defined cluster operator T and an E € R
such that there holds

(®,e " THeTW,) = E(P, W) for all @ € H' (1.7)

(with fixed reference ¥). The set of all such E' then equals the set of all eigenvalues of (1.1), and if there are any
eigenvalues below the essential spectrum of H, the smallest such E thus gives the ground state energy of the
system as above. The generalization of the canonical finite-dimensional CC formulation of the CI problem (1.2)
to a continuous CC formulation (1.7) of the original problem (1.1) consists in the below three steps (i) to (iii)
that will be taken care of in the following Sections 2 to 5:

(i) The formalism of cluster operators, canonically defined by their action on a fixed finite dimensional tensor
tensor basis set, has to be adapted to the infinite dimensional space appropriately. This will be done
in Section 2: To set the mathematical stage, we review the necessary parts of the ample mathematical
background that underlies the electronic Schrodinger equation [22,35, 44, 48]. We introduce annihilation
and creation operators from Second Quantization, which are used to give the formal definition of cluster
operators S in infinite dimensional spaces. We then re-phrase the Configuration Interaction equations in
terms of cluster operators and prove a one-to-one correspondence between corrections ¥* € {W¥y}+ and
cluster operators S € B(ILg,Ly) in Theorem 2.7.

(ii) The critical point in establishing a functional-analytically sound generalization of the CC approach to
infinite dimensional spaces consists in proving a one-to-one correspondence between the corrections ¥* €
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H' N {¥}* contained in the energy space H' and the cluster operators S for which S € B(H!, H'). As
well, the H'-continuity of their Lo-adjoints has to be established. The according statement are formulated
in Theorem 4.1, the first main result of this work. To prove Theorem 4.1, there are to our knowledge no
suitable concepts available in the literature so far. The idea of the unfortunately rather technical proof
given in this work bases on representing a suitable norm on H' by projection on orthogonal basis sets;
the derivation of this representation is subject of Section 3. In Section 4, this is combined with certain
consequences of the nilpotency properties of annihilation and creation operators, allowing to reduce the
Proof of Theorem 4.1 to finite-dimensional, uniformly bounded ¢,-estimates similar to the ones used [40].

(iii) The above continuity properties verified, application of well-known Banach algebra theory can be used to
supply the remaining ingredients for formulation of the continuous CC equations and the continuous CC
function f. This step is taken in Section 5. The second main result of this work is Theorem 5.3, where
equivalence of the electronic Schrodinger equation to the full-CI equation is proved.

In a follow-up publication [38], we will harvest the continuous CC formulation to directly derive from it existence
and uniqueness results for the continuous and discrete equations. We will show that the H'-error of the solutions
of the discrete equations are bounded up to a constant by the H'-distance of the used approximation space to the
full solution (i.e. we will give what in the context of Galerkin theory often is called quasi-optimality estimates).
Also, we will obtain error estimators for the energies calculated by discrete CC, and (positive) statements on
their convergence towards the real energy E. The corresponding analysis will also underpin the importance of
particular constants (as the quality of the reference determinant ¥, and spectral gaps of the Hamiltonian) for
the practical convergence behaviour of the Coupled Cluster method.

2. SETTING FOR THE CONTINUOUS CC EQUATIONS

This section supplies the necessary building blocks for establishing the continuous Coupled Cluster method
in the following sections. Based on the choice of a one-particle reference space R C H'(R? x {£1}), we start
by re-phrasing the electronic Schrédinger equation (1.1) in its intermediate normalization formulation. This
perturbational formulation is sometimes also termed the complete Configuration Interaction formulation (as
in contrast to the above discrete full-CI formulation (1.2)) and is in its discrete version commonly used for
the formulation of post-Hartree-Fock methods. We then introduce some concepts from Second Quantization; in
particular, we define the excitation operators that are central to the formulation of the Coupled Cluster theory
and compile some of their properties. Based on this, we write out the CI ansatz in terms of cluster operators
and emphasize the problems that we will have to deal with in the following sections when making the transition
to the exponential parametrization of the Coupled Cluster ansatz.

The complete-CI formulation of the electronic Schrédinger equation. The solution space H! on which
the N-particle electronic Schrodinger equation is formulated combines two requirements on the solution ¥: The
first is that it be subject to the Pauli principle, according to which the wave function has to be antisymmetric (i.e.
sign-changing) under every permutation of two non-identical particle coordinates (z;,s;), (z;,s;) € R? x {£4}.
This condition means that solutions have to be contained in the space?

L? = L% := Z\lL2 <R3x{i%}) C L2<<R3x{i%})N>, (2.1)

formed by all antisymmetric functions in L2((R?® x {:I:%})N ). The usual L2-inner product and norm will be
denoted by (-,--) resp. || - || in the following. The second requirement on the solution is that it be contained

2Note that when denoting the space IL?V and later also H}V, we will for brevity suppress the index N in any context where the
electron number is fixed.
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in the Sobolev space H'((R® x {£3})") of finite kinetic energy, a Hilbert space [39] with the inner product
induced by the non-negative operator

N

N-A = ) (1-4),. (2.2)

i=1

Herein, A is the 3N-dimensional Laplace operator; in the right formula, N — A is expressed as a sum over N
three-dimensional operators (1 — A),,, acting on the variable x; of an N-particle function. The according inner
product is given explicitly by

N
(@,0)) = N(O,W)+ (VO VW) = N(OW)+ Y (Vo &V, 0). (2.3)
=1

The energy space for the N-electron Schrodinger equation is now defined as

H' = HY := L?me((R?'x{%})N}). (2.4)

Using the above inner product (-,--)1, H! is also a Hilbert space. On H!, we are looking for solutions of the
electronic Schrodinger equation. Its weak formulation, a convenient starting point for numerical treatment, is
formulated in terms of the bounded, coercive [48] bilinear form h : H! x H! — R on the energy space H',
induced by the strong Hamiltonian H : H2 — L2 [17,22,35,42,47],

N N 1 N M 7
h(W, W) = (VO, V') + (0, - LA 2.5
R A O N e R e o
i

In this, the constants Z, € N, Ry € R? are the charges and positions of the M fixed nuclei. The solutions of
the weak eigenvalue equation

h(_wv) = E<_W7> in H_1’ (26)

correspond to the eigenfunctions of the classical, unbounded Hamiltonian H:H? - L2 [48]. By standard
functional analysis, (2.6) can be restated as an operator eigenvalue equation for a weak Hamiltonian H : H* —
H,

(HP,-) = h(¥,-) = E(,-) in H (2.7)

leading to the equation (1.1) formulated at the beginning of this work.

The reformulation of (2.7) in terms of the linear CI ansatz (¢f. the introduction) and also in terms of the due
continuous CC formulation are perturbational in the sense that they assume that an approximate, preliminarily
calculated reference solution is given. In canonical, single-reference Coupled Cluster theory, this reference solu-
tion is an antisymmetrized rank-one approximation ¥, mostly given by the Hartree—Fock solution [11,21] in
practice. Our formalism developed here will also be based on such a simple reference solution, characterizable
equivalently by an N-dimensional one-particle reference space R C H'(R? x {£1}). The according construction
is performed in the following fundamental definitions.

Definition 2.1 (one-particle functions, antisymm. mapping, reference determinant).

(i) Let H' := H'(R® x {£1}) denote the so-called space of one-particle functions, and fix an N-dimensional
subspace R of H'. R is called the occupied space of the ansatz, its L?-orthogonal complement R the
virtual space.
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(i) By Q: L?((R3 x {£4})") — L2, we denote the N-particle antisymmetrization mapping, defined by its
action on functions ¥ = ¥((x1,51), ..., (N, sn)) € H via

1
U = — —1) T (21, Sr(1))s - - - s (Tr(N)s S , 2.8
i > (-1 (Tr()s (1)) - - > (@r(v)s Sm(w)) (2.8)

T meS(N)

with the sum running over the permutational group S(N) on N elements operating on the indices of ¥.?
(ili) Fixing an L2-orthonormal basis

Boce = {X1,---sXN} C H! (2.9)
of the space R from (i), the reference determinant ¥, defined by R is the normalized, antisymmetric
function

N
W =\ x1 = Q@11 x1)- (2.10)
I=1

It is not hard to see that up to a phase factor, the reference ¥, only depends on the chosen subspace R, not on
the particular Byc.. One mild restriction imposed on the choice of R resp. ¥ is the following.

Assumption 2.2. The reference ¥ is not orthogonal to the sought ground state function,

This assumption satisfied, equation (1.1) can now be formulated in terms of the CI ansatz: “Find ¥ =
Wy +W* € HY, ¥* € {¥}+, such that

(B, H(Wy + V")) = E(@,W+¥*) forall &cH' where W*1¥,.” (2.12)
In this, the correction ¥* is orthogonal to the reference in the L2-inner product, so that the condition
(@, o) = 1 (2.13)

is fulfilled, a condition often termed as intermediate normalization in quantum chemistry literature. The con-
straint (2.13) accounts for the fact that the solution of the eigenvalue equation (2.7) is always non-unique in
the sense that it is fixed at most up to a constant factor; instead of the “usual” constraint that ||¥] =1, (2.13)
has the benefit that the set of all possible corrections ¥* in (2.12) is now the linear space {Wy}+ NH!.

One-particle bases and Slater determinants. We use the orthonormal basis B,. of the reference space R
fixed above, and complement this by choosing an orthogonal basis By of R*,

By := {XA | XA € H17 A>N+ 1}7 span Byiy = Rla B := Boce U Byirt.

B is a one-particle basis, a basis of H(R? x {:I:%}) Following the conventions of quantum chemistry literature,
we will denote indices belonging to occupied orbitals x; € Bocc by letters

I,JK,...cocc:={l,...,N}.
Virtual orbitals x4 € Byt are labelled by letters
A, B,C,...evirt:={M &N | M>N},
Indices of unspecified orbitals yp are indicated by letters P,@Q, R, ... € N.

3Note that Q is not the projector on the antisymmetric functions, but is designated for mapping the tensor product ®§V:1Xp1
of N orthonormal functions to a normalized, antisymmetric function as in (iii).
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We now define for any set of k indices Pi,..., P, € N, k € N, P; # P; for i # j, the corresponding k-particle
Slater determinant as

N
v, = UP,..., P = Qk(®?=1 XP,L-) = /\XP,“ (2.14)
=1

with Q denoting the k-particle antisymmetrisation mapping defined in (2.8). As in the above, Slater determi-
nants will be labelled by an ordered multi-index u = [P, ..., Pg], sometimes abbreviated by a Greek letter. For
a Slater determinant ¥,, = ¥[Pi,..., Py], we will also denote by

occ(p) ={P e{Pi,...,Py}: P€occ} and virt(u)={P € {P,...,Px}: P € virt}

the indices of the occupied resp. virtual orbitals contained in p and write P € p if P € {Py,..., Py}.

Creation and annihilation operators. The Coupled Cluster method utilizes a nonlinear parametrization
of the space {Wo}+ NH! in terms of so-called excitation operators X u» connected to the basis set introduced
above in a natural way. The building blocks of such operators are so-called annihilation and creation operators
borrowed the formalism of second quantization [6] that will now be introduced. In fact, any linear operator on
L2 (in particular also the electronic Hamiltonian) may be written as a (possibly infinite) sum of polynomials
of such creation and annihilation operators a;r), ap (see [9] and also [46] for the equivalent concept of “matrix
operators”). This allows to write the CI and CC formulations of the electronic Schrédinger equation (2.7)
completely in terms of these operators, and the practical evaluation of the CC equations to be derived below
essentially depends on the algebraic properties of these operators, see e.g. [16]. In contrast, our exposition here
is quite short and only contains those properties that are needed later to establish the continuous Coupled
Cluster method. For more details ¢f. [21,43]; in particular, note that the proofs of the anticommutation laws
and of the relations (2.21), (2.22) given below are analogous to those for the finite-dimensional case [21] and
are therefore omitted.

We will in this paragraph utilize the antisymmetric, real valued space L? = L3, from the last section for a
varying number NN of electrons and therefore equip spaces, operators etc. under consideration with an index IV
indicating the number of particles where needed. Because notations used are intuitive and only needed in this
part, they will not be introduced at all length. From the next section on, the particle number N will be fixed
again; consequently, the indices will be omitted again. The (fermion) Fock space [18] is defined as

(oo}
F = L,
N=0

where @ denotes the direct orthogonal sum of the N-electron Hilbert spaces L3,. By writing N-electron state
vectors Uy € L% as (Ok, NN )ken = (0,0,...,0,%x,0,...), we may embed L% in F for any N. Note that the
case N = 0 is also included in the above definition of the space F. For this case, L2 is (by definition of the tensor
product) the underlying field of the complex numbers. This is a one-dimensional vector space, thus containing
up to a phase factor only one normalized vector called the vacuum state |). This state is in some sense the
starting point for the formalism of second quantization, as any state vector may be created from it by the use
of the creation operators introduced in the following.

Definition 2.3 (creation and annihilation operators). Let f € L?(R3 x {£3}). The creation operator or creator
a} of f is a linear mapping

ah:F—F (2.15)
defined by its action on each single space L;: For N = 0, we set

all) = felf;
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for any 1 < N € N, we define a}\m?\r (L3 — ]L?V_s_1 in the following way: The mapping Qi1 : LQ((R3 X
5 — rom (2.8) 1s used to define that for ¥ € ,
I PN S L%, 6 2.8) is used to define that for ¥ € L%

ah = (N)" 2Oy (fov). (2.16)

The adjoint of the creation operator a} :F — T of f is termed the annihilation operator or annihilator
af:F—Tof f.

The creation operator a} is a bounded operator on F (with ||a}\| = ||f|)- In particular, the adjoint of the

annihilator ay is indeed a} as indicated by the notation. For annihilators and creators, there hold the important
anticommutator relations [21]: denoting [A, B]; = AB + BA, one has

[afa a9]+ =0, [a’}a a’er =0, (2.17)

and if f,g € L>(R3 x {£1}) are orthogonal, then

[afa a’;]Jr = [a’}a a’g}Jr =0. (218)
Furthermore, all creation and annihilation operators are nilpotent,
afay = a;a} =0. (2.19)

For the construction of the CC method, one restricts oneself to creation and annihilation operators belonging
to the basis functions from the one-particle basis B fixed above: For f = xp € B, let us denote ap := ay,,
a;r, = a; , for sake of brevity.

Using this notation, the reference determinant can then be written as

¥ = V[l,....N] = A xs = afa}...al]); (2.20)
I€occ

also, we obtain from the anticommutator relations (2.17), (2.18) and the nilpotency (2.19) that for P € N and
arbitrary k-particle Slater determinants ¥, = ¥[Pi, ..., Py]

0 it Pé¢pu

apy = { (—1)W[Py, .. Pi1,Piyr,., P)]  ifP =P (2.21)

(Note that ¥[Py,.., Pr_1, Pry1,.., Py] is a Slater determinant of k — 1 functions — ap has “annihilated” the
function xp.) For a}g, there holds

0 ifPep

i _

so that aJIr) “creates” the orbital xp in ¥[Py,..., P;], making it a (k + 1)-particle Slater determinant (unless P
is already an orbital in ¥[Py, ..., Py]).

Excitation operators and Slater bases. The annihilation and creation operators are in particular the
building blocks of excitation operators that will themselves be used to define the cluster operators used in CC
theory. Their definition is as follows.

Definition 2.4 (excitation operators). For £ < N and any selection
I <...< I € occ, Ay < ... < A € virt
of indices, we define the corresponding excitation operator by

Avb A 1 T
Xyt =ahanay,ar, - ..ay, ar,. (2.23)
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To characterize the action of excitation operators, we start by investigating how X f‘ = aTAa 1 for I € occ, A €
virt acts on the reference determinant Wy = ¥[1,..., N]: from the relations (2.21), (2.22), one finds that

X{wn,...,1-1,I,I+1...,N] = w[1,....,]—1,A,I+1,...,N],

r.e. X f‘ replaces the occupied one-particle function y; in ¥, by the virtual function x 4. More globally, an

excitation operator XAl’ If’“ with I; < ... < Iy € occ, A1 < ... < A € virt maps the reference to

O . [ Tif I¢{h,... I}
Xpvdgy = W, =w[Py,...,Py] with Pr= {Aj 11 ein (2.24)

that is, to the Slater determinant with multi-index p = [P, ..., Py] obtained from the reference index [1, ..., N]
by replacing the occupied orbitals I, ..., I by the virtual orbitals Ay,..., A (putting A; in the position of I;).
Let us collect all these multi-indices p, obtained by replacing k occupied orbitals (1 < k < N) in the reference
index [1,..., N] by k virtual indices in ascending order, in an index set M. The set

B={¥,|peM}={v, ¥, = Xﬁf_’_‘_‘;}‘:ky'/o for some exc. operator Xﬁf_’_‘_‘;}‘:’“}

is then a (so-called Slater) basis for the space H % := H! N {¥}+, cf. e.g. Lemma 1.17 in [36]. We thus have a
one-to-one correspondence between the excitation operators Xﬁllfk and the elements of the basis B. In the
following analysis, it will be useful not to use the notation for excitation operators introduced above, but to
index them by the multi-index p defined by

A . A, Ay
X, = Xllfj--,’ if thl’“’}k Wy =, nweM

and we will exclusively use the notation X, u € M in the following, so that

B={¥,|peM}={X,¥ | peM} (2.25)
To avoid confusion, we give the correspondence between the notation X, € M and the notation Xﬁll‘;‘"
explicitly: for given u € M, the indices of the annihilation operators contained in the representation (2.23) are
given by the set occ\occ(u) (indices not contained in p must have been annihilated), while the indices of creation
operators in (2.23) are the virtual orbitals contained in p, i.e. given by virt(u). Vice versa, or X}?llf" given,
the corresponding index u = [P, ..., Py] can be determined by replacing in [1,..., N] the indices I,..., I} by
A1, ..., Ay as above (or by using (2.24)).

Some properties of excitation operators. It is an essential fact for Coupled Cluster theory that excitation
operators commute as a consequence of the relations (2.17), (2.18):

XoXp = X5Xa. (2.26)

The result of the above product is either also an excitation operator (up to a sign), or zero; more precisely, we
have the following statements that follow directly from the definition (2.23) and the nilpotency property (2.19).

Lemma 2.5. There holds XoXg # 0 if and only if
virt(a) N virt(3) = 0, occ(a) Uoce() = occ; (2.27)
in this case XoXg = £X,, with
virt(p) = virt(a) U virt(3), oce(p) = oce(a) Noce(B) (2.28)
(where U denotes the disjoint union). In particular, for fized o, u € M, there holds
XoXp==xX, forsome e M onlyif virt(a) C virt(u), occ(a) 2 oce(p); (2.29)
in this case, B is unique and given by

virt(8) = virt(p)\virt(e), oce(B) = occ(p) U (occ\oce(a)). (2.30)
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Note also that the effect of application of X, to a basis function ¥g = Xg¥, a, 8 € M, is by the above rules
either zero, or, if (2.27) is fulfilled, equals £%, with p determined by (2.28). Similar rules holds for the formal
adjoints of excitation operator. If X, is given by (2.23), its adjoint is the so-called de-excitation operator

— b t t .
X;E = a;04,07,04,...G] ...04,;

for instance, there holds X IL X, ¥ = Y. For later purposes, we fix the following more global analogue of
Lemma 2.5.

Lemma 2.6. For a, 3 € M, we have X XgWy # 0 only if
virt(a) C virt(5), occ(a) D oce().
In particular, 3, u € M fived, there holds X} XgWo = £ X, Wy for some a € M only if

virt(p) C virt(8), occ(p) D oce(f). (2.31)

In this case, a is unique and given by

virt(er) = virt(8)\virt(p), oce(a) = oce(8) U (occ\oce(p)). (2.32)
The statements of Lemma 2.6 follow easily by noting that for o, 3, 1 € M, Lemma 2.5 implies that X X5 ¥ =
+X,, Wy holds if and only if Xg ¥y = £X,X,, ¥. The assertion thus follows directly from (2.27)—(2.30).

Cluster operators and their L2-continuity. Using the representation (2.25) for the tensor basis B of H'*,
every intermediately normed function ¥ = ¥, + ¥* € L? can be expanded as

U o= Uy +0*" = P+ Z $aXaWo =: (I+ Sg-)¥ (2.33)
aeEM

of at most N-fold excitations X,¥, of the reference determinant ¥, € B, where the operator Sy+ is a linear
operator, so far well-defined on span{¥,}. We now approach a first step to the continuous CC formulation by
proving that Sy~ uniquely defines a bounded operator on L2, the so-called cluster operator defined by ¥* € 2.
We also show that the definition of this operator (which we also denote by Sy+) is independent of the chosen
one-particle basis B, but only depends on the reference subspace R, and add some statements on the L2-adjoint
ST of S needed later. In contrast to the technical problems that arise in establishing the crucial properties of
Sy~ as operator on H' in the next sections, the proof is relatively harmless and follows mostly from arguments
for the discrete, projected CC method, [40], Lemma 4.13.

Theorem 2.7 (LL?-continuity of the cluster operator; independence of the basis). Let W* € {W¥}*. Then there
holds the following:

(i)  The cluster operator S = Sy~ defined via (2.33) possesses a unique continuous extension to 2,
S € B(L2,1L?),
the cluster operator defined by W*. There is a constant a > 0 such that
1271 < [ISlhemse <a |27 (2.34)

(i) This operator S € B(IL?,1.2) is independent of the choice of the bases Boce, Byiry for R, R and thus of the
basis B for {Wo}+ in the following sense:
Let B:={x1 | I € occ} U{xa | A € virt} any one-particle basis for which

span{xs|I € occ} = R, span{ya|A € virt} = R*,
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and let Xm a € M according excitation operators and W, = X’a@o, a € M according basis functions of a
basis B for {Wo}+. Then if

aeEM aeEM
there holds B
S =Y saXe = 50 Xa.
aeEM aeEM
(i) The L2-adjoint ST of S is given by
St=3"s.X| € B(L*L? (2.35)
pneM
and can also be bounded by
) < [18Mlemre <a &7 (2.36)

Proof. In [40], Lemma 4.13, it was proved that for all linear combinations

U* = Z SqWu, W= Z cgW, € L2 (2.37)
aEM peEM

of elements from B with only finitely many coefficients s, cg nonzero, there holds
1S < Cnll&= %] (2.38)

where Cy is a constant independent of the number of terms in the expansion (2.37) of ¥* W. For all finite
linear combinations ¥*, one can therefore in a first step use (2.38) to uniquely extend S = Sy+ to a continuous
operator on L2 by taking L2-limits with respect to ¥. In a second step, we write arbitrary ¥* € L? as limit
of a sequence ¥,, of finite linear combinations. S = Sy« can for such ¥* be defined as the unique limit of the
B(IL?,1L?)-Cauchy sequence (Sy, )nen. In particular, the bound (2.38) also holds for ¥*, implying the upper
bound in (2.34). Observing ||[S%|| = ||&*| provides the lower bound on ||S|L2_p2. The rather straightforward
proof of (i) rewrites the annihilators and creators belonging to B as sums of those built from B, see [36] for the
details. Item (iii) follows by writing S as a limit of finite sums of excitation operators and using the continuity
of the adjoint mapping A : L2 — L2, A — AT O

Remark on the choice of one-particle bases. Let us emphasize here that (ii) implies in particular that any
bases for the occupied and virtual spaces R, R+ might be used as long as the L?-orthogonality between By
and By¢ is maintained. Therefore, the present analysis covers not only the canonical choice, where B, is given
by the first N eigenfunctions of some discrete or continuous Fock operator, complemented by an orthogonal
basis of R+, but also many of the more sophisticated CC schemes which are not directly based on canonical
orbitals (i.e. eigenfunctions of the Fock operator) anymore, but use certain localization criteria to rotate the
occupied orbitals (to e.g. Foster-Boys-type orbitals [8], Pipek-Mazay-type orbitals [33] or enveloped localized
orbitals [1]), or use non-orthogonal bases for the complement Byiy, (e.g. the projected atomic orbitals (PAOs)
in the LCCSD approach [20,41]). Also, the analysis can be extended to methods enhancing the virtual space
by specialized basis functions taking the numerically hazardous electron-electron cusp [19,24] into account (as
e.g. the recent powerful 1 2- and f; 2- methods [25]). Note though that for non-orthogonal orbitals, the simple
relations (2.21), (2.22) do not hold anymore, and some special care is required when implementing the action
of annihilation and creation operators.

Complete CI in terms of cluster operators and the problem with continuous CC. We can use S to
rephrase the Schrédinger equation in the following way: ¥ = Wy + 3 1/ saW, solves the electronic Schrédinger
equation in its intermediate normalisation formulation iff the corresponding cluster operator S = Sy« solves
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(®,H(I+S)W) = E(®,(I+S)W) foral pue M. (2.39)

In finite dimensional spaces, (2.25) supplies a one-to-one correspondence between all functions ¥y + ¥* =
vy + ZaeM sa¥, and the set of all operators I +S =1 + ZaeM SaXa, and the latter can then be expressed
equivalently as the set of matrix exponentials

{eT' | T is a cluster operator}, (2.40)

giving rise to the reformulation of (2.39) in terms of CC theory as outlined in the introduction. In infinite-
dimensional spaces, we have just proved that any ¥* € 1.2 N {¥}* corresponds uniquely to a cluster operator
S € B(L?L?), and using standard Banach algebra theory, we may rewrite the set of operators I + S (with
L2-continuous S) by a set (2.40) of exponentials as in the finite dimensional case.

The problems stem from the plain fact that not all Lp-convergent series * = pem Y of basis functions
are possible solutions because of the restriction that ¥ = Wy + ¥* € H'. We will therefore show, and that is
in fact the main problem in establishing the continuous CC method, that ¥* € {¥}+ is in HY if and only if
its cluster operator is in B(H,H'). The set of all admissible cluster operators is then a closed subalgebra of
B(H!,H'), and we obtain the correspondence

(W +0* | 0" cHY) ~ {I+S]|SeB(H,H' is a cluster operator}
~ {eT | T € B(H',H") is a cluster operator}

that will allow to formulate the Coupled Cluster equations in analogy to their finite dimensional version in
Section 5. To write out CC in its linked formulation, we will also have to prove the H'-continuity of the
L2-adjoint ST of a cluster operator S € B(H!,H'). The proof of these continuity statements is subject of the
following two sections: the following section provides some technical preparations; then, the the main statements
are proved in Section 4.

3. AN EQUIVALENT NORM ON H!

As remarked in the last section, the crucial part in setting up the continuous CC method consists in proving
that for * € HY+, S, ST defined in the last section are continuous as operators mapping H' — H'. Our proof
of this fact relies on a specific representation of a norm || - ||z~ that is equivalent to the Sobolev norm on H!
induced by (2.3) on the one hand, but allows us to take advantage of the L2-orthogonality between occupied
and virtual orbitals on the other. The norm || - ||zgx will be introduced in this section, and the representation
used in the next section will be the main result of this section, given in Proposition 3.4.

To begin with, let us note that the Sobolev inner product (2.3) on H' may be viewed as being induced by the
one-particle operator 1 + A on H!, viz., by constructing from it 1 + A the many-particle operators (1 + A),,
in (2.2)% In the same way, every one-particle operator A inducing an inner product equivalent to that on H*
can be used to define an inner product ({-,--))y on H' as that induced by the lifted operator A := ZQI(A)%,
and it is not hard to check that then also ((-,--))n and ()1 are equivalent on H!, see e.g. [36], Lemma 1.25.
This is used in the next Lemma to construct a useful norm || - || zpx on H?.

Definition/Lemma 3.1 (R-normon H', RN-norm on H'). Denote by P, P+ the L?-projectors on the subspace
R (Def. 2.1) and on its L%-orthogonal complement R*, respectively.

(i) On H' x H*, the operator
P(1—A)P+P*+(1 - AP+ (3.1)

4For antisymmetric ¥, this is akin to the fact that [|[¥||; = tr(1 — A)y!, where 7! the one-particle density matrix of ¥ and the
Laplacian acts on z. In fact arguments similar those used when dealing with these quantities will enter below in the computation
of the projection on the R!'-orthonormal basis.



THE CONTINUOUS COUPLED CLUSTER FORMULATION FOR THE ELECTRONIC SCHRODINGER EQUATION 433
defines an inner product
o 1L 1L
(@, )R = (P, PY)1 + (P, P (3.2)

equivalent to the canonical H'-inner product (-,--)1.
(i1) For any ¢ € R,y € R* N HY,

(p,)r = 0. (3.3)
(iit) The quadratic form
Co)mv s HUH SR, (@ 0)py = T (8. P)n,, (3.4)
associated with the operator
N
Y R = ) (P(1-AP+PH1- 2P, (3.5)
i=1 i=1

(constructed in the fashion outlined prior to this definition) is an inner product equivalent to the canonical
induced inner product (2.3) on H', and the induced norm ||-|| g is equivalent to the canonical norm || - ||m
on H'.

Proof. P is of finite rank and therefore continuous as mapping H' — H': we thus also have continuity of P+
and therefore that

lelif = 1PelT + 1Pl < (1P + 1P 1) ellT-

Vice versa, denoting the La-norm by || - ||,

lell? < llell® + IV Pl® + [V Pol|? + 2| VPl VPl

< llel® +2(IVPol* + VP ol?) < 2[¢]%-

holds; item (ii) is straightforward, and using the equivalence of the inner products from (i), (iii) readily follows
with the remarks made ahead of this lemma. O

For antisymmetric functions ¥ € H!, the expression (3.4) becomes a little simpler.

Lemma 3.2. Let ¥ € H', then
1
1] ry = N2[|¥| g, (3.6)

with the norm ||¥|| g, induced by the inner product (-,-)r, = (R1-,-) associated with the operator Ry from (3.5)
(acting only on x1).

Proof. For fixed i € {1,..., N}, let us set as ¥ the function which arises by exchanging the coordinates belonging
to the index 1 and ¢. Then, for the components of the inner product induced by (3.5), (R;¥,¥) = (R1¥,¥) =
(W, W) R, , where the last equality follows from the antisymmetry of ¥. The asserted statement follows. O

The above lemma puts us into the position of expressing the R¥-norm on H! in terms of projection on a basis
B that is orthonormal with respect to the Ri-inner product. This basis is constructed in the next definition.
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Definition/Lemma 3.3. Let us choose an (-, ) g-orthonormal basis {Xp | P € N} of H' for which

span{x; | I=1,...,N} = R, span{x, | A> N} = R*.

Also, denote by N' C NV~1 the set of those multi-indices 7 = (Py, ..., Px_1) of length N —1 that can be obtained
from some pu € M by leaving out one of the indices (and keeping the order of the rest). The set

Byvo1 = {¥%:=09(& N 'xp,)|7=(P,...,Pn_1) €N}
is a basis of the N — 1 electron space L%, and the set
B = {Ppp =xp®@¥% | PecJ,veN}
is an Ry-orthonormal system for which H' C m.

Proof. We only prove the statements for B; the rest is straightforward. Obviously, B is orthonormal in the

(, ) gr1-inner product. To prove H' C spanB, let a basis function ¥, = W[Py, ..., Py] € B be given. By dividing
the N! summands of the Slater determinant ¥, up into /N parts according to which of the functions xp, turns
up in the first position, we can write ¥, as

N

1 B B 4

v, = 3 Z (—1)! \X,r(pl)@...@x,,(PN) = N E:(—l)z Xp, © U (3.7)
(N2 Estm =1

=

where fi; € N contains all indices from g except the index P;, so that ¥y is an (N — 1)-electron Slater
determinant from By_;. We thus have ¥, € span@ and the assertion follows. O

Using the previous construction, the following lemma provides the following important working expression
for the norm ||¥ ||z~ of a wave function ¥ which will later allow for the desired estimate for cluster operators.
This expression may look somewhat complicated (incorporating antisymmetry and Slater-Condon rules), but
will turn out useful later.

Proposition 3.4 (RY-norm of antisymmetric functions). For any function ¥ € H', ¥ = dp . n¥ +
Zue/vt d, ¥, there holds

)20 =N ST (B W)= > >

®(p)EB IcoccveEN

+ Z Z Z 1)/B7= 'dip 54,8

Aevirt veN | Bevirt

S DT dyggy

Jeocce

2

where, for sake of brevity, we introduced some notation:

~ For P e N, v e N, we denote by [P,v] € M the multi-index of length N that contains all the N — 1 indices
from U and the index P (in the order enforced by the requirement that [P, 7] € M).

— If P is one of the indices in U, we set djpy) = 0 for convenience.

— |P, 7| denotes the position of the index P in the multi-index [P,7] € M.

=7 = (Xp,XQ)R for P,Q € N.
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Proof. Using Lemmas 3.2, 3.3, the first equality is clear by expansion of ¥ in the R;-orthonormal system B. For
the second, we rewrite the middle term as

1205 = N2 D" D" | S dulBipm), W), (3.9)

PeNvEN | pem

and compute for fixed (P,7) € Nx N and p = [Py,..., Py] € M the coefficient (P p),¥,)r,: By standard,
Slater-Condon-like arguments [21], (®(py),¥,u)r, # 0 only if u = [Q,7] for some @ € N. In this case, the
splitting (3.7) shows that

1

_1 i -1 v
(@p7), Ty, = N2 (=) @(p5), xo ® Br) = N72(=1)"" " (xp, xa)r
because only one of the N terms in (3.7) survives being tested with @(p . Inserting this in (3.9) yields

2

@[5 = Z Z Z )PV e vp g

PeNvVEN | QeN

which falls apart into two sums by the orthogonality condition (3.3), so one obtains the desired expres-
sion (3.8) O

4. CONTINUITY PROPERTIES OF CLUSTER OPERATORS

The present section approaches the main problem in the formulation of continuous CC, i.e., the continuity
properties of cluster operators belonging to functions ¥* € H%* := H! N {¥}+. The follovvlng theorem states
the main result. Afterwards, we will at first comment on the dlfﬁcultleb that have to be approached and devise
a roadmap to the proof given here. The actual proof of Theorem 4.1 is then covered in the rest of this section.

Theorem 4.1 (H'-continuity of the operators S, ST). Let R and thus ¥, be fived. By Theorem 2.7, every
w* € {Wo}+ NIL? uniquely defines an according cluster operator S = Sy~ € B(IL?,1?).
(i) There holds

el & SeBHY,HY, (4.1)
and for some constant by > 0 independent of U* that
10 e < [ISlwm—m < b7 (4.2)
(i4) For all W* € {Wo}+ N1L2, there holds for the L*-adjoint ST of S that

St e BEVHY,  [STmom < bl (4.3)

for some constant bs > 0.

Note that the adjoint ST is bounded in terms of the Lo-norm of ¥*. In particular, the norm of ST as mapping
H' — H' is not uniformly bounded from below by the H!- norm of U* which is easily seen by choosing a sequence
W for which ||&}(|; = 1 but ||&]| — 0; there then holds |7 /Il < (Rl /1@l — 0.

In contrast to the proof for La-continuity (Thm. 2.7) and although the relation (2.33) between a function ¥
and it s cluster operator is bluntly simple, the relations (4.1) to (4.3) for S and ST are rather hard to verify: the
operator S is easily seen to be non-compact in general, and to the authors knowledge, there are no investigations
of the analytical properties of cluster operators available in the literature, except for those for finite-dimensional,
“projected” CC analysed by Schneider in [40]. A direct transfer of the approaches taken there fails due to various
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technical obstacles arising in the continuous case: To show H!-continuity, a complete eigenbasis of the discrete
Fock operator of the system was used in [40], which does not have to exist anymore in the continuous case;
also, the discretized Hamiltonian boundedly maps to ¢s for each Galerkin discretization, so that for analysis of
the discrete Coupled Cluster equations, the need to show the continuity of ST as mapping H' — H' could be
avoided. This is not the case anymore in the continuous setting. Note also that the continuity of S : H' — H!
only implies the continuity of its H'-adjoint STH' {1 H~!, but not the H'-continuity of the restriction of
the L2-adjoint ST : L2 — L2 to H!.

Nevertheless, our proof given here will utilize a major argument already used in [40]: One of the main
observations made there is that due to the nilpotency of excitation operators, the number of indices «, € M
for which X,Xg = X, for some fixed ;1 € M is bounded by a constant Cy independent of i, allowing for an
estimate of the ¢;-norms of parts of [|[S¥||, by the fo-norm. We will use analogous arguments here; in fact,
the main reason for using for the complicated norm expression for || - ||gpv derived in the last section is it that
allows the application of such estimates in order to isolate the different terms of the norm representation of
17| g~ |[|[#*]| gy from the expression for [|[S¥|| gn.

Organization and overview of the proof. The proof is organized in three parts: The first two sections prove
the statements (i) on S and (ii) on ST, respectively; to convey the readability of the proof, two lemmas will be
stated and used during the proofs, but proved only afterwards in the separate third section. Before we start with
(i), we sketch for the convenience of the reader how we show the hardest part, namely that ¥* € HY* implies
S € B(H!,H'): We found in Section 3 that the norm || - || v introduced there is equivalent to the Sobolev norm
on H!; therefore, U* € H%* fixed, S € B(H!, H') holds if we can show that for all ¥ € {¥,}+ NH!,

[S¥|py < CIE™ || v [[@]] v, (4.4)
with C a constant independent of ¥* (Note that S is bounded by ||#*||; on span{%¥,}.) We recall the expres-
sion (3.8) for the || - || gx-norm computed in Proposition 3.4,

2 2
1S5 = > | Y Oy gl + >0 | Y. (D)PT s gya s (4.5)
Iecoce | Jeocc Aevirt | Bevirt
TEN TEN

0] (1n

in which the norm is expressed in terms of sums over indices p = [P,7] € M, i.e. ;1 € M consists of the

occupied or virtual index P and of those contained in 7, an ordered index belonging to an (N — 1)-particle
Slater determinant. (Remember also the convention djpp = 0 if P is contained in the indices of 7.) The first
term (I) allows for a simple estimate based on Theorem 2.7. To outline the proceeding for the term (II), we
denote

U= sale, W= gl SU= Y d X W= Y > sacsXaXplh. (4.6)

aeEM BeM HEM aeM BeM

and then use two auxiliary statements: (L1) bases on Lemma 2.5 to give an expression for coefficients d,, via
determining the “fitting” combinations of «, 3; the resulting terms tailored for the norm representation (4.5) will
look a bit more complicated than in Lemma 2.5, but are determined by the same rules. Counting the number of
combinations «, # that amount to a fixed p then gives rise to an estimate (L2), the modification of the estimate
from [40] mentioned above, and the estimate (4.4) can finally be proved. As noted above, the proofs of (L1),
(L2) will be given in the third part of the proof. The proof of (ii) for the adjoint of S will follow similar lines
as that of (i), and analogous statements (L1’), (L2’) will enter the proof and also be verified only afterwards.
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Proof of (i). Continuity and estimates for S.

We start by noting that if S¥ = ¥* ¢ HY*, then S ¢ B(H',H'); it therefore remains to prove the converse.
Let ¥* € H*; following the above outline, we start to show (4.4) by estimating (I) on the right hand side
of (4.5): Application of the Cauchy—Schwarz inequality to the sum over J € occ yields

QS( > m) (z Zd%m)- n

I,JEocc J€EoccTEN

Z Z ()" d s v

I€oce | JEocc
TeEN

Noting

Yo ovia= D Iallk=1%lley, D D dhn < N- Y di = N-|sy|

I,J€occ I€occ J€occveN peM

shows with the L2-continuity estimate (2.34) for S that
(I) < aN|[@ol| g &= [[[1¥]]-

To obtain (4.4), we now show that

2

(ID) = Z Z (—1)|B’ﬁ|_1d[B,v]7A,B

Aevirt | Bevirt
TEN

in (4.5) is also bounded by the [ - || gz-norms of ¥ and ¥*. To do so, we express the coefficients d,, = djp ) in
terms of the coefficients ¢, cg. To denote this in a concise manner, we define the following.

Definition 4.2. We define a partial ordering on M by writing @ < 7 iff both occ(¥) C occ(@) and virt(a) C
virt(7) holds. Two indices @ < ¥ given, this uniquely defines a corresponding multi-index 7 © @ € M of length
N by

occ(7 o @) = (occ\oce(@)) U oce(D), virt(v7 © @) = virt(7) \virt(a).

With that, we obtain the announced representation for the coefficients d|p 3 in terms of the coefficients c,, s
of U, U* see Lemma 4.3 in the “lemma section” below for the proof.

(L1) For

SU =Y dX W= > > sacpXaXsl

neM aeM peM
from (4.6), the coefficients dp ), B € virt,7 € N, are given by
dipp = Y ()P )P g g (sipm coea + calsvea), (4.8)
aeN
a<rv

where 0 &) is a sign distribution only depending on (V,@).

Inserting this into (II), we obtain in terms of ¢, cs that

2

Z Z Z Z ‘B o 9(wm) (t[B a) Cvea + C[Bg] u@a)'YAB

Aevirt TEN | Bevirt aeN
a=<v
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We split this up into

I < 2 ( >y U(v,a)< > (P s 'YA,B)Cuea

Agvirt | a€N Bevirt
2
) . (4.10)

TeEM a=<v
> 0(m)< > (plEa C[B«xWA’B)tvea

To estimate the two terms in (4.9) resp. (4.10), we now use the following estimate (4.11), which we will

prove in Lemma 4.4 below.

>

Aevirt
rveM

aEN Bevirt
a<v

(L2) For any sequences (bjap)) € la(N x virt), (cg) € £2(M) and for any sign distribution o z) there holds
that

2

Z Z 0(v,a@) b[A,a] Crow

Aevirt | @eN
veEN a<v

< On amllz el (4.11)

with the constant Cn only depending on the fixed number N of electrons.
We apply (L2) to (cg) and to

(baa) = ( Z (—D)IBA s 5 %4,13)
Bevirt
and obtain

Z (—D)IBYY 5 mvas

Bevirt

2
) I(ca)ll

by comparison of the bracketed term in the middle with the expression for the RV -norm of ¥*. Proceeding with
the summand in line (4.10) in the same way gives the other way around

2<CN< >

Agvirt
TeM

Z%m( >, DP g MB)Cuea

Bevirt

Aevirt
TeM

< COn (1| r (1]

2

2.

Agvirt
TeM

< COn [I#7]] - 1] p-

Z%m( > (niEe C[A@WAB)Ifuea

a=<v Bevirt

Thus altogether, ||S¥| g~ is bounded up to a constant by ||&*|| g~ |[|¥| g~
1SN ry SN (R - (@] R,

which implies S € B(H!,H') and the upper estimate for ||.S||g1_m in (4.2). Observing ||.S||m _m > ||S%l|1 =
||@*]]1 finishes the proof of the statements on S.
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Proof of (ii). Continuity of St
The proof of the H'-continuity of ST is similar to that for S, we therefore only sketch the proceeding. Denoting

S o= Y e, = D> Y sacsX]XaW,

pnemM aeM peM

one again uses the representation (3.8) to estimate ||STW|| z~; one obtains
2

>

Agvirt
TeEN

2
Z (—1)1B7 e g yam| - (4.12)

Bevirt

IS 5n = > | Y (D)7 e v

I€oce | Jeoce
TEN

™) )

The term (') can be bounded in terms of the L2-norms of ¥, ¥* in the same fashion as (I) in the proof for S,
only that now the L2-estimate (2.36) for ST is used:

(D) < Nl [ST] < aN||[@ollg~ [1@][]1¥*].

Next, (IT') can be estimated in terms of [|¥| gz~ and [[*||. We again express the coefficients e[p ) via the
“fitting” combinations of s4, cg. For the adjoint, there holds the following statement (see Lem. 4.3):

(L1’) For B € virt, v € N,

B,3|—-1 Byl-1__ _
e = D (DI oG ssere ) (4.13)
BeN
<A
with some sign distribution o ) depending only on (B,7). O

Inserting this into (IT") gives

(Ir) = Z Z 9(8.7) ( Z (_1)3”6'16[5,3]%4’3) Spev

Aevirt | BeN Bevirt
TEN <3

To estimate further, we use an analogue to the statement (L2) above (also see Lem. 4.4 below for the proof):

(L2’) For any sequences (bjap)) € L2(N x virt), (cg) € l2(M) and any sign distribution OB

2
Yo 1D 9 b Ger| < On NGl (ea)l3: (4.14)
Aevirt | BenN
TEN v<B

This yields

Z (D)7 e pivas
Bevirt

2
) 1(so)ll3 = Cn 1% Zen 1212

(Ir) < CN< >

A€virt
veN

which implies the upper bound (4.3) for the H'-norm of 7'f. O

Proof of the statements (L) used in the proof. To tie up the proof of Theorem 4.1, we will now redeliver the
proof of the statements (L1), (L1’), (L2) and (L2’) used in the above. The following combinatorial lemma
shows (L1), (L1°).
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Lemma 4.3. Let 7 € N be an ordered index belonging to an (N — 1)-particle Slater determinant and B € virt
not be contained in the indices of V.
(i) For a,fp € M, there holds

Either
a = [Byalwitha <7, =06
or
B = [B,B| with 3 <7;a =76

Ql

XaXﬁ = ﬂ:X[B,g] <

=

We therefore have for
S =" duX W= > Y sacsXaXs¥

pneEM aeEM BeM
from (4.6) that
dipm =) _ ok p) (Sipa tvos +  Cpmsves) (4.15)
a<v
where o™t is some sign distribution, dependent on 7, @, B.

(it) The sign distribution o¥'** from (i) can be written as

virt (_1)[B,D]—1(_1)[B,6]—1

Ow,aB) — 0(v,a)

with 0 &) a sign distribution only depending on (V,@).

(iii) For
Swo= N el = > Y sacs X XsW,
peM aeM BeM
there holds
ey = Y ()PP g s em g (4.16)
BeN
T=<3

with some sign distribution OB depending only on (3,7).

Proof. Noting that either o or 5 must contain the creator for xp, the statements in (i) are a straightforward
“translation” of (2.29), (2.30) to the notation of Definition 4.2. To show (ii), we determine the sign in X, X3 =
+X|p 3. Because excitation operators commute, we can assume without loss of generality that a contains the
index B, a = [B,@] with @ < 7. For the same reason, we can permute the excitation operators in X,, Xz
to obtain X, = a};aJIX@, X[Bj] = aEaJQX,;, with some Jq,Jo € occ (the indices that “got excited” to B,
respectively) and X4, X;; some excitation operator or the identity. We note that

(—DBAL = ()il (S B o ()t (4.17)
and compute

owaa) = (XaXp¥, Xipg¥) = (a5, XaXp%,a5,XW) = (*).
The indices of 3 are determined by (i) as 7 © @, those of & are

oce(@) = oce(@) U (occ\oce(f)), virt(&) = virt(a).
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We note that this uniquely determines & and f from @ and 7, establishing an injective mapping (@, ) — (&, 3).
We may thus permute indices such that X4 XgWo = 0w a)Wy, where ¥, € B is some ordered Slater determinant,
and 0 7) is a function of 7, @. We thus obtain that () = 0@ )(as, ¥, as, V). From (2.21),

an¥, = ()" a, XpW = (1)1,

with 7, i the indices obtained by removing J; from v resp. Jy from fi. ¥, ¥ are therefore Slater determinants
from the ordered (N —1)-particle basis set By _; for L%vq introduced in Lemma 3.3. We continue the calculation
by

o an Y, a,¥u) = (1) =100 o U0z = (1) (=1)""oga);

the last step following because (Pp, ) = dp g for ¥, ¥z € By_1 and because the whole term must give £1
by (i). Using (4.17), this completes the proof of (ii). To prove (iii), one uses (2.31), (2.32) to determine the
coefficients o, 8 for which X[ X3 = X % by Lemma 2.6 in analogy to the proceeding in (i). One finds that
in this case, for some 3 < 7, f = [B,B] and o = 3 © 7 have to hold. It remains to compute the corresponding
sign factor

0Gme = (X XpaP, XpnP) = (XaX(pn¥o,Xs5%);

applying the argument given in (i) to the right hand side shows that this can be written as CGmB) =
0(3@(—1)|B’§|_1(—1)|B’m_17 completing the proof. U

The last ingredient that is missing for Theorem 4.1 is the proof of the estimates (L2), (L2’), given in the next
lemma. An analogue to the first estimate (4.18) was already proven in [40], where it was central to the analysis
for the projected CC equations in the discrete setting. We prove our re-formulation for the present context with
an improved constant and derive from it the estimate (4.19), which was used as (L2) to show continuity of ST.

Lemma 4.4. For any sequences (bjaz) € l2(N x virt), (cs) € Lo(M), there holds for any sign distribution
O'(p’a) that

1D cwm baaw crea| < Cn (b3 ll(ea)ll3 (4.18)
A€virt | @eN
TEN | @<V
and also for any sign distribution 05 that
2
SIS 05 g sos| < On Il Nl (1.19)
Aevirt | Gen
veEN <3

Proof. We start by estimating for a fixed index 7 € N the number of indices @ € N for which @ < 7 holds:
By definition, @ < 7 iff virt(@) C virt (¥) and occ(7) C occ (@). Denoting by r the number of virtuals
contained in 7, the number of possible indices @ < 7 containing s virtuals (s < r by definition) is given by
(T) (Nf((Nfl)fr)) = (:) (Tﬁl). Summing up over all s < r gives

S T—S8 rT—S

SO0 < (N6

s=1
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using e.g. Vandermonde’s identity. Now, we can estimate the left hand of (4.18) by noting that for every fixed
7, the sum over @ < 7 contains at most C'y non-null summands; thus for each A € virt,
2

Z Z ow,a) bag croa| <COnN Z Z b[? A,a]C%ea

TEN | @aeN TEN TEN

<7 a=<v

=COn Y | bam D Gea | <ON (D bam) lea)semll?,nn

aeN TEN veEN

a=<v

In the last step, we used that for @ # 8, 7 © @ # 7 © (3 holds, which implies

Z C%ea < Z ci.

TeEN aeEM

a=<v

This shows (4.18). To prove (4.19), we note that (4.18) means that for fixed (cq) € f2(M) and a given sign
distribution o &), the mapping

M Ly(virt x N) — Lo(virt x N),  (efaz]) +— Z O(wa) €[Aal Croa
aeN

a=<v

is continuous with norm [|M|| < C]%”(CQ)HQ. We compute the adjoint of M: Denoting the ¢>-inner product on
lo(virt x N) by

((aam), (0am)) = ((aam)), (bpas))) s (virtx A7)
there holds for (ea,7)) € £2(virt x NV) that

<M(6[A,§])7 (b[A,F]» = Z Z Ow,@) €[Aa] Cvon b[A,ﬁ]
A \ 5

= Z Z 0w bap Cvoa | elaa = <(6[A,7]), Z 035 Y43 CBow >,

aEN TEN BeN
Aevirt \ @<7 7B

where we re-labelled the indices 7 — 3, @ — 7 in the last step. M1 is therefore given by

MJF : Kg(vil‘t X N) — ég(virt X N), (b[AJ]) — Z U(B,V) b[A,E] Cﬁe?

BEN
T<B

1
MT is also continuous with [|[MT|| = |[M|| < CZ||(ca)lle,, and writing this out gives (4.19). O

5. THE CONTINUOUS COUPLED CLUSTER EQUATIONS

As the main result of this work, we now set up the continuous version of the Coupled Cluster equations and
show that they are equivalent the exact (weak) eigenproblem (1.1) in Theorem 5.3. To do so, we need two more
lemmas. The first one uses Theorem 4.1 to extend cluster operators to H™!; the second is the continuous version
of Lemma 4.2 and Theorem 4.3 in [40], giving the formal justification for the exponential parametrization used
in CC theory.
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Lemma 5.1 (continuity of S : H™! — H™1). Let ¥* = dopem Sulu € {Wo}t. The corresponding cluster
operator S = Sy~ € B(L?,1L?) can be extended to a continuous operator S : H=' — H~L. In particular,

each excitation operator X, can be continuously extended to an operator X,, : H™' — H™', and there holds
8= em-suXy in BH,H™).

Proof. By virtue of Theorem 4.1, the ILQ:adjoint ST of S is a bounded operator on ~]I-]Il. Its H'-adjoint S : H~* —
H~! is therefore also continuous with ||.S|/g-1_z-1 = ||ST||gm _z1. We show that S extends S € B(L2,1L?) (and
therefore may be denoted in a slight abuse of notation as S as above): We identify ¥ € IL.? with the functional

F() = (¢,)e? c H
and obtain the assertion from }
SF = F(ST) = (w,81.) = (Sv,.).
Theorem 4.1 in particular implies that X, : H™! — H~! is continuous and well-defined, and S and Zue/\/l* s, Xy
coincide on the dense subset L2, so S = > e SuXy also follows. g

Lemma 5.2 (properties of the exponential function on the algebra of cluster operators).

The set
L:= {t01+s [to€R, S= ) saXa€ B(Hl,Hl)}
aeEM
is a closed commutative subalgebra of B(HY, H), of which each element with ty # 0 is invertible. The exponential
function exp(X) = Z?LO X1/il is a local C>-diffeomorphism mapping onto L\{0}. In particular, exp is a
bijection between the sets

S= {S | S= ) saXa eB(Hl,Hl)} and T+S8 = {I+S |5 =)" saXa eB(Hl,Hl)}.
aeM aeM

The lemma also holds if H' is replaced by H™' in the above.

Proof. Taking Theorem 4.1 into account, the proof for the properties of L is identical with that from [40],
Lemma 4.2, and Theorem 4.3. Because L is a commutative subalgebra of B(H!, H') resp. B(H ™1, H™1!), the
exponential function is a local C*°-diffeomorphism on L\{0}, see e.g. [39]. The series terminates at i = N because
any product of more than N excitation operators contains more than N annihilators for the IV occupied orbitals
and thus has to vanish by the nilpotency (2.19) of annihilation operators. exp maps S to I + S by definition,

and on I + &S, its inverse is given by the (terminating) logarithmic series log(X) = Zilil(—l)ifl(X — 1)/
(see [40]), which obviously maps to S, so the lemma is proved. O

The continuous Coupled Cluster equations. We are now in the position to show that the exact (weak)
eigenproblem (1.1) is equivalent to the continuous Coupled Cluster equations formulated in the following theo-
rem.

Theorem 5.3. Let ¥ € H' with (o, ¥) # 0 and E € R. The following are equivalent:
(i) ¥ solves the (weak, CI) eigenproblem

(®, (H—-E)P) = 0, foral®cH. (5.1)

(ii) @ = eTWy for some cluster operator T € B(H, H') which fulfils the (continuous) unlinked Coupled Cluster
equations

(®,(H — B)e"Wy) =0, for all ¢ <€ H. (5.2)
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(iii) @ = eTWy for some cluster operator T € B(H',H') which fulfils the (continuous) linked Coupled Cluster
equations,

E = (W, HeTw), W, e THeT W) = 0 for all pe M. (5.3)

The advantage of the linked formulation (5.3) over the unlinked CC equations (5.2) is that by using the properties
of the algebra of annihilation and creation operators, the term e~ He” can expanded into a terminating Baker—
Campbell-Hausdorfl series which can be evaluated exactly in a finite basis set. Therefore, (5.3) is the set of
equations that is almost exclusively discretized and solved in practice.

Note in this context that the above equivalence of linked and unlinked formulation does not need to hold
anymore if in a discretized setting, based on certain selection criteria, only some of the amplitudes of the
discretised basis are used for a computation. In this case, eT" is not necessarily surjective anymore; to guarantee
this, the set of selected amplitudes has to be excitation complete, which is for instance the case for canonical
models like CCSD, CCSDT etc., see [40] for details.

Proof. Using Theorem 4.1, ¥ € H' solves the set of equations (5.1) iff there is a continuous cluster operator
S € B(H!,H') such that ¥ = (I + S)¥, and

(®,(H — E)(I+ S)Wy) =0 forall ®c H. (5.4)

By Lemma 5.2, there is a unique cluster operator 7' € B(H*, H') such that I+.5 = €T, so that (5.4) is equivalent
to finding 7' € B(H*, H') such that

(®,(H — B)eTWy) =0, forall ¢ cH, (5.5)

or in other words, 0 = (H — E)eTW, € H™'. By Theorem 4.1, the L.2-adjoint 7' of T' is continuous as mapping
H' — H'; therefore, ¢T" is a continuous invertible mapping H! — H!, and (5.5) is equivalent to

(e T'd, (H — BE)eTW) =0, forall &ecH.
Due to the continuity of the adjoint mapping A : A — A, we have
(e 7', (H—-E)Tw) = (@, (e THI(H-E)e"W) = (e T(H-E) %)
with the exponential e=T of —T taken in H~!, which is equivalent to (5.3). O

The continuous Coupled Cluster function. To treat the nonlinear linked CC equations (5.3) in the finite
dimensional setting, these are in practice often comprised to a nonlinear function, the Coupled Cluster function

f:l(Ma) = (M), (ta) — (W, e T g ta)yy, ) (5.6)

aeM’

with T'(ta) = >_oem, taXa- Any coefficient vector (tq) fulfilling f(¢,) = 0 then corresponds to a solution of the
discrete Schrodinger equation via the relation ¥y = e (*«)¥;. Normally, Newton-like methods are used to solve
for £(t,) = 0. We will now end this work by reformulating the continuous linked formulation (5.3) in terms of
a nonlinear operator f, discretizations of which then yield the canonical discrete, projected Coupled Cluster
equations (5.6), and this viewpoint will enable statements on the CC method in the framework of nonlinear
functional analysis in a following publications.

In contrast to the finite dimensional case, we are faced with the restriction that the cluster operator T sought
in the CC equations (5.2), (5.3) has to be contained in B(H!, H') by Theorem 5.3. the consequence of this is
that the domain of continuous Coupled Cluster function f is not £2(M) (which would reflect the space L?), but
only a closed subspace of it (reflecting the subspace H'). This space is introduced in the following.
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Definition 5.4 (The H!-coefficient space V). On f5(M), we define
<<ta> = () ta¥a, ) Sﬁ%> c Il = (), () (5.7)
aeEM BEM
and a subspace V of l5(M) by
= {teloM) | |ltllv < o0 } C (M),

Denoting as above by T'(t,) the cluster operator defined by (to) and ¥(ts) := T'(t4 )%, there holds (t,) € V
if and only if ¥*(t,) € HML. (V, (-, --)y) is thus complete and therefore a Hilbert space. Also, by Theorem 4.1,
the linear mapping

T: (V)= Sl llmm), () = Tlta)= Y taXa,
aeM

is a bounded bijection (Here, S C B(H!, H') is the algebra of H'-bounded cluster operators S introduced in
Lem. 5.2). In the same vein,

T (V) = S ), () = THta) = D taX)
aeEM

is bounded. With this, we obtain the continuous version of the CC root equation f(t,) = 0.

Theorem 5.5 (the continuous CC function). A cluster operator T = T(t%) € B(H',H') fulfils the linked CC
equations

E = (W, HeTwy), W, e THeT W) =0,  for all pe M (5.8)

if and only if the corresponding coefficient vector (t%) € V is a root of the continuous Coupled Cluster function

FiV = Vo (te) = (o, "0 He 0wy ) (5.9)
that is, if it solves the nonlinear continuous CC operator equation
f(ty) = 0 € V. (5.10)

Proof. The equivalence of (5.8) and (5.10) is straightforward with the remarks made beforehand. It remains
to show that for fixed (to) € V, (f(ta),) defines a continuous functional on V (denoting by (-,--) the usual
ly(M)-inner product). For (sq) € V, we obtain with the boundedness of the Hamiltonian [48], Theorem 4.1,
Lemma 5.2 and equation (5.8) that

<f(toc)a (Sa)> = Z <Sakpa,e_T(t‘¥)HeT(tn)@0 >

aeM
< || T(s) %ol [le™ ") He™ 0o [l < C(8)|s]w,

where the constant C'(¢) depends on the V-norm of ¢, proving the claim. O
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6. CONCLUDING REMARKS AND OUTLOOK

By the virtue of Theorem 5.3, we have obtained the continuous Coupled Cluster equations (5.2), (5.3),
which are (up to the very mild restrictions of intermediate normalization) equivalent to the original operator
eigenvalue problem (1.1), the electronic Schrédinger equation. Moreover, exact eigenvectors of the eigenproblem
for the Hamiltonian correspond to the solutions of the root equation (5.10) for the continuous CC function (5.9),
which in the continuous context defines a nonlinear operator between the coefficient space V and its dual space
V’. The discrete CC equations (5.6) for a fixed basis set, normally used as starting point in quantum chemistry,
can now be interpreted as a Galerkin discretization of the root equation for the CC function f, consisting in
computation of an approximate solution (¢,,) from a Galerkin subspace V4 C V for which

<f(ta)7 (5a)) =0 forall (sq)€ Vqy. (6.1)

In the forthcoming publication [38], we will use this approach to treat the CC function in the formalism of
nonlinear operator analysis: based on a local strong monotonicity statement for the CC function f, we will be
able to derive existence and uniqueness results for the solutions of the continuous and discrete CC equations,
statements on the convergence of the discrete solutions towards the continuous solution and of discrete CC
energies towards the true ground state energy E.
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