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TIME-DEPENDENT COUPLING OF NAVIER–STOKES AND DARCY FLOWS ∗

Aycil Cesmelioglu1, Vivette Girault2 and Béatrice Rivière3

Abstract. A weak solution of the coupling of time-dependent incompressible Navier–Stokes equa-
tions with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman
condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The
analysis is valid for weak regularity interfaces.
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1. Introduction

The coupling of incompressible Navier–Stokes with Darcy equations is encountered in many engineering
problems such as groundwater contamination or blood flow in arteries. Their importance motivate the interest
in understanding and solving this coupled system. The coupling is commonly modelled by the interface condition
postulated by Beavers and Joseph in [6] or by its simplification introduced by Saffman in [32], and called the
Beavers–Joseph–Saffman interface condition. We shall use this last condition in the present study. The reader
can refer to the work of Jäger and Mikelić in [22] for the derivation by homogenization of the Beavers–Joseph–
Saffman interface condition.

Many authors have studied the coupling of the Stokes and Darcy systems, and we can only list very few of
them. For instance, the reader can refer to the works of Arbogast and Lehr in [3], of Arbogast and Brunson
in [2], of Burman and Hansbo in [7], of Cao et al. in [8], of Kanschat and Rivière in [23], of Layton et al. in [24],
of Vassilev and Yotov in [34], of Rivière and Yotov in [31], of Rivière in [30], of Mu and Xu in [28], of Mardal
et al. in [27], of Hanspal et al. [20], of Discacciati and Quarteroni in [15], or of Discacciati et al. in [17].

In contrast, there are not many works on the coupling of Navier–Stokes and Darcy equations. The steady–
state case has been mostly studied by Discacciati in [14], by Discacciati and Quarteroni in [15, 16], by Badea
et al. in [5], by Girault and Rivière in [18], and by Chidyagwai and Rivière in [11, 12]. To our knowledge, the
time-dependent coupled Navier–Stokes/Darcy problem, with Beavers–Joseph–Saffmann interface condition, has
only been mathematically and numerically analyzed by Çeşmelioğlu and Rivière in [9, 10]. In these references,
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the authors include inertial effects in the balance of forces at the interface. This simplifies the analysis because
it brings a stronger control on the nonlinear convection term, but physical justification of this model is not
clear, although it is meaningful from a mathematical point of view.

Therefore, following the work of Girault and Riviere in [18] who analyzed the steady state case without inertial
effects on the interface, we propose here to study a time-dependent version of this problem without these inertial
forces. The analysis of this model is not altogether straightforward because it does not satisfy an unconditional
energy inequality, even if the data are smooth. As a consequence, we shall prove global existence in time of a
solution for suitably small data, and uniqueness of a suitably small solution. Our proof is based on uniform
a priori estimates for the solution of a Galerkin semi-discrete scheme in space, the full set of estimates being
obtained by differentiating the scheme with respect to time. This approach is fairly robust and constructive in
the sense that the theoretical analysis adapts easily to the numerical analysis of finite-element discretizations in
space. Furthermore, it has the advantage of being independent of the Steklov-Poincaré operator used in [5,15,16]
that does not seem to apply to rough interfaces. In contrast, we can handle the important case of interfaces
with corners such as fractures or cracks in porous media. These can hardly be expected to be smooth.

An outline of the paper follows. The rest of this section introduces the problem and states the main result.
Section 2 gives the proof in several steps. We finish with some conclusions.

1.1. Statement of the problem

To simplify, we consider the case of one connected interface, but the extension to several interfaces is straight-
forward. Let Ω ⊂ R

d, d = 2 or 3, be an open, bounded domain with Lipschitz continuous boundary ∂Ω. The
surface region of Ω is denoted by Ω1 and the subsurface region is denoted by Ω2 with Lipschitz continu-
ous boundaries ∂Ω1 and ∂Ω2. The interface separating the surface and the subsurface regions is denoted by
Γ12 = ∂Ω1∩∂Ω2. The boundary of Ω is split into Γi = ∂Ωi\Γ12, i = 1, 2 corresponding to the outer boundaries of
the surface and subsurface. Finally, the boundary Γ2 is decomposed into two disjoint open sets: Γ2 = Γ2D∪Γ2N .

The partial differential equations governing the flow problem are given by

u′ −∇ · (2μD(u) − p1I) + u · ∇u = f1, a.e. in Ω1×]0, T [, (1.1)
∇ · u = 0, a.e. in Ω1×]0, T [, (1.2)

−∇ · (K∇p2

)
= f2, a.e. in Ω2×]0, T [. (1.3)

The prime stands for the derivative with respect to time, nΩi is the exterior unit vector normal to ∂Ωi, I is
the d × d identity tensor, K is the permeability tensor, and D(v) is the deformation tensor defined by

D(v) =
1
2
(∇v + (∇v)T

)
.

System (1.1)–(1.3) is complemented by the boundary and the interface conditions below. As we are mostly
interested in the coupling aspect of this problem, we prescribe standard academic conditions on Γi:

u = 0, a.e. on Γ1×]0, T [, (1.4)
p2 = 0, a.e. on Γ2D×]0, T [, (1.5)

K∇p2 · nΩ2 = g, a.e. on Γ2N×]0, T [. (1.6)

Here we assume that |Γ1| > 0 and |Γ2D| > 0. Now, let n12 be the unit normal vector to Γ12 pointing from Ω1

to Ω2 and let τ j
12, 1 ≤ j ≤ d − 1, be an othonormal set of unit vectors on the tangent plane to Γ12. On the

interface Γ12, we prescribe the following interface conditions:

u · n12 = −K∇p2 · n12, a.e. on Γ12×]0, T [, (1.7)(
(−2μD(u) + p1I)n12

) · n12 = p2, a.e. on Γ12×]0, T [, (1.8)

u · τ j
12 = −2μGj

(
D(u)n12

) · τ j
12, 1 ≤ j ≤ d − 1, a.e. on Γ12×]0, T [, (1.9)
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where
Gj =

μα

(Kτ j
12, τ

j
12)

1
2
·

Finally, to simplify the discussion, we prescribe a zero initial condition:

u(0, x) = 0. (1.10)

The constant α > 0 is given and is usually obtained from experimental data. We assume that the permeability
tensor K is independent of time, uniformly bounded and positive definite: There exist λmin > 0 and λmax > 0
satisfying

∀x ∈ Ω2 , λminx · x ≤ Kx · x ≤ λmaxx · x. (1.11)

Let
X = {v ∈ H1(Ω1)d : v = 0 on Γ1},
M = {q ∈ H1(Ω2) : q = 0 on Γ2D},

and
V = {v ∈ X ; ∇ · v = 0 in Ω1};

see Section 1.3 for the definition of usual Sobolev spaces.
For the moment, take f1 ∈ L2(Ω1×]0, T [)d, f2 ∈ L2(Ω2×]0, T [) and g ∈ L2(Γ2N×]0, T [). These assumptions

will be progressively refined further on. We propose the following weak formulation for the problem (1.1)–(1.10):
Find u ∈ L∞(0, T ; L2(Ω1)d) ∩ L2(0, T ; X) with u′ ∈ L1(0, T ; L

3
2 (Ω1)d), p2 ∈ L2(0, T ; M) and p1 ∈

L1(0, T ; L2(Ω1)) such that

(P )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀v ∈ X, ∀q ∈ M, (u′, v)Ω1 + 2μ(D(u), D(v))Ω1 + (u · ∇u, v)Ω1 − (p1,∇ · v)Ω1

+(K∇p2,∇q)Ω2 + (p2, v · n12)Γ12 +
∑d−1

j=1 ( 1
Gj u · τ j

12, v · τ j
12)Γ12

−(u · n12, q)Γ12 = (f1, v)Ω1 + (f2, q)Ω2 + (g, q)Γ2N a.e. in ]0, T [,

∀q ∈ L2(Ω1), (∇ · u, q)Ω1 = 0 a.e. in ]0, T [,

u(0) = 0 a.e. in Ω1.

1.2. The interface condition

Before proceeding, it is necessary to make sure that the interface conditions (1.8) and (1.9) are meaningful
for a solution of problem (P). In the steady–state case, they are interpreted as (cf. [18]):

σ(u, p1)n12 = b with b = p2n12 +
d−1∑
j=1

1
Gj

(u · τ j
12)τ

j
12, (1.12)

where the tensor σ(u, p1) is the Cauchy stress tensor:

σ(u, p1) = −2μD(u) + p1I.

Since b belongs at least to L2(0, T ; L4(Γ12)d), (1.12) makes sense provided the trace of σ(u, p1)n12 on Γ12 can
be defined, even if it is only in a weak sense.

Now, the assumption on u implies that u ∈ L2(0, T ; L6(Ω1)d); therefore the convection term u · ∇u belongs
to L1(0, T ; L

3
2 (Ω1)d). Then passing u′ to the right-hand side of (1.1), our assumption on f1 yields

−∇ · σ(u, p1) = f1 − u · ∇u − u′ ∈ L1(0, T ; L
3
2 (Ω1)d).
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The assumptions on u and p1 also give

σ(u, p1) ∈ L1(0, T ; L2(Ω1)d×d).

This means that each row of σ(u, p1) belong to L1(0, T ; H
3
2 (div;Ω1)) where

H
3
2 (div;Ω1) = {v ∈ L2(Ω1)d ; ∇ · v ∈ L

3
2 (Ω1)}.

A standard argument shows that H1(Ω1)d is dense in H
3
2 (div;Ω1); therefore Green’s formula:

∀v ∈ H1(Ω1)d, ∀w ∈ H1(Ω1) , 〈v · nΩ1 , w〉∂Ω1 =
∫

Ω1

(∇ · v)w +
∫

Ω1

v · ∇w, (1.13)

permits to define the normal trace v · nΩ1 in H− 1
2 (∂Ω1) of functions in H1(Ω1)d and extends by density to all

v ∈ H
3
2 (div;Ω1). As a consequence, each row of σ(u, p1)n12 belongs to L1

(
0, T ; (H

1
2
00(Γ12))′

)
, where (H

1
2
00(Γ12))′

is the dual space of H
1
2
00(Γ12). Therefore we interpret (1.8) and (1.9) by (1.12), the same as in the linear case.

Of course, (1.7) is meaningful because ∇· (K∇ p2) belongs to L2(Ω2×]0, T [). Hence, if the solution is sought for
in the spaces of problem (P), then problem (1.1)–(1.10) is set in L1(0, T ; H−1(Ω1)d) and L2(0, T ; H−1(Ω2)d).
Finally a standard argument shows that problems (1.1)–(1.10) and (P) are equivalent.

1.3. Notation, classical, and main results

The rest of this section is devoted to the definitions, inequalities, and results that will be used throughout
the paper. To simplify the presentation, we set most definitions in dimension d = 3.

Let (k1, k2, k3) denote a triple of non-negative integers, set |k| = k1 +k2 +k3 and define the partial derivative
∂k by

∂kv =
∂|k|v

∂xk1
1 ∂xk2

2 ∂xk3
3

·

Then, for any non-negative integer m, recall the classical Sobolev space (cf. Adams [1] or Nečas [29])

Hm(Ω) =
{
v ∈ L2(Ω) ; ∂kv ∈ L2(Ω)∀ |k| ≤ m

} ·
equipped with the seminorm

|v|Hm(Ω) =

⎡
⎣ ∑
|k|=m

∫
Ω

|∂kv|2 xdx

⎤
⎦

1
2

,

and norm (for which it is a Hilbert space)

‖v‖Hm(Ω) =

⎡
⎣ ∑

0≤|k|≤m

|v|2Hk(Ω)

⎤
⎦

1
2

.

This definition is extended to any real number s = m + s′ for an integer m ≥ 0 and 0 < s′ < 1 by defining the
fractional semi-norm and norm:

|v|Hs(Ω) =

⎛
⎝ ∑

|k|=m

∫
Ω

∫
Ω

|∂kv(x) − ∂kv(y)|2
|x − y|d+2 s′ dxdy

⎞
⎠

1
2

,

‖v‖Hs(Ω) =
(
‖v‖2

Hm(Ω) + |v|2Hs(Ω)

) 1
2

.
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The reader can refer to Lions and Magenes [26] and Grisvard [19] for properties of these spaces. In the sequel
we shall frequently use the fractional Sobolev spaces H

1
2 (Γ ) and H

1
2
00(Γ ) for a Lipschitz surface Γ when d = 3

or curve when d = 2 with the following seminorms and norms:

|v|
H

1
2 (Γ )

=

(∫
Γ

∫
Γ

∣∣v(x) − v(y)
∣∣2

|x − y|d dxdy

) 1
2

, ‖v‖
H

1
2 (Γ )

=
(
‖v‖2

L2(Γ ) + |v|2
H

1
2 (Γ )

) 1
2

, (1.14)

|v|
H

1
2
00(Γ )

=

(
|v|2

H
1
2 (Γ )

+
∫

Γ

∣∣v(x)
∣∣2

d∂Γ (x)
dx

) 1
2

, ‖v‖
H

1
2
00(Γ )

=
(
‖v‖2

L2(Γ ) + |v|2
H

1
2
00(Γ )

) 1
2

, (1.15)

where d∂Γ (x) denotes the distance from x to ∂Γ . When Γ is a subset of ∂Ω with positive d−1 measure, H
1
2
00(Γ )

is the space of traces of all functions of H1(Ω) that vanish on ∂Ω \ Γ . The above norms (1.14) and (1.15) are
not equivalent except when Γ is a closed surface or curve.

Throughout the paper, we shall use the following Poincaré, Sobolev, Korn and trace inequalities: For any
v ∈ X, there exist constants S2, S4, T2, T4, CD > 0 depending only on Ω1 such that

‖v‖L2(Ω1) ≤ S2|v|H1(Ω1), ‖v‖L4(Ω1) ≤ S4|v|H1(Ω1), (1.16)

‖v‖L2(Γ12) ≤ T2|v|H1(Ω1), ‖v‖L4(Γ12) ≤ T4|v|H1(Ω1), (1.17)

|v|H1(Ω1) ≤ CD‖D(v)‖L2(Ω1). (1.18)

Also, for any q ∈ M , there exist S̃2, T12, TN > 0 depending only on Ω2 satisfying

‖q‖L2(Ω2) ≤ S̃2|q|H1(Ω2), (1.19)

‖q‖
H

1
2 (Γ12)

≤ T12|q|H1(Ω2), ‖q‖L2(Γ2N ) ≤ TN |q|H1(Ω2). (1.20)

Let E ∈ L(M, H1(Ω)) be an extension operator and let CE denote the continuity constant of the extension.
As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time

interval ]a, b[ with values in a functional space, say X . More precisely, let ‖ · ‖X denote the norm of X ; then for
any number r, 1 ≤ r ≤ ∞, we define

Lr(a, b; X) =

{
f measurable in ]a, b[ ;

∫ b

a

‖f(t)‖r
Xdt < ∞

}
,

equipped with the standard norm ‖ · ‖Lr(a,b;X) and with the usual modification if r = ∞. It is a Banach space if
X is a Banach space. Here X is usually a Sobolev space. In particular, L2(a, b; Hm(Ω)) is a Hilbert space and
L2(a, b; L2(Ω)) coincides with L2(Ω×]a, b[). In addition, we shall also use spaces with derivatives in time, such
as

H1(a, b; X) = {f ∈ L2(]a, b[; X) ; f ′ ∈ L2(]a, b[; X)} ,

equipped with the graph norm

‖f‖H1(a,b;X) =
(
‖f‖2

L2(a,b;X) + ‖f ′‖2
L2(a,b;X)

) 1
2

,

for which it is a Hilbert space. The following result establishes compact imbeddings in space and time and
generalizes the Aubin–Lions Lemma, see Aubin [4], or Lions [25]. Its proof, due to Simon, is written in [33].
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Theorem 1.1. Let X, W , Y be three Banach spaces with continuous imbeddings: X ⊂ W ⊂ Y , the imbedding
of X into W being compact. Then for any number q ∈ [1,∞], the space{

v ∈ Lq(0, T ; X) ;
∂v

∂t
∈ L1(0, T ; Y )

}
(1.21)

is compactly imbedded into Lq(0, T ; W ).

The following theorem is the main result of this work.

Theorem 1.2. In addition to the basic assumptions on the data f1, f2, g and K stated above, suppose that
f1 ∈ H1(0, T ; L2(Ω1)d), f2 ∈ H1(0, T ; L2(Ω2)), g ∈ H1(0, T ; L2(Γ2N )). Let

A =
C2

DS2
2

2μ

(
‖f1‖2

H1(0,T ;L2(Ω1)d) + ‖f1‖2
L∞(0,T ;L2(Ω1)d)

)
+

S̃2
2

λmin

(
‖f2‖2

H1(0,T ;L2(Ω2)) + ‖f2‖2
L∞(0,T ;L2(Ω2))

)

+
T 2

N

λmin

(
‖g‖2

H1(0,T ;L2(Γ2N )) + ‖g‖2
L∞(0,T ;L2(Γ2N ))

)
, (1.22)

C = ‖f1(0)‖2
L2(Ω1) +

C2
E

λmin
(S̃2

2 + 1)
(
S̃2‖f2(0)‖L2(Ω2) + TN‖g(0)‖L2(Γ2N )

)2

. (1.23)

If the data satisfy

A + 2C <

(
μ

C2
D

)3 1
4S4

4

, (1.24)

then problem (P) has one and only one solution (u, p1, p2) ∈ H1(0, T ; V )×L∞(0, T ; L2(Ω1))×H1(0, T ; H1(Ω2))
satisfying:

‖D(u)‖L∞(0,T ;L2(Ω1)d×d) <
μ

2C3
DS2

4

, (1.25)

‖u′‖2
L∞(0,T ;L2(Ω1)d) ≤

C2
DS2

2

2μ
‖f ′

1‖2
L2(Ω1×]0,T [) + 2C +

1
λmin

(
S̃2

2‖f2‖2
L2(Ω2×]0,T [) + T 2

N‖g‖2
L2(Γ2N×]0,T [)

)
, (1.26)

‖D(u′)‖2
L2(Ω1×]0,T [) ≤

(
CDS2

μ

)2

‖f ′
1‖2

L2(Ω1×]0,T [) +
2
μ
C +

1
μλmin

(
S̃2

2‖f2‖2
L2(Ω2×]0,T [) + T 2

N‖g‖2
L2(Γ2N×]0,T [)

)
,

(1.27)

‖K 1
2∇p2‖L∞(0,T ;L2(Ω2)) ≤ 1

λ
1
2
min

(
S̃2‖f2‖L∞(0,T ;L2(Ω2)) + TN‖g‖L∞(0,T ;L2(Γ2N ))

+ CE(1 + S̃2
2)

1
2 (1 + S2

2)
1
2

μ

2C2
DS2

4

)
, (1.28)

‖K 1
2∇p′2‖2

L2(Ω2×]0,T [) ≤ C2
DS2

2

2μ
‖f ′

1‖2
L2(Ω1×]0,T [) + 2C +

2
λmin

(
S̃2

2‖f ′
2‖2

L2(Ω2×]0,T [) + T 2
N‖g′‖2

L2(Γ2N×]0,T [)

)
,

(1.29)

‖p1‖L∞(0,T ;L2(Ω1)) ≤C

(
‖u′‖L∞(0,T ;L2(Ω1)d) + ‖D(u)‖L∞(0,T ;L2(Ω1)d×d) + ‖u‖2

L∞(0,T ;H1(Ω1)d)

+ ‖p2‖L∞(0,T ;H1(Ω2)) + ‖f1‖L∞(0,T ;L2(Ω1)d)

)
, (1.30)

where C is a constant that only depends on μ, S2, S4, λmax, λmin, T12, T2 and α.
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Remark 1.3. Roughly speaking, condition (1.24) means that for some constants C1 and C2,

‖f1‖H1(0,T ;L2(Ω1)d) ≤ C1μ
2,

and
1√
λmin

‖f2‖H1(0,T ;L2(Ω2)) + ‖g‖H1(0,T ;L2(Γ2N )) ≤ C2μ
3
2 ,

thus implying that either the data f1, f2, g are small, and the permeability not too small, and/or the viscosity
is large. Then the system has a solution and the free flow is not too fast (see (1.25)).

Remark 1.4. The fact that we are unable to prove existence of solutions when the velocity of the free flow
is large suggests that the Navier–Stokes system may not be an adequate model coupled to Darcy’s law. One
may argue that the Brinkman model could be a more relevant coupling model, since it describes both free and
porous flows, but the Brinkman model has two drawbacks: on one hand its parameter is not known, and on the
other hand, it does not incorporate the boundary layer at the interface, whereas this boundary layer is implicit
in the Beavers-Joseph or Beavers–Joseph–Saffmann conditions, see [22].

To conclude, the results of Theorem 1.2 show that the Navier–Stokes model can be used to couple free fluid
and porous fluid flows when the free flow is no longer laminar, but is not too fast.

The next section gives the proof of this result by considering first a reduced problem.

2. Existence and uniqueness of weak solution

Consider the reduced formulation of problem (P) in V :
Find u ∈ L∞(0, T ; L2(Ω1)d) ∩ L2(0, T ; V ) with u′ ∈ L1(0, T ; L

3
2 (Ω1)d) and p2 ∈ L2(0, T ; M) solution of

(PV )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀v ∈ V , ∀q ∈ M, (u′, v)Ω1 + 2μ(D(u), D(v))Ω1 + (u · ∇u, v)Ω1 + (K∇p2,∇q)Ω2

+(p2, v · n12)Γ12 +
∑d−1

j=1 ( 1
Gj u · τ j

12, v · τ j
12)Γ12 − (u · n12, q)Γ12

= (f1, v)Ω1 + (f2, q)Ω2 + (g, q)Γ2N a.e. in ]0, T [,

u(0) = 0 a.e. in Ω1.

Clearly problem (P) implies this problem. The converse is established in Section 2.4.

2.1. A Galerkin solution

Let us refine the assumptions on the data: let f1 ∈ C0(0, T ; L2(Ω1)d), f2 ∈ C0(0, T ; L2(Ω2)) and g ∈
C0(0, T ; L2(ΓN )). We construct a solution by Galerkin’s method. As V ×M is separable, it has a basis of smooth
functions {(Φm, ϕm)}m≥0. Denote by V m = span{Φi, i = 1, . . . , m} and by Mm = span{ϕi, i = 1, . . . , m}, the
spaces spanned by the first m basis functions. The following problem is a semi-discretization of (PV ) in this
basis: Find um ∈ C1(0, T ; V m) and pm ∈ C0(0, T ; Mm) such that for all v ∈ V m and for all q ∈ Mm,

(u′
m, v)Ω1 + 2μ(D(um), D(v))Ω1 + (um · ∇um, v)Ω1 + (K∇pm,∇q)Ω2 + (pm, v · n12)Γ12

+
d−1∑
j=1

(
1

Gj
um · τ j

12, v · τ j
12

)
Γ12

− (um · n12, q)Γ12 = (f1, v)Ω1 + (f2, q)Ω2 + (g, q)Γ2N , for all t ∈]0, T [, (2.1)

um(0) = 0. (2.2)

Problem (2.1) can be reformulated by observing that pm is determined by um: Indeed, for a given u ∈ H1(Ω1)d,
the problem : Find pm ∈ Mm such that

∀q ∈ Mm , (K∇pm,∇q)Ω2 = (f2, q)Ω2 + (g, q)Γ2N + (u · n12, q)Γ12 , (2.3)

has a unique solution, say pm(u). The next lemma gives a bound for pm(u).
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Lemma 2.1. The mapping u �→ pm(u) is linear and continuous, uniformly in m: there exists a constant C
independent of m such that for all u in X:

‖K 1
2∇ pm(u)‖L2(Ω2) ≤ C

(‖f2‖L2(Ω2) + ‖g‖L2(Γ2N ) + ‖u‖H(div;Ω1)

)
. (2.4)

Proof. Linearity follows immediately from (2.3) and from uniqueness. The bound (2.4) relies on a good estimate
for (u ·n12, q)Γ12 . To this end, we use the extension operator E ∈ L(M, H1(Ω)) introduced in Section 1.3. Then
for all u in X

(∇ · u, E(q))Ω1 + (u,∇E(q))Ω1 = (u · nΩ1 , E(q))∂Ω1 = (u · n12, q)Γ12 .

Hence ∣∣(u · n12, q)Γ12

∣∣ ≤ ‖u‖H(div;Ω1)‖E(q)‖H1(Ω1) ≤ CE‖u‖H(div;Ω1)‖q‖H1(Ω2). (2.5)

Therefore

‖K 1
2∇ pm‖L2(Ω2) ≤

1

λ
1
2
min

(
S̃2‖f2‖L2(Ω2) + TN‖g‖L2(Γ2N ) + CE

(
1 + S̃2

2

) 1
2 ‖u‖H(div;Ω1)

)
, (2.6)

whence (2.4). �

When u depends on t, the statement of Lemma 2.1 is valid for any t for which u(t) exists. In particular, since
u(0) = 0, we have for t = 0,

‖K 1
2∇ pm(0)‖L2(Ω2) ≤ 1

λ
1
2
min

(
S̃2‖f2(0)‖L2(Ω2) + TN‖g(0)‖L2(Γ2N )

)
. (2.7)

Lemma 2.2. For each m, there exists a time Tm with 0 < Tm ≤ T such that problem (2.1), (2.2) has a unique
maximal solution um ∈ C1(0, Tm; V m) and pm ∈ C0(0, Tm; Mm).

Proof. Let us write

um(x, t) =
m∑

j=1

αj(t)Φj(x), pm(x, t) =
m∑

j=1

βj(t)ϕj(x).

The functions αj and βj are the unknowns of problem (2.1), (2.2) and it can be expressed in matrix form as⎧⎪⎨
⎪⎩

Aα′ + Bα + F (α) + Dβ = b,

Mβ − Cα = c,

with α(0) given,

and with the vectors α and β containing the components αi and βi respectively. The matrices are defined by

Aij = (Φj , Φi)Ω1 , Bij = 2μ(D(Φj), D(Φi))Ω1 +
d−1∑
k=1

(
1

Gk
Φj · τ k

12, Φi · τ k
12

)
Γ12

,

Dij = (Φi · n12, ϕj)Γ12 , M ij = (K∇ϕj ,∇ϕi)Ω2 , Cij = (Φj · n12, ϕi)Γ12 = Dji,

and the vectors are given by

(F (α))i = N iα · α, bi = (f1, Φi)Ω1 , ci = (f2, ϕi)Ω2 + (g, ϕi)Γ2N ,

where N i =
(
(Φj · ∇Φk, Φi)Ω1

)
1≤j,k≤m

is a matrix for each i = 1, . . . , m. As suggested by Lemma 2.1, α is the

only unknown here. Indeed, since M is symmetric positive definite, we can solve for β = M−1(c + Cα) and
substitute this into the first equation, i.e. we eliminate β. This gives

Aα′ + Bα + F (α) + CT M−1(c + Cα) = b.
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As A is also invertible, solving the problem defined by (2.1) and (2.2) is equivalent to solving{
α′ + A−1(B + CT M−1C)α = A−1(b − F (α) − CT M−1c),

with α(0) given.

Note that the matrix multiplying α in the above left-hand side is the product of two symmetric positive definite
matrices with constant coefficients. By assumption, the coefficients in the right-hand side are continuous in time
and locally Lipschitz with respect to α. Therefore it stems from the theory of ordinary differential equations [13]
that this system has a unique maximal solution α in the interval [0, Tm] for some Tm such that 0 < Tm ≤ T
and each component of α belongs to C1(0, Tm). Then the relation between α and β and the regularity in time
of the data imply that each component of β is in C0(0, Tm). �

We need a uniform in m a priori bound on (um, pm) to conclude that Tm = T .

2.2. A priori estimates for Galerkin solution

A first a priori estimate is obtained by choosing v = um and q = pm in (2.1). Cauchy–Schwarz’s inequality
and the bounds (1.16), (1.18), (1.19) and (1.20) imply

(um · ∇um, um)Ω1 ≤ S2
4 |um|3H1(Ω1)

≤ C3
DS2

4‖D(um)‖3
L2(Ω1), (2.8)

(f1, um)Ω1 ≤ CDS2‖f1‖L2(Ω1)‖D(um)‖L2(Ω1), (2.9)

(f2, pm)Ω2 ≤ S̃2

λ
1
2
min

‖f2‖L2(Ω2)‖K
1
2∇pm‖L2(Ω2), (2.10)

(g, pm)Γ2N ≤ TN

λ
1
2
min

‖g‖L2(Γ2N )‖K
1
2∇pm‖L2(Ω2). (2.11)

Therefore, equation (2.1) becomes

(u′
m, um)Ω1 + 2μ‖D(um)‖2

L2(Ω1) + ‖K 1
2∇pm‖2

L2(Ω2) +
d−1∑
j=1

∥∥∥∥ 1√
Gj

um · τ j
12

∥∥∥∥
2

L2(Γ12)

≤ C3
DS2

4‖D(um)‖3
L2(Ω1)

+ CDS2‖f1‖L2(Ω1)‖D(um)‖L2(Ω1) +
1

λ
1
2
min

(
S̃2‖f2‖L2(Ω2) + TN‖g‖L2(Γ2N )

)
‖K 1

2∇pm‖L2(Ω2).

(2.12)

The cubic term in the right-hand side of (2.12) is problematic because it cannot be absorbed by the second term
in the left-hand side unless it is small enough. Observe that under the assumption um(0) = 0, the continuity of
the solution guarantees that D(um) will stay as small as we wish in an interval [0, Tm], where 0 < T m ≤ Tm

depends upon the smallness condition we prescribe. We propose the following smallness condition on D(um):

∀t ∈ [0, Tm], ‖D(um)‖L2(Ω1) <
μ

2C3
DS2

4

, (2.13)

that is in fact a bound for um in L∞(0, Tm; H1(Ω1)d). Note that it implies that

C3
DS2

4‖D(um)‖3
L2(Ω1) <

μ

2
‖D(um)‖2

L2(Ω1).

Our aim is to show that (2.13) holds for all t ∈ [0, Tm]. This will give a uniform in m a priori bound for the
Galerkin solution (um, pm) thus enabling us to conclude that Tm = T . We proceed by contradiction: Assume
that there is a time T ∗ ∈]0, Tm] such that

∀t ∈ [0, T ∗[ , ‖D(um)(t)‖L2(Ω1) <
μ

2C3
DS2

4

, ‖D(um)(T ∗)‖L2(Ω1) =
μ

2C3
DS2

4

· (2.14)
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By using (2.14) and applying Young’s inequality to (2.12), we obtain:

(u′
m, um)Ω1 +

μ

2

∥∥∥∥∥∥D(um)‖2
L2(Ω1) +

d−1∑
j=1

‖ 1√
Gj

um · τ j
12

∥∥∥∥∥∥
2

L2(Γ12)

≤ C2
DS2

2

4μ
‖f1‖2

L2(Ω1)

+
1

2λmin

(
S̃2

2‖f2‖2
L2(Ω2)

+ T 2
N‖g‖2

L2(Γ2N )

)
.

(2.15)

This yields for all t ∈ [0, T ∗]:

μ

2
‖D(um)(t)‖2

L2(Ω1) ≤‖u′
m(t)‖L2(Ω1)‖um(t)‖L2(Ω1) +

C2
DS2

2

4μ
‖f1‖2

L∞(0,T ;L2(Ω1)d)

+
1

2λmin

(
S̃2

2‖f2‖2
L∞(0,T ;L2(Ω2)) + T 2

N‖g‖2
L∞(0,T ;L2(Γ2N ))

)
. (2.16)

Now we need a bound for ‖u′
m‖L2(Ω1). Note that the most straightforward approach that consists in choosing

v = u′
m in (2.1), is here inconclusive because of the nonlinear term. The approach of [21] that consists in

choosing v = Δ um in (2.1) is not appropriate because it requires either a smooth boundary or no reentrant
corners and this restricts artificially the interface. However, if the data are sufficiently smooth in time, a bound
for ‖u′

m‖L2(Ω1) can be derived by differentiating equation (2.1) with respect to t; see [25] for the procedure.
To this end, assume that f1 ∈ H1(0, T ; L2(Ω1)d), f2 ∈ H1(0, T ; L2(Ω2)) and g ∈ H1(0, T ; L2(Γ2N )). Then
the conclusions of Lemma 2.2 hold and this extra regularity implies that each component of u′

m belongs to
H1(0, Tm); in turn, Lemma 2.1 implies that pm belongs to H1(0, Tm). Therefore, we can differentiate each term
of (2.1) with respect to t. Let p′m denote the time derivative of pm and choose v = u′

m and q = p′m:

1
2

d
dt

‖u′
m‖2

L2(Ω1)
+ 2μ‖D(u′

m)‖2
L2(Ω1) + ‖K 1

2∇p′m‖2
L2(Ω2) +

d−1∑
j=1

∥∥∥∥ 1√
Gj

u′
m · τ j

12

∥∥∥∥
2

L2(Γ12)

= −(u′
m · ∇um + um · ∇u′

m, u′
m)Ω1 + (f ′

1, u
′
m)Ω1 + (f ′

2, p
′
m)Ω2 + (g′, p′m)Γ2N .

The last three terms in the equation above are bounded as in (2.9)–(2.11). The first term is bounded using
(1.16) and (1.18):

(u′
m · ∇um + um · ∇u′

m, u′
m)Ω1 ≤ 2C3

DS2
4‖D(um)‖L2(Ω1)‖D(u′

m)‖2
L2(Ω1).

Using assumption (2.14), Hölder’s and Cauchy–Schwarz inequalities, we obtain

1
2

d
dt

‖u′
m‖2

L2(Ω1)
+ 2μ‖D(u′

m)‖2
L2(Ω1) + ‖K 1

2∇p′m‖2
L2(Ω2) +

d−1∑
j=1

∥∥∥∥ 1√
Gj

u′
m · τ j

12

∥∥∥∥
2

L2(Γ12)

≤ μ‖D(u′
m)‖2

L2(Ω1)
+ CDS2‖f ′

1‖L2(Ω1)‖D(u′
m)‖L2(Ω1)

+
1

λ
1
2
min

(
S̃2‖f ′

2‖L2(Ω2) + TN‖g′‖L2(Γ2N )

)‖K 1
2∇p′m‖L2(Ω2). (2.17)

Then suitable applications of Young’s inequality yield

d
dt

‖u′
m‖2

L2(Ω1) ≤
C2

DS2
2

2μ
‖f ′

1‖2
L2(Ω1) +

S̃2
2

λmin
‖f ′

2‖2
L2(Ω2)

+
T 2

N

λmin
‖g′‖2

L2(Γ2N ).
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By integrating from 0 to t for any t ∈ [0, T ∗] this becomes

‖u′
m(t)‖2

L2(Ω1)
≤ C2

DS2
2

2μ
‖f ′

1‖2
L2(Ω1×]0,T [) + ‖u′

m(0)‖2
L2(Ω1) +

1
λmin

(
S̃2

2‖f ′
2‖2

L2(Ω2×]0,T [) + T 2
N‖g′‖2

L2(Γ2N×]0,T [)

)
.

(2.18)

To bound the term ‖u′
m(0)‖2

L2(Ω1)
, we use v = u′

m(0) and q = 0 in (2.1) at time t = 0. Since um(0) = 0, this
yields:

‖u′
m(0)‖2

L2(Ω1) + (pm(0), u′
m(0) · n12)Γ12 = (f1(0), u′

m(0)).

By applying (2.5) and using the fact that ∇ · u′ = 0, this gives

‖u′
m(0)‖L2(Ω1) ≤ ‖f1(0)‖L2(Ω1) + CE‖pm(0)‖H1(Ω2).

Then (2.7) implies

‖u′
m(0)‖L2(Ω1) ≤ ‖f1(0)‖L2(Ω1) +

(S̃2
2 + 1)

1
2

λ
1
2
min

CE

(
S̃2‖f2(0)‖L2(Ω2) + TN‖g(0)‖L2(Γ2N )

)
. (2.19)

By substituting into (2.18), this yields for all t ∈ [0, T ∗]

‖u′
m(t)‖2

L2(Ω1) ≤
C2

DS2
2

2μ
‖f ′

1‖2
L2(Ω1×]0,T [) + 2C +

1
λmin

(
S̃2

2‖f ′
2‖2

L2(Ω2×]0,T [) + T 2
N‖g′‖2

L2(Γ2N×]0,T [)

)
, (2.20)

where C is defined by (1.23). This gives a bound for u′
m in L∞(0, T ∗; L2(Ω1)d). To get a bound for the other

factor ‖um‖L2(Ω1) in (2.16), we revert to (2.12) and use assumption (2.14); then we integrate both sides from
0 to t for all 0 ≤ t ≤ T ∗ and use (2.2). We obtain for all 0 ≤ t ≤ T ∗:

‖um(t)‖2
L2(Ω1)

≤ C2
DS2

2

3μ
‖f1‖2

L2(Ω1×]0,T [) +
1

λmin

(
S̃2

2‖f2‖2
L2(Ω2×]0,T [) + T 2

N‖g‖2
L2(Γ2N×]0,T [)

)
. (2.21)

Combining (2.20) and (2.21), writing

‖u′
m‖L2(Ω1)‖um‖L2(Ω1) ≤

1
2
‖u′

m‖2
L2(Ω1)

+
1
2
‖um‖2

L2(Ω1),

and substituting into (2.16), we derive that

∀t ∈ [0, T ∗] , μ‖D(um(t))‖2
L2(Ω1) ≤ A + 2C,

where A is defined in (1.22). Since this inequality is valid for t = T ∗ and because we have made the assumption
(1.24) on the data, we conclude that

‖D(um(T ∗))‖L2(Ω1) <
μ

2C3
DS2

4

,

which is a contradiction. Thus we have the following result.

Lemma 2.3. Under the assumptions of Theorem 1.2, the Galerkin system (2.1), (2.2) has a unique solution
(um, pm) in the interval [0, T ]. Moreover um is bounded uniformly in L∞(0, T ; H1(Ω1)d) by (2.21) and (2.13),
u′

m is bounded uniformly in L∞(0, T ; L2(Ω1)d) by (2.20). In addition

‖D(u′
m)‖2

L2(Ω1×]0,T [) ≤
C2

DS2
2

μ2
‖f1‖2

L2(Ω1×]0,T [) +
2C
μ

+
1

μλmin

(
S̃2

2‖f ′
2‖2

L2(Ω2×]0,T [) + T 2
N‖g′‖2

L2(Γ2N×]0,T [)

)
,

(2.22)
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‖K 1
2∇pm‖L∞(0,T ;L2(Ω2)) ≤

1

λ
1
2
min

(
S̃2‖f2‖L∞(0,T ;L2(Ω2)) + TN‖g‖L∞(0,T ;L2(Γ2N ))

+ CE

(
1 + S̃2

2

) 1
2 ‖um‖L∞(0,T ;L2(Ω1)d)

)
, (2.23)

‖K 1
2∇p′m‖2

L2(Ω2×]0,T [) ≤
C2

DS2
2

2μ
‖f1‖2

L2(Ω1×]0,T [) + 2C +
2

λmin

(
S̃2

2‖f ′
2‖2

L2(Ω2×]0,T [) + T 2
N‖g′‖2

L2(Γ2N×]0,T [)

)
.

(2.24)

Proof. The argument developed above gives global existence of the maximal solution (um, pm) in the whole
interval [0, T ]. Both bounds (2.22) and (2.24) follow easily from (2.17), and (2.23) is an immediate consequence
of Lemma 2.1 (see (2.6)). �

2.3. Passing to the limit

As both V and M are reflexive, it follows from (2.22), (2.13), (2.23) and (2.24) that there exists a pair of
functions (u, p2) in H1(0, T ; V ) × H1(0, T ; M) and a subsequence, still denoted (um, pm), such that

um → u, weakly in H1(0, T ; H1(Ω1)d), (2.25)
pm → p2, weakly in H1(0, T ; H1(Ω2)). (2.26)

We now apply Theorem 1.1 with the choices q = 4, X = H1(Ω1)d, E = L4(Ω1) and Y = L2(Ω1). The
convergence (2.25) implies in particular that

um → u, strongly in L4(Ω1×]0, T [). (2.27)

Now, let us multiply both sides of (2.1) by any function Φ in L2(0, T ) and integrate over ]0, T [; we obtain

∫ T

0

(u′
m(t), Φ(t)v)Ω1dt + 2μ

∫ T

0

(D(um(t)), Φ(t)D(v))Ω1dt +
∫ T

0

(um(t) · ∇um(t), Φ(t)v)Ω1dt

+
∫ T

0

(K∇pm(t), Φ(t)∇q)Ω2dt +
∫ T

0

(pm(t), Φ(t)v · n12)Γ12dt +
d−1∑
j=1

∫ T

0

(
1

Gj
um(t) · τ j

12, Φ(t)v · τ j
12

)
Γ12

dt

−
∫ T

0

(um(t) · n12, Φ(t)q)Γ12dt =
∫ T

0

(f1(t), Φ(t)v)Ω1dt +
∫ T

0

(f2(t), Φ(t)q)Ω2dt +
∫ T

0

(g(t), Φ(t)q)Γ2N dt,

for any v ∈ V k and q ∈ Mk, with m ≥ k. Passing to the limit with respect to m in each linear term of the
above equation is easy owing to (2.25) and (2.26). The strong convergence in (2.27) allows to pass to the limit
with respect to m in the nonlinear term. Therefore, we readily derive that

∫ T

0

(u′(t), Φ(t)v)Ω1dt + 2μ

∫ T

0

(D(u(t)), Φ(t)D(v))Ω1dt +
∫ T

0

(u(t) · ∇u(t), Φ(t)v)Ω1dt

+
∫ T

0

(K∇p2(t), Φ(t)∇q)Ω2dt +
∫ T

0

(p2(t), Φ(t)v · n12)Γ12dt +
d−1∑
j=1

∫ T

0

(
1

Gj
u(t) · τ j

12, Φ(t)v · τ j
12

)
Γ12

dt

−
∫ T

0

(u(t) · n12, Φ(t)q)Γ12dt =
∫ T

0

(f1(t), Φ(t)v)Ω1dt +
∫ T

0

(f2(t), Φ(t)q)Ω2dt +
∫ T

0

(g(t), Φ(t)q)Γ2N dt,
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for any v ∈ V k and q ∈ Mk. As we can approximate the elements of V and M by the elements of V k and Mk,
this equation holds for any v ∈ V and q ∈ M . Furthermore, since this is true for any Φ ∈ L2(0, T ), it implies
that a.e. in ]0, T [ and for all (v, q) ∈ V × M :

(u′(t), v)Ω1 + 2μ(D(u(t)), D(v))Ω1 + (u(t) · ∇u(t), v)Ω1 + (K∇p2(t),∇q)Ω2 + (p2(t), v · n12)Γ12

+
d−1∑
j=1

(
1

Gj
u(t) · τ j

12, v · τ j
12

)
Γ12

− (u(t) · n12, q)Γ12 = (f1(t), v)Ω1 + (f2(t), q)Ω2 + (g(t), q)Γ2N . (2.28)

Finally, to recover the initial value, take Φ ∈ H1(0, T ), with Φ(T ) = 0. As um(0) = 0, we have

0 =
∫ T

0

(u′
m(t), v)Ω1Φ(t)dt +

∫ T

0

(um(t), v)Ω1Φ
′(t)dt.

When passing to the limit, this reads

0 =
∫ T

0

(u′(t), v)Ω1Φ(t)dt +
∫ T

0

(u(t), v)Ω1Φ
′(t)dt = (u(0), v)Ω1Φ(0).

Therefore
∀v ∈ V , (u(0), v)Ω1 = 0.

Since u(0) ∈ V , this yields the initial condition. Thus we have proved the following intermediate theorem.

Theorem 2.4. Under the assumptions of Theorem 1.2, the reduced problem (PV ) has at least one solution
(u, p2) in H1(0, T ; V ) × H1(0, T ; H1(Ω2)).

2.4. Recovering the Stokes pressure

In contrast to the familiar situation of the Navier–Stokes equation, recovering the pressure is easy owing to
the stronger regularity in time of the solution. Indeed, consider the following bilinear form on (X×M)×L2(Ω1):

∀(v, q) ∈ X × M, ∀λ ∈ L2(Ω1) , b
(
(v, q), λ

)
=
∫

Ω1

(∇ · v)λ. (2.29)

This bilinear form is continuous on (X × M) × L2(Ω1) and satisfies the following inf-sup condition (cf. for
example [18]): there exists a constant β > 0 such that

∀λ ∈ L2(Ω1) , sup
v∈X

b
(
(v, q), λ

)
‖v‖H1(Ω1)

≥ β‖λ‖L2(Ω1). (2.30)

The inequality is unchanged if we replace the supremum over v by the supremum over the pair (v, q) with any
q in M ; in fact the supremum is attained for q = 0. Note also that

V × M = {(v, q) ∈ X × M ; ∀λ ∈ L2(Ω1), b((v, q), λ
)

= 0}.
Now, let (u, p2) be one solution to problem (PV ) and � denote the mapping defined for a.e. t in ]0, T [:

(v, q) �→ �(v, q) = (u′(t), v)Ω1 + 2μ(D(u(t)), D(v))Ω1 + (u(t) · ∇u(t), v)Ω1 + (K∇p2(t),∇q)Ω2

+ (p2(t), v · n12)Γ12 +
d−1∑
j=1

(
1

Gj
u(t) · τ j

12, v · τ j
12

)
Γ12

− (u(t) · n12, q)Γ12 − (f1(t), v)Ω1 − (f2(t), q)Ω2 − (g(t), q)Γ2N .
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For a.e. t in ]0, T [, this mapping is linear, continuous on X ×M and vanishes on V ×M . Therefore the inf-sup
condition (2.30) and the Babuska–Brezzi’s theory imply that for a.e. t ∈]0, T [, there exists a unique function
p1 ∈ L2(Ω1) satisfying

∀(v, q) ∈ X × M , b((v, q), p1

)
= �(v, q).

In other words, we recover the first equation of problem (P). The estimate (1.30) for p1 in L∞(0, T ; L2(Ω1)) is
an immediate consequence of this equation (with the choice q = 0) and (2.30). This finishes the existence part
of the Proof of Theorem 1.2.

2.5. Uniqueness

We cannot prove that all solutions of problem (PV ) are bounded. However, we can prove that this problem
has no more than one solution (u, p2) satisfying:

‖D(u)‖L∞(0,T ;L2(Ω1)d×d) ≤
μ

C3
DS2

4

, (2.31)

a condition that is slightly less restrictive than (1.25).

Theorem 2.5. Problem (PV ) has no more than one solution (u, p2) in L∞(0, T ; V ) × L2(0, T ; M) satisfy-
ing (2.31). In particular, under the assumptions of Theorem 1.2, problem (1.1)–(1.10) has one and only one
solution.

Proof. Let (u, p2) and (ũ, p̃2) be two solutions to (PV ). Set w = u − ũ and ϕ = p2 − p̃2; then we have for all
(v, q) ∈ V × M

(w′, v)Ω1 + 2μ(D(w), D(v))Ω1 + (u · ∇u−ũ · ∇ũ, v)Ω1 + (K∇ϕ,∇q)Ω2 + (ϕ, v · n12)Γ12

+
d−1∑
j=1

(
1

Gj
w · τ j

12, v · τ j
12

)
Γ12

− (w · n12, q)Γ12 = 0,

w(0) = 0.

The choice v = w and q = ϕ gives

1
2

d
dt

‖w‖2
L2(Ω1)

+ 2μ‖D(w)‖2
L2Ω1

+ (w · ∇u + ũ · ∇w, w)Ω1 + ‖K 1
2∇ϕ‖2

L2(Ω2)
+

d−1∑
j=1

∥∥∥∥ 1√
Gj

w · τ j
12

∥∥∥∥
2

L2(Γ12)

= 0.

Now suppose that u and ũ are bounded by (2.31). Then for a.e. t in ]0, T [∣∣(w · ∇u + ũ · ∇w, w)Ω1

∣∣ ≤ 2μ‖D(w)‖2
L2(Ω1).

Thus, we obtain
1
2

d
dt

‖w‖2
L2(Ω1)

+ ‖K 1
2∇ϕ‖2

L2(Ω2)
+

d−1∑
j=1

∥∥∥∥ 1√
Gj

w · τ j
12

∥∥∥∥
2

L2(Γ12)

≤ 0.

Integrating this from 0 to t and using w(0) = 0, we get

1
2
‖w(t)‖2

L2(Ω1)
+
∫ t

0

‖K 1
2∇ϕ‖2

L2(Ω2)dt +
d−1∑
j=1

∫ t

0

∥∥∥∥ 1√
Gj

w · τ j
12

∥∥∥∥
2

L2(Γ12)

dt ≤ 0. (2.32)

This yields w = 0, ϕ = 0. The uniqueness of the pressure p1 comes from Section 2.4. �
Remark 2.6. Condition (2.31) states uniqueness of the velocity in a ball centered at the origin and with radius

μ
C3

DS2
4
, twice as large as the radius for existence, compare with (1.25). This means that there is no other solution

in this larger ball, and hence no bifurcation in the neighborhood of the solution.
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3. Conclusions and perspectives

In this work, we have proved that a time-dependent Navier–Stokes system coupled with a Darcy model with
suitably small data has one and only one solution, even in the presence of a rough interface. The proof, based
on a Galerkin discretization in space, lends itself readily to a variety of finite-element discretizations which will
be the object of future work. The study of other boundary and initial conditions, as well as other Darcy models,
are in progress. It would also be very interesting to extend the work in [8] on Beavers–Joseph conditions to a
rough interface.
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