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POPULATIONAL ADAPTIVE EVOLUTION, CHEMOTHERAPEUTIC
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and Benôıt Perthame
1,2,6

Abstract. Resistance to chemotherapies, particularly to anticancer treatments, is an increasing
medical concern. Among the many mechanisms at work in cancers, one of the most important is the
selection of tumor cells expressing resistance genes or phenotypes. Motivated by the theory of mutation-
selection in adaptive evolution, we propose a model based on a continuous variable that represents the
expression level of a resistance gene (or genes, yielding a phenotype) influencing in healthy and tumor
cells birth/death rates, effects of chemotherapies (both cytotoxic and cytostatic) and mutations. We
extend previous work by demonstrating how qualitatively different actions of chemotherapeutic and
cytostatic treatments may induce different levels of resistance. The mathematical interest of our study
is in the formalism of constrained Hamilton–Jacobi equations in the framework of viscosity solutions.
We derive the long-term temporal dynamics of the fittest traits in the regime of small mutations. In
the context of adaptive cancer management, we also analyse whether an optimal drug level is better
than the maximal tolerated dose.
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1. Introduction

Many pharmacotherapeutic processes, in anticancer, antiviral, antimalarial, or antibiotic therapies may fail
to control proliferation, because the target (virus, cell, parasite) population becomes resistant to the drug(s).
This may occur either because of evolution independent of drug(s), or because the drug(s) select for resistance.
The occurrence of drug resistance is thus a major obstacle to therapy success.
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Resistance is commonly seen in a diverse range of systems including agriculture pest resistance to toxic
crops [32, 46], bacterial resistance to antibiotics [12], mosquito resistance to antimalarial treatments [1] and
references therein) and bacterial resistance to high copper concentrations [28].

There is overwhelming evidence that populations of cancer cells may harbour a diverse array of chemo-
resistant subpopulations.

Resistance mechanisms in cancer may be classified according to at least two major effects:

– Cell adaptation. Cells may adapt metabolically in response to drugs. A typical example is the release of
resistance proteins such as P-gp and other ABC transporters (ATP Binding Cassette), and studies on
large human cohorts have shown their correlation with resistance in Acute Myeloid Leukemia [35]), since
they promote the efflux of toxic molecules from leukaemic cells [10, 25]. Induction of ABC transporter
gene transcription by stressful conditions (including exposure to anticancer drugs) is a likely contributing
mechanism, as reviewed in [42]. This resistance mechanism can further be enhanced by protein exchange
between cells [41], and its properties have been analysed using a mathematical model [37]. In as much as
these mechanisms occur in individual cells and do not involve differential selection on variants resulting
from mutations, we distinguish such cell adaptation mechanisms from other mechanisms stemming from
mutations.

– Mutations. It is generally accepted that tumor cells usually have higher division and higher mutation rates
than normal cells; possible mechanisms for this have been investigated in bacterial populations in stressful
conditions, inducing the formation of error-prone polymerase [30], from which one may infer similar expla-
nations for cancer cells. Moreover, when a drug targets a specific DNA site or a specific protein, a mutation
that deletes this site or induces a change in protein conformation may confer resistance to mutant cells [43].

To tease apart the relative contributions of these two mechanisms presents a considerable challenge. The answer
may depend on many parameters such as the type of tumor and therapy. In the latter case, such mutations
(possibly by a single amino acid of the target protein) may induce resistance to the drug at stake, whereas in
the former case of multiply targeted drugs (or drugs with unidentied specic targets) a re-wiring of intracellular
signaling networks is a plausible mechanism, as discussed in [36]. As a first approach to this complex question,
we focus in this paper on continuous mechanisms that involve resistance induced by the drug environment on
cell populations, and not on mechanisms that can be represented by a constant probability of mutation resulting
in drug resistance, as in classical studies such as [23] or more recent work based on evolutionary models in a
stochastic setting [31].

In this paper we are particularly interested in the latter mechanism, which is closely related to the process of
Darwinian evolution, according to which certain rare mutants may have positive growth rates and be selected
in environments that would otherwise result in ecological extinction. The term of ‘evolutionary rescue’ has
been coined for situations where a population is saved from extinction by natural selection of genetic variants
either existing in a population when environmental conditions deteriorate, or emerging during the otherwise
inexorable decline to extinction [5]. In this view, because some mutant cells have a fitness advantage, they will
come to dominate dynamics and the population as a whole. We propose a mathematical model that takes into
account birth, death and mutation rates of healthy and cancer cells depending on the level of resistant phenotype
expression. Different expression levels would be reflected by the cell content of proteins (e.g., ABC transporters)
responsible for expelling toxic molecules. We assume this expression level to be a continuous variable, and as
such amenable to provide a basis for structured population models designed according to a selection/mutation
type of formalism previously developed using Partial Differential Equations [7–9,15, 33, 34, 39].

The phenomenon of drug resistance is usually described mathematically by considering two distinct types of
cells, sensitive and resistant. A recent probabilistic approach [19] incorporated dose modulation to study the
evolution of resistance under various dosing strategies. Unlike probabilistic models, we do not consider that
a cell or a cell population is necessarily either totally sensitive or totally resistant to a given drug; rather we
introduce a continuous physiological variable describing resistance between 0 (completely sensitive population)
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and +∞ (completely resistant population). Such a variable, which may be genetic or epigenetic [13], indeed
provides the basis for a physiologically structured model of resistance.

Mathematical models [22] incorporating phenotypic and microenvironmental factors suggest that adaptive
treatment strategies can improve long-term survival compared to a maximum dose strategy. This may be
achieved at the cost of maintaining the persistence of sensitive tumor cells, which are fitter than the resistant
cells in low drug pressure conditions (i.e., not trying to eradicate them, an apparently paradoxical view (‘adaptive
therapy’) [21,22], most likely applicable to slowly developing tumors only). Conversely, in cases of sudden rapid
proliferation (e.g., acute leukaemias), only the employment of maximum tolerable doses is thought to have
chances of controlling or eradicating the cancer cell population.

Furthermore, depending on the nature of the tumor, different types of drugs can be used either separately or
in combinations, in order to reduce the probability of resistance emergence and reduce side-effects on healthy
cells [44]. This aspect is studied in [47, 48] using ordinary differential systems which give a macroscopic under-
standing on the use of multitherapies. In particular, besides cytotoxic drugs, here we focus on an additional
class of therapeutic agents, so-called cytostatic drugs, which act by slowing down cancer cell proliferation and
tumor growth. Cytostatic drugs have lower toxicity for healthy cells and reduce the emergence of resistance,
which usually follows from treatments with cytotoxic drugs. In fact, they allow the survival of a small number
of chemosensitive cells, which can reduce the growth of resistant clones through competition for space and
resources. Moreover, whereas cytotoxic drugs remove sensitive cells from the population, they do not prevent
the proliferation of chemo-resistant cells. There are two important effects of such therapies on cancer resur-
gence and its aggressiveness. Firstly, proliferating resistant cells may produce a series of increasingly aggressive
subpopulations through for example natural selection [6]. Secondly, toxic effects of the drug on chemoresistant
cells, although not lethal, may induce genetic instabilities resulting in the generation of more aggressive mutant
cancer cell lines [20]. These concerns within an expanding chemoresistant population are lessened under com-
bined chemostatic and chemotoxic therapies, since toxicity of the latter is reduced, and the chemostatic drug
holds in check the multiplication of the chemoresistant subpopulation.

The paper is organized as follows. We first present a model for healthy and tumor cells, structured by a variable
representing the expression level of the resistance gene. We consider cases with and without chemotherapy. We
also analyze the global behavior of solutions without mutations. Then, in Section 3, we turn to the analysis
of situations with small mutations and employ the methodology of populational adaptive evolution to describe
the dynamics of the fittest cells. Section 4 is devoted to the question of analyzing, for this simple model,
whether the maximal tolerated dose is the optimal choice to impede the evolution of resistance. Section 5
presents several numerical simulations that illustrate our theory. Finally, we propose in Section 6 a model for
the dynamics of healthy and cancer cells exposed to cytotoxic and cytostatic drugs. The model relies on the
same structured population formalism presented at the beginning of the paper and it is analyzed by means of
numerical simulations looking for combined doses resulting in treatment optimization.

2. A structured population model for healthy and tumor cells

under the effects of cytotoxic drugs

A major constraint in chemotherapy is to keep the toxic effect on healthy cells below a critical threshold. For
that reason, it is preferable for a model to be able to represent both healthy and tumor cells. This is what we
propose here in a simple equation that can take into account both types of cells, thus tackling the two major
issues of medical treatments in general: adverse toxic effects in healthy cells and occurrence of drug resistance in
diseased cells. At this stage we do not represent the spatial extension of tissues; this is an ingredient that can be
included in a future models. It is indeed more important from a therapeutic point of view to structure the two
populations according to a physiological variable, e.g., a continuously evolving genetic trait or cell content in
specific proteins, that physiologically describes the evolution of the population as influenced by the treatment,
rather than include a space variable in the model.



380 A. LORZ ET AL.

2.1. Selection/mutation model

Let nH(x, t)/nC(x, t) denote the population density of healthy/cancer cells with gene resistance expression
level x at time t. Below we use the term ‘gene expression’ meaning not only expression of one supposed resistance
gene, but more generally of several genes yielding together a continuous drug resistance phenotype, more or
less in the same way as others represent evolution towards malignancy in colorectal cancer [16], revisited by
[45]. Note that in the model we develop below, we do not represent evolution towards malignancy, assuming
the existence of an already constituted cancer cell population (with subscript C), opposed to a healthy cell
population (with subscript H). The resistance level x to the drug can be measured either by the average
molecular cell concentration or activity of ABC transporters that are known to be associated with resistance
to the drug, or by the minimal drug concentration to kill the population (more precisely the LD50, LD90... of
pharmacologists, i.e., the minimal dose to kill a given percentage of the cell population). Different strains of
the same initial cell lineage, selected by exposure to progressively increasing doses of the same drug, are indeed
available in tumor banks, such as acute myeloblastic leukemia (AML) cells at the Tumor Bank of St. Antoine
Hospital in Paris [49]. We a priori take 0 ≤ x < ∞, even though the design of the model should lead to
limitations on the possible values of x.

The growth dynamics of healthy and tumor cells under a chemotherapy is given by the system

∂

∂t
nH(x, t) =

[ growth with homeostasis︷ ︸︸ ︷
1 − θH(

1 + ρ(t)
)β

r(x) −
natural apoptosis︷︸︸︷

d(x) −
effect of drug︷ ︸︸ ︷
c(t)μH(x)

]
nH(x, t)

+
θH(

1 + ρ(t)
)β

∫
r(y)MσH (y, x)nH(y, t)dy︸ ︷︷ ︸

birth with mutation

,

(2.1)

∂

∂t
nC(x, t) =

[
(1 − θC) r(x) − d(x) − c(t)μC(x)

]
nC(x, t)

+ θC

∫
r(y)MσC (y, x)nC(y, t)dy,

(2.2)

and the total population is defined as

ρ(t) = ρH(t) + ρC(t), ρH(t) =
∫ ∞

x=0

nH(x, t)dx, ρC(t) =
∫ ∞

x=0

nC(x, t)dx. (2.3)

The following notations, interpretations and assumptions are used:

– r(x) denotes the basic reproduction rate and d(x) > 0 denotes the basic death rate, which depend on the gene
expression level x. In order to incorporate a cost to produce the resistance gene, we assume r is decreasing,
d is increasing

r(0) > d(0) > 0, r′(·) < 0, r(+∞) = 0, d′(·) > 0. (2.4)

– 0 ≤ θH,C < 1 denotes the proportion of divisions with mutations and we can assume it to be higher for cancer
cells.

– β > 0 is introduced, with the simplest possible form, to impose healthy tissue homeostasis (see below). For
tumor cells, uncontrolled proliferation is obtained by birth terms that do not depend on the total population
(i.e., we do not consider density-dependent inhibition in cancer cells).

– c(t) denotes the dose of chemotherapy. Here we assume it has only an effect on increasing apoptosis.
– μH,C(x) represents the phenotypically dependent response to the drug; drugs are designed to target cancer

cells more than healthy cells. The effect of drugs is here assumed to be summed up directly on mortality
(i.e., in this simple setting, not involving the cell division cycle, we do not consider drug effects at cell cycle
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phase transitions in proliferating cell populations, see e.g., [29] for a discussion of this point) with a rate
μ that depends on the gene expression x (sensitivity to the drug) and we assume the properties

μH,C(·) > 0,
dμH,C

dx
< 0, μH,C(∞) = 0, μH < μC . (2.5)

This means that the drug always decreases the growth rate but its efficiency is lower on cells expressing a
higher resistance gene expression. Also because the drug is efficient against cancer cells we assume that c is
such that

r(0) − d(0) − cμC(0) < 0. (2.6)

– MσH,C (y, x) ≥ 0 denotes the probability that a mutation of a cell with gene expression y leads to a daughter
cell with level x and σH,C > 0 measures the average size of these mutations. This means that∫ ∞

x=0

xMσ(y, x)dx = σ.

We can assume that this size is larger in the tumor than in healthy cells, in which control of the genome is more
strictly ensured and mutations, if they occur, are of little consequence; hence σC > σH . To be consistent with
this interpretation, we impose (further conditions are imposed later on)∫ ∞

x=0

Mσ(y, x)dx = 1. (2.7)

It is useful to write the equations on nC and nH as

∂

∂t
n(x, t) = n(x, t)R(x, t) + θ

∫
r(y)Mσ(y, x)[n(y, t) − n(x, t)]dy,

so as to better see that the net growth rate (fitness) of the cells is given by⎧⎪⎨⎪⎩
RH(x, t) =

1(
1 + ρ(t)

)β
r(x) − d(x) − cμH(x),

RC(x, t) = r(x) − d(x) − cμC(x).
(2.8)

2.2. Healthy or tumor cells without mutations

In order to motivate the introduction of these different terms, we will prove in the next sections that the
model solutions exhibit behaviors that are in accordance with the biomedical interpretation. It is simpler to
state results when there are no mutations, which we do now and postpone to the next sections the case with
mutations.

We introduce our assumptions and notations in each one of these three cases of interest independently:
healthy cells only, cancer cells without therapy, resistance in cancer cells generated by therapy.

Healthy tissue, no therapy, no tumor cells. In a healthy tissue we take nC ≡ 0. Then, in
the absence of therapy (i.e., c(t) = 0), classical theory shows that as σ vanishes, the population model
always selects the gene expression x = 0. In other words, x = 0 is a globally attracting Evolutionary Stable
Distribution:

Lemma 2.1 (healthy cells only, no mutations). We assume (2.4) and that all data are Lipschitz continuous;
we also assume

θH = 0, n0
H > 0, n0

H ∈ L1, nC ≡ 0.
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Then, we have
nH(x, t) −→

t→∞ ρ̄H,∞δ(x),

weakly in the sense of measures where the number density of cells ρ̄H,∞ defined by zero growth rate (homeostasis)
is computed as

1(
1 + ρ̄H,∞

)β
r(0) = d(0). (2.9)

In other words, with no mutations to create variability, the monoclonal population is global attractor with the
fittest trait x = 0.

The proof of this result follows from a general analysis that can be found in [33, 38, 39]. It uses an estimate
on the total variation of ρH(t) that holds in a very general framework that includes the case at hand.

Keeping mutations, a similar conclusion can be reached but in the framework of asymptotic analysis; to
show this is a job that uses more elaborate ingredients and that is explained in Section 3.1.

Cancer cells, no therapy. For healthy cells, the total cell number ρ(t) induces a limitation on
the multiplication of cells that represents homeostasis (i.e., the capacity of a tissue to stop growing, then
differentiate and commit itself to fulfill a given physiological task). For cancer cells, we observe an uncontrolled
growth in the absence of therapy whatever the gene expression level (at least close enough to x ≈ 0, otherwise
the cost to produce it can compensate the birth/death ratio). However, they remain with the lowest resistance
gene because of the reproduction advantage when x = 0. This can be derived from the model since we have

Lemma 2.2 (cancer cells only, no mutations). When c(t) ≡ 0 and θC vanishes, solutions to (2.2) with an initial
data n0

C(x) > 0 near x ≈ 0 satisfy, with an exponential rate

ρC(t) −→
t→∞ ∞, and weakly in sense of measures

nC(x, t)
ρC(t)

−→
t→∞ δ(x).

Proof. From assumption (2.4), there is a value xc > 0 for which

r(x) − d(x) ≥ gm :=
1
2
[r(0) − d(0)] > 0, ∀x ∈ [0, xc].

We write after integration in x

d
dt

∫ xc

0

nC(x, t)dx =
∫ xc

0

[r(x) − d(x)]nC(x, t)dx ≥ gm

∫ xc

0

nC(x, t)dx.

Therefore the first statement is proved since∫ xc

0

nC(x, t)dx ≥ eλmt

∫ xc

0

n0
C(x)dx, λm = gm.

We also notice that the same argument, using a small interval closer to x ≈ 0 tells us that for all λ < r(0)−d(0),
there is a xλ such that ∫ xλ

0

nC(x, t)dx ≥ eλt

∫ xλ

0

n0
C(x)dx,

and thus, for all λ < r(0) − d(0), there is a value ρ(λ) such that

ρC(t) ≥ ρ(λ)eλt.
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From this, we easily conclude the second statement which is a consequence of Laplace formula. Indeed, for a
given y, we can choose from assumption (2.4), λ > r(y) − d(y) and thus for x ≥ y

nC(x, t)
ρC(t)

≤ n0
C(x)

e[r(x)−d(x)]t

ρ(λ)eλt
−→
t→∞ 0.

In other words, the cell density is asymptotically small for all x > 0, and thus the solution concentrates at
x = 0. �

The case with mutations is treated in Section 3.2.

Cancer cells with therapy. This is the most interesting situation where resistance may follow from
selection of cells with a high level of gene expression. This can arise because the drug concentration c is limited
in order to keep healthy cells below a given toxicity threshold. This situation occurs if the maximum net growth
rate of tumor cells, as defined by (2.8), is positive for some x > 0. Here we concentrate on the simplest case of a
constant therapy and we make the additional assumption that, for all levels of c, there is a maximal resistance
gene expression xc > 0 which maximizes the fitness

for x 
= xc, r(x) − d(x) − cμC(x) < Rc := r(xc) − d(xc) − cμC(xc) > 0. (2.10)

Notice however that

Rc ≤ r(xc) − d(xc) ≤ r(0) − d(0) = R0.

With this assumption, we can establish the

Lemma 2.3 (cancer cells with therapy, no mutations). Assume c ≡ 1, θC = 0 and (2.10). Then, the solutions
to (2.2) with an initial data n0

C(x) > 0 satisfy, with an exponential rate

ρC(t) −→
t→∞ ∞,

nC(x, t)
ρC(t)

−→
t→∞ δ(x − xc).

We do not repeat the proof of this result which is the same as for Lemma 2.2 and gives that ρC(t)eλt −→
t→∞ ∞

for all λ < Rc.

3. Asymptotic analysis with small mutations

A clear mathematical way to precisely express the results mentioned above, i.e., that a specific level of gene
expression is selected, is through asymptotic analysis for small mutations and observing the dynamics in the
long run. In ecology, these models generate populations that are highly concentrated on some well separated
traits with possible branching and polymorphism. For the case at hand, the mutation rates may be too high to
reduce the analysis to this limit, but it is still a way to express mathematically what happens for small, but
non zero, frequencies of mutation.

In this section we state the behaviors that can be derived from analysis in the different cases already mentioned
without mutations in Section 2.2. They give details on the evolution of the population towards the ESD
(Evolutionary Stable Distribution, see [27]), which is that at each time a distribution close to a Dirac mass is
obtained.

Even though these are not the most interesting cases, the results listed below are also valid when there are
no mutations (θH = 0 or θC = 0) and this is the case used later in the numerical simulations of the solutions.
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3.1. Asymptotic analysis: case of healthy cells

With the aim of studying the dynamics of the model in the aforementioned limit of small mutations and many
generations, we introduce a small parameter ε, which is used to rescale time and define a more specific choice
of the mutation kernel, so that the population dynamics (2.1) for healthy cells only and without treatment can
be rewritten in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε ∂
∂tnH(x, t) =

[
1−θH(

1+ρH (t)
)β r(x) − d(x)

]
nH(x, t)

+ θH(
1+ρH (t)

)β

∫
r(y)1

εM̃
(
y, y−x

ε

)
nH(y, t)dy,

ρH(t) =
∫ ∞

x=0
nH(x, t)dx.

(3.1)

We have written the mutation kernel in such a way that⎧⎪⎨⎪⎩
MσH (y, x) = 1

εM̃(y, y−x
ε ) with sup

x≥0

∫
e|z|

2
M̃(x, z)dz < ∞,

∫ x/ε

−∞ M̃(x, z)dz = 1,
∫ x/ε

−∞ zM̃(x, z)dz = 0,

(3.2)

so that it appears directly that x−y = O(ε), in other words, mutations have a small effect in terms of the change
in the x, y variables. Notice that, in these expressions, we always have εz ≤ x. Therefore, the last assumption
implies that cells in the state y = 0 do not undergo mutations (they could only be to z < 0 thus contradicting
the zero integral condition). This is useful to state clear and simple results, otherwise evolutionary drift creates
an ESS (Evolutionary Stable Strategy) (see [14] for an introduction to the dynamical system theory of adaptive
dynamics) for a slightly positive x and this can be analyzed mathematically with our methods but we will not
do it here for simplicity of the presentation.

The analysis in [3,4,39] can be used and proves that, thanks to the assumptions (2.4), the fittest population
is obtained when the gene is not expressed that is to say nH(x, t) = ρ̄H,∞δ(x) is an attractor.

Before stating the result, we give assumptions. Firstly, we assume that the initial population is concentrated
as a ‘sharp Gaussian’ around a state corresponding to a non-vanishing gene expression x̄0⎧⎨⎩nH,ε(x, 0) = eu0

H,ε(x)/ε, u0
H,ε(x) −→

ε→0
u0

H(x) locally uniformly,

maxu0
H(x) = 0 = u0

H(x̄0), nH,ε(x, 0) −→
ε→0

ρ̄0
Hδ(x − x̄0).

(3.3)

Notice that, as ε vanishes, only mutations can deviate such a population determined by ρ̄0
Hδ(x − x̄0) from this

initial state which is asymptotically a steady state for θH = 0 as soon as the total population satisfies

1(
1 + ρ̄0

H

)β
r(x̄0) = d(x̄0). (3.4)

More precisely, with these new notations we may write

Theorem 3.1 (healthy cells only). We assume (2.4), (3.2)–(3.4) and that all data are Lipschitz continuous.
Then, the population is monoclonal in the limit of small mutations:

nH,ε(x, t) −→
ε→0

ρ̄H(t)δ(x − x̄(t)),
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and it returns to the fittest trait x = 0: using the notation (2.9), we have

x̄(t) −→
t→∞ 0, ρ̄H(t) −→

t→∞ ρ̄H,∞.

Proof. The limit ε → 0. The proof is based on the use of the Hopf–Cole transform

uε(x, t) = ε ln(nH(x, t)),
∂uε

∂t
=

ε

nH

∂nH

∂t
·

Inserting it in (3.1), we find the equation

∂

∂t
uε =

1 − θH(
1 + ρH(t)

)β
r(x) − d(x) +

θH(
1 + ρH(t)

)β

∫
r(y)M̃

(
y,

y − x

ε

)
e(u(y,t)−u(x,t))/εdy

and changing the variable y �→ z with y = x + εz, we find

∂

∂t
uε =

1 − θH(
1 + ρH,ε(t)

)β
r(x) − d(x) +

θH(
1 + ρH,ε(t)

)β

∫
r(x + εz)M̃(x + εz, z)e(uε(x+εz,t)−uε(x,t))/εdz.

At this stage, it is useful to introduce the limit in the integral term which is given by the Hamiltonian

H(x, p) = r(x)
∫

M̃(x, z)ep·zdz. (3.5)

Notice that from (3.2), we derive the properties

H(x, 0) = r(x), Hp(x, 0) = 0, Hpp(x, p) ≥ 0.

By convexity, these imply in particular
H(x, p) ≥ r(x). (3.6)

One can establish two types of uniform estimates: (i) the total number of cells ρH,ε(t) is uniformly bounded
in BV (0, T ) for all T > 0 and

(
d
dtρH,ε(t)

)
− is bounded, therefore

ρH,ε(t) −→
ε→0

ρ̄H(t),
d
dt

ρH(t) ≥ −C. (3.7)

(ii) Uniform Lipschitz estimates can be established for this kind of models (see [4] for the specific case of integral
mutations).

Therefore, we may now pass to the limit ε → 0 in the equation on uε in the viscosity sense (see references
below), and we find ⎧⎪⎪⎨⎪⎪⎩

∂

∂t
u =

1 − θH(
1 + ρH(t)

)β
r(x) − d(x) +

θH(
1 + ρH(t)

)β
H(x,∇u(x, t)),

max
0≤x<∞

u(x, t) = 0 ∀t > 0.

(3.8)

This equation is the fundamental new object that describes the dynamics for ε → 0. It is a constrained Hamilton–
Jacobi equation, which is rather different from the usual Hamilton–Jacobi equation because, for instance, the
L∞ contraction property is lost. Nevertheless, the correct notion of solutions are still the viscosity solutions of
Crandall–Lions (see [2, 11, 17]).
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The solution to equation (3.8) is a pair (u, ρ) where ρ(t) is the Lagrange multiplier associated with the
constraints maxx u(x, t) = 0. There are two possible approaches to rigorously prove this limit. In the approach
developed in [33], we consider strong assumptions which allow for uniform smoothness of uε, and then the theory
can be carried much further including the long time dynamics of x̄(t). In this approach concavity assumptions
are needed which are difficult to meet in the case at hand (it is an interesting problem to develop the theory).

The other approach, that we follow here, has been developed in [3,4,15,39]. We consider a weak theory with
our general assumptions and viscosity solutions to (3.8). The function u is merely Lipschitz continuous and
semi-concave [39], the best possible regularity is ρ(t) ∈ BV (R+) because jumps on ρ(t) and x̄(t) are possible.
This analysis for weak solutions (only possible in one dimension) gives also that, along with the dynamics, the
fittest trait is characterized by

0 = u(x̄(t), t), 0 =
1(

1 + ρH(t)
)β

r(x̄(t)) − d(x̄(t)). (3.9)

This second equality is just a consequence of ∂u
∂t = ∇u = 0 at a maximum point (viscosity solutions are not

enough and semi-concavity is necessary here).

The limit t → ∞. Additionally, we also know from (3.7) that ρH(t) is non-decreasing, therefore taking into
account (3.9) and the definition (2.9), we find

ρH(t) ↗
t→∞

ρ̄H ≤ ρ̄H,∞, x̄(t) ↘
t→∞

x̄∞.

It remains to identify these limits.
By contradiction, assume that ρ̄H < ρ̄H,∞, then we use that

∂

∂t
u(x, t) =

1 − θH(
1 + ρH(t)

)β
r(x) − d(x) +

θH(
1 + ρH(t)

)β
H(x,∇u(x, t))

≥ 1(
1 + ρH(t)

)β
r(x) − d(x)

using (3.6) for the inequality. With our assumption and the definition of ρ̄H,∞, there are intervals [x1, x2] where
the right hand side is positive for all t and thus ∂

∂tu(x, t) > 0 (uniformly) on this interval which contradicts the
condition maxx u(x, t) = 0. This proves that ρ̄H = ρ̄H,∞ and concludes the proof of the theorem. �

3.2. Asymptotic analysis: cancer cells, no therapy

Following the lines drawn in Section 3.1, we can arrive at the same conclusion that, considering cancer
cells only, the gene expression x = 0 is selected even when mutations are present but small. Again a clean
mathematical path towards this direction is to rescale the model for cancer cells and, following the lines of
Section 3.1, to rewrite it as

ε
∂

∂t
nC(x, t) =

[
(1 − θC) r(x) − d(x)

]
nC(x, t) + θC

∫
r(y)

1
ε
M̃

(
y,

y − x

ε

)
nC(y, t)dy. (3.10)

Because it is linear and expresses unlimited growth, this model is very different from those in Section 3.1 for
healthy cells (or in ecology). In these cases there is a limitation by nutrients or space which controls nonlinearly
the growth and the dynamics through an integral variable ρ(t). Nevertheless we can use the same method to
analyze again the main effect, which is that x = 0 is a globally attractive ESD; the proof highlights how a
new control unknown shows up naturally and gives the same constraint and Lagrange multiplier in the limit as
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in (3.8). To state the result we need again to make more precise that the initial data is supposed monoclonal
at a value x̄0 > 0 ⎧⎨⎩nC,ε(x, 0) = eu0

C,ε(x)/ε, u0
C,ε(x) −→

ε→0
u0

C(x) locally uniformly,

maxu0
C(x) = 0 = u0

C(x̄0), nC,ε(x, 0) −→
ε→0

ρ̄0δ(x − x̄0).
(3.11)

Theorem 3.2 (cancer cells, no therapy). We assume (2.4), (3.2), (3.11) and that all data are Lipschitz
continuous. Then, the population is monoclonal in the limit of small mutations:

nC(x, t)∫ ∞
0

nC(x, t)dx
−→
ε→0

δ(x − x̄(t)),

and it returns to the fittest trait x = 0
x̄(t) −→

t→∞ 0.

The model again is not very relevant for direct interpretation because, as we see below, the cell number density
can decrease exponentially and then it explodes exponentially. A behavior reflecting only the fact that cells
cannot be naturally endowed with a gene expression x 
= 0; this may occur if a treatment is stopped after
resistance has been triggered (see next section).

Proof. We define the probability density

pε(x, t) :=
nC(x, t)
ρC(t)

, ρC(t) =
∫ ∞

0

nC(x, t)dx.

Because ρC(t) satisfies the equation

ε
dρC(t)

dt
=

∫ ∞

0

[r(x) − d(x)]nC(x, t)dx

we also find a closed equation for pε, namely

ε
∂

∂t
pε(x, t) = pε(x, t)[(1 − θC)r(x) − d(x)] − pε(x, t)Iε(t) + θC

∫ ∞

0

r(y)pε(y)
1
ε
M̃

(
y,

y − x

ε

)
dy

with
Iε(t) :=

∫ ∞

0

pε(y, t)(r(y) − d(y))dy. (3.12)

As mentioned earlier, this integral comes naturally to play the role of the population density ρ(t) in the case of
healthy cells as a Lagrange multiplier and we are back to the general setting in [3, 4, 33, 39].

We can perform the Hopf–Cole transform again uε = ε ln pε and write

∂

∂t
uε = (1 − θH)r(x) − d(x) − Iε(t) + θH

∫
r(x + εz)M̃(x + εz, z)e(uε(x+εz,t)−uε(x,t))/εdz.

We can finally pass to the limit and find, still with the Hamiltonian defined in (3.5), the constrained Hamilton–
Jacobi equation ⎧⎪⎨⎪⎩

∂
∂tu = (1 − θH)r(x) − d(x) − I(t) + θH H(x,∇u(x, t)),

max
0≤x<∞

u(x, t) = 0 ∀t > 0.
(3.13)
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As mentioned in Section 3.1, we find again that the fittest trait x̄(t) is characterized by

0 = u(x̄(t), t), 0 = r(x̄(t)) − d(x̄(t)) − I(t).

From the definition of Iε(t), this last equality is of course equivalent to the limit pε → δ(x − x̄(t)).
Again, the general theory applies here and we may conclude the proof as in Section 3.1: I(t) is non-decreasing

and thus x̄(t) is non-increasing; this proves that these two quantities have limits for t → ∞, which we easily
identify from the Hamilton–Jacobi equation.

With this information, notice that the dynamics of ρC(t) can be approximated by

ε
dρC(t)

dt
= ρC(t)[r(x̄(t)) − d(x̄(t))],

and it may decrease exponentially if r(x̄0) − d(x̄0) > 0, but eventually it will increase because we know that
r(0) − d(0) < 0. �

3.3. Asymptotic analysis: cancer cells with therapy

In the case when treatment is included, the dynamics of cancer cells given by equations (2.2)–(2.3) is
independent of healthy cells and we concentrate on the former. We use the same notations as before to ex-
press the small mutations regime where we can state a clear mathematical result and write the dynamics as

ε
∂

∂t
nC(x, t) =

[
(1 − θC) r(x) − d(x) − μc(x)

]
nC(x, t) + θC

∫
r(y)

1
ε
M̃

(
y,

y − x

ε

)
nC(y, t)dy. (3.14)

Theorem 3.3 (cancer cells with therapy). We assume (2.4), (2.10), (3.2), (3.11) for some 0 < x0 < xc and
that all data are Lipschitz continuous. Then, the population is monoclonal in the limit of small mutations:

nC(x, t)∫ ∞
0

nC(x, t)dx
−→
ε→0

δ(x − x̄(t)),

and it selects asymptotically the fittest trait x = xc

x̄(t) −→
t→∞ xc.

The structure of this problem is linear as in Section 3.2. Therefore we have to adapt the general theory of
concentration as we did it for cancer cells only. There is no special difficulty compared to the proof of Theorem 3.2
and we skip it. Note that, again, we cannot analyze directly the cell population density nc, because it grows
unbounded exponentially, and the natural quantity on which we can develop our method is the probability
density

pε(x, t) :=
nC(x, t)
ρC(t)

, ρC(t) =
∫ ∞

0

nC(x, t)dx.

4. A consequence for optimal therapy

As we have seen in Theorem 3.3, the model predicts selection of a resistance gene whose level of expression
xc depends on the drug dose. This leads to the question wether cancer growth can be minimized by using an
optimal dose c. At this stage we only consider the case of a constant dose c. We analyze the particular case of
coefficients used for our numerical studies in Section 5.

To state the problem, we recall that the resistant population will result in net growth (fitness) Rc given by
formula (2.10) that is

Rc := r(xc) − d(xc) − cμc(xc) = max
x≥0

[r(x) − d(x) − cμC(x)] . (4.1)
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Therapy optimization means finding c∗ that minimizes Rc over c > 0. The most usual protocol is to maximize
the dose c with the only limitation of toxicity on healthy cells; does this minimize Rc?

We analyze this question for the choice

Rc(x) :=
r2
0

1 + x2
− d − α2

a2 + x2
; (4.2)

here we have set α2 := c to simplify the following calculations. Natural assumptions are

0 < a2(r2
0 − d) < α2, (4.3)

a < 1. (4.4)

The first one is equivalent to Rc(x = 0) < 0, i.e., the therapy is high enough to kill the cancer cells in their
normal state x = 0 while cancer cells by themselves have a positive growth. The second one says that the
therapy acts faster on gene expression than on the natural birth process.

In order to find the maximum of Rc(x), we use the variable y = x2, take the derivative and set it equal to
zero

R′
c(y) = − r2

0

(1 + y)2
+

α2

(a2 + y)2
= 0 ⇐⇒ r0

1 + y
=

α

a2 + y
·

From this we obtain the condition for existence of a maximum of Rc(y)

a2r0 < α ⇐⇒ R′
c(0) > 0, (4.5)

and the following expression for the maximum point

yc =
α − a2r0

r0 − α
=

⎧⎨⎩> 0 for a2r0 < α < r0,

< 0 otherwise.
(4.6)

When yc > 0, we compute the maximum value of Rc

Rc =
(α − r0)2

1 − a2
− d. (4.7)

We can now conclude that:

– When α ≥ r0, then Rc(y) increases from Rc(0) < −d to Rc = −d; this level of therapy is strong enough and
resistance cannot occur.

– When 0 < a2(r2
0−d) ≤ α ≤ a2r0 (this interval of α is not empty for r0 ≤ 1 for instance), then Rc(y) decreases

from Rc = Rc(0) > −d to −d. Although weaker, this level of therapy prevents resistance to occur.
– When a2r0 < α < r0, then Rc(y) increases from Rc(0) < 0 to Rc and then decreases; Rc can be positive iff

(1− a2)r2
0 > d and this can happen with Rc(0) < 0 only when a2r0 < a

√
r2
0 − d. Resistance occurs therefore

if for α = a
√

r2
0 − d, then Rc > 0. An example is explicitly computed in Section 5. However, since Rc in (4.7)

is decreasing in α in the range under consideration here, the only way to avoid resistance is to increase the
dose.

5. Numerics

In this section we illustrate the analytic results obtained above by numerical simulations performed in
Matlab. For all these computations we use 4000 points on the interval [0, 1]. Moreover, we treat the case
without mutations, i.e., θH = θC = 0. The parameter ε = 10−2 is used for the initial data which we take under
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Figure 1. (Healthy cells) The plot to the left shows the level-sets of n(t, x). The dotted line
shows the unique solution x to R(x, ρ̄(t)) = 0 as a function of t. On the right, we display the
values of nH(t, x) at the end of the computation. Notice that nH(t, x) concentrates and its
maximum moves closer towards 0 for larger time.

the ‘highly concentrated form’ (3.3), (3.11) so as to obtain very localized solutions nC,H according to the theory
in [33].

We first illustrate the case of healthy cells. Figure 1 shows the time dynamics of the concentration point in
(3.1) with

r(x) :=
2

1 + 5x2
, d := 0.4

and the initial data
n0(x) := C0 exp(−(x − 0.7)2/ε),

where the constant C0 is adjusted to enforce ‖n0‖L1([0,1]) = 1. The computations were done using a implicit-
explicit finite difference scheme. It can be seen that it takes very short time to adapt to R(x̄(t), ρ̄(t)) = 0, that
n(t, x) concentrates and its maximum moves towards 0.

Next we illustrate the case when the therapy induces resistance. Figure 2 shows the time dynamics of the
concentration point in (3.14) with

r(x) :=
1

1 + x2
, d := 0.245, μ(x) :=

0.552

0.52 + x2

and initial data as before but centered at x0 = 0.5

n0(x) := C0 exp(−(x − 0.5)2/ε).

As shown in Section 4, the concentration point for large time can be computed explicitly:

xC =

√
α − a2

1 − α
=

√
2
3
≈ 0.8165.

Since we have exponential growth of the maximum of nc, after a certain time the computations break down.
In order to further follow the dynamics of the maximum point x̄(t), we use the equation on pε =

nc∫ ∞
0

nc dx
.

Results for the calculations on pε are shown in Figure 3. Figures 2 and 3 both confirm the results from theory,
i.e., r(x) − d(x) − cμC(t) − I(t) = 0 (with I(t) defined by (3.12)).
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Figure 2. (Resistance) The plot to the left shows the level-sets of nC(t, x)/
∫

nC(t, x) dx. The
smaller of the two positive solutions of r(x) − d(x)− cμC(t)− I(t) = 0 is shown as dotted line.
On the right, we plot the values of nC(t, x) at the end of the computation. Calculations are
done for the equation (3.14) on nC .

5

5 5 5

5

5
5 5

1515
15 15 1525

t

x

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

x

n

Figure 3. (Resistance ct’d) The plot to the left shows the level-sets of p. The smaller of the
two positive solutions of r(x)−d(x)−cμC(t)−I(t) = 0 is shown as dotted line. On the right, we
plot the values of p(t, x) at the end of the computation. Calculations are done for the equation
on pε.

6. A structured population model for healthy and tumor cells

under the effects of cytotoxic and cytostatic drugs

We turn to the study of the coupled dynamics of healthy and tumor cells exposed to both cytotoxic and
cytostatic drugs. Our model relies on the same structured population formalism presented in Section 2.1.
However, to allow a better qualitative agreement with biological reality, some modifications are introduced,
which make the model more difficult to handle analytically. Therefore, the behavior of its solutions is studied
only through numerical simulations, whose results are discussed at the end of this section.
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As in Section 2.1, the number densities of healthy and cancer cells with resistant gene expression level
0 ≤ x < ∞ at time t ≥ 0 are described by functions nH(t, x) ≥ 0 and nC(t, x) ≥ 0. The selection/mutation
dynamics of cells under the effects of cytotoxic and cytostatic drugs are given by the system below:

∂

∂t
nH(x, t) =

mutations and renewal︷ ︸︸ ︷
θH

1 + αHc2(t)

(∫
rH(y)M(y, x)nH(t, y)dy − rH(x)nH(x, t)

)
+

(
rH(x)

1 + αHc2(t)
− dH(x)IH(t)

)
nH(x, t)︸ ︷︷ ︸

growth with cytostatic therapies and death

− c1(t)μH(x)nH(x, t)︸ ︷︷ ︸
effect of cytotoxic therapies

, (6.1)

∂

∂t
nC(x, t) =

θC

1 + αCc2(t)

(∫
rC(y)M(y, x)nC(t, y)dy − rC(x)nC(x, t)

)
+

(
rC(x)

1 + αCc2(t)
− dC(x)IC (t)

)
nC(x, t) − c1(t)μC(x)nC(x, t), (6.2)

where
IH(t) := aHHρH(t) + aHCρC(t), IC(t) := aCHρH(t) + aCCρC(t). (6.3)

Apart from integrals IH and IC , which have a different meaning with respect to the integral I considered within
the previous sections, the same notations of Section 2.1 are used in the above equations. In addition:

– Kernel M(y, x) denotes the probability that a mutation of a healthy/cancer cell with gene expression y leads
to a daughter cell with level x.

– Functions rH(x) and rC(x) stand, respectively, for the proliferation rate of healthy and cancer cells with gene
expression x. Factors

1
1 + αHc2(t)

and
1

1 + αCc2(t)

mimic the effects of cytostatic drugs, whose concentration at time t is described by function c2(t). In fact,
as previously noted, such therapies act by slowing down cell proliferation, rather than by killing cells. The
average sensitivities of healthy and cancer cells to these drugs are modeled by parameters αH , αC ∈ R

+.
– Function dH(x) represents the death rate of healthy cells due both to apoptosis and deprivation of resources

(e.g., oxygen and glucose) by cancer cells. Analogously, function dC(x) models the death rate of cancer
cells because of the competition for space and resources with the other cells. Two main differences are here
introduced with respect to the model presented in Section 2.1. On the one hand, we assume the growth of
cancer cells to be hampered by the competition for space and resources among themselves and healthy cells
as well. As a result, we multiply dC(x) by IC(t). On the other hand, we consider apoptosis and competition
phenomena involving normal cells as mediated by interactions with the surrounding cells. Therefore, instead
of multiplying function rH(x) by 1

(1+	(t))β as in (2.1), we multiply dH(x) by IH(t). It is worth noticing that
both modeling strategies mimic the same effects of net proliferation and death.

– Function c1(t) denotes the concentration, at time t, of cytotoxic agents, which are assumed to kill both healthy
and cancer cells with gene expression x at rates μH(x) and μC(x), respectively.

– Coefficients aHC and aHH stand, respectively, for the average interaction rates between healthy and cancer
cells or among healthy cells themselves. Analogous considerations hold for aCH and aCC .

As in Section 2.1, model (6.1), (6.2) can be recast in the equivalent form given hereafter, in order to highlight
the role played by the net growth rates of healthy and cancer cells, which are described by functionals



ADAPTIVE EVOLUTION AND RESISTANCE TO ANTI-CANCER THERAPIES 393

RH(IH , c1, c2, x) and RC(IC , c1, c2, x):

∂

∂t
nH(x, t) = RH(IH(t), c1(t), c2(t), x)nH(x, t) +

θH

1 + αHc2(t)

∫
rH(y)M(y, x)nH(t, y)dy,

∂

∂t
nC(x, t) = RC(IC(t), c1(t), c2(t), x)nC(x, t) +

θC

1 + αCc2(t)

∫
rC(y)M(y, x)nC(t, y)dy,

with

RH(IH(t), c1(t), c2(t), x) :=
rH(x)(1 − θM )
1 + αHc2(t)

− dH(x)IH(t) − μH(x)c1(t),

RC(IC(t), c1(t), c2(t), x) :=
rC(x)(1 − θM )
1 + αCc2(t)

− dC(x)IC (t) − μC(x)c1(t).

The following considerations and hypotheses are assumed to hold:

– Parameters θH,C and functions μH,C satisfy the assumptions of Section 2.1.
– We consider intra-population interactions as occurring at a higher rate than inter-population ones. As a

consequence, the interaction rates are assumed to be real numbers such that

aHH , aCC > 0, aHC , aCH ≥ 0, aHH > aHC , aCC > aCH . (6.4)

– In analogy with Section 2.1, with the aim of translating in mathematical terms the idea that producing
resistance genes implies resource allocation both for healthy and cancer cells (even if this is debatable), we
assume functions rH and rC to be decreasing

rH,C(·) > 0, r′(·)H,C < 0. (6.5)

In order to mimic the fact that mutations conferring resistance to therapies may also provide cells with
stronger competitive abilities, functions dH and dC are assumed to be decreasing

dH,C(·) > 0, d′(·)H,C < 0. (6.6)

– Since we assume that cytostatic agents are designed to be more effective against cancer cells rather against
healthy cells, we make the additional assumption

αH < αC . (6.7)

We analyse the model with these new ingredients through numerical simulations illustrating how the outputs
can be influenced by different concentrations of cytotoxic and cytostatic agents. From a biological perspective,
this means using the present model as an in silico laboratory to highlight some mechanisms that may play a
key role in the development of cancer resistance to therapies, with the aim of providing support to the design of
optimal therapeutic strategies. The following contents are organized into four subsections. Section 6.1 presents
those assumptions that define the general setup for numerical simulations. Sections 6.2 and 6.3 are devoted to
study the separate effects of cytotoxic and cytostatic drugs on the dynamics of healthy and cancer cells. Finally,
Section 6.4 focuses on the combined action of these two classes of anti-cancer agents, looking for the existence
of suitable doses allowing the design of optimal therapeutic strategies.

6.1. Setup for numerical simulations

Numerical simulations are performed as in Section 5 with 2000 points on the interval [0, 1]. Interval [0, T ]
with T = 2000dt is selected as the time domain, where the unit time dt is chosen equal to 0.1.
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We choose the initial conditions

nH(t = 0, x) = nC(t = 0, x) = n0(x) := C0 exp(−(x − 0.5)2/ε), (6.8)

where C0 is a positive real constant such that

�H(t = 0) + �C(t = 0) ≈ 1.

Parameter ε is set equal to 0.01 to mimic a biological scenario where most of the cells are characterized by the
resistant gene expression level corresponding to x = 0.5 at the beginning of observations.

Assumptions and definitions given hereafter are used for all simulations:

M(y, x) := CM exp(−(y − x)2/(0.01)2), CM

∫ 1

0

exp(−(y − x)2/(0.01)2)dx = 1, ∀y ∈ [0, 1],

θH = θC = θ := 0.1, rH(x) :=
1.5

1 + x2
, rC(x) :=

3
1 + x2

, αH := 0.01, αC := 1,

aHH = aCC = a := 1, aHC := 0.07 aCH := 0.01,

dH(x) := 0.5(1 − 0.1x), dC(x) := 0.5(1 − 0.3x),

μH(x) :=
0.2

(0.7)2 + x2
, μC(x) :=

0.4
(0.7)2 + x2

·

Functions c1(t) and c2(t) are assumed to be constant, i.e.

c1(t) := c1 ∈ R
+, c2(t) := c2 ∈ R

+.

The values of parameters c1 and c2 are chosen case by case according to our aim in each subsection.

6.2. Effects of cytotoxic drugs

First, we study the effects of cytotoxic agents only on the dynamics of healthy and cancer cells. With this
aim, we run simulations for different values of parameter c1 with c2 = 0. The results obtained are summarized
by Figure 4, which depicts a scenario that is in good agreement with clinical observations.

In the absence of therapeutic agents (i.e., when c1 = c2 = 0), we observe, at the end of the simulations, the
selection for those cells that are characterized by a low expression level of the resistant genes and thus, due to
assumption (6.5), by a strong proliferative potential. On the other hand, as long as c1 increases, the number
of cancer cells inside the sample at the end of the observation window becomes smaller but, due to the typical
side-effects of cytotoxic agents, even the number of healthy cells decreases. Furthermore, Figure 4 highlights
how cytotoxic agents alone favor the selection of resistant clones. In fact, the average resistant gene expression
level of cells tends to increase with the concentrations of therapeutic agents.

6.3. Effects of cytostatic drugs

Focusing on the action of cytostatic agents alone, we run simulations increasing parameter c2 and keeping
c1 = 0. The results presented in Figure 5 highlight the capability of the present model to mimic the effects
typically induced by cytostatic agents on cells dynamics. In fact, under the considered values of c2, the dynamics
of healthy cells is unaltered while the proliferation of cancer cells is reduced as long as the drug concentration
increases. Furthermore, it should be noted that increasing values of c2 tend to slow down the dynamics of
cancer cells, i.e., for larger values of c2, function nC(x, t) at the end of simulations stays closer to the initial
data nC(t = 0, x).
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Figure 4. (Cytotoxic drugs only) Trends of nC(x, t) (left) and nH(x, t) (right) at t = 2000 for
c1 = 0 (dashed-dotted lines), c1 = 1.75 (dashed lines) and c1 = 3.5 (solid lines). In all cases,
parameter c2 is set equal to zero. As parameter c1 increases, functions nC(t = 2000, x) and
nH(t = 2000, x) tend to be highly concentrated around some increasing values of x and their
maximum values become smaller; this indicates higher resistance with higher doses of drug.
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Figure 5. (Cytostatic drugs only) Trends of nC(x, t) (left) and nH(x, t) (right) at t = 2000
for c2 = 1 (dashed-dotted lines), c2 = 3 (dashed lines) and c2 = 7 (solid lines). In all cases,
parameter c1 is set equal to zero. Increasing values of parameter c2 lead the qualitative behavior
of function nC(t = 2000, x) to become closer to the one of nC(t = 0, x). On the other hand, the
trend of function nH(t = 2000, x) remains basically unaltered.
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Figure 6. (Cytotoxic and cytostatic drugs) Dynamics of nC(x, t) for c1 = c2 = 0 (top-left),
c1 = c2 = 1 (top-right), c1 = c2 = 1.5 (bottom-left) and c1 = c2 = 2 (bottom-right). As long as
parameters c1 and c2 increase, the maximum value of nC(t = 2000, x) becomes smaller so that,
under the choice c1 = c2 = 2, function nC(x, t) tends to zero across time.

6.4. Combined effects of cytotoxic and cytostatic drugs

Finally, we are interested in analyzing the effects on cell dynamics caused by the simultaneous action of
cytotoxic and cytostatic drugs, and perform simulations with various values of both c1 and c2. The obtained
results are summarized by Figures 6 and 7. They show that there are values of c1 and c2 leading to extinction
of the cancer cells while keeping alive about one half of the healthy cells at the end of computations. This
is consistent with experimental observations suggesting that different therapies in combination can avoid the
emergence of resistance and minimize side-effects on healthy cells. Furthermore, it should be noted that such
values of c1 and c2 are smaller than the highest ones considered in previous simulations, which do not even allow
a complete eradication of cancer cells (see Figs. 4 and 5). Therefore, these results also suggest that optimized
anti-cancer treatments can be designed making use of proper combinations between cytotoxic and cytostatic
agents, thus supporting the idea that looking for protocols based on treatment optimization can be a more
effective strategy for fighting cancer rather than only using high drug doses.

7. Conclusion and perspectives

Based on a model adapted from ecology, we have presented a mathematical analysis of resistance mechanisms
to drugs under the assumption that resistance is induced by adaptation to drug environmental pressures. We
have used physiologically structured equations where the variable represents the gene expression levels. Theories
developed in other contexts of population biology and Darwinian evolution underlie our analysis and the finding
that therapy can trigger emergence of a resistance gene and result in disease relapse.

Importantly, our results suggest the feasibility of optimized anti-cancer treatments, based on specific combi-
nations of cytotoxic and cytostatic drugs (see Sect. 6). On the other hand, if only cytotoxic drugs are available,
then (not surprisingly) the optimal therapy is always to administer the maximal tolerated dose (see Sect. 4).
This scenario is somewhat different from that studied in [22], where the resistant and susceptible populations are
in competition, a polymorphism that cannot occur in our model because it contains only a single environmental
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Figure 7. (Cytotoxic and cytostatic drugs) Dynamics of nH(x, t) for c1 = c2 = 0 (top-left),
c1 = c2 = 1 (top-right), c1 = c2 = 1.5 (bottom-left) and c1 = c2 = 2 (bottom-right). As long
as parameters c1 and c2 increase, the maximum value of nH(t = 2000, x) becomes smaller but
about one half of the healthy cells is still alive at the end of computations.

variable (Gause competitive exclusion principle). It is worth noting that we have analyzed the possibility for
optimization only in the restrictive case of a constant level of therapy and a possible future extension would be
to modulate dose with time [18].

The model is very simple at this stage and several directions for improvements are possible. As mentioned
above, because there is only a single environmental unknown (the drug pressure and only one trait depending
on it), polymorphism is not possible and thus a more realistic description of the micro-environment of the cell
populations is needed (see [10] and the references therein). Another research direction would be to include several
qualitatively different drug resistance mechanisms, together with realistic, targeted, and clinically acceptable
multi-drug therapies.
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[49] D.C. Zhou, S. Ramond, F. Viguié, A.-M. Faussat, R. Zittoun and J.-P. Marie, Sequential emergence of mrp and mdr-1 gene
overexpression as well as mdr1-gene translocation in homoharringtonine selected K562 human leukemia cell lines. Int. J. Cancer
65 (1996) 365–371.



400 A. LORZ ET AL.

Appendix A. Matlab code for Figure 1

% solves equation
% \partial_t n = [2./((1.+5.*x.^2).*(1 + rho))-0.4]n
%------------------------------------------------------------
%------------------------------------------------------------
clear all;
close all;
m=4000; %number of points for space grid

eps=.01; %epsilon
rhoin=1.; %initial rho

dx=1/m; x = (0:m)*dx; %space grid (0,1/m,2/m,...,1)
dt=25.*dx^2/eps; %time step

dtsave = dt; %initialize array to save time steps

tfinal = 15000 * dt; %final time

weights = ones(numel(x)); %weights for trapez rule integration
weights(1) = 0.5;
weights(end) = 0.5;

nd=exp(-(x-.7).^2/eps); %initial data
nd=rhoin*nd/(dx*sum(nd)); %initial data normalized to have mass rhoin
ndd=nd;R=x; %initialize ndd and R
count = 0;

temps=0;
savend(1,:)=x(1:10:m); %initialize arrary for saving nd at every 10th point in space

while temps < tfinal
count = count +1
dt = min(dt, tfinal -temps);
rho = dx * trapz(nd)
savend(count,:)=nd(1:10:m);
arrayt(count) = temps;
arrayR(count) = ((4-rho)/(5+5*rho))^(1/2);

R=2./((1.+5.*x.^2).*(1 + rho))-0.4;

Rp=max(0,R)/eps; Rm=min(0,R)/eps; %positive and negative part of R

ndd = ((1+dt*Rp).*nd )./(1-dt*Rm); %calculate n(t+dt) from n(t)

nd=ndd;
temps = temps + dt;
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end

%figure
[X,Y] = meshgrid(arrayt,x(1:10:m));

[C,h]=contour(X,Y,savend’,[4 10 30],’LineColor’,’black’);
text_handle = clabel(C,h);
hold on;
plot(arrayt,arrayR,’:k’);
xlabel(’t’)
ylabel(’x’)

figure;
plot(x,nd,’k’);
xlabel(’x’)
ylabel(’n’)

Appendix B. Matlab code for Figure 2

% solves equation
% \partial_t n = [1./(1.+x.^2)-dea-(al^2)./(aa^2+x.^2)]n
%-------------------------------------------------------------
% ------------------------------------------------------------
clear all;
close all;
m=4000; %number of points for space grid

eps=.01; %epsilon
rhoin=1.; %initial rho

dx=1/m; x = (0:m)*dx; %space grid (0,1/m,2/m,...,1)

dt=4500*dx^2/eps; %time step

dtsave = dt; %initialize array to save time steps

tfinal = 1000 * dt; %final time

weights = ones(numel(x)); %weights for trapez rule integration
weights(1) = 0.5;
weights(end) = 0.5;

nd=exp(-(x-.5).^2/eps); %initial data
nd=rhoin*nd/(dx*sum(nd)); %initial data normalized to have mass rhoin

ndd=nd;R=x; %initialize ndd and R
nd0=nd;
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count = 0;
temps=0;
savendrenorm(1,:)=x(1:10:m); %initialize arrary for saving nd at every 10th point in space
% saveR(1,:)=x(1:10:m); %initialize arrary for saving R at every 10th point in space
al=.55
aa=.5
dea=.245

R=1./(1.+x.^2)-dea-(al^2)./(aa^2+x.^2);

while temps < tfinal
count = count +1

nd = exp(R*temps/eps).*nd0; %exponential formula to solve the ODE

pp = nd/(dx * trapz(nd));
Ik= dx * trapz(pp.*R);

dt = min(dt, tfinal -temps);
rho = dx * trapz(nd)

savendrenorm(count,:)=nd(1:10:m)/(dx * trapz(nd));
arrayt(count) = temps;

%calculating explicitly the position of the concentration point
aq=(Ik+dea)
bq=-1+al^2+(Ik+dea)*(1+aa^2)
cq=-aa^2+al^2+(Ik+dea)*aa^2

xq2=(-bq-(bq^2-4*aq*cq)^(1/2))/(2*aq)
xq = (xq2)^(1/2)
arrayR(count) = xq;

temps = temps + dt;

end

figure
[X,Y] = meshgrid(arrayt,x(1:10:m));

[C,h]=contour(X,Y,savendrenorm’,[2 8 16],’LineColor’,’black’);
text_handle = clabel(C,h);
hold on;
plot(arrayt,arrayR,’:k’);
xlabel(’t’)
ylabel(’x’)

figure;
plot(x,nd,’k’);
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xlabel(’x’)
ylabel(’n’)
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