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A HLLC SCHEME FOR NONCONSERVATIVE HYPERBOLIC PROBLEMS.
APPLICATION TO TURBIDITY CURRENTS

WITH SEDIMENT TRANSPORT
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Abstract. The goal of this paper is to obtain a well-balanced, stable, fast, and robust HLLC-type
approximate Riemann solver for a hyperbolic nonconservative PDE system arising in a turbidity current
model. The main difficulties come from the nonconservative nature of the system. A general strategy to
derive simple approximate Riemann solvers for nonconservative systems is introduced, which is applied
to the turbidity current model to obtain two different HLLC solvers. Some results concerning the non-
negativity preserving property of the corresponding numerical methods are presented. The numerical
results provided by the two HLLC solvers are compared between them and also with those obtained
with a Roe-type method in a number of 1d and 2d test problems. This comparison shows that, while
the quality of the numerical solutions is comparable, the computational cost of the HLLC solvers is
lower, as only some partial information of the eigenstructure of the matrix system is needed.
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1. Introduction

The goal of this paper is to obtain a well-balanced, stable, fast, and robust approximate Riemann solver for
the hyperbolic PDE system arising in a turbidity current model studied in [23]. The system consists of (a) the
depth-averaged mass and momentum equation for the dilute turbidity current which are similar to the shallow
water model, (b) a depth-averaged equation for every species of suspended sediment which is an advection
equation with a source term modeling erosion and deposition, and (c) one more equation that models the
bedload transport which is based on an empirical solid transport discharge formula. If the number of sediment
species in the turbidity current is equal to 0 and the deposition and erosion terms are neglected, the classical
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Saint-Venant-Exner models for the bedload transport are recovered (see [11]). And if the bedload transport is
also neglected, the standard shallow water model with geometrical source term is recovered.

In [23] a generalized Roe method was used to discretize this PDE system. As it is well known, a Roe method is
based on a linear approximate Riemann solver which is complete: the approximate Riemann solution is composed
by a number of simple waves that is equal to the number N of unknowns of the system. To implement such a
method, the eigenstructure of the Roe linearisation has to be explicitly known or numerically computed at every
inter-cell at every time step, what may be expensive from the computational point of view. In this article we look
for numerical methods based on incomplete Riemann solvers (i.e. the approximate solutions are composed by
less than N simple waves) whose accuracy is comparable with that of a Roe method but whose computational
cost is lower, as only some information about the eigenstructure of the intermediate matrices is required.

A classical example of approximate Riemann solver is the HLL one, introduced by Harten, Lax, and van Leer
for systems of balance laws in [16]: the approximate Riemann solutions consist of two simple waves linking three
constant states. The HLL solver is at the basis of many efficient and robust Godunov-type methods. Nevertheless,
for systems of three or more equations, it becomes an incomplete Riemann solver that may be insufficient to
capture some relevant physical features of the exact solutions related to the intermediate characteristic fields,
such as contact discontinuities, shear waves, etc. The HLLC Riemann solver (where C stands for Contact)
proposed by Toro et al. in [31] introduces one or more intermediate waves to the approximate Riemann solutions
in order to capture better some of these features.

The strategy followed here will be to derive an HLLC-type solver for the PDE system under study. The main
difficulties come from the nonconservative nature of the system: while in the context of systems of conservation
laws the Riemann invariants and the Rankine-Hugoniot conditions provide all the necessary information to derive
consistent approximate Riemann solvers, in the presence of nonconservative products the jump conditions can
be defined in more than a way. To overcome this difficulty, the definition of approximate Riemann solver for
nonconservative systems introduced in [28] will be used. This definition, that generalizes the usual one for
conservative systems, is based on the theory developed by Dal Maso, LeFloch and Murat in [10] that allows
one to set the jump conditions (and thus the concept of weak solution) in terms of a given family of paths.
Unfortunately, the speed of propagation of the discontinuities explicitly depends on the chosen family of paths,
so that a good choice of paths is crucial to capture the physical meaningful weak solutions. A possible way
to compute the correct paths could be based on the vanishing viscosity method: a parabolic regularization
is considered with a small viscosity coefficient and the corresponding viscous profiles are then computed. If
two states can be linked by an admissible discontinuity, the path connecting them should be the corresponding
viscous profiles: see [29] and the references therein for details. An important difference between conservative and
nonconservative system is that, in the nonconservative case, the jump conditions obtained from the vanishing
viscosity method explicitly depend on the expression of the viscous term. Therefore, the expression of the
vanishing viscous terms should be taken from the physics of the problem. Unfortunately, in the PDE system
under study it is not clear what is the correct viscous regularization of the system to be considered: while
the choice of the viscous term for the momentum equation of the dilute current is known, there is not even
a momentum equation for the sediment layer. Due to this difficulty, here we consider the family of straight
segments: this is a sensible choice as it is expected to provide third order approximations of the physical jump
conditions (in a sense to be specified) and it also makes easier the design of well-balanced methods. Let us also
remark that every finite difference type introduced previously for models based on the same approach of the
bedload transport is based on an arbitrary choice of the meaning of the noncoservative terms, although this
choice may not be explicitly stated.

Another important difficulty due to the nonconservative nature of the system is related to the convergence
of the numerical solutions: due to the effects of the numerical viscosity, the formal consistency of the numerical
method with a particular definition of the jump conditions does not imply that the discontinuities appearing at
the limits of the numerical approximations are in good agreement with these conditions. This difficulty, that also
appears when a conservative system is discretized with a nonconservative method (see [17]), has been studied
in [5]. Another example of this phenomenon has been shown in [1]. Nevertheless, our experience shows that the
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convergence errors is small in this particular case: this fact will be illustrated in Section 5. In any case, taking
into account the simple approach of the bedload transport considered here, the modelization errors are very
likely to be bigger than those related to the definition of weak solutions or the convergence errors.

Let us finally remark that, despite the strong simplification hypotheses used in the derivation of the model
and the lack of some good mathematical properties of the PDE system obtained (there is neither a momentum
equation for the sediment layer nor an entropy pair) the approach of the bedload transport by means of an
empirical solid transport discharge formula is widely spread for practical purposes: [11,15,22,27,33]. The range
of validity of the models based on this approach has to be analysed by comparison between the numerical
solutions and the experimental measurements. We emphasize that the goal of this article is eminently practical:
our purpose is to introduce a numerical method with good properties of well-balancing, stability, and low
computational cost for the turbidity current model considered. Moreover, as Saint-Venant-Exner and shallow
water models are particular cases of the studied model, the numerical methods obtained here can be also applied
to them. Let us also mention that, in the latter case, the difficulties related to the definition of weak solutions
and the convergence difficulties mentioned above do not appear, provided that the depth function is smooth
enough: see [26].

The article is organized as follows: in Section 2 we present the general equations of the turbidity current model.
Next, in Section 3 we recall the definition of approximate Riemann solver introduced in [28] which is illustrated
by deriving a general expression of the HLL solver for nonconservative systems. While in the case of the HLL it
is possible to write the approximate Riemann solver in a very general way, the HLLC solvers strongly depends
on the structure of the particular PDE system to be solved. In Section 4 we introduce the general strategy
to derive them, which is then applied to the turbidity current model to obtain two different HLLC solvers:
the essentially three waves HLLC solver (E3W-HLLC) and the four waves HLLC solver (4W-HLLC). The
non-negativity-preserving properties of the corresponding numerical schemes as well as their relationship with
the Suliciu relaxation method for the shallow water system introduced in [3] and the HLLC solver introduced
in [31] will be discussed. Finally, in Section 5 the numerical solutions obtained with the two HLLC solvers are
compared between them and also with those obtained with the Roe method introduced in [23] in some 1d and
2d numerical tests. A numerical study of the mentioned convergence difficulty is also presented. Finally some
conclusions are drawn.

2. Turbidity current model

When a river that flows into the sea carries a high concentration of suspended sediment, to the extent that
the density of the river is greater than that of the receiving ambient water, the river plunges into the ocean
creating what is called a turbidity current or hyperpycnal plume. This plume can travel significant distances
until it loses its identity by entraining surrounding ambient water and dropping its sediment load. In [23] a new
model for the simulation of turbidity currents was introduced. This model can be described as follows: let us
consider ns ≥ 1 species of sediments with constant density ρj , for j = 1, . . . , ns transported by a river with
freshwater of constant density ρ0. The river flows in an ambient fluid (in general the sea) of density ρw.

The governing equations for the dilute turbidity current are as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂th+ ∇x · (h�u) = φη + φb,

∂t(h�u) + ∇x · (h�u⊗ �u) + ∇x

(
g (R0 +Rc)

h2

2

)
= −g (R0 +Rc)h∇x(zb −H) + �uφη +

�u

2
φb,

∂t(hcj) + ∇x · (hcj�u) = φj
b, j = 1, . . . , ns,

∂tzb + ∇xqb = −ξφb,

(2.1)

where h is the thickness of the plume; �u is the depth-averaged horizontal velocity; cj , j = 1, . . . , ns represents
the vertically averaged volume concentration of the jth sediment species; c =

∑ns

i=1 cj, is the total sediment
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Figure 1. Sketch of a turbidity current.

concentration; and

Rj =
ρj − ρ0

ρ0
, j = 1, . . . , ns; R0 =

ρ0 − ρw

ρ0
; and Rc =

ns∑
j=1

Rjcj . (2.2)

We will denote by �q = h�u the discharge.

Remark 2.1. If the ambient fluid is the sea the approximation ρ0 ≈ ρw may be considered and thus R0 = 0
and, if the ambient fluid is the air, the approximation ρw ≈ 0 may be used and thus R0 = 1.

H is the depth of the non-erodible bottom measured from a reference level (for instance, the undisturbed
free surface of the ambient water). zb is the thickness of the sediment layer which may be modified by the fluid
by erosion, deposition or bedload transport. zb − H is thus the interface between the bottom and the fluid
(see Fig. 1). Finally, qb = qb(h, �u, c, zb) represents the solid transport discharge, which is usually given by an
empirical formula. Many different expressions of this formula have been proposed in the literature. The formula
proposed by Grass in [15] is among the simpler ones:

qb(�u) = ξA|�u|m−1�u, (2.3)

where A is the constant of interaction between the fluid and the sediment layer, ξ is related to the porosity
p ∈ [0, 1) by ξ = 1

1−p , and m is a parameter which is usually set to m = 3. We refer to [7,23] and the references
therein for details about some other possible expressions of qb.

Fowler proposed in [13] (see also [24]) a new expression of qb that depends not only on the flow variables, as
it is the case in (2.3) but also on the thickness of the sediment layer. This dependence is in agreement with the
physics of the problem: if zb = 0, the solid transport discharge has to be 0, which is not the case for the Grass
model. Therefore, we will consider here the following modified Grass solid formula:

qb = zbq̃b(h, �u, c) (2.4)

with
q̃b(h, u, c) = ξ

A

z̄
|�u|m−1�u, (2.5)

where, z̄ represents the mean value of the thickness of the sediment layer. Nevertheless, the numerical methods
obtained in this article are easily adaptable to any of the classical formulae for q̃b.
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The source terms φη and φj
b represent respectively the amount of sea water entrained and mixed by turbulence

to the plume, and the deposition/erosion flux of the jth sediment species. These source terms are given by
different empirical laws which depend on the physical properties of the sediment. In general, water entrainment
is described by

φη = Ew|�u|, (2.6)

where Ew depends on the Richardson number Ri =
Rcgh

|�u|2 .

The sediment flux at the bed of the jth species is determined from the rates of deposition (F j
d ) and

erosion (F j
e ),

φb =
ns∑

j=1

φj
b, φj

b = F j
e − F j

d , F j
d = vsjcbj , F j

e = vsjpjEsj , (2.7)

where vsj is the settling velocity; cbj is the near bed concentration of sediment which may be described in terms
of cj ; pj is the volumetric concentration of sediment j in the bed; and Esj depends on the velocity �u. Let us
remark that there are some discrepancies in the mathematical expression of the source terms φη and φj

b. The
expressions proposed in [18, 20, 23, 30] are among the most used, but some variants may be found in [2, 4, 19].
We refer to these references for further details.

Notice that system (2.1) is invariant under rotation, what allows one to easily derive an approximate Riemann
solver for the 2d system from a 1d one, as it was done in [12]. Therefore, for the sake of simplicity and without
loss of generality, we shall only consider the 1d case with one sediment species whose concentration is denoted
by c. We also consider R0 = 1 (see Rem. 2.1). The PDE system reduces then to:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂th+ ∂x(hu) = φη + φb,

∂t(hu) + ∂x

(
hu2 + g (1 +Rc)

h2

2

)
= −g (1 +Rc)h∂x(zb −H) + uφη +

u

2
φb,

∂t(hc) + ∂x(hu c) = φb,

∂tzb + ∂xqb = −ξφb,

(2.8)

where R = (ρ1 − ρ0)/ρ0. We will denote by q = hu the discharge.
This system can be rewritten as follows:

∂tW + ∂xF (W ) +B(W )∂xW − S(W )∂xH = G(W ) (2.9)

where W = (h, uh, hc, zb) and

F (W ) =

⎛⎜⎝ hu
hu2 + 1

2g(1 +Rc)h2

huc
qb

⎞⎟⎠ , (2.10)

B(W ) =

⎛⎜⎝0 0 0 0
0 0 0 g(1 +Rc)h
0 0 0 0
0 0 0 0

⎞⎟⎠ , S(W ) =

⎛⎜⎝ 0
g(1 +Rc)h

0
0

⎞⎟⎠ , (2.11)

and

G(W ) =

⎛⎜⎜⎜⎜⎝
φη + φb

uφη +
u

2
φb

φb

−ξφb

⎞⎟⎟⎟⎟⎠ . (2.12)
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Finally, system (2.9) can also be rewritten in a more compact form as follows:

∂t

(
W
H

)
+
(A(W ) −S(W )

0 0

)
∂x

(
W
H

)
=
(
G(W )

0

)
, (2.13)

with A(W ) = J(W ) + B(W ), where J(W ) = ∂WF (W ) represents the Jacobian matrix of the flux function
F (W ).

Although (2.8) is not strictly hyperbolic, in [23] it was shown that, under some hypotheses on the solid flux
qb, it is hyperbolic, i.e. one can always find a complete set of eigenvectors. Moreover, it can be shown that the
eigenvalues of the system are u (whose multiplicity is, in the general case, equal to ns), two external eigenvalues
SL, SR, that may be approached by u −√g(1 +Rc)h, u +

√
g(1 +Rc)h, and a smaller internal eigenvalue

SM ≈ 0. The eigenvalue SM is usually associated to the propagation of waves at the interface bed-plume, while
SL and SR are identified with the velocity of waves at the interface plume-ambient water. Nevertheless, this is
a rather simplified interpretation which is only valid for weak fluid-bed interactions and small Froude number.
In general, surface waves move in tandem with the bed waves, so that bed and surface waves interact strongly
and SL, SR describe the propagation of both surface waves and bed waves and each of the celerities can not be
identified solely with a surface wave or solely with a bed wave (see [9, 21, 25]).

As in [23], a splitting technique for erosion/deposition source terms will be used to approximate the solutions
of system (2.8). At every time stage, first a finite volume method is applied to the homogeneous system:

∂t

(
W
H

)
+
(A(W ) −S(W )

0 0

)
∂x

(
W
H

)
= 0, (2.14)

and then the obtained cell values are updated by solving the ODE:

∂tW = G(W ). (2.15)

As the numerical treatment of the second stage is the same than the one proposed in [23], we focus on the
numerical solution of (2.14). For the sake of simplicity, we also consider H = const. so that (2.14) may be
rewritten in the form

∂tW + A(W )∂xW = 0. (2.16)

The numerical methods obtained in this article are easily adaptable to the general case in which H is not
constant. Further comments on this topic are included below.

As it is usual for shallow water models, the numerical scheme will be required to be exactly well-balanced for
the water-at-rest solutions of (2.16). If the solid transport discharge formula is such that u = 0 implies qb = 0
(what is the case for the Grass formula (2.3)), these stationary solutions are given by:

u = 0, c = const., h+ zb = const. (2.17)

3. Approximate Riemann solvers

Let us consider a general nonconservative system

∂tW + A(W )∂xW = 0, x ∈ R, t > 0, (3.1)

where W (x, t) belongs to Ω, an open convex subset of R
N , and W ∈ Ω �→ A(W ) ∈ MN(R) is a smooth locally

bounded map. We suppose that system (3.1) is strictly hyperbolic, that is, for each W ∈ Ω matrix A(W )
has N real distinct eigenvalues λ1(W ) < . . . < λN (W ), with associated eigenvectors R1(W ), . . . , RN (W ). We
also suppose that for each i = 1, . . . , N , the characteristic field Ri(W ) is either genuinely nonlinear or linearly
degenerate.
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In [28] a generalization of the definition of approximate Riemann solvers for nonconservative system was
introduced. This definition is based on the choice of a family of paths, i.e. a family of Lipschitz continuous
paths, Φ(s;WL,WR), s ∈ [0, 1], which must satisfy certain regularity and compatibility conditions, and in
particular

Φ(0;WL,WR) = WL, Φ(1;WL,WR) = WR, ∀WL,WR ∈ Ω, (3.2)

and
Φ(s;W,W ) = W, ∀s ∈ [0, 1],W ∈ Ω. (3.3)

We only consider here the particular case of simple solvers:

Definition 3.1. Let Φ be a family of paths in Ω. Let us suppose that, for every pair of states WL and WR ∈ Ω,
a finite number m ≥ 1 of speeds

σ0 = −∞ < σ1 < . . . < σm < σm+1 = +∞, (3.4)

and m− 1 intermediate states
W0 = WL,W1, . . . ,Wm−1,Wm = WR, (3.5)

are chosen in a continuous manner. The function Ṽ : R ×Ω × Ω �→ Ω given by

Ṽ (v,WL,WR) = Wj if σj < v < σj+1, (3.6)

is said to be a Φ-approximate Riemann solver for (3.1) if it satisfies

m−1∑
j=0

σj+1(Wj+1 −Wj) =
∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds. (3.7)

Any Φ-approximate Riemann Solver for (3.1) leads to a numerical method which is is path-conservative in
the sense introduced in [28]:

Wn+1
i = Wn

i − Δt

Δx
(D+(Wn

i−1,W
n
i ) +D−(Wn

i ,W
n
i+1)), (3.8)

where

D−(WL,WR) = −
∫ 0

−∞

(
Ṽ (v;WL,WR) −WL

)
dv, (3.9)

D+(WL,WR) = −
∫ ∞

0

(
Ṽ (v;WL,WR) −WR

)
dv, (3.10)

or, equivalently,

D−(WL,WR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds if σm < 0,

∑
σj+1<0

σj+1(Wj+1 −Wj) if σ1 < 0 < σm,

0 if σ1 > 0.

(3.11)
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0

LS
SR

x

W WL R

t

W*

Figure 2. HLL solver.

D+(WL,WR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if σm < 0,∑
σj+1>0

σj+1(Wj+1 −Wj) if σ1 < 0 < σm,

∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds if σ1 > 0.

(3.12)

The easiest example of Φ-simple Riemann solver is obtained if m = 2. In this case, the approximate Riemann
solution consists of two waves of speed σ1 = SL, σ2 = SR linking three constant states WL, W ∗, WR (see Fig. 2):

Ṽ HLL (v;WL,WR) =

⎧⎨⎩WL if v ≤ SL,
W ∗ if SL ≤ v ≤ SR,
WR if v ≥ SR.

(3.13)

The consistency condition (3.7), that reduces in this case to:

SL(W ∗ −WL) + SR(WR −W ∗) =
∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds,

allows us to determines the intermediate state:

W ∗ =
SRWR − SLWL −

∫ 1

0

A(Φ(s;WL,WR))∂sΦ(s;WL,WR)ds

SR − SL
· (3.14)

The corresponding numerical scheme is given by (3.8), (3.11), (3.12) with m = 2, σ1 = SL, σ2 = SR.
This is a natural extension of the HLL solver to nonconservative systems: if the system is conservative, the

standard HLL solver is recovered regardless of the chosen family of paths. In the nonconservative case, different
choices of the family of paths lead to different HLL solvers. This fact is related to the non-uniqueness of definition
of weak solution for nonconservative system: according to the theory developed by Dal Maso et al. in [10] every
choice of family of paths lead to a possible definition of weak solution, whose corresponding jump conditions
are the following:

λ[W ] =
∫ 1

0

A(Φ(s;W−,W+))
∂Φ

∂s
(s;W−,W+) ds, (3.15)
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where λ is the speed of propagation of the discontinuity and [W ] = W+ −W−. Therefore, Definition 3.1 is
formally consistent with the definition of weak solution associated to the family Φ.

As it was mentioned in the Introduction, the correct choice of the family of paths should be related to the
viscous profile. But in most cases, as it happens with the turbidity current introduced in the previous Section, it
is not even clear what is the correct parabolic regularization of the system. When there are no clear indications
about the correct family of paths to be chosen, the family of straight segments

Ψ(s;WL,WR) = WL + s(WR −WL), (3.16)

is a sensible choice, as their corresponding jump conditions are expected to give a third order approximation of
the physically correct ones (see Appendix A).

Therefore, we shall consider here the family of straight segments (3.16) to define the weak solutions for the
system (2.16). The corresponding jump conditions are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ[h] = [q];

λ[q] =
[
q2

h
+
g

2
(1 +Rc)h2

]
+ g

(
h− + h+

2
+R

(hc)− + (hc)+

2

)(
z+

b − z−b
)
;

λ[hc] = [qc];

λ[zb] = [qb].

(3.17)

and the consistency condition (3.7) reduces to:

m−1∑
j=0

σj+1(Wj+1 −Wj) = F (WR) − F (WL) + B(WL,WR), (3.18)

where

B(WL,WR) =

⎛⎜⎜⎜⎝
0

g

(
hL + hR

2
+R

(hc)L + (hc)R

2

)
(zb R − zb L)

0
0

⎞⎟⎟⎟⎠ . (3.19)

Another reason to choose the family of paths (3.16) is related to the well-balanced property: a numerical
method is said to be well-balanced for water at rest solutions if, when it is applied to an initial sequence of cell
values {W 0

i } that lie on the same curve (2.17), one has

Wn
i = W 0

i , ∀i, ∀n.
It can be trivially checked that a numerical method (3.8) is well-balanced in this sense if, and only if, given two
states WL and WR satisfying

uL = uR = 0, cL = cR, hL + zb,L = hR + zb,R, (3.20)

one has
D±(WL,WR) = 0. (3.21)

In the particular case of a method obtained from a Φ-approximate Riemann solver, by adding (3.11) and (3.12)
and taking into account (3.7), we deduce from (3.21):∫ 1

0

A (Φ(s;WL,WR))
∂Φ

∂s
(s;WL,WR) ds = 0. (3.22)
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Figure 3. Sketch of a HLLC solver.

Therefore, in order to have the well-balanced property for water at rest solution, (3.22) has to be fulfilled for
every pair of states satisfying (3.20) . The family of straight segments Ψ satisfies this necessary condition: some
straightforward calculations show that∫ 1

0

A (Ψ(s;WL,WR))
∂Ψ

∂s
(s;WL,WR) ds = F (WR) − F (WL) + B(WL,WR) = 0 (3.23)

if WL and WR satisfy (3.20).
In general, (3.22) is not a sufficient condition to have the well-balanced property: for instance, the HLL solver

based on the family Ψ is not well-balanced for water at rest solutions.
From the expressions (3.9)–(3.10) of the fluctuations, it can be easily deduced that a sufficient condition to

have the well-balanced property is the following: given two statesWL andWR satisfying (3.20) the corresponding
approximate Riemann solution is given by

Ṽ (v;WL,WR) =
{
WL if v < 0,
WR if v > 0. (3.24)

4. HLLC solver

A HLLC Riemann solver can be considered as an extension of the HLL one in which, besides the two external
waves of speed σ1 = SL and σm = SR, m − 2 internal waves of speeds σ2, . . . , σm−1 connecting m − 1
intermediate states W1, . . . , Wm−1 are considered (see Fig. 3). Therefore, it is a Φ-simple Riemann solver whose
speeds and intermediate states are:

σ0 = −∞ < SL = σ1 < σ2 < · · · < σm = SR < σm+1 = ∞, (4.1)

W0 = WL,W1, . . . ,Wm−1,Wm = WR. (4.2)

If we assume that SL and SR are given by some estimates, then it is necessary to fix (N + 1) (m − 1) − 1
scalars to determine the simple solver:m−2 speeds and N (m−1) components of the intermediate states. Notice
that the N conditions given by (3.7) are enough to determine the solver only if m = 2, i.e. in the HLL case.
For m > 2 some more conditions have to be taken into account in order to have the same number of unknowns
and equations. To do this, the jump conditions (3.15) at every intermediate wave may be considered:

σj+1(Wj+1 −Wj) =
∫ 1

0

A(Φ(s;Wj ,Wj+1)∂sΦ(s;Wj ,Wj+1) ds, j = 0, . . . ,m− 1. (4.3)
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Figure 4. Waves configuration. Left: S∗ < SM . Right: SM < S∗.

These jump conditions give us mN more equations. In practice, (N + 1)(m − 1) − 1 equations have to be
chosen among the consistency condition (3.7) and the jump conditions (4.3). Let us remark that in order to
have a Φ-simple solver, if some of the components of the consistency condition (3.7) are not explicitly chosen,
then it should be possible to recover it from the selected equations. Notice that a number of equations lower
than (N + 1)(m− 1) − 1 can be chosen and some of the unknowns may be then considered as free parameters
what allows to obtain a family of HLLC solvers. Once the intermediate speeds and states have been calculated,
the corresponding numerical scheme is given by (3.8), (3.11) and (3.12).

Let us apply this general principle to system (2.8). As it has been said, the erosion/deposition and the water
entrainment source terms are neglected and H is assumed to be constant. Two different HLLC solvers will be
considered here consisting of four waves of speed SL, SM , S∗, SR, linking five states:

(
WL,W

∗
L,W

∗
R,W

M
R ,WR

)
if S∗ < SM

or (
WL,W

M
L ,W ∗

L,W
∗
R,WR

)
if SM < S∗

(see Fig. 4).

Due to the expression of the D± functions given by (3.11)–(3.12), it is enough to define the simple Riemann
solver when SL < 0 < SR. Only the case S∗ > SM , will be considered, the case S∗ < SM being analogous. In
order to define the solver, 16 scalars have to be fixed: the wave speeds SL, SR, S∗, SM and the components of
the intermediate states W ∗

L, W ∗
R, WM

L . The components of the intermediate states will be denoted as follows:

WL =

⎡⎢⎣ hL

hLuL

hLcL
zbL

⎤⎥⎦ , WM
L =

⎡⎢⎢⎣
hM

L

hM
L uM

L

hM
L cML
zM

bL

⎤⎥⎥⎦ , W ∗
L =

⎡⎢⎣ h∗L
h∗Lu

∗
L

h∗Lc
∗
L

z∗bL

⎤⎥⎦ , W ∗
R =

⎡⎢⎣ h∗R
h∗Ru

∗
R

h∗Rc
∗
R

z∗bR

⎤⎥⎦ , WR =

⎡⎢⎣ hR

hRuR

hRcR
zbR

⎤⎥⎦ .
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4.1. An essentially three-wave HLLC solver

We consider the following nonlinear system composed by the first, third, and fourth components of the jump
conditions (3.17) for the four waves speeds, and the second component of the consistency condition (3.7):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SL(hM
L − hL) = hM

L uM
L − hLuL,

SM (h∗L − hM
L ) = h∗Lu

∗
L − hM

L uM
L ,

S∗(h∗R − h∗L) = h∗Ru
∗
R − h∗Lu

∗
L,

SR(hR − h∗R) = hRuR − h∗Ru
∗
R,

SL(hM
L cML − hLcL) = hM

L uM
L cML − hLuLcL,

SM (h∗Lc
∗
L − hM

L cML ) = h∗Lu
∗
Lc

∗
L − hM

L uM
L cML ,

S∗(h∗Rc
∗
R − h∗Lc

∗
L) = h∗Ru

∗
Rc

∗
R − h∗Lu

∗
Lc

∗
L,

SR(hRcR − h∗Rc
∗
R) = hRuRcR − h∗Ru

∗
Rc

∗
R,

SL(hM
L uM

L − hLuL) + SM (h∗Lu
∗
L − hM

L uM
L )

+ S∗(h∗Ru
∗
R − h∗Lu

∗
L) + SR(hRuR − h∗Ru

∗
R)

= F (WR)[2] − F (WL)[2] + B(WL,WR)[2],

(b)

⎧⎪⎪⎨⎪⎪⎩
SL(zb

M
L − zbL) = zb

M
L q̃b

M
L − zbLq̃bL,

SM (zb
∗
L − zb

M
L ) = zb

∗
Lq̃b

∗
L − zb

M
L q̃b

M
L ,

S∗(zb
∗
R − zb

∗
L) = zb

∗
Rq̃b

∗
R − zb

∗
Lq̃b

∗
L,

SR(zbR − zb
∗
R) = zbRq̃bR − zb

∗
Rq̃b

∗
R,

(4.4)

where q̃bL, q̃b∗L, q̃b∗R, q̃bR stand for the solid transport flux q̃b evaluated in the corresponding state, F is given
by (2.10), B(WL,WR) is defined by (3.19), and the subscript [2] denotes the second component of these vectors.
It can be easily checked that the first component of the consistency condition (3.7) is recovered by adding the
first four equations, the third component is recovered by adding equations 5th to 9th, and the fourth one by
adding the four last equations.

We have thus 13 equations for 16 unknowns. If we fix the value of hM
L by:

hM
L = h∗L,

and

SL = uL − kL

hL
,

SR = uR +
kR

hR
,

(4.5)

where kL and kR are two positive values, then a solution of system (4.4)-(a) is given by

uM
L = u∗L, cML = c∗L,

S∗ = u∗L = u∗R =
kLuL + kRuR − PLR

kL + kR
,

1
h∗L

=
1
hL

+
kR(uR − uL) − PLR

kL(kL + kR)
,

1
h∗R

=
1
hR

+
kL(uR − uL) + PLR

kR(kL + kR)
,

(4.6)

where
PLR =

1
2
g(1 +RcR)h2

R − 1
2
g(1 +RcL)h2

L + B(WL,WR)[2].
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The subsystem (4.4)-(b) has still to be solved. Two different situations are considered:

– Steady bottom: if q̃b = 0, the solution is given by
SM = 0, zb

M
L = zbL, zb

∗
L = zb

∗
R = zbR. (4.7)

– Moving bottom: in this case, the solution is given by

zb
M
L =

uL − kL

hL
− q̃bL

uL − kL

hL
− q̃b

∗
L

zbL,

zb
∗
R =

uR +
kR

hR
− q̃bR

uR +
kR

hR
− q̃b

∗
R

zbR,

zb
∗
L =

S∗ − q̃b
∗
R

S∗ − q̃b
∗
L

zb
∗
R,

SM = q̃b
∗
L.

(4.8)

Remark 4.1. Observe that:

(1) the variables h and u are constant across the wave associated to SM . Therefore, the obtained HLLC solver
has only three waves for the hydrodynamical variables;

(2) in the case of a steady bottom, the topography is only discontinuous across the wave of speed SM = 0, and
the source term only contributes to this stationary wave;

(3) in the case of a moving bottom, SL and SR correspond to the external waves while SM is expected to be
an approximation of the internal one. Remark that zb jumps at each of the waves which is in connection to
what has been said in Section 2 regarding the interaction between fluid and topography. Notice that, if q̃b
is small compared to the external wave speeds SL, SR, then one has zb

∗
L ≈ zbL and zb

∗
R ≈ zbR what is in

agreement with the interpretation of SM as the speed of waves of the sediment layer for weak interactions;
(4) the sediment concentration c is only discontinuous across the wave of speed S∗. This speed coincide with

the fluid velocity at the intermediate region u∗L = u∗R.

Remark 4.2. Note that if R = 0, system (2.8) coincides with the shallow-water equations with pollutant
concentration.

(a) This HLLC solver is different from the one introduced in [32]: while in the latter the equality h∗L = h∗R is
assumed, this is not the case here;

(b) if the bottom is steady and flat, the HLLC solver coincides with the Suliciu relaxation method presented
in [3]. Therefore, it is entropy satisfying.

Let us introduce the following notation:

p(h, c) =
g

2
(1 +Rc)h2, α = 3/2. (4.9)

Following the techniques introduced in [3] the following result can be proved (see Appendix B).

Theorem 4.3. The numerical scheme based on the HLLC solver based on the definitions (4.5)–(4.8) with kL

and kR given by:

if PLR ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

kL

hL
=

√
∂p

∂h
(hL, cL) + α

⎛⎜⎜⎝ PLR

hR

√
∂p

∂h
(hR, cR)

+ uL − uR

⎞⎟⎟⎠
+

,

kR

hR
=

√
∂p

∂h
(hR, cR) + α

(−PLR

kL
+ uL − uR

)
+

,

(4.10)
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if PLR ≤ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

kR

hR
=

√
∂p

∂h
(hR, cR) + α

⎛⎜⎜⎝ −PLR

hL

√
∂p

∂h
(hL, cL)

+ uL − uR

⎞⎟⎟⎠
+

,

kL

hL
=

√
∂p

∂h
(hL, cL) + α

(PLR

kR
+ uL − uR

)
+

,

(4.11)

preserves the non-negativity of h.

In the case of a moving bottom, the analysis of the non-negativity preservation of zb is not an easy task,
especially for complex expressions of q̃b. Nevertheless, for some simple formulae (for instance, the Grass model)
it can be proved that the numerical scheme is non-negativity preserving for zb provided that kL and kR are
large enough (see Appendix C).

Proposition 4.4. Suppose that q̃b only depends on the variable u that is, there exists some continuous function
φ such that q̃b(h, u, c) = φ(u). Then if zbL and zbR are non-negative and kL, kR > 0 are large enough, the values
zb

M
L , zb

∗
L, zb

∗
R defined by (4.8) are also non-negative.

Remark that this result is compatible with Theorem 4.3 in the sense that both the non-negativity of h and z
can be preserved: in effect, the values of kL and kR given by (4.10)–(4.11) can take arbitrarily large values: see
the proof in Appendix B.

Let us check finally that this HLLC solver is well-balanced for water at rest solutions. Given two states
WL = [hL, 0, cLhL, zb L]T , WR = [hR, 0, cRhR, zb R]T such that:

cL = cR = c̄, hL + zb L = hR + zb R,

the following equalities can be easily checked:

SM = S∗ = 0, WM
L = WL, W ∗

R = WR, W ∗
L = [hL, 0, c̄ hL, zR]T ,

but notice that the region in which the approximate solution takes the value W ∗
L disappears. Therefore, the

approximate Riemann solver reduces to (3.24) so that the numerical scheme is well-balanced.
In practice:

– the speed of the fastest waves are given by (4.5) and Theorem 4.3;
– the stability requirement is CFL ∈ (0, 1], where the CFL parameter is given by:

CFL = max
i

{
max(

∣∣SL,i+1/2

∣∣ , ∣∣SR,i+1/2

∣∣)} Δt
Δx

, (4.12)

where Δx is the space step (which is assumed to be constant), Δt it the time step, and SL,i+1/2, SR,i+1/2

are the fastest waves considered in the approximate Riemann solver at the intercell xi+1/2.

Remark 4.5. If the depth of the non-erodible bottom, H , is not constant, a new wave of speed 0 is added
through which only the variableH is discontinuous. The system to be solved in order to compute the intermediate
speeds is still (4.4) with only a modification in the 9th equation that now reads as follows:

SL(hM
L uM

L − hLuL) + SM (h∗Lu
∗
L − hM

L uM
L ) + S∗(h∗Ru

∗
R − h∗Lu

∗
L) + SR(hRuR − h∗Ru

∗
R)

= F (WR)[2] − F (WL)[2] + B(W̃L, W̃R)[2], (4.13)
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where W̃ = [W,H ]T , and

B(W̃L, W̃R) =

⎛⎜⎜⎜⎝
0

g

(
hL + hR

2
+R

(hc)L + (hc)R

2

)
(zb R − zb L − (HR −HL))

0
0

⎞⎟⎟⎟⎠ . (4.14)

The definitions of the wave speeds and intermediate states remain the same with the only difference that now

PLR =
1
2
g(1 +RcR)h2

R − 1
2
g(1 +RcR)h2

R + B(W̃L, W̃R)[2].

4.2. A four-wave HLLC solver

Let us consider now the system given by (4.4)-(a) and the following modification of (4.4)-(b):⎧⎪⎨⎪⎩
SL(zb

M
L − zbL) = (zb

M
L q̃b

M
L − zbLq̃bL),

SR(zbR − zb
∗
R) = (zbRq̃bR − zb

∗
Rq̃b

∗
R),

SL(zb
M
L − zbL) + SM (zb

∗
L − zb

M
L )

+S∗(zb
∗
R − zb

∗
L) + SR(zbR − zb

∗
R) = (zbRq̃bR − zbLq̃bL),

(4.15)

where the third components of the jump conditions at the waves of speed S∗ and SM are replaced by the third
component of the consistency condition. We have now 12 equations and 16 unknowns. If SL, SR are given by
some estimates of the fastest wave speeds, hM

L and SM are defined by:

hM
L = h∗L + zbR − zbL. (4.16)

SM =

{
0 if qb = 0
λint(W0) otherwise

(4.17)

where λint(W0) is the internal eigenvalue computed at an intermediate state W1/2, a solution of the system is
given by:

c∗R = cR, c∗L = cL, cML = cL,

S∗ =
hRuR(SR − uR) + hLuL(uL − SL) + SM (SL − SM )(zbR − zbL) − PLR

hR(SR − uR) + hL(uL − SL) + (SL − SM )(zbR − zbL)
, (4.18)

u∗L = u∗R = S∗, (4.19)

uM
L =

hLuL + SL(hM
L − hL)

hM
L

, (4.20)

h∗L =
hL(uL − SL) + (SL − SM )(zbR − zbL)

S∗ − SL
, (4.21)

h∗R =
hR(uR − SR)
S∗ − SR

, (4.22)

zb
M
L =

zb L(−SL + q̃b L)
q̃M
b L − SL

, zb
∗
R =

zb R(SR − q̃b R)
SR − q̃∗b R

, (4.23)

z∗b L =
SL(zb L − zM

b L) + SR(z∗b R − zb R) + zb Rq̃b R − zb Lq̃b L + SMzM
b L − S∗z∗b R

SM − S∗ · (4.24)
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Remark 4.6. The main difference between this HLLC solver and the one introduced in Section 4.1 is that SM

explicitly appears in the definition of the hydrodynamic variables. If q̃b = 0, the two solvers coincide.

Concerning the non-negativity-preserving property of the four-wave HLLC, if q̃b = 0, the following result can
be shown (see Appendix D).

Proposition 4.7. Assume that SL < SM = 0 < S∗ and

0 < hM
L ≤ max

(
hL(SL − uL)

sL
,

hR(uR − SR)2 + hL(uL − SL)2 + hLuL(SR + 2SL − 2uL) − hLSLSR − PLR

−SL(SR − SL)

)
· (4.25)

Then, the HLLC scheme is non-negativity preserving and well defined, that is, if hL ≥ 0 and hR ≥ 0, then
h∗L ≥ 0, h∗R ≥ 0 and S∗ < SR.

Remark 4.8. In general, the difficulty in (4.25) is to prove that the upper bound is positive. In fact, this is
not possible when ’big steps’ are present in the bottom. In that case, the essentially three-wave HLLC scheme
should be used to ensure the non-negativity.

Finally, let us check the well-balanced property of the numerical scheme given by this HLLC-solver. Given
two states WL = [hL, 0, cLhL, zb L]T , WR = [hR, 0, cRhR, zb R]T such that:

cL = cR = c̄, hL + zb L = hR + zb R,

the following equalities can be easily checked:

SM = S∗ = 0, W ∗
L = W ∗

R = WR, WM
L = WL,

and the result follows.

5. Numerical tests

The HLLC solvers introduced in Sections 4.1 and 4.2 will be named hereafter as E3W-HLLC and 4W-HLLC,
respectively. In this section, we compare the numerical solutions provided by these two solvers between them
and also with those provided by the Roe scheme introduced in [23] for some 1d and 2d test problems. The CFL
parameter is set to 0.9.

5.1. Well-balanced property

From the definitions of E3W-HLLC and 4W-HLLC it follows that both schemes are well-balanced for steady-
state solutions (2.17). Let us verify numerically this property by considering the following initial condition

zb(x, 0) = 0.1e−(x−5.0)2, h+ zb = 1, c(x, 0) = 0.05, q = 0. (5.1)

The numerical solution at t = 1 is computed with 100 points in the interval [0, 5]. The L∞ error for both
schemes is shown in Table 1.
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Table 1. L∞ error at t = 1 for E3W-HLLC and 4W-HLLC.

E3W-HLLC 4W-HLLC
h 1.514011e-12 1.513789e-12
q 1.954471e-13 1.965307e-13
z 3.246500e-13 3.246153e-13

(a) (b)

Figure 5. Simulation over flat topography.

5.2. Flow over a flat bottom

We consider qb = 0 and zb = const. The computational domain is the interval [0, 10] and the initial conditions
are given by:

h(x, 0) =

{
1 if x < 5,
0.5 if x ≥ 5,

, c(x, 0) =

{
0.05 if x < 5,
0.01 if x ≥ 5,

(5.2)

and q(x, 0) = 0 for all x ∈ [0, 10]. Free boundary conditions at both extremes of the interval are imposed by
using a ghost-cell technique. In this case E3W-HLLC and 4W-HLLC coincide (see Rem. 4.6). The results are
shown in Figure 5.

Let us see that no dog-leg effects appear at the sonic point in the numerical solutions provided by the HLLC
solvers: it is not necessary to add any entropy-fix technique as it is the case for the Roe method. To see this,
we consider the above described test problem with data:

h(x, 0) =

{
2 if x < 5,
0.1 if x ≥ 5.

(5.3)

The solutions obtained with both HLLC solvers and with the Roe method without an entropy-fix technique are
compared in Figure 6.

5.3. Transcritical flow

We consider next a transcritical flow over a bump. The equations are solved in the interval [0, 25] with initial
condition:

h(x, 0) = 0.33, q(x, 0) = 0.18, c(x, 0) = 0. (5.4)
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Figure 6. Entropy fix is needed for Roe scheme but not for HLLC.

(a) (b)

Figure 7. Transcritical flow. E3W-HLLC solver.

Again, qb = 0 and the bottom is given by:

zb(x) =

{
0.25 − 0.05(x− 10)2 if 8 < x < 12,
0.05 otherwise.

(5.5)

The boundary conditions are q(0, t) = 0.18, h(25, t) = 0.33, and c(0, t) = 0.02. Figures 7 and 8 show the steady-
state reached using 250 points in the interval. Notice that, while the free surface and concentration (left plot in
Figs. 7 and 8) computed with E3W-HLLC and 4W-HLLC are practically identical, the computed discharge q is
more accurate for the latter (right plot in Figs. 7 and 8). Notice that the Roe method gives a better result here,
specially near the shock. This is due to the fact that the Roe method is less diffusive than the HLLC schemes.
Nevertheless, the results are comparable.
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(a) (b)

Figure 8. Transcritical flow. E3W-HLLC solver.

(a) (b)

Figure 9. Dam-break problem. E3W-HLLC solver.

5.4. A dam-break test case

Let us consider now a dam-break problem over a bottom with a step. The equations are solved in the interval
[0, 10] with initial condition:

h(x, 0) =

{
1 if x < 2,
0 otherwise,

, c(x, 0) =

{
0.05 if x < 2,
0 otherwise,

(5.6)

and q(x, 0) = 0, for all x ∈ [0, 10]. We consider again qb = 0 and a fixed bottom given by:

zb(x) =

{
0.2 if 5 < x < 6,
0.1 otherwise.

(5.7)
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(a) (b)

Figure 10. Dam-break problem. 4W- HLLC solver.

Figure 11. Surface evolution with E3W-HLLC solver.

Free boundary conditions are considered. The results are shown in Figures 9 and 10 for time t = 2. In this test
both HLLC schemes give similar results. In Figure 11 we can observe the surface evolution for different times.

5.5. Moving bottom

In this test, Grass formula (2.4)–(2.5) is used with A = 0.005. The interval is [0, 10] and the initial condition
is given by

(h+ z)(x, 0) = 1.1, q(x, 0) = 0, c(x, 0) = 0, ∀x ∈ [0, 10], (5.8)

and

zb(x, 0) =

{
0.2 if 4 < x < 6,
0.1 otherwise.

(5.9)
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(a) (b)

Figure 12. Moving bottom: E3W-HLLC.

(a) (b)

Figure 13. Moving bottom: E3W-HLLC.

We impose the boundary conditions q(0, t) = 0.5 and

c(0, t) =

{
0 if t < 20,
0.02(cos(t/π))+ if t ≥ 20,

(5.10)

so that a wave of sediments is getting into the domain periodically.
The results are shown in Figures 12 to 16. Once more the E3W-HLLC and the 4W-HLLC solvers give

practically the same results for the free surface and concentration (see Figs. 12 to 15) while some differences
can be observed in the computed discharge (see Fig. 16): again 4W-HLLC is more accurate than E3W-HLLC.

While the CPU time required to solve this test with the Roe method is 166.55, the corresponding to E3W-
HLLC and 4W-HLLC are 61.57 and 65.72, respectively. This means roughly a 60% gain when using HLLC
instead of Roe. Remark that E3W-HLLC is slightly faster as it does not need the computation of the intermediate
velocity SM .
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(a) (b)

Figure 14. Moving bottom: 4W-HLLC.

(a) (b)

Figure 15. Moving bottom: 4W-HLLC.

5.6. Hugoniot curves

This test is designed to study the convergence error due to the numerical viscosity discussed in Section 1. We
consider c = 0 and the Grass formula with A = 0.1. Consider a given right state hR = 4.8863763300885e− 1,
uR = −4.8295086427435e− 1, (zb)R = 9.3440819151415e− 2. Using the jump relations (3.17) we may compute
the Hugoniot curve composed by the left states that can be connected to the fixed right state by an entropy
shock associated to the characteristic field corresponding to the greatest eigenvalue (Lax’s entropy conditions
are considered here). In order to numerically compute the Hugoniot curve given by the numerical scheme, we
solve a family of Riemann problems whose initial conditions are given by the fixed right state and some of the
left states lying on the exact Hugoniot curve. In order to analyse the jump conditions satisfied by the limits of
the numerical solutions for 4W-HLLC, the space step has been chosen small enough (Δx = 0.001) to ensure
that the numerical solutions are close of the limit. At time t = 1, the location of the shock is detected and the
value of the left state is stored. In Figure 17 the theoretical and numerical Hugoniot curves are composed.
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(a) E3W-HLLC (b) 4W-HLLC

Figure 16. Moving bottom.
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Figure 17. Hugoniot curves (3.17) for external shock.

Next a similar procedure has been applied to a Hugoniot curve corresponding to internal shocks, that is,
entropy shocks associated to the characteristic field corresponding to the internal eigenvalue. In this case we
fixed the left state hL = 1, uL = 1, zL = 1. Figure 18 shows the comparison at time t = 1 of the right states
obtained from (3.17) and computed numerically with 4W-HLLC. In both cases a very good agreement is found.

5.7. 2d test case

The scheme can be easily extended for the 2d case and to higher order. We refer to [6,12] for further details.
Let us consider here a case of moving bottom. We consider the domain D = [−1, 1] × [−1, 1] and the initial
condition

zb(�x, 0) =

{
1.1 + 0.05 cos(10|�x|) if |�x| ≤ π/10,
1.05 otherwise.

(5.11)

h(�x, 0) + zb(�x, 0) = 2, q(�x, 0) = (1, 0), c(�x, 0) = 0; (5.12)

for �x ∈ [−1, 1]× [−1, 1] ∈ R
2. Grass model will be considered with Ag = 0.01.
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Figure 18. Hugoniot curves (3.17) for internal shock.

Table 2. Comparison in L1-norm between numerical solutions obtained with Roe and HLLC
schemes at time t = 40 s for (5.11)–(5.13).

Test with (5.14) Test with (5.15)
Variable E3W-HLLC 4W-HLLC E3W-HLLC 4W-HLLC

h 1.6802e-03 6.4656e-05 1.7768e-03 1.0735e-04
qx 1.5328e-03 3.2751e-05 2.2334e-03 6.2810e-05
qy 1.2679e-03 2.6432e-05 1.8904e-03 4.1919e-05
hc 3.3518e-05 1.2921e-06 4.7400e-05 7.1250e-06
zb 8.0552e-04 3.0761e-05 1.7694e-03 4.6355e-05

The following boundary conditions are imposed:

qy(�x, t) = 0, for �x ∈ [−1, 1]× {−1, 1}, t ≥ 0,
qx(�x, t) = 1, for �x ∈ {−1} × [−1, 1], t ≥ 0,

(5.13)

where �q = (qx, qy). We shall consider two different test cases. In the first one, an homogeneous boundary
condition on suspended sediment concentration is imposed. In the second one two different boundary conditions
are considered for suspended sediment. The idea of the second test is to study the influence of different suspended
sediment concentration on the evolution of the topography. More explicitly, in the first test we impose

hc(�x, t) = 0.019, for �x ∈ {−1} × [−1, 1], t ≥ 0, (5.14)

while for the second one, we impose the boundary condition

hc(�x, t) = 0.04, for �x ∈ {−1} × [−1, 0], t ≥ 0,

hc(�x, t) = 0.02, for �x ∈ {−1} × (0, 1], t ≥ 0.
(5.15)

Open boundary conditions are considered at the remaining boundaries.
We consider 100 points in the x and y direction respectively and a second order extension is used (see [6,8,14]).
The sediment layer evolves towards a star-shaped pattern expanding along the time. Figures 19 to 22 show

topography, surface and discharge at time t = 40 s for the two different boundary conditions.
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(a) Test with boundary condition (5.14)
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(b) Test with boundary condition (5.15)

Figure 19. Topography at time t = 40 s for (5.11)–(5.13).
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(a) Test with boundary condition (5.14)
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(b) Test with boundary condition (5.15)

Figure 20. Surface at time t = 40 s for (5.11)–(5.13).

If we compare the numerical solutions obtained for both HLLC schemes with the one given by Roe scheme,
we get the L1-norm errors given in Table 2 for both boundaries conditions.

We remark that numerical results obtained with both HLLC schemes introduced here are comparable to
those obtained with Roe scheme and they are less expensive from the computational point of view. E3W-HLLC
and 4W-HLLC need 63.37 s and 67.53 s of CPU time respectively while Roe scheme needs 157.26 s. This means
almost 60% gain when using HLLC instead of Roe. Nevertheless, the E3W-HLLC scheme is more diffusive than
the other two ones, specially in the absence of the second order reconstruction technique.

6. Conclusions

In this paper two well-balanced HLLC solvers have been defined for the turbidity current model (2.8): the
so-called essentially three-wave and the four-wave HLLC solvers. The first one preserves the non-negativity of
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Figure 21. Discharge on x direction at time t = 40 s for (5.11)–(5.13).
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Figure 22. Discharge on y direction at time t = 40 s for (5.11)–(5.13).

the current thickness h. Under the assumption that the solid discharge formula qb only depends on the velocity
of the turbidity current, the non-negativity of the thickness of the sediment layer is also ensured. Moreover, for
a fixed flat topography it is entropy satisfying as in that case it coincides with the Suliciu relaxation scheme
introduced in [3]. Some conditions that implies the non-negativity of h are also derived for the four-wave HLLC
solver if qb = 0, but these conditions may not be satisfied in practice in the presence of large steps in the
bottom. Although the numerical results provided by both solvers are close, the four-wave solver is slightly more
accurate and more costly. Moreover, the results are also close to those provided by the Roe scheme introduced
in [23], but the computational cost is much lower, as the HLLC solvers do not need the explicit knowledge of
the complete eigenstructure of the system: a speedup of about 60% is obtained for the HLLC solvers compared
to Roe method.
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Appendix A. Relation between different jump conditions

Any jump conditions related to a particular choice of paths is expected to give a third order approximation
of the physically correct ones in the following sense:

Theorem A.1. Let us suppose that A : Ω �→ R
N×N has continuous second order derivatives. Let WL and WR

be a pair of states of Ω such that there exists λ satisfying

λ(WR −WL) =
∫ 1

0

A(Ψ(s;WL,WR))Ψs(s;WL,WR)) ds.

Given any other family of paths Φ : [0, 1] ×Ω ×Ω �→ Ω with continuous second order derivatives, one has:

λ(WR −WL) =
∫ 1

0

A(Φ(s;WL,WR))Φs(s;WL,WR)) ds+O
(|WR −WL|3

)
.

Proof. Let us denote by:
γ ∈ [0,M ] �→ φ(γ)

the arc-length parametrization of the path:

s ∈ [0, 1] �→ Φ(s;WL,WR),

whose length is denoted by M . By applying the midpoint rule and some Taylor expansions we obtain:∫ 1

0

A(Φ(s;WL,WR))Φs(s;WL,WR)) =
∫ M

0

A(φ(γ))φ′(γ) dγ

= MA

(
φ

(
M

2

))
φ′
(
M

2

)
+O(M3)

= A

(
φ

(
M

2

))
(φ(M) − φ(0)) +O(M3)

= A

(
φ

(
M

2

))
(WR −WL) +O(M3)

= A

(
1
2
(φ(0) + φ(M))

)
(WR −WL) + (WR −WL)O(M2) +O(M3)

= A

(
1
2
(WL +WR)

)
(WR −WL) + (WR −WL)O(M2) +O(M3).

From the definition of a family of paths (see [10]), there exists a constant K such that:

|∂sΦ(s;WL,WR)| ≤ K|WR −WL|, ∀s.
By integrating in [0, 1] we obtain:

M ≤ K|WR −WL|.
Then, the following equality can be deduced:∫ 1

0

A(Φ(s;WL,WR))Φs(s;WL,WR) = A

(
1
2
(WL +WR)

)
(WR −WL) +O(|WR −WL|3) (A.1)

for every smooth enough family of segments. In particular, it holds for Ψ :∫ 1

0

A(Ψ(s;WL,WR))Ψs(s;WL,WR) = A

(
1
2
(WL +WR)

)
(WR −WL) +O(|WR −WL|3). (A.2)
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The proof is then finished from (A.1) and (A.2):

λ(WR −WL) =
∫ 1

0

A(Ψ(s;WL,WR))Ψs(s;WL,WR))

= A

(
1
2
(WL +WR)

)
(WR −WL) +O(|WR −WL|3)

=
∫ 1

0

A(Φ(s;WL,WR))Φs(s;WL,WR)) +O(|WR −WL|3). �

Remark A.2. Notice that a family of paths Φ based on the viscous profiles or a regularized system is expected
to be smooth.

Appendix B. Proof of Theorem 4.3

For the sake of completeness we give here the proof. First, let us remark that p(h, c) defined by (4.9) verifies
that

∀h, c > 0,
∂

∂h

(
h

√
∂p

∂h
(h, c)

)
> 0, (B.1)

h

√
∂p

∂h
(h, c) → ∞ as h→ ∞, (B.2)

∂

∂h

(
h

√
∂p

∂h
(h, c)

)
≤ α

√
∂p

∂h
(h, c), (B.3)

where α = 3/2.
(B.1)–(B.2) allow us to define an inverse function ψ(·, c) : (0,∞) → (0,∞) for each c,

h

√
∂p

∂h
(h, c) = k ⇔ h = ψ(h, k). (B.4)

Then, we have the following lemma:

Lemma B.1. Assume kR > 0 and define

kL

hL
=

√
∂p

∂h
(hL, cL) + α

(PLR

kR
+ uL − uR

)
+

, (B.5)

then
1
hL

+
kR(uR − uL) − PLR

kL(kL + kR)
≥ 1
ψ(kL, cL)

· (B.6)

Proof. Suppose first that
kR(uR − uL) − PLR ≥ 0, (B.7)

then

kL = hL

√
∂p

∂h
(hL, cL) ⇔ ψ(kL, cL) = hL (B.8)

and the result follows. Assume now
kR(uR − uL) − PLR < 0, (B.9)
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and define
X =

PLR

kR
+ uL − uR > 0. (B.10)

Then, (B.6) is equivalent to

1 − kR

kL + kR

X√
∂p

∂h
(hL, cL) + αX

≥ hL

ψ(kL, cL)
· (B.11)

Denote by

θ =

√
∂p

∂h
(hL, cL)√

∂p

∂h
(hL, cL) + αX

, 1 − θ =
αX√

∂p

∂h
(hL, cL) + αX

· (B.12)

It is enough to prove

1 − 1 − θ

α
− hL

ψ

(
hL

(√
∂p

∂h
(hL, sL) + αX

)
, cL

) ≥ 0. (B.13)

From (B.3) we get
∂ψ

∂k
(k, c) ≥ ψ(k, c)

αk
(B.14)

and
∂

∂k

(
ψ(k, c)k−1/α

)
≥ 0, (B.15)

so that
∀λ ≥ 1, ψ(λk, c) ≥ λ1/αψ(k, c). (B.16)

Thus, it is enough to prove

1 − 1 − θ

α
− θ1/α ≥ 0, (B.17)

and this is indeed the case when 0 < θ ≤ 1 and α ≥ 1. �

Remark B.2. The result of the lemma can be symmetrized and for any kL > 0, the value

kR

hR
=

√
∂p

∂h
(hR, cR) + α

(
−PLR

kL
+ uL − uR

)
+

, (B.18)

satisfies
1
hR

+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1
ψ(kR, cR)

· (B.19)

Proof of Theorem 4.3. Let us assume that PLR > 0, the other case being analogous. By Remark B.2 we have

1
hR

+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1
ψ(kR, cR)

· (B.20)

Now, if kR(uR − uL) − PLR ≥ 0, then

1
hL

+
kR(uR − uL) − PLR

kL(kL + kR)
≥ 1
hL

≥ 1
ψ(kL, cL)

· (B.21)
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If kR(uR − uL) − PLR < 0, then

kR ≥ hR

√
∂p

∂h
(hR, cR) and PLR ≥ 0 (B.22)

and we have kL ≥ k̂L with
k̂L

hL
=

√
∂p

∂h
(hL, cL) + α

(PLR

kR
+ uL − uR

)
+

. (B.23)

By applying Lemma B.1 to the pair (k̂L, kR) we have

1
hL

+
kR(uR − uL) − PLR

k̂L(k̂L + kR)
≥ 1

ψ(k̂L, cL)
, (B.24)

and by using the fact that kR(uR − uL) − PLR < 0 and that f(k) = −1/(k(k + kR)) is an increasing function
of k ∈ (0,∞) we finally obtain

1
hL

+
kR(uR − uL) − PLR

kL(kL + kR)
≥ 1
hL

+
kR(uR − uL) − PLR

k̂L(k̂L + kR)
≥ 1

ψ(k̂L, cL)
≥ 1
ψ(kL, cL)

· (B.25)

�

Remark B.3. We have actually proved that

1
hL

+
kR(uR − uL) − PLR

kL(kL + kR)
≥ 1
ψ(kL, cL)

,
1
hR

+
kL(uR − uL) + PLR

kR(kL + kR)
≥ 1
ψ(kR, cR)

· (B.26)

which can be used to show that the numerical scheme for fixed flat topography is entropy satisfying.

Appendix C. Proof of Proposition 4.4

Let us first remark that
q̃b

∗
L = φ(u∗L) = φ(u∗R) = q̃b

∗
R, (C.1)

what gives zb
∗
L = zb

∗
R. Next, (4.8) can be rewritten as follows:

zb
M
L =

1 − q̃bL

uL − kL/hL

1 − φ(u∗L)
uL − kL/hL

zbL. (C.2)

Since q̃bL is bounded, we have:
q̃bL

uL − kL/hL
< 1, (C.3)

if kL is large enough. On the other hand, as

u∗L =
kL

kL + kR
uL +

kR

kL + kR
uR − PLR

kL + kR

and PLR does not depend on kL and kR, we deduce that u∗L and φ(u∗L) remain bounded for large values of kL

and kR. Therefore, we can choose these values large enough so that:

φ(u∗L)
uL − kL/hL

< 1, (C.4)

and thus zb
M
L ≥ 0. A similar argument shows that zb

∗
R ≥ 0.
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Appendix D. Proof of Proposition 4.7

The following equalities can be shown:

h∗L =
hL(uL − SL) + SLh

M
L

S∗ , h∗R =
hR(uR − SR)
S∗ − SR

·

The non-negativity of h∗L is then deduced from the upper bound in (4.25) and h∗R is non-negative as uR−SR ≤ 0
and S∗ ≤ SR.

If SL and SR are written as SL = uL − kL

hL
and SR = uR +

kR

hR
, as it was done in Theorem 4.3, one has:

S∗ − SR =
hRuR(SR − uR) + hL(u2

L − S2
L) + S2

Lh
M
L − PLR − SR(hR(SR − uR) + hL(uL − SL) + SLh

M
L )

hR(SR − uR) + hL(uL − SL) + SLhM
L

=
hR(uRSR − u2

R − S2
R + SRuR) + hL(u2

L − S2
L − SRuL + SRSL) + SL(SL − SR)hM

L − PLR

hR(SR − uR) + hL(uL − SL) + SLhM
L

· (D.1)

Now remark that

hR(SR − uR) + hL(uL − SL)
−SL

≥ hL(uL − SL)
−SL

≥ hM
L , (D.2)

what implies that S∗ − SR ≤ 0 as long as the numerator in the right hand side of (D.1) is non positive.
Some easy calculations show that this is the case when

hM
L ≤ hR(uR − SR)2 + hL(uL − SL)2 + hLuL(SR + 2SL − 2uL) − hLSLSR − PLR

−SL(SR − SL)
(D.3)

what completes the proof.

Acknowledgements. This research has been partially supported by the Spanish Government and FEDER through the
Research projects MTM2009-11923, MTM2009-07719, and by the Andalusian Government through the project P06-
RNM-01594. The numerical computations have been performed at the Laboratory of Numerical Methods of the University
of Málaga.

References

[1] R. Abgrall and S. Karni, A comment on the computation of non-conservative products. J. Comput. Phys. 229 (2010)
2759–2763.

[2] M.S. Altinaker, W.H. Graf and E. Hopfinger, Flow structure in turbidity currents. J. Hydr. Res. 34 (1996) 713–718.

[3] F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for
sources, in Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004).
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