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COMBINED A POSTERIORI MODELING-DISCRETIZATION ERROR
ESTIMATE FOR ELLIPTIC PROBLEMS WITH COMPLICATED INTERFACES

SERGEY I. REPIN!, TATIANA S. SAMROWSKI? AND STEFAN A. SAUTER?

Abstract. We consider linear elliptic problems with variable coefficients, which may sharply change
values and have a complex behavior in the domain. For these problems, a new combined discretization-
modeling strategy is suggested and studied. It uses a sequence of simplified models, approximating
the original one with increasing accuracy. Boundary value problems generated by these simplified
models are solved numerically, and the approximation and modeling errors are estimated by a posteriori
estimates of functional type. An efficient numerical strategy is based upon balancing the modeling and
discretization errors, which provides an economical way of finding an approximate solution with an
a priori given accuracy. Numerical tests demonstrate the reliability and efficiency of this combined
modeling-discretization method.
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1. INTRODUCTION

We consider elliptic boundary value problems with rather complex behavior of the coefficients. As a model
problem we choose the diffusion equation div (Agradu) = f in a two- or three-dimensional bounded domain
with homogeneous Dirichlet boundary conditions. From the physical point of view, this equation can be regarded
as a model of a stationary diffusion. Our focus is on diffusion matrices A which are piecewise smooth but allow
for discontinuities along interfaces with, possibly, very rough and complicated structure.

Certainly, there is a straightforward way to solve such problems which consists of solving numerically the
problem on a sufficiently fine mesh which resolves all geometric scales of the interfaces and eliminates the
quadrature errors arising from the generation of the stiffness matrix. In particular for three-dimensional problems
with rough interfaces this approach could by far exceed the capacity of modern computers. If solely a numerical
solution with a moderate guaranteed accuracy is required, the following strategy, typically, is preferable. It
consists of two basic steps. First, complicated interfaces which are separating the regions of smoothness of the
diffusion matrix are replaced by a simpler one and a new diffusion matrix is set up on the simplified regions by
some averaging technique. This simplified model is discretized and numerically solved on a rather coarse mesh
which only has to resolve the simplified regions. In the second step, the discretization and modeling errors are

Keywords and phrases. A posteriori error estimate, complicated diffusion coefficient, defeaturing of models, combined modeling
discretization adaptive strategy.

1 V.A. Steklov Institute of Mathematics, Russian Academy of Sciences, Fontanka 27, 191023 St. Petersburg, Russia.
repin@pdmi.ras.ru

2 Institut fiir Mathematik, Universitét Ziirich, 8057 Ziirich, Switzerland. tatiana.samrowski@math.uzh.ch; stas@math.uzh.ch

Article published by EDP Sciences © EDP Sciences, SMAI 2012


http://dx.doi.org/10.1051/m2an/2012007
http://www.esaim-m2an.org
http://www.edpsciences.org

1390 S. REPIN ET AL.

controlled with the help of a posteriori estimates. A guaranteed upper bound of the total error is determined as
the sum of discretization and modeling errors, which are both explicit and computable. If the bound exceeds the
given tolerance, then either the mesh should be refined (if the discretization error dominates) or the coefficient
behavior must be modeled more accurately (if the modeling error dominates). Hence, the solution process is a
combined modeling-discretization strategy for balancing the modeling error Ey,,q and the discretization error
FEldisc in an problem-adapted way.

Historically, the subject of a posteriori error estimation was mainly focused on the indication of discretization
errors (e.g., see [3,33], and references therein). In these cases, the error is measured by the quantity ||u — up||,
where u is the exact solution, uj is the Galerkin approximation, and || - || is a certain norm associated with the
problem (see, e.g., [2-6,12,15,32,33]).

Our method differs from these approaches and its derivation is based on our previous publications
(see [19-31]), in which estimates of the difference between the exact solution of boundary value problems
and arbitrary functions from the corresponding energy space has been derived by purely functional methods
without requiring specific information on the approximating subspace and the numerical method used. As a
result, the estimates contain no mesh dependent constants and are valid for any conforming approximation from
the respective energy space. In the papers [30,31], these properties have been used for the analysis of modeling
erTorS.

Also, we refer to [17], where a closely related approach has been presented. An approach, which is based on the
Prager-Synge hypercircle method, is presented in [10,11]. Also there, mesh dependent constants can be avoided
in the a posteriori error estimates. This approach is elegant when applied to certain non-conforming finite
element discretizations. On the other hand, it is limited to the complementary energy principle. In contrast our
approach is also applicable to problems that have no variational (primal/dual) energy formulation (see [21-23]).
Explicit and computable estimates of modeling errors related to dimension reduction models of diffusion type
problems have been derived in [28,29]. For more complicated plate models in the theory of linear elasticity,
such type estimates have been recently derived in [24]. The problem of hierarchical modeling and dimension
reduction has also been investigated in [7,32, 35].

The present paper is concerned with modeling errors of a different nature that arises due to simplification of
the interfaces and, in turn, of the coefficients. Our focus is on problems which have very complicated and irregular
interfaces separating the smooth regions of the diffusion matrix and, in general, cannot be solved efficiently
within the framework of homogenization theory because (a) we allow for non-periodic diffusion coefficient and
(b) allow in periodic cases that the number of “cells” (allowing again for complicated cell boundaries) is too
small that the approximation by a homogenized model does not lead to a satisfactory accuracy.

The structure of the paper is as follows. In Section 2, we present an adaptive, combined modeling-discretization
estimation strategy for a class of elliptic boundary value problems with variable coefficients. It is based upon
guaranteed upper bounds of the discretization and modeling errors, generated by simplified elliptic problems.
Section 3 is devoted to a detailed description of the corresponding error control procedure. In Section 4, results
of numerical tests are presented and discussed.

2. A POSTERIORI ERROR ESTIMATION FOR THE MODELING AND DISCRETIZATION ERROR

2.1. Setting
We consider the elliptic problem
—div(AVu)=f in 2,
u=0 on 0f2, (2.1)

where 2 is a bounded domain in R? (d = 2,3) with Lipschitz boundary d£2, A(x) belongs to the set R4 of
d x d matrices with real coefficients. We assume that

Ais symmetric ,  A(z) € L®(2, R™?Y) | fe L*(12),
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and
AP < A)¢-¢ < AI¢? forall¢ eRY andz € 2 ae., (2.2)

for some positive constants c1, ca. Henceforth, the norm in L?(§2) is denoted by |jul|; and “” stands for
the Euclidean scalar product of vectors. The notation L? (£2, R%) is used for the vector-valued functions with
components in L?(£2). Let M(x) € R¥*?. By

p(M) := esssupmax {|A (z)| : A (z) is an eigenvalue of M (z)} (2.3)
zesf?

we denote the supremum of the spectral radii. V; denotes the subspace of H'— functions vanishing on 9f2. Also
we use the space
H(2,div) := {qge L?(2,RY) |divqg € L? ()},

which is a Hilbert space endowed with the scalar product

P, Q)aiv = /(p~q + divp divq)

o)
and the norm ||q|laiv = (g, q)(lh/f For functions in L2 (2, ]Rd), we will also need the energy and complementary
energy Norms
ol = [ Aq-q and e = [ 47 (2.4)
Q Q

The generalized solution of (2.1) is the solution of the variational problem

Find u € V{ such that b(u,v) = / fo, Yvel, (2.5)
7}

where b (u, v) := [ AVu - Vo is the bilinear form generated by A. Under the above made assumptions the
0

generalized solution exists and is unique.

In many applied models (e.g., in the environmental modeling) it often happens that the coefficient a;;(x) has
a complicated behavior. Then, the problem becomes very difficult so that solving it by standard methods often
leads to a very high numerical cost. A possible way out consists of using some simplified model instead. If the
modeling errors due to the simplification of data can be explicitly evaluated and proved to be essentially lower
than the desired tolerance level, then this simplified model can be used instead of the original one. We show
that such a simplification (defeaturing) method is indeed efficient and in many cases it is possible to obtain a
solution with a practically acceptable accuracy with the help of a simplified model. For this purpose, we derive
an a posteriori error estimate of the total error (which includes both discretization and modeling errors) and
develop a solution strategy, based on the interplay between the choice of the model and the approximation
subspace.

2.2. Combined modeling-discretization adaptivity

The idea of the combined modeling-discretization adaptivity can be explained with the help of the diagram
exposed in Figure 1. Assume that the goal is to solve problem (2.1) with a guaranteed accuracy ¢ (measured in
terms of the energy norm). This can be achieved by computing an approximate solution of the “original” problem
on a sufficiently fine mesh. But the same goal can be also achieved by solving a simplified problem P, (solved
on a certain finite dimensional subspace V3, (Vi, C Vi, ... C Vi, )). The last column of Figure 1 corresponds
to the usual mesh adaptivity applied to the original problem. We see that the desired accuracy is achieved for
up,. However, the cost for its numerical solution can become very large. If, for instance, the mesh does not fully
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Discre- Model Pe, P, P-, P
tization
Vi Usll,hl Ueq, hy Ueg, hy U,
Vh2 usll, hg__) usg,hg__) U’Egl,hg Uhy
Vhs Uey, h3 Ueg, h3 Uei, h3 Uhg
Vha Uey, hy Ueg, hy Uez, ha Uhy
Vo U

F1cUrE 1. Combined adaptive modeling-discretization strategy.

resolve the interfaces the numerical quadrature for the generation of the system matrix becomes complicated
and costly. Moreover, the generation of an highly accurate resolution of zones with jumping coefficients by a
finite element mesh is a difficult numerical task and requires a large number of additional nodes (elements). As
a consequence the systems of linear equations (in particular, for 3D problems) becomes very large.

We consider another option. Assume that we need an approximate solution with rather moderate (engineering)
accuracy. In Figure 1, the solutions having such an accuracy belong to the shaded zone.

We start the modeling-discretization adaptivity with the coarsest model P., j, and the space V},,. By the com-
bined modeling-discretization error majorant (see Thm. 2.1), the total error associated with wu., p, is estimated
by the sum of the corresponding modeling error E! | and the discretization error Efﬁls’chl. As long as the target

accuracy has not been achieved (i.e., the overall error exceeds the given tolerance §) and E7! , < aEgils’Ch’ '
where « is a positive real number that balances values of approximation and modeling errors, the subspace V3,
should be refined, and we pass to V,. If E7} > « Ejils’chl, then an improved model should be chosen (we pass
to P.,). With this strategy, an “economical” way to find a desirable approximation u.,, p,, is marked by arrows.
It is worth mentioning that approximate solutions and their components (e.g., fluxes) computed on some steps

of the algorithm can further be used on subsequent steps as good initial guesses for iterative solvers.

2.3. Combined error majorant

Consider the following simplified problem P.: find u. € Vj such that

be (ue, v) = /AE Vu, - Vv = /fv for all v € Vj, (2.6)
Q Q

where A, € L>®(2, R%*4) is a certain approximation of A. We will always assume that for any e, the matrix
A, is positive definite and

AP < Ac(z)C - ¢ < 3 |¢)* forallz e 2 and (e R™ (2.7)
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Let 75, be a simplicial mesh with mesh size h and
={ue C’O | forany 7 € Ty, : u|, isan affine function}.

Further,
Sh,O =5,NVy and S;zL = Sy X S,

The corresponding Galerkin solution is defined by

Find uc p, € Sho such that b.(uep, vy) == / A:Vuep, - Vo, = / fop  forallv, € Sp . (2.8)

In order to estimate the discretization error |V (us—uc p)| A., Wwe use a posteriori error estimates of the functional
type (see [18-24,26,27,30,31] and the references therein). In our case, the estimate takes the form

IV (e = el < M (en sy, 8) = (1+ G| Ax Vo, y||A1+(1+ )Cnlldlverfln (2.9)

B

Here, y is an arbitrary vector-valued function from H(f2,div), 8 is an arbitrary positive number, and Cy, :=
;2 C%.,, where ci. is as in (2.7) and Cpy, is the Friedrichs constant for the domain £2, i.e.,

Crp:= sup lwlle :
weVo\{0} [Vwl|

Our goal is to deduce an upper bound of the error which also includes the error generated by the simplification
of the model.

Theorem 2.1. The total error is bounded from above by the sum

IV(u = uen)la < EGile + Eroas (2.10)
where EdlSC and E% 4 represent the discretization and modeling parts of the error, respectively, and are defined
and estimated as follows:

B = [V (ue = uen)lla < w1 Me(uen, y, ), (2.11)
mod = V(v — ue)lla < ke ( MG (e s y, B /fug h> ; (2.12)

where k3 =1+ p(A: — 1), K2 = Qi:’jl p(Ac + AZL —21), A, = AZYPAAZY? ) T is the identity matriz, p is

defined by (2.3), and k2 = pmin (see (2.17)) if Mg is positive.

Proof. By the triangle inequality, we obtain

IV (= e, )4 < V(e = ue,n)|a + IV (= we)lla = Efge + Enoa- (2.13)
We estimate the term th:f: = [|V(ue — ue,n)|la as follows:

(B5L) = 19 e — ue ), + / (A = A V(e = ue,n) - V(ue = te,n)
(]
= |V(ue — ue,n)|%, + /(/15 — DAYV (ue — ue,n) - AY? V(ue — uc p)
2
< (1 _|_p(/16 — I))HV(UE - Ue,h)”?‘la'
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Since the last norm is estimated by (2.9), we arrive at (2.11). To estimate the term Ef _,, we note that

mod?

0=>b(u — ueg, v) + (b — be) (ue, v), YveVy

and choose v = u — u.. Then,

(Brod)? = IV(u — u)|% = b(u — ue, u — ue) = (be — b)(ue, u — ue)
:/ e — A)Vue - V(u — ue).
Q
By the Cauchy-Schwarz inequality, we find that
1/2
IV (u — ue)|% < /(As — A) AN (A = A)Vue - Ve IV(u — ue)l|a

9]

Hence,

IV =)l < [ (4 = A (A = AV Tu,
2
= /(AE + AT = 2D APV, - ALYV < p (A + ATY - 20D ||V |fL
2

Further, by the Young inequality with an arbitrary g > 0, we obtain

Hvue”?qg:/f( — U, 1) /fueh—/Avus'v( — Ue,p) /fush

K
< B IVl + 5 IV — e )l + /fugh

For p > %, we have

2 2/~L
IVucl, < 2 IV @ —we) [, + 5225 [ Fuen (214)
02

Therefore,

|V<u—ua>||i<p<As+A;—2I><2:_1|V< —uenls, + 5 /f ) (2.15)

Finally, we estimate the first term of (2.15) by the error majorant and obtain for the modeling error estimate
from (2.9)

(Broa) =190 = wlla < 725 ple + 47" —21)( M (e, /fus h> (2.16)

Hence, EZ  , can be minimized with respect to 1 > 1/2. Easy calculations show that EZ _; has the unique local

minimum 1/2
f f Ue, h
2

M_z()(us,hv Y, ﬁ) ’

mod

T (2.17)

MU = Umin =

DN | =
e
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provided that M2 (uc 5, y, () is positive, otherwise

( ;Od)2§p<AE+A;1—2I)/fug,h,
0

which is also encompassed in (2.17) if we formally set pimin = +00. Now we obtain (2.12) by (2.16) and (2.17).
The estimate (2.10) follows from (2.13). O

Remark 2.2. Alternatively, we could have estimated the error |V (u —ue )| a directly by the error majorant.
However, the first term then contains the inverse A~! of the original matrix (instead of AZ!). This fact leads
to two essential drawbacks. First, computations related to the majorant with A would require complicated
integration procedures (especially if the problem contains fine structures). For this reason, it is much simpler
to find a suitable y and to evaluate the majorant of A. instead of A. Another point is that the estimate (2.10)
includes two meaningful quantities (discretization and modeling errors). They are explicitly estimated by (2.11)
and (2.12) what allows us to balance these errors with the help of an adaptive method described in Section 2.2.

Remark 2.3. From (2.10), it follows that

1/2

VF2
IV(u = uep)fa < (’ﬂ + = Ke) Ma(uen, y, B) + ke | | fuen : (2.18)
V2 ([

We note that the coefficient k. can be viewed as a measure of how accurately A. approximates A. In order to

obtain a converging algorithm the sequence of simplified interfaces and the corresponding averaging strategy

(used in the definition of A.) should be selected such that k. — 0 as € — 0. Since k. is defined as a supremum

over local quantities its behavior gives an information about the parts of {2, where A. should be improved. It

is easy to see that if A = A, then A, = AZ! = I, and k1 = 1, k. = 0. In this case, the term related to the

modeling error vanishes and the right-hand side of (2.10) is completely determined by the discretization error.
Qii

If A and A, are diagonal matrices, then A. = {\j;} is also diagonal and \j; = 2. In this case, we can easily

€
ag;

find the quantities

|aii () — aj; (z) |

2
p=1+p(de—I)=1+sup max @ (2.19)
g = 2
/ﬁ? =Ko p (/16 + A;l — 2]) = Ko sSup max (@i (z) — a (2)) . (2.20)

wen =L d  ay () ag; (x)

3. MODELING-DISCRETIZATION ADAPTIVITY AND A POSTERIORI ERROR ESTIMATION

3.1. Sequence of simplified models

Henceforth, we assume that the diffusion coefficients are piecewise constant, 2 is decomposed into connected
non overlapping subsets w;, 0 < i < ¢ (called “inclusions”). By H and v we denote the sets of all inclusions and
their interfaces, respectively, i.e.,

H:={w;: 0<i<q} and ~:= U{?w.
weH

For a hierarchical modeling we introduce a sequence of resolutions for the interfaces along the discontinuities of
the diffusion matrix.
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L
wo .
) ot }
a3 T3 E
- o=
(a0 5 AT, & ]
(a) Ho = {Q} (b) Ha (c) Ha

FIGURE 2. Example of the first three refinements.

Assumption 3.1. A sequence of resolutions ’F[}, j=0,1,...,J, for the inclusions from H (illustrated in Fig. 2)
satisfy the following conditions:

1. Ho={2};
2. 7—~{j = {&i c0<k< cjj} is a disjoint partitioning of (2, i.e.,
(a) all &7 € ’F{; are open subsets of (2,
v 2= U
DeH;
3. The final level Hy equals H or is a refinement of H, i.e.,
Vol eH; FweH: ' Cw.

Further we define simplified, ﬁl—piecewise constant coefficients A. as suitable averages of A. Forw! € H, the
subset B
Hy i={weH: lwnd' >0}

contains those (exact) inclusions which are influencing A. locally on &'. Furthermore, we denote by ©; € 7?[(;1
some fixed inclusion which satisfies

area (w;) = max {area (W) rwy € ﬁg)l} .

We also denote by #’F[@z the cardinality of 7—7@1. Some popular “averaging” strategies are then given by:

(1) Aclzt := Alz,, (value of the coefficient in the inclusion with the maximal area in the influence region);
#H
(2) Az = # Z Alw,, (arithmetic mean);
i=0
_ —1
#H@z
(3) Aclz == ( Wi)1> , (harmonic mean);
Mot 2o
(4) Az = % - A, (arithmetic integral mean);

-1
(5) Aclz == (ﬁ I A‘1> , (harmonic integral mean).
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Remark 3.2. As one could predict the strategy (1) (based on using the values of the inclusions with the
maximal area in the corresponding influence regions) is rather coarse and averaging (harmonic and arithmetic)
leads to better results (see Test 1.4 in Sect. 4.1).

Remark 3.3. Problems with fine periodical structures form a special class of problems with complicated coef-
ficients, which are usually considered within the framework of the homogenization theory. From the literature
(cf. [13], Chap. 8) it is known that for fine periodic structures in the one dimensional case, the best averaging
strategy is the harmonic integral mean. In the two dimensional case, proper averaging depends on the structure
of the matrix and solution of a boundary value problem on the cell (see [8,14,16]). In principle the numerical
strategy considered in this paper can be applied to periodic structures including the case, where the number of
cells is not large enough for the homogenized model to give a satisfactory accuracy. If the periodical structure
is fine then it is reasonable to use the corresponding homogenized problem but this is not the case we are
focused on.

3.2. Computation of the majorant

To estimate the errors ES{S}; and E¢_,, we need to evaluate the term M?%(ucp, y, 3) (¢f Thm. 2.1)
for a proper flux approximation y and a parameter . The questions, how to choose § and how to com-
pute the flux approximation y from the discrete solution wu., p, have been considered in the literature (see,
e.g., [18,19,22,25-27,34]). Below we briefly discuss the application to our case. In accordance with (2.10) any
choice of (8, y) C R x H (£2,div) in the error majorant results in an upper bound of the error. However, sharp
estimates require a proper choice of these quantities, which has to balance the extra computational cost with
the benefit of sharper estimates.

If A, A, f, and Cp, are known, then the squared majorant M?% (uc p, y, ) is a quadratic functional. Our
goal is to find some y;, € S7 and 3 € R such that M?% (uc p, ypn, B) is close to the minimum over y € H (£2,div)
and § € R. For the corresponding iterative algorithm, we introduce the following notation:

For every vertex & of 7, denote by P¢ := {7 € 7}, : { € T} the neighboring elements, by w¢ := |J 7 the

TEP:

patch of this vertex and define y}(LO) € S? by the patchwise flux averaging using the nodal condition

y () == ——

O Jwel S

AE Vug,h. (31)

Let b; denote the usual hat function for the vertices &;, 1 < j < N, of 7j,, and S; := span{(b;, 0), (0, b;)} C S3.

Algorithm 1 (global minimization of the error majorant).

iv (0
Set 4 (€) = 14 [, Ac Ve . and ) = Coldvn e

HAEVUE, h—Yp HA—l
€
Choose Vax-

For v =1 to vax do begin

ys) = argmin M3 (ue p, v, B7Y). (3.2)

ves?

) _ Cp ||diVy;(lV) + fh“n )
1A=V ue 1 — 5]y

end
Calculate M?%,(ue,p, y}(;’max)’ Bmax))

The numerical experiments in Section 4 shows that the choice vy,.x = 1 is sufficient for all considered cases.
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Algorithm 2 (local minimization of the error majorant).

Co ||divy”
Set y;(LO)(f) = ﬁ fwg A Vue p and pO = =2 ldivy, ?FO{hHQ .

HAEVUE, h—Y} HA—l
€
Choose Vmax and tmax.

For v =1 to vmax do begin

0 v—1
Set '71(\/) = y,i ),
For i =1 to tmax do begin
7(gz‘) _ 71(3_1)~

For j =1to N do begin
v; = argmin M (ue 5, vj(i_)l + v, 807D,
veS?

7 = ;.

end (3.3)

Ca |ldivy”+fulle
Set (v) _ C ) and (v) — 2 h .
Yn TN 5 |AcVue, h,*yff)HAi—l
end
Calculate M2, (ue p, y,(f‘“‘”"‘), [rmax)),

The numerical experiments in Section 4 shows that the choices vyax = 1 and tmax = 3 are sufficient for all
considered cases. Note that the global minimization requires the generation and solution of a linear system of
dimension 2/N. On the one hand, we expect that the arising computational cost is of the same order as the cost
for computing uc . On the other hand, the memory requirements are reduced in Algorithm 2 on the expense
of less sharp estimates.

4. NUMERICAL RESULTS

In this section, we demonstrate the performance of the combined modeling-discretization adaptive strategy
for the case of a linear diffusion problem with a discontinuous, non-homogeneous, piecewise constant diffusion
coefficient, which has rather complex interfaces separating its discontinuities and is represented by a symmetric,
non-diagonal matrix.

In the following experiments, we consider the domain £2 = (0, 1)? with an inclusion w; (cf. Fig. 3). We choose

Alpy, =21 and A, =1 (4.1)

and note that the exact structure of A can be resolved on the uniform mesh with A = 278,
The right-hand side of the diffusion equation is given by

flz,y)=2x(1—2)+2y (1 —vy). (4.2)

Remark 4.1. If one solves this diffusion problem with standard P; finite elements on a coarse mesh which does
not resolve the discontinuities in A, then the quadrature for setting up the stiffness matrix either becomes very
expensive (depending on the “roughness” of the interface) or prohibitive inaccurate. The numerical example
has mainly the purpose to illustrate the behavior and sharpness of our modeling-discretization error estimator
as well as the proper selection of the control parameters.
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FIGURE 4. Hierarchy of geometries of simplified models.

We construct a series of Models 1-3, in which Model 1 is the coarsest model and Model 4 is the finest one.
The corresponding diffusion matrices are denoted by A.,, A.,, and A.,, respectively. They are defined on the
corresponding resolution levels H; to Hs (c¢f. Fig. 4) by using the first simplification strategy from Section 3.1,
1.€.,

A,

ot = A
J

ot € H;, w;leﬁ@;, i=1,2,3,j=0,1. (4.3)

The exact structure of the first (coarsest) model A., can be resolved on the mesh with A = 272, in the case of
A., it is necessary to set h = 27% and in the case of A., we must have h = 275. Then the exact problem (2.1)
is replaced by its simplified counterparts associated with different resolution levels.

All numerical tests presented below were made on a SUN processor RX900 with 8 x Intel Xeon X7550
(8 Cores, 16 Threads) CPU, 2.0 GHz (Turbo: 2.4 GHz) and 512 GB main memory.

4.1. Test series 1

Below we present results of computer simulation that demonstrate the efficiency of the minimization strate-
gies (3.1)—(3.3) for this problem.

Test 1.1. We select Model 1, set h = 277, use a GMRES-Solver to find an approximate solution, and estimate
the total error by the combined modeling-discretization error majorant .# (cf. Sect. 3.2) defined here by

- - . 1/2
M = Edm’olc + (( modl)2 + ( m0(12)2) ) (44)
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where
1/2

€ K2\ 1/2 €
E"mod1 = (7) K‘EMQ(UEJM Y, ﬁ) and E"mod2 ‘= Re fue,h

9]

(¢f. (2.12)). The first term has been computed by the approximative (local) and global minimization strategies
(see Sect. 3.2).

The parameters of the local minimization algorithm are tyax and vmax. In our first test, we set vyax = 1 and
Vary tmax from 0 to 9. The first line of Table 1 corresponds to the case in which y is constructed by simple flux
averaging (3.1). Table 1 shows that tyax = 3 is enough for getting accurate values of .# and further iterations

(tmax = 6 t0 tmax = 9) do not significantly improve it. Analogous tests with the other models have shown similar
results.

TABLE 1. The majorant M with the corresponding parts and CPU required for optimization
of the flux function (Model 1 for vyax = 1).

Lmax ﬁl E;;::: IEnod1 1i10d2 M t’ (S)
0 1.92 | 0.0381 | 0.0073 | 0.0502 | 0.0987 1.6

3 0.57 | 0.0194 | 0.0062 | 0.0185 | 0.0389 | 6.85
6 0.52 | 0.0184 | 0.0062 | 0.0185 | 0.0379 | 15.41
9 0.50 | 0.0183 | 0.0062 | 0.0185 | 0.0378 | 20.75

TABLE 2. The error majorant and CPU time in seconds required for optimization of the flux
function in the case of Model 1 for tmax = 3.

Vmax Bumﬂx E;;::: ﬁ]od1 rEnod2 % t? (S)
1 0.57 | 0.0194 | 0.0062 | 0.0185 | 0.0389 | 6.85
2 0.51 | 0.0184 | 0.0062 | 0.0185 | 0.0379 | 14.45

3 0.48 | 0.0182 | 0.0062 | 0.0185 | 0.0377 | 22.57

Test 1.2. In this series of numerical experiments, we set tmax = 3 and increase the parameter vy.x. The
corresponding results are presented in Table 2. They demonstrate that increasing of vy« does not signifi-

cantly improve the majorant. For this reason by using the approximative (local) minimization strategy from
Algorithm 2, it is sufficient to choose tymax = 3 and vyax = 1.

Test 1.3. In this test, we analyze efficiency of the global minimization strategy. We solve the four selected

approximate models on the meshes with h = 274, 272 276, 277 and evaluate the error majorant by using of
the local (with tmax = 3 and vimax = 1) and global (with 1. = 1) minimization strategy. The corresponding
majorants are denoted by .#'°¢ and .##'°P respectively. Table 3 presents the results.
As expected the global strategy provides the exacter majorants and should be preferred if the com-
puter allows the treatment of large systems of equations. That is why for our subsequent tests, we
choose the global minimization strategy and solve the linear systems with a PARDISO-solver from
http://www.pardiso-project.org/download/academic.cgi.

Test 1.4. In order to test the sensitivity of the modeling error majorant

/
Isnod = (( IEnodl)z—’_( IEHOd2)2>1 i

for our simplified models, we investigate how it depends on the strategy used to define a simplified matrix A..
In the three experiment below, we use the simplification strategies (1), (4) and (5) presented in Section 3.1.
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TABLE 3. Comparison of the error majorant calculated by using different minimization strategies.

—log, h Model 1 Model 2 Model 3
%loc %glob L%IOC %glob ‘%loc %glob
4 0.0538 | 0.0421 | 0.0569 | 0.0400 - —
5 0.0389 | 0.0316 | 0.0359 | 0.0296 - —
6 0.0333 | 0.0281 | 0.0299 | 0.0266 | 0.0260 | 0.0247
7 0.0290 | 0.0260 | 0.0278 | 0.0250 | 0.0255 | 0.0240
0.04F T -
0.035 N
—&— Max. area value
0.03- —>»— Harm. int. mean value )
0.025 —®— Arithm. int. mean value f
0.02f N
€
Emod
0.015 _
0.01r _
0.005 = - .
10 10 10
€

FIGURE 5. Values of modeling errors for different simplification strategies.

From Figure 5 we conclude that E¢ _, = O(ke”), where € := ||A — A.||11, v € R is constant for the chosen
model hierarchy, and k£ € R only slightly depends on the type of simplification strategy. We see that in this
example different simplification strategies generate models with close values of modeling errors. Certainly
in other examples, e.g. with thin quasi-periodical structure, some particular way of simplification may be
preferable.

4.2. Test series 2

Now we present several tests that demonstrate the performance of the adaptive combined modeling-
discretization strategy.

Test 2.1. We assume now that the problem (2.1), (4.1)—(4.2) must be solved with a given tolerance ¢. Table 3
and Figure 6 show that, e.g., for 6 = 0.04 we do not need to solve the exact problem (2.1): indeed Model 2
provides such an accuracy if we set h = 274, If § = 0.025 then Model 2 needs h = 277 but Model 3 only
h = 276 so that using this model is preferable.
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0-07 T T T
e, h
\:IEdisc
L € a
0.06 Model 1 - EC
0.05r Model 2 E
= _
g 0.04r — Model 3 §
=
£
S 0.03 .
L
0.02F i
0.01f .
0
4 5 6 7 4 5 6 7 4 5 6 7

—Iog2 h

FI1GURE 6. Modeling and discretization error majorants for the approximate models.

no
€1,1/16 &n
Edisc > Emod
yes l
no no
€1,1/32 €1 €2,1/32 €9
ak disc >E mod E disc >E mod
yes | yes |
no no no
82,1/64 Eo 63,1/64 €3
a Bl >FE2 Ejie > B3, Use an exacter model ——
yes l yes l yes l

F1GURE 7. Combined modeling-discretization error minimization strategy.

One can find the shortest way to choose the optimal model in the previous test, by using the combined
modeling-discretization error minimization strategy from Section 2.2 presented in Figure 7:

Let § = 0.025. We choose, e.g., @ = 0.8 and start with Model 1 and h = 27, In this case we find that M > 6,
EZl L < ozEgils’Cl/w (cf. Fig. 6) and, therefore, should refine the mesh. For the mesh with h = 277, we obtain
E> > aEsils’Cl/m. Hence, we should pass to a more accurate Model 2. For Model 2 with h = 275, we have

,1/32 . . . .
E> <« th?sc / and, therefore, refine the mesh again. We continue this process unless the required accuracy
is achieved.
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FIcUurE 8. Combined modeling-discretization error majorants for Al,, = I, Al,, = 21 (left),
Aly, =417 (middle) and Al,, = 10T (right).
Model 1 Model 2 Model 3
3 5 3.2
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FicUure 9. Efficiency index for different models.

TABLE 4. Efficiency index of the total error majorants depending on number of vertices.

N Model 1, Al., Model 2, Al., Model 3, Al
21 41 107 21 41 107 21 41 107
128 1.98 | 2.21 | 2.40 - - - - - -
512 2.02 | 250 | 2.84 | 241 | 3.41 | 4.65 - - -
2048 2.27 | 2.04 | 2.03 | 2.54 | 2.90 | 3.11 - - -
8192 2.13 | 2.04 | 2.25 | 2.58 | 2.70 | 2.89 | 2.51 | 2.68 | 2.99
32768 | 2.23 | 2.08 | 2.30 | 2.66 | 2.60 | 2.29 | 2.21 | 2.14 | 2.39

Test 2.2. We solve each of these three models for the following three cases of the diffusion coefficients:

1. Algo =1 and A, =21I;
2. Alpy =1 and A, =41I;
3. Aly, =1 and A, =101,

1403
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and estimate the difference between the exact solution of (2.1) and numerical solutions of simplified problems
associated with different resolution levels (computed in accordance with Thm. 2.1). The results of these
numerical experiments are presented in Figure 8 below. Here, the solid lines correspond to the values of total
(modeling plus discretization) errors and the values of modeling errors are depicted below.

We see that an economical numerical strategy indeed requires switching from one model to another one.
For example, we see that in the case of

Alwy =1, Aloy, =41 and Aly, =1, Ao, =101.

Model 1 is more advantageous than Model 2 if one solves the diffusion problem using less then 8000 vertices.
Furthermore, if one has to achieve the target accuracy, e.g., § = 0.04 in the case of

A|w0 =1, A|w1 =101,

there is no sense to use Model 1 at all because the modeling error of Model 1 is already larger then the
target accuracy.

Test 2.3. To quantify the efficiency of the calculation of the majorant, we must compare .# from (4.4) with the
exact error e := ||V (u — u. p)||4. Since the exact solutions are unknown, we follow the commonly accepted
way and compute the so-called “reference” solutions uef on a mesh much finer than any of those used in
the error estimation tests. It turns out that for all approximate models the efficiency indices are mainly in
the interval [1.9, 2.5] (see Fig. 9 and Tab. 4).

4.3. Conclusions

We have presented a modeling-discretization strategy for elliptic boundary value problems with complicated
structure of coefficients in the main part of the differential operator, which is based on explicit evaluation of
discretization and modeling errors. Numerical tests exposed (and also many other tests that we have performed)
show that approximate solutions with a desirable (engineering) accuracy can often be obtained by using rather
coarse models (avoiding difficulties that arise if the exact (most detailed) resolution of the coefficients is used).
Finally, we note that similar arguments can be used to evaluate errors caused by incomplete knowledge of
coefficients (that may arise due to uncertainties in the problem data) or errors of numerical integration.
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