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BIFURCATIONS IN A MODULATION EQUATION FOR ALTERNANS
IN A CARDIAC FIBER
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Abstract. While alternans in a single cardiac cell appears through a simple period-doubling bifur-
cation, in extended tissue the exact nature of the bifurcation is unclear. In particular, the phase of
alternans can exhibit wave-like spatial dependence, either stationary or travelling, which is known
as discordant alternans. We study these phenomena in simple cardiac models through a modulation
equation proposed by Echebarria-Karma. As shown in our previous paper, the zero solution of their
equation may lose stability, as the pacing rate is increased, through either a Hopf or steady-state bifur-
cation. Which bifurcation occurs first depends on parameters in the equation, and for one critical case
both modes bifurcate together at a degenerate (codimension 2) bifurcation. For parameters close to
the degenerate case, we investigate the competition between modes, both numerically and analytically.
We find that at sufficiently rapid pacing (but assuming a 1:1 response is maintained), steady patterns
always emerge as the only stable solution. However, in the parameter range where Hopf bifurcation
occurs first, the evolution from periodic solution (just after the bifurcation) to the eventual standing
wave solution occurs through an interesting series of secondary bifurcations.
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1. Introduction

An abnormal cardiac rhythm known as alternans, a bifurcation of the action potential duration (APD) of
cardiac cells under rapid pacing stimuli, is believed to be one precursor of life-threatening ventricular fibrillation
and sudden cardiac death [5,6,16]. The APD in a single paced cell has been modelled by the following restitution
relationship [10,15]:

An+1 = f(DIn), (1.1)
i.e. the APD only depends on the previous diastolic interval (DI), where An denotes the nth APD. In such a
model alternans appears as a period-doubling bifurcation.

In extended tissue composed of multiple cardiac cells, the action potentials generated by the stimuli will
propagate in the tissue. Since the conduction velocity (CV) depends on the DI, the APD of the cell will also
be a function of the cell’s position. In the case of one dimension, suppose we have a cardiac fiber of length �,
which is stimulated periodically at its x = 0 end, say with period B . Assume each stimulus successfully
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generates an action potential that propagates down the fiber. Let An(x) be the duration of the nth action
potential at the position x along the fiber. If the pacing is rapid such that the basic cycle length B is below the
critical value Bcrit, alternans are expected. To analyze position-dependent APD’s, in [4] Echebarria and Karma
proposed the following as the basis for a multiscale expansion:

An(x) = Acrit − δA+ (−1)nan(x), (1.2)

where Acrit is the APD when pacing with period B = Bcrit, δA is the average shortening of APD resulting from
decreasing B below Bcrit and an(x) is the amplitude of alternans at the nth beat. It is assumed that an(x)
varies slowly from beat to beat; thus one may regard it as the discrete values of a smooth function a(x, t) of
smooth time t, i.e. an(x) = a(x, tn) where tn = n · B for n = 0, 1, 2, . . ., the times when stimuli are applied.
A weakly nonlinear modulation equation for a(x, t) was derived in [3] under approximation3, which after the
nondimensionalization with respect to time, is given by

∂ta = σa+ ξ2∂xxa− w∂xa− 1
Λ

∫ x

0

a(x′, t)dx′ − ga3, (1.3)

where σ is the bifurcation parameter, which is dimensionless and proportional to Bcrit −B; Λ, w, ξ are positive
parameters, each having the units of length, that are derived from the equations of the cardiac model; and the
nonlinear term −ga3 limits growth after the onset of linear instability. Neumann boundary conditions

∂xa(0, t) = 0, ∂xa(�, t) = 0 (1.4)

are imposed on (1.3). The trivial steady state solution a ≡ 0 of (1.3)–(1.4) loses its stability as σ increases. In
the previous paper [2], we analyzed the eigenvalues of the linear operator that maps a function a(x) to

ξ2a′′ − wa′ − 1
Λ

∫ x

0

a(x′)dx′, (1.5)

subject to Neumann boundary conditions, and we concluded that the first bifurcation we observe as σ increases
may be steady state bifurcation if Λ−1 < Λ−1

c or Hopf bifurcation otherwise, where the critical value Λ−1
c

depends on �, w and ξ. In this paper, extending our previous result, we simulate and analyze the bifurcation
of (1.3) when Λ−1 is close to Λ−1

c and hence competition of multiple modes appear.
The organization of this paper is the following: Section 2 reviews our previous result on the bifurcation from

a simple eigenvalue. Section 3 shows the simulated results for the dynamics of the solution for Λ−1 around Λ−1
c .

In Sections 4–5 we show that the dynamics of (1.3) may be derived from a reduced three dimensional flow. In
Section 6 we perform a bifurcation analysis and relate it to the simulations.

Incidentally, in a future paper we will show that for Λ−1 in a broader neighborhood of Λ−1
c , more complicated

dynamics is obtained, possibly including chaos.

2. Linear stability: bifurcation from a simple eigenvalue

We follow the nondimensionalization steps as in [2]: if we define dimensionless variables

Λ̄ = Λ · w3ξ−4, x̄ = x · w ξ−2, �̄ = � · w ξ−2, (2.1)

then the operator in (1.5) can be written as w2ξ−2 · La, where

La =
d2a

dx̄2
− da

dx̄
− Λ̄−1

∫ x̄

0

a(x̄′)dx̄′. (2.2)

3Equation (1.3) is rigorously valid only if the wave length of the solution a(x, t), which can be either a standing wave or travelling
wave, is much larger than ξ. See [4] for more detail.
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Figure 1. The evolution of the real parts of the first five eigenvalues Ω0,Ω1, . . . ,Ω4 of the
linear operator in (2.2) vs. Λ−1, assuming � = 6. All eigenvalues are real for Λ−1 sufficiently
small, but, except for Ω0, they become complex as Λ−1 increases. Λ−1

c ≈ 2.837 is the crossover
point such that if Λ−1 > Λ−1

c the eigenvalue which has largest real part, Ωmax, is complex.

And we rescale the time t and parameters σ and g

t̄ = t · w2ξ−2, σ̄ = σ · w−2ξ2, ḡ = g · w−2ξ2. (2.3)

In this notation, (1.3) may be rewritten as4

∂t̄a = σ̄a+ La− ḡa3. (2.4)

For convenience below we will omit all the bars in (2.2) and (2.4). The boundary conditions are

a′(0) = 0, a′(�) = 0, (2.5)

where � is the dimensionless length of the cardiac fiber.
Obviously a(x, t) ≡ 0 is a trivial solution to (1.3). When σ is small (including all negative values), the zero

solution is linearly stable. As σ increases to beyond some threshold, the zero solution loses its stability. To
investigate the bifurcation, we consider the eigenvalues of the linear operator (2.2). Suppose Ω0,Ω1,Ω2, . . . are
those eigenvalues and let Ωmax be the one having the largest real part. If σ + Re Ωmax < 0, the zero solution is
linearly stable; otherwise it is unstable. This bifurcation at σ = −Re Ωmax can be either steady state or Hopf,
depending on whether Ωmax is real or complex.

The dimensionless linear operator (2.2), together with the boundary conditions (2.5) has two parameters �
and Λ. In our previous paper [2], we found that for � sufficiently large, as Λ−1 varies, the eigenvalues of (2.2)
behave as illustrated in Figure 1. In the figure � = 6 and only the real parts of all eigenvalues are graphed
(Remark: In [2] we computed the eigenvalues asymptotically for large �). By the critical value of Λ−1, say Λ−1

c ,
as denoted in the graph, we mean the crossover point where the eigenvalue with largest real part Ωmax changes
from real to complex.

We observe that all eigenvalues lie in the left half of the complex plane, i.e. they all have negative real
parts. When Λ−1 < Λ−1

c , Ωmax = Ω0. Since Ω0 is real, as σ increases from 0, we will first encounter a
steady state bifurcation at σ = |Re Ωmax| = −Ω0, and as we compute below beyond the bifurcation point
the solution to equation (1.3) has a stable pattern of standing waves. On the other hand if Λ−1 > Λ−1

c , we
have Ωmax = Ω1,2, which is a complex pair and as σ increases from 0 we will encounter a Hopf bifurcation

4We could remove the factor ḡ by rescaling on the amplitude a(x, t), but little would be gained by this. In this paper, ḡ is fixed
at 40 if not specifically mentioned.
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Figure 2. Regions in parameter space where the solution of (1.3) exhibits different long-
term behavior, for Λ−1 near Λ−1

c when � = 6. There are four regions with the following
behaviors: (0) trivial zero steady state solution, (1) pure periodic solution, (2) mixed-mode
periodic solution and (3) standing wave solution. We also mark four points (a–d) in the graph,
which correspond to the simulations in Figure 3 (a–d). The vertical arrows will be useful for
the discussion below.

at σ = |Re Ωmax| = −Re Ω1, and at least for a small range of σ beyond the bifurcation point the solution has a
pattern of travelling wave5.

A calculation in [2] shows that for sufficiently large �, to the leading order, the dimensionless critical value
equals

Λ−1
c =

71 + 17
√

17
64

+ O(�−2). (2.6)

In [2] we discussed two specific models (see Tab. 5.1 in [2]), which show Λ−1 can be either larger or smaller
than Λ−1

c . For the two-current model [13], the dimensionless Λ−1 ≈ 48.4, while for a cable of the length in this
example, the dimensionless Λ−1

c ≈ 2.67. As expected a travelling pattern occurs. For the Noble model [14],
Λ−1 ≈ 0.23 while Λ−1

c ≈ 2.27. As expected a pattern of standing wave emerges. Values of Λ−1 between these
extremes, including values close to Λ−1

c , may be anticipated from other ionic models.
In the critical case, i.e. when Λ−1 = Λ−1

c , we have Ω0 = ReΩ1,2, both modes become unstable simultaneously.
In the next section we investigate numerically the behavior of the system near such a degenerate point.

3. Competition between modes near the critical point

In the following sections we fix the dimensionless length of the cardiac fiber to be � = 6 to illustrate the
dynamics. We find by computation that for � = 6, the critical point Λ−1

c ≈ 2.837.
Figure 2 illustrates simulation results for the modulation equation (1.3) when Λ−1 is near the critical

value Λ−1
c . Figure 3 shows four typical simulated solutions whose parameters correspond to points a-d in

Figure 2, which belong to regions (0–3) respectively. If (Λ−1, σ) lies in the quasitriangular region (3) in Fig-
ure 2, as in Case d, the stable solution of (1.3) is a steady pattern. How this steady pattern appears as σ is
increased (quasi-statically) depends on the value of Λ−1 (assumed fixed). For Λ−1 < Λ−1

c , as indicated by the
vertical arrow on the left in Figure 2, this steady solution appears through a single, simple bifurcation. However

5The instability can either be convective or absolute. In the limit � → ∞, the spectrum {Ωn} for n ≥ 1 is nearly continuous.
We have convective instability if the group velocity is nonzero, and absolute instability otherwise. See [4] for a more complete
discussion.
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Figure 3. Four typical simulations of the amplitude equation (2.4), with g = 40 fixed and
other parameters corresponding to the points a−d in Figure 2, and the initial condition is given
by a(x, 0) ≡ 0.1. The left column shows the graph of a(x, t) for t = 36, 37 and 38 (solid, dashed
and dash-dot). For case (a), the zero steady state, and case (d), the nonzero standing wave, the
difference among the three curves is negligible. The right column is the phase plane portrait,
after the transient, obtained by plotting a(x1, t) versus a(x2, t), where x1 = 4.5 and x2 = 5.1
are two fixed positions on the fiber.

if Λ−1 > Λ−1
c , as indicated by the arrow on the right in Figure 2, the evolution to a steady pattern proceeds

through several intermediate states. The first bifurcation is to a pure periodic solution (Case b), followed by
a secondary bifurcation to a mixed periodic/stationary solution (Case c), and finally bifurcation to the steady
solution.

Let us discuss further the two nonsteady cases (b and c). In both cases the solution has a travelling pattern,
as shown in the left column of Figure 3. Graphs in the right column in the figure clarify the difference between
Cases b and c. In this column fixed points x1 = 4.5 and x2 = 5.1 are chosen and a(x1, t) is plotted versus a(x2, t).
In Case b, the average of a(x, t) over time is nearly zero, while in Case c this average differs significantly from
zero.

To better understand the above behavior, consider the solution a(x, t) at a fixed point x1 = 4.5 as σ increases
and Λ−1 = 3.3, i.e., following the arrow on the right in Figure 2. Figure 4 shows how the quantity

max
t
a(x1, t) − min

t
a(x1, t) (3.1)
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Figure 4. The simulation result for the oscillation amplitude, maxt a(x1, t) − mint a(x1, t)
(dashed curve), and the average of a(x1, t) (solid curve) in one period for various values of σ
when Λ−1 = 3.3 and x1 = 4.5. The four labels refer to regions in Figure 2: (0) for σ < 3.14,
zero steady state solution, both amplitude and average are zero, (1) for 3.14 < σ < 3.32,
pure periodic solution, the amplitude is nonzero but the average is zero (to leading order),
(2) for 3.32 < σ < 3.49, mixed mode solution, both amplitude and average are nonzero, (3) for
σ > 3.49, standing wave, with no oscillation and nonzero average.

(dashed line) and the average
1
T

∫ T

0

a(x1, t) dt, (3.2)

where T is the period (solid line), vary with σ for 3 < σ < 3.7. In region (1), which we call the pure-periodic
region, the average of the solution is close to zero. By contrast, in region (2), although the solution continues
to oscillate, its average is nonzero. Finally, in region (3) the solution is steady (and equal to its average).

In the following sections we provide supporting theory for the above observation. In particular we shall see
that the transitions between region (1) and (2) and between (2) and (3) represent secondary bifurcations that
appear from unfolding the degenerate bifurcation for Λ−1 = Λ−1

c .

4. Reduction to a three dimensional system

We consider the case when the parameter Λ−1 exactly equals to the critical value Λ−1
c , so we have

Ω0 = Re Ω1,2 > Re Ω3,4 > . . . ,

which are all negative. For appropriate σ, we apply center-manifold theory [1,9] to show that the dynamics of
the solution to (1.3) is determined by the first three modes corresponding to Ω0,1,2.

First we rewrite the modulation equation (1.3) in a more convenient way. Define σ̃ = σ − σc, the increment
of σ away from its bifurcation value σc = −Ω0. In dimensionless variables, (1.3) can be rewritten as

∂ta = σ̃a+ L a− a3, (4.1)

where
L a = σca+ a′′ − a′ − Λ−1

c

∫ x

0

a(x′)dx′ (4.2)

and we have assumed the positive nonlinear coefficient g = 1 by a scaling a→ g−1/2 · a.
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Table 1. Values of the coefficients hj
i0i1i2

in system (4.14).

(i0, i1, i2) 3, 0, 0 2, 1, 0 2, 0, 1 1, 2, 0 1, 1, 1 1, 0, 2 0, 3, 0 0, 2, 1 0, 1, 2 0, 0, 3
h0

i0i1i2
0.168 −0.070 −0.346 0.081 0.010 0.582 0.004 −0.053 −0.021 −0.084

h1
i0i1i2

0.008 0.132 −0.152 −0.104 0.021 0.160 0.107 −0.228 0.262 −0.040
h2

i0i1i2
0.055 −0.024 −0.188 0.012 0.017 0.146 −0.015 0.023 0.012 0.096

The eigenvalues of L are Ω̃n = Ωn + σc = Ωn − Ω0 for n = 0, 1, 2, . . . Thus the first three eigenvalues are all
on the imaginary axis:

Ω̃0 = 0, Ω̃1,2 = ±iω, (4.3)

where ω > 0 is real. All other eigenvalues are in the left half plane. Let φ0(x) be the eigenfunction with
eigenvalue Ω̃0 and φ1(x) ± iφ2(x) be the eigenfunctions with eigenvalues Ω̃1,2, i.e.

L φ0 = 0 and L (φ1 ± iφ2) = ±iω(φ1 ± iφ2), (4.4)

where φ0, φ1 and φ2 are all real. Let Ec = span{φ0, φ1, φ2}, i.e. Ec is the central subspace. We study the
dynamics of a(x, t) through its projection onto the central subspace.

We regard the solution to (4.1) as a flow in the function space of L2 on the interval (0, �), i.e. square integrable
functions. By the central manifold theorem [1,9], there exists a central manifold M which is invariant under the
flow and tangent to the central space Ec, and there is also a neighborhood of zero in L2, denoted by U , with
the following property: if a(·, t) is a solution of (4.1) such that for all t > 0, a(·, t) ∈ U , then the distance from
a(·, t) to M converges to zero exponentially. In other words, to understand the long-time dynamics of (4.1)
near 0, it is sufficient to examine the flow on M. The flow on M is a three dimensional ODE, which can be
formulated by using the coordinates of Ec.

We first introduce the adjoint operator of L , which is defined as below:

L ∗a = σca+ a′′ + a′ − Λ−1
c

∫ �

x

a(x′)dx′, (4.5)

with boundary conditions
a′(0) + a(0) = a′(�) + a(�) = 0. (4.6)

The adjoint operator L ∗ has the same eigenvalues as L . Let ψ0, ψ1 ± iψ2 be the first three eigenfunctions
of L ∗, i.e.,

L ∗ψ0 = 0 and L ∗(ψ1 ± iψ2) = ∓iω · (ψ1 ± iψ2), (4.7)

where ψ0, ψ1 and ψ2 are all real.We may impose the following conditions of orthogonality:

〈ψi, φj〉 = δij , for i, j = 0, 1, 2, (4.8)

where the inner product 〈, 〉 is taken in the L2-sense.
Figure 5 shows a possible choice of φi(x) and ψi(x) for i = 0, 1, 2 by numerics. To obtain the eigenfunc-

tions φi’s, we discretized L to second order with space step dx = 0.003, where the derivatives are approximated
by finite differences and the integral term is approximated by trapezoidal rule. Then we use LAPACK to find the
eigenvalues of the resulting matrix, the first three of which are just 0, ±iω as in (4.4). We solve the linear system
L φ0 = 0 to find the eigenfunction φ0. We also solve the complex system L (φ1 + iφ2) = iω(φ1 + iφ2) by sepa-
rating into its real and imaginary parts. The eigenfunctions φi’s in Figure 5 are obtained after L2-normalization:∫ �

0 φ
2
0 dx = 1 and

∫ �

0 (φ2
1 +φ2

2) dx = 1. The eigenfunctions ψ0,1,2 of the adjoint operator are obtained in a similar
way. However, they are not normalized in L2, but by requiring orthogonality (4.8).
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Figure 5. Illustration of the eigenfunctions φ0,1,2 in (4.4) and ψ0,1,2 in (4.7), assuming the
length of the fiber � = 6. They satisfy the conditions of orthogonality (4.8).

We now parameterizeM byEc. Let H = {ψ0, ψ1, ψ2}⊥; then H is a complement ofEc in L2, i.e. L2 ∼= Ec⊕H.

Let π be the projection onto Ec with kernel H. Since M is tangent to Ec, for all u =
2∑

i=0

uiφi in Ec∩U , there is

a unique J(u) ∈ M such that πJ(u) = u. Moreover, the difference R(u) = J(u) − u belongs to H and satisfies

R(u) = O(|u|2). (4.9)

Suppose a(x, t) is a solution of (4.1) such that for all time a(·, t) ∈ M ∩ U . Let u(t) = πa(·, t). Of course
a(·, t) = J(u(t)). To derive an ODE for u(t), we calculate

u̇ = πȧ = σ̃u+ πL J(u) − π[J(u)3]

= σ̃u+ πL u+ πLR(u) − π(u3 + O(|u|4)).
(4.10)

Clearly πL u = L u for L u ∈ Ec since u ∈ Ec. Since R(u) ∈ H, for j = 0, 1, 2, we have 〈ψj ,LR(u)〉 =
〈L ∗ψj , R(u)〉 = 0, i.e. LR(u) ∈ H and hence πLR(u) = 0. Thus (4.10) can be rewritten as

u̇ = σ̃u+ L u− π(u3) + O(|u|4). (4.11)

Let us regard Ec, a subspace of L2, as a three-dimensional vector space with coordinates (u0, u1, u2) defined
by

u =
2∑

i=0

ui(t)φi(x).

To expand (4.11) in coordinates, we take the inner product of this equation with each ψj for j = 0, 1, 2. Since
u3 − π(u3) ∈ H = {ψ0, ψ1, ψ2}⊥, we conclude that 〈ψj , π(u3)〉 = 〈ψj , u

3〉 for j = 0, 1, 2. By (4.4) and (4.8), we
obtain the ODE system for each coordinate ui(t):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u̇0 = σ̃u0 −
〈
ψ0,

( 2∑
i=0

uiφi

)3
〉

+ O(|u|4),

u̇1 = σ̃u1 − ωu2 −
〈
ψ1,

( 2∑
i=0

uiφi

)3
〉

+ O(|u|4),

u̇2 = σ̃u2 + ωu1 −
〈
ψ2,

( 2∑
i=0

uiφi

)3
〉

+ O(|u|4).

(4.12)
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We expand
(

2∑
i=0

uiφi

)3

in each equation in (4.12), and the coefficient for each term ui0
0 u

i1
1 u

i2
2 , where i0 + i1 +

i2 = 3, in the j-th equation is given by

hj
i0i1i2

= 〈ψj , φ
i0
0 φ

i2
1 φ

i3
0 〉 =

∫ �

0

ψjφ
i0
0 φ

i2
1 φ

i3
0 dx. (4.13)

For instance, h1
2,1,0 = 〈ψ1, φ

2
0φ1〉 =

∫ �

0
ψ1φ

2
0φ1 dx. Choosing the functions φi’s and ψj ’s as in Figure 5, we

computed all the coefficients numerically, and these are in Table 1. Therefore the reduced system (4.12) can be
rewritten as the following: ⎧⎪⎪⎨⎪⎪⎩

u̇0 = σ̃u0 −
∑
h0

i0i1i2 u
i0
0 u

i1
1 u

i2
2 + h.o.t.,

u̇1 = σ̃u1 − ωu2 −
∑
h1

i0i1i2
ui0

0 u
i1
1 u

i2
2 + h.o.t.,

u̇2 = σ̃u2 + ωu1 −
∑
h2

i0i1i2 u
i0
0 u

i1
1 u

i2
2 + h.o.t.,

(4.14)

where the summations are over nonnegative integers i0, i1, i2 such that i0 + i1 + i2 = 3 and h.o.t. means higher
order terms. We rewrite (4.14) in the compact form

u̇ = σ̃u+ ω · Tu+H(u) + h.o.t., (4.15)

where

Tu =

⎛⎝ 0 0 0
0 0 −1
0 1 0

⎞⎠ ·
⎛⎝ u0

u1

u2

⎞⎠ (4.16)

and H(u) is the vector-valued homogeneous cubic polynomials of u0, u1, u2 in (4.14), including the minus sign.

5. Derivation of the normal form

5.1. Elimination of the nonresonant terms

To investigate the dynamics of the reduced system (4.14), following [9] we perform a polynomial transforma-
tion of coordinates to obtain its normal form. Let H3 be the space of homogeneous polynomials of degree 3. We
can regard H(u) in equation (4.15) as an element in the space H3 ⊕H3 ⊕H3 =

−→
H3, a basis of which is given by

{
u3

1, u
2
1u2, u

2
1u0, u1u

2
2, u1u2u0, u1u

2
0, u

3
2, u

2
2u0, u2u

2
0, u

3
0

} ⊗
⎧⎨⎩

⎛⎝ 1
0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠
⎫⎬⎭ . (5.1)

Consider a transformation of the form

(u0, u1, u2) = (v0, v1, v2) + P (v0, v1, v2), (5.2)

where P ∈ −→
H3 is a vector-valued homogeneous cubic polynomial. We substitute (5.2) into (4.15) to find

v̇ = σ̃v + ω · Tv +H(v) + adT (P )(v) + h.o.t. . (5.3)

Here the adjoint operator adT (·) :
−→
H3 → −→

H3 in above equation is defined by

adT (P )(v) = TP (v) − (DP ) · Tv, ∀P ∈ −→
H3, (5.4)
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Table 2. Values of the coefficients in the computed normal form (5.9).

a1 a2 b1 b2 c1 c2
0.083 −0.096 −0.130 −0.422 0.003 −0.090

where DP = (∂jPi) is the 3 × 3 matrix. We shall write H(v) = H1(v) + H2(v), where H1 ∈ Ker(adT )
and H2 ∈ Range(adT ). Then by an appropriate choice of P such that adT (P ) = −H2, the cubic terms
H(v) + adT (P )(v) will reduce to H1(v), i.e. the projection of the H(v) onto the kernel Ker(adT ).

To carry out this reduction, we let adT (·) defined in (5.4) act on each vector of the basis (5.1) and expand
the result in the same basis to find adT (·) has the following matrix

adT =

⎛⎝ S10 O O

O S10 −I10

O I10 S10

⎞⎠, (5.5)

where I10 is 10 dimensional identity matrix, O is the 10 × 10 zero matrix and

S10 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0 0 0 0 0
3 0 0 −2 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 2 0 0 0 0 −3 0 0 0
0 0 2 0 0 0 0 −2 0 0
0 0 0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.6)

Using Maple to investigate matrix (5.5), we find that adT is diagonalizable (in the complex sense) and its null
space is a six dimensional subspace of

−→
H3 spanned by the following eigenvectors:

⎛⎝ r2v0
0
0

⎞⎠ ,

⎛⎝ v3
0

0
0

⎞⎠ ,

⎛⎝ 0
r2v1
r2v2

⎞⎠ ,

⎛⎝ 0
v1v

2
0

v2v
2
0

⎞⎠ ,

⎛⎝ 0
−r2v2
r2v1

⎞⎠ ,

⎛⎝ 0
−v2v2

0

v1v
2
0

⎞⎠, (5.7)

where for convenience we defined r = r(v) =
√
v2
1 + v2

2 . On the other hand, the remaining twenty-four eigenvec-
tors of adT corresponding to nonzero eigenvalues span the range of adT and can therefore be transformed away
by an appropriate choice of P in (5.2). Thus the system (4.12) can be transformed to the following simplified
form: ⎧⎨⎩

v̇0 = σ̃v0 + a1r
2v0 + a2v

3
0 + h.o.t.,

v̇1 = σ̃v1 − ωv2 + b1r
2v1 + b2v1v

2
0 − c1r

2v2 − c2v2v
2
0 + h.o.t.,

v̇2 = σ̃v2 + ωv1 + b1r
2v2 + b2v2v

2
0 + c1r

2v1 + c2v1v
2
0 + h.o.t.

(5.8)

Using Maple to perform the computations, we find that the coefficients in Table 1 lead to a reduced system (5.8)
with the coefficients a1,2, b1,2 and c1,2 given in Table 2.
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5.2. Scaling of the remaining terms

We introduce polar coordinates such that v1 = r cos θ and v2 = r sin θ and for convenience we define z = v0.
Then the system (5.8) can be rewritten as the following⎧⎨⎩

ż = z(σ̃ + a1r
2 + a2z

2) + O(|r, z|4),
ṙ = r(σ̃ + b1r

2 + b2z
2) + O(|r, z|4),

θ̇ = ω + O(|r, z|2).
(5.9)

We study the reduced bifurcation problem in the variables r and z. By scaling these variables

z̃ = z · √−a2, r̃ = r ·
√
−b1, (5.10)

we may reduce this subsystem of (5.9) to the normal form{ d
dt z̃ = z̃(σ̃ −mr̃2 − z̃2) + O(|r̃, z̃|4),
d
dt r̃ = r̃(σ̃ − nz̃2 − r̃2) + O(|r̃, z̃|4),

(5.11)

where

m =
a1

b1
≈ −0.64, and n =

b2
a2

≈ 4.40. (5.12)

Since to lowest order θ̇ is a constant, an equilibrium of (5.11) with r �= 0 corresponds to a periodic solution
of (5.9).

6. Analysis of the bifurcation

In previous sections for the case Λ−1 = Λ−1
c exactly, we derived equation (5.9) for the restriction of (4.1)

to the center manifold. Let us show that equation (5.9) undergoes both a Hopf bifurcation and steady state
bifurcation as σ̃ passes through zero. Motivated by [8,12], we expect that interactions between the two modes
can lead to secondary bifurcations. Although later we shall specialize to the values of m and n in (5.12), any
values satisfying n > 1, mn < 1 yield qualitatively similar behavior (see Chap. 10, [7]).

Neglecting the h.o.t. in (5.11) and dropping the tildes on r̃, z̃, we obtain the system(
ż
ṙ

)
= f(z, r, σ̃) =

(
z(σ̃ −mr2 − z2)
r(σ̃ − nz2 − r2)

)
. (6.1)

Note that this system has Z2 ⊕ Z2 symmetry under the transformations z → −z and r → −r. This symmetry
helps in the enumeration of equilibria f(r, z, σ̃) = 0 of (6.1). Specifically, we have the four possible cases:

• the trivial zero solution (0, 0);
• a pure z-mode (±√

σ̃, 0), corresponding to a standing wave solution;
• a pure r-mode (0,

√
σ̃, corresponding to a periodic solution of (5.9);

• mixed mode which satisfies
σ̃ = mr2 + z2 = nz2 + r2. (6.2)

The pure z-mode and the pure r-mode appear only while σ̃ ≥ 0, i.e., both modes bifurcate supercritically.
Regarding possible mixed modes, given m and n as in (5.12) there is no value of σ̃ for which (6.2), a pair of
linear equation in r2 and z2, has real nonzero solutions. Checking the eigenvalues of df(z, r, σ̃), we find when
σ̃ < 0, the trivial zero solution is stable; and when σ̃ > 0, only the pure z-mode is stable. We summarize this
information in the schematic bifurcation diagram Figure 6, where a solid line means stable and dashed line
means unstable.
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0

r − mode (periodic)

z − mode (steady state)

zero mode

Figure 6. Schematic bifurcation diagram to the system (5.11), where the horizontal direction
denotes the value of σ̃ . The z-mode represents a symmetric pair of steady solutions of (5.9),
and the r-mode represents a periodic solution of (5.9). A solid line means the mode is stable,
and a dashed line means it is unstable.

More generally, we assume Λ−1 in (1.3) is close to, but not exactly equal to, Λ−1
c . As illustrated in Figure 1,

changing Λ−1 shifts both Ω0 and Re Ω1,2. To model these shifts we consider an unfolding [7,11] of (6.1) with
two auxiliary parameters μ1 and μ2:(

ż

ṙ

)
=

(
z(σ̃ − μ1 −mr2 − z2)

r(σ̃ − μ2 − nz2 − r2)

)
. (6.3)

Letting σ̂ = σ̃−μ2 and μ = μ1−μ2, we may eliminate an inessential parameter and rewrite (6.3) in the following
form: (

ż

ṙ

)
= F (z, r, σ̂, μ) =

(
(σ̂ − μ)z −mr2z − z3

σ̂r − nrz2 − r3

)
. (6.4)

As above, we can enumerate equilibria of (6.4) – solutions of F (z, r, σ̂, μ) = 0 – in four cases:
• the trivial zero solution (0, 0);
• for σ̂ > μ, a pure z-mode (±√

σ̂ − μ, 0), corresponding to a standing wave solution;
• for σ̂ > 0, a pure r-mode (0,

√
σ̂, corresponding to a periodic solution;

• a mixed mode which satisfies σ̂ = mr2 + z2 + μ = nz2 + r2.
The stability of the bifurcating solutions and the existence of (real) mixed-mode solutions depend on the sign

of μ.
Case I: μ < 0. In this case there are no mixed-mode solutions for any value of σ̂. Thus the equilibria of (6.4)

trace out a bifurcation diagram as sketched in Figure 7A. Exchange of stability suggests that the trivial solution
for σ̂ < μ and the z-mode for σ̂ > μ are stable and other solutions are unstable. This is easily confirmed from
the Jacobian of (6.4).

Case II: μ > 0. In this case, the mixed-mode equations may be solved to obtain

r2 =
(n− 1)σ̂ − nμ

mn− 1
, z2 =

(m− 1)σ̂ + μ

mn− 1
· (6.5)

In the range δ1 < σ̂ < δ2, where
δ1 =

μ

1 −m
and δ2 =

nμ

n− 1
, (6.6)

both right-hand-sides of (6.5) are positive. Thus (real) mixed-mode solutions exist for this range of σ̂. Since
z → 0 as σ̂ → δ+1 and r → 0 as σ̂ → δ−2 , the mixed-mode solution branch connects the pure r- and z-modes,
as sketched in Figure 7B. Exchange of stability suggests the stability assignments of the figure, and these are
readily verified. Speaking teleologically, we may say that the secondary bifurcations of the mixed-mode solution
are needed for the primary branches to have the same stability as in Figure 6 for large σ̂.

These bifurcation diagrams agree with the simulations. For fixed Λ−1 < Λ−1
c , when we increase σ from 0,

the simulations in Figure 2 show a steady state bifurcation from the trivial solution in region (0) to a standing
wave solution in region (3), which is the behavior in the bifurcation diagram Figure 7A. For fixed Λ−1 > Λ−1

c ,
when we increase σ from 0, Figure 2 shows we first encounter a bifurcation from the trivial solution in region (0)
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−2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

μ 0

z − mode (steady state)μ < 0

−1Λ < Λ cA: 

μ0

μ > 0

B: −1Λ >
−1Λ c

−1

mixed mode

r − mode (periodic) z − mode (steady state)

r − mode (periodic)

δδ1 2

Figure 7. Schematic bifurcation diagrams for two cases Λ−1 < Λ−1
c and Λ−1 > Λ−1

c , where
the horizontal direction denotes the value of σ̂. The solid line means the mode is stable and
the dashed line means it is unstable.

to a pure r-mode (periodic solution with zero average, to leading order) in region (1), and then it bifurcates to
a mixed mode (periodic solution with nonzero average) in region (2), finally it bifurcates to the pure z-mode
(standing wave solution) in region (3), all of which can be observed from Figure 7B as we increases σ̂.

The above data also provide a check on the accuracy of truncating all h.o.t. We can obtain δ1 and δ2 from
the simulation in Figure 4, where Λ−1 = 3.3. δ1 represents the increase in σ̂, or equivalently of σ, from the first
bifurcation (emergence of the pure r-mode) to the second bifurcation (the appearance of the mixed mode), and
similarly δ2 represents the increase in σ̂ or σ from the first bifurcation to the third. We find

δ1
∣∣
sim

≈ 3.32 − 3.14 = 0.18, δ2
∣∣
sim

≈ 3.49 − 3.14 = 0.35. (6.7)

On the other hand, since μ = μ1 − μ2, where to the leading order μ1 and μ2 are shifts of the threshold values
of σ̃ for the emergence of pure z-mode and r-mode respectively, we obtain μ = Re Ω1 −Ω0. By computation of
the eigenvalues, as shown in Figure 1, when Λ−1 = 3.3, we have μ ≈ 0.28. Thus the formula in (6.6) gives the
theoretical result:

δ1
∣∣
theo

=
μ

1 −m
≈ 0.17, δ2

∣∣
theo

=
nμ

n− 1
≈ 0.36 (6.8)

for the values of m and n in (5.12), which matches the simulated result (6.7) well.

7. Conclusion

We have studied the bifurcations of the modulation equation (1.3) for APD alternans propagating on a cardiac
fiber. We observed the solutions undergo either a steady state or a Hopf bifurcation; which occurs first depends
on one parameter in the equation, the dimensionless Λ−1 defined in (2.1). There is one special value Λ−1

c so
that we have a codimension 2 bifurcation for Λ−1 = Λ−1

c ; if Λ−1 is near Λ−1
c , there is competition between

multiple modes, which leads to the following: (1) for Λ−1 < Λ−1
c , the equation (1.3) has a simple steady state

bifurcation as we increase the bifurcation parameter σ; (2) for Λ−1 > Λ−1
c we will encounter a Hopf bifurcation

followed by secondary bifurcations and finally we will reach a standing wave solution for σ sufficiently large.
We also observe an interesting phenomenon: the amplitude of alternans at the stimulus site is quite different

for the steady state and the periodic solution. For instance, the pure z-mode (standing wave solution, as shown
in Fig. 3d) has an nonzero constant value at the stimulus site, but the pure r-mode solution (pure periodic, as
shown in Fig. 3b) almost has no amplitude of oscillation at x = 0. This can be seen from the eigenfunctions φ′js
(see Fig. 5A). The z-mode is approximately given by φ0 and the r-mode, by φ1,2. The different behavior between
φ0 and φ1,2 induces the great change of the amplitude of solution at x = 0.

Throughout this paper, the dimensionless cardiac fiber length is assumed to be �̄ = 6. However, the dynamical
behavior of (1.3) is similar for any �̄ greater than 6. In particular, the evolution of eigenvalues has the same
behavior as in Figure 1 when we increase Λ−1. For smaller �̄ the behavior of (1.3) is different, as we shall explore
in a future paper.
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Figure 8. Phase plane portraits of the solutions for various values of σ, assuming �̄ = 15 and
Λ̄−1 = 10, which is obtained by plotting a(y2, t) versus a(y1, t), where y1 = 0.75�̄ and y2 = 0.85�̄.

Incidentally, for the Noble model, dimensionless length �̄ = 6 corresponds to a physical length of 4.32 cm.
This conclusion follows from undoing the scalings �̄ = w�/ξ2 and using w = 0.045 cm and ξ = 0.18 cm (see [3]
for computation of w and ξ).

For Λ−1 in a broader neighborhood of Λ−1
c , possibly far away from Λ−1

c , (1.3) may have more complicated
dynamics, including chaos, which we will investigate in a future paper. Figure 8 shows the phase plane portraits
for three different values of σ with fixed �̄ = 15 and Λ̄−1 = 10. It appears case A is periodic, B is period doubled
and C is chaotic.
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