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WELL-POSEDNESS OF A THERMO-MECHANICAL MODEL
FOR SHAPE MEMORY ALLOYS UNDER TENSION
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Abstract. We present a model of the full thermo-mechanical evolution of a shape memory body
undergoing a uniaxial tensile stress. The well-posedness of the related quasi-static thermo-inelastic
problem is addressed by means of hysteresis operators techniques. As a by-product, details on a
time-discretization of the problem are provided.
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1. Introduction

Shape memory alloys (SMAs) belong to the general class of so-called smart materials: their ability to com-
pletely recover comparably large deformations has attracted an increasing attention in the last decades [15,16].
Within a suitable high-temperature range, SMAs are super-elastic, namely they fully recover mechanical de-
formations up to 5–8% (ordinary steels plasticize around 1%). At lower temperature regimes deformations are
permanent but can still be recovered by means of a thermal treatment (heating). This is the so-called shape
memory effect. Both these effect are nowadays exploited in a variety of different technological contexts rang-
ing from Aerospace, to Earthquake, to Biomechanical Engineering. New applications of SMAs are constantly
emerging. This fact triggers an intense research in the direction of the efficient description of the corresponding
material behavior.

The Engineering and Materials literature on SMAs models is vast and it is completely beyond our purposes
even to attempt a review. Indeed, SMA behavior has been investigated at all scales (microscopic, mesoscopic
with volume fractions, macroscopic) and by means of a full menagerie of modelling perspectives. Even restricting
to the realm of macroscopic-phenomenological models (which is the focus of this paper), the different modelling
options available are many and diversified and the corresponding cross-validation is still under assessment [6,18,
19,21,22,27,28,35–39,42,43]. On the contrary, the mathematical treatment of full thermo-mechanical problems
for SMAs is less developed for the only comprehensive results in this sense refer to either the original formulations
or modifications of the Frémond [19] and the Falk and Konopka [17,18] models. With no claim of completeness,
the reader is referred to [1,2,12–14,24,34,45] and the related references for a comprehensive collection of results.
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We shall instead focus here on the phenomenological model for polycrystalline materials originally advanced
by Souza et al. [40] and subsequently refined by Auricchio and Petrini [3–5] (the Souza-Auricchio model in the
following). This model shows some distinctive advantage with respect to former contributions in terms both
of simplicity (8 easily fitted material parameters are required for the full 3D thermo-mechanical description),
robustness with respect to discretizations, and ability to capture experimental evidence. These desirable fea-
tures are distinguishing the Souza-Auricchio model with respect to competitors and have recently attracted a
growing attention in the SMA Engineering community. The aim of this note is to progress the mathematical
understanding of the Souza-Auricchio model in the direction of the full thermo-mechanically coupled situation
of thermal and stress-induced transformations.

The isothermal case of the Souza-Auricchio has been already addressed from the mathematical and numerical-
theoretical viewpoints in [9] and [32,33], respectively, and some extension to even more detailed material be-
haviors has been advanced in [7,8,10,11]. As regards, the non-isothermal situation, one has to mention the
papers by Mielke et al. [30,31] where the temperature of the specimen is assumed to be changing in time, being
however given a-priori.

The first existence result of the full thermo-mechanical quasi-static evolution of a SMA body governed by the
Souza-Auricchio model has been provided by these authors in [26]. A crucial point of [26] is however the remark
that the original Souza-Auricchio modelling choice is not completely satisfactory from the thermodynamical
viewpoint. The main drawback of this fact is that the corresponding quasi-static thermo-inelastic evolution
PDE problem is generally ill-posed. The focus in [26] is hence on a slight modification of the original Souza-
Auricchio model which under reasonable restrictions on material parameters entails existence of strong solutions
by means of a space-approximation procedure. However, no uniqueness proof nor time-discretization procedure
are provided in [26].

This note continues the discussion on the fully thermo-mechanically coupled situation by advancing an alter-
native modification of the original Souza-Auricchio model. We reduce a priori our model to the uniaxial tensile
stress situation, namely we assume σ ≥ 0 (σ is the uniaxial tension) and we present a new thermodynamically
consistent model in Section 2. The corresponding PDE system given by the energy and momentum balance
(here in a quasi-stationary form) and the material constitutive relation is proved to admit a unique solution
under no restrictions on material parameters (Sect. 3). In particular, with respect to the model in [26], the
present framework appears to be more robust with respect to parameter changes. An interesting by-product
of our existence theory consists in the proof of the convergence of a suitable time-discretization procedure.
This in particular paves the way to some possible future numerical validation of the model. Finally, differently
from [26], we are here able to provide a continuous-dependence result.

Let us mention that the uniaxial tensile stress situation here considered is by far the reference test-case with
respect to experiments on SMA. In particular, our reduction assumption to tension tests completely covers the
situation of SMA wires (which are clearly not tested under compression). The extension of our results to the
compression case is not immediate and deserves some further consideration which we plan to develop elsewhere.

2. Thermo-mechanical model

2.1. SMA behavior

The amazing thermo-mechanical behavior of SMAs is commonly interpreted as the effect of an abrupt struc-
tural phase transition at the metallic lattice level between a highly symmetric crystallographic phase called
austenite (mostly cubic, predominant at higher temperatures) and less symmetric phases called martensites
(different variants due to symmetry breaking, energetically favorable at lower temperatures).

By cooling down a fully austenitic specimen below some critical temperature, the material undergoes a solid-
solid second order phase transformation toward a finely structured martensitic phase. This is the so-called
multi-variant martensite (also called twinned or non-oriented) which roughly corresponds to a balanced local
mixture of many martensitic variants. By keeping the temperature constant (and suitably low) and applying
an external stress, one specific martensitic variant turns out to be more favorable and the whole multi-variant
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martensite progressively transforms into the so-called single-variant martensite (detwinned, oriented). This fact
gives rise to a macroscopic deformation due to the specific asymmetry of the selected variant of martensite.
The latter phase transformation is generically assumed to be of the first order (no latent heat) and irreversible:
at sufficiently low temperatures, the single-variant martensite does not transform back to the multi-variant
martensite upon unloading.

2.2. Thermodynamic potentials

We assume that the SMA specimen has a constant mass density (normalized to 1) and that the reference
configuration can be assimilated to the interval Ω = [0, �]. The evolution will be completely described by means
of three state variables: the absolute temperature θ > 0, the tensile stress σ ≥ 0, and the local proportion of
single-variant martensite χ ∈ [0, 1].

We prescribe the Gibbs energy density function in the form [20,29]

G(θ, σ, χ) .= −c0θ(log θ − 1) − σ2

2E
− ε∗σχ +

L

θ∗
(θ − θ∗)χ +

Eh

2
χ2 + I[0,1](χ),

where c0 > 0 denotes the specific heat density, E > 0 stands for the elasticity modulus, Eh > 0 is a hardening
modulus for the proportion of oriented martensite χ, and ε∗ > 0 represents the maximal strain which is
obtainable by martensitic reorientation in the material. The function I[0,1] is the indicator function of the
interval [0, 1], namely I[0,1](r)

.= 0 if r ∈ [0, 1] and I[0,1](r)
.= ∞ elsewhere. The constant L > 0 is the

austenite-martensite latent heat density, and θ∗ > 0 is a reference temperature for the austenite-martensite
phase transition at zero stress.

The corresponding specific entropy s, strain ε, and specific internal energy U are given by

s
.= −∂G

∂θ
= c0 log θ − L

θ∗
χ, (2.1)

ε
.= −∂G

∂σ
=

σ

E
+ ε∗χ, (2.2)

U
.= θs + σε + G = c0θ +

σ2

2E
+

Eh

2
χ2 − Lχ + I[0,1](χ). (2.3)

2.3. Flow rule

The evolution of the material is assumed to show a dissipative character in the dynamic of the internal
variable χ. In particular, the dissipation is assumed to be rate-independent and in the form

ϕ(χt)
.= (σ∗ + L)(χt)+

with a constant σ∗ > 0 representing the switching stress between different martensite orientations. The evolution
of χ is hence driven by the flow rule

0 ∈ ∂χtϕ(χt) + ∂χG(θ, σ, χ) (2.4)

where the symbols ∂χt and ∂χ stand for the subdifferential in the sense of Convex Analysis with respect to the
indicated variables. By explicitly computing

∂χG = −ε∗σ +
L

θ∗
(θ − θ∗) + Ehχ + ∂I[0,1](χ),
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Figure 1. Admissible state set.

inclusion (2.4) can be equivalently rewritten in the form

ε∗σ − L

θ∗
(θ − θ∗) ∈ (σ∗ + L)H(χt) + Ehχ + ∂I[0,1](χ). (2.5)

Here, H is the maximal monotone Heaviside graph, namely H(r) .= r/|r| for r �= 0 and H(0) .= [0, 1].

2.4. Thermodynamic consistency

The above introduced model turns out to be consistent with the Second Law of Thermodynamics for the
pointwise validity of the Clausius-Duhem inequality

− Gt − θts − σtε − q
θx

θ
≥ 0 (2.6)

can be checked (at least formally). Let us choose from the very beginning that the heat flux q obeys Fourier’s
law q

.= −κθx (κ > 0) and note that the solution temperature θ turns out to be positive for all times (see (3.13)
below). Then, by using the constitutive relations (2.1)–(2.2), one directly computes that

−Gt − θts − σtε − q
θx

θ
= −∂G

∂θ
θt − ∂G

∂σ
σt − ∂G

∂χ
χt − θts − σtε − q

θx

θ

= −∂G

∂χ
χt + κ

θ2
x

θ

(2.4)
= ∂ϕ(χt)χt + κ

θ2
x

θ
= ϕ(χt) + κ

θ2
x

θ

θ>0≥ 0.

2.5. Admissible states

The material constitutive relation (2.5) entails some restriction on the admissible values for the state quan-
tities θ, σ, and χ. In particular, the set of admissible values is represented in Figure 1.

Owing to the presence of the constraint I[0,1](χ), we always have χ ∈ [0, 1]. For large temperatures, i.e.
θ > θ∗(1 + (ε∗σ)/L), the only admissible value for χ is 0 and all the material is in the austenitic phase. On the
contrary, for θ < (θ∗/L)(ε∗σ − σ∗ − Eh)+, the material is all in the oriented martensitic phase. In the interior
of the above-depicted tunnel-like region we have that χ is constant.

We shall assume from the very beginning that

Eh < L. (2.7)
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Figure 2. The temperature-phase dependence at a fixed high stress.
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Figure 3. The stress-phase dependence at a fixed high temperature.

Indeed, a direct inspection of the diagram in Figure 1 reveals that if this was not the case, a completely oriented
crystal at zero stress would not be admissible but, possibly, at a temperature of 0 K. This clearly contradicts
experience as single martensitic crystals may be observed at room temperature. Hence, let us stress that (2.7)
is not a restriction on the possible choice of material parameters (see the Introduction) but rather a binding
requirement for the model in order to make sense.

Figures 2 and 3 show the constitutive behavior at constant high stress and constant high temperature. The
critical stress and temperature values in Figures 2 and 3 are

θ1 =
θ∗
L

(ε∗σ − σ∗ − Eh), θ2 =
θ∗
L

(ε∗σ − σ∗), θ3 =
θ∗
L

(ε∗σ + L),

σ1 =
1
ε∗

(Lθ

θ∗
− L

)
, σ2 =

1
ε∗

(Lθ

θ∗
+ σ∗

)
, σ3 =

1
ε∗

(Lθ

θ∗
+ σ∗ + Eh

)
.

2.6. Reformulation of the constitutive relation

The crucial step in our analysis is the equivalent reformulation of the constitutive relation (2.5) in the form
of a hysteresis operator.

Recall that the play operator p[a,b] : [a, b] × W 1,1(0, T ) → W 1,1(0, T ) : (z0, v) �→ ξ = p[a,b][z0, v] associated
with a fixed interval [a, b] (the so-called characteristic interval) is defined by solving the variational inequality

⎧⎨
⎩

v(t) − ξ(t) ∈ [a, b] ∀t ∈ [0, T ],
v(0) − ξ(0) = z0,

ξ̇(t)(v(t) − ξ(t) − y) ≥ 0 for a.e. t, ∀y ∈ [a, b].
(2.8)
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The reader is referred to [12,25,44] for a reference on the mathematical theory of hysteresis and, in particular,
for a full discussion on the properties of the play operator.

By means of the above-mentioned operator, we briefly show that inclusion (2.5) is equivalent to

χ = Q

(
1

Eh
p[0,σ∗+L]

[
ε∗σ − L

θ∗
(θ − θ∗)

])
, (2.9)

where Q(z) = max{0, min{z, 1}} is the projection of R onto [0, 1] and p[0,σ∗+L] is the play operator with
characteristic interval [0, σ∗ + L]. Set v

.= ε∗σ − (L/θ∗)(θ− θ∗). Note that, for the sake of notational simplicity,
in relation (2.9) we have omitted the indication of the initial value

z0 = v(0) − χ(0) = ε∗σ(0) − (L/θ∗)(θ(0) − θ∗) − χ(0).

For any selection ξ ∈ Ehχ + ∂I[0,1](χ), we rewrite (2.5) equivalently as

χ = Q

(
1

Eh
ξ

)
, v − ξ ∈ [0, σ∗ + L], χt(v − ξ − y) ≥ 0 a.e. ∀y ∈ [0, σ∗ + L] . (2.10)

Formula (2.9) thus gives one particular solution of (2.5). On the other hand, relation (2.10) determines χ
uniquely: if (χ1, ξ1), (χ2, ξ2) both satisfy (2.10) for the same input v, then (χ1 − χ2)t(ξ1 − ξ2) ≤ 0 a.e., hence
(χ1 − χ2)t(χ1 − χ2) ≤ 0 a.e., and we conclude that χ1 = χ2. This proves the equivalence of (2.9) and (2.5).

2.7. Balance equations

The energy balance of the specimen reads

Ut + qx = σεt + r(θ, x, t).

The function r(θ, x, t) stands for some heat source and the explicit θ-dependence is intended to model the case
under which the temperature distribution influences the external thermal actions along the body.

Owing to the above positions, we can rewrite the energy balance in terms of the state variables in the form

c0θt − κθxx =

(
Lχ − Eh

2
χ2

)
t

+ ε∗σχt + r(θ, x, t).

Note that no time derivative of the constraint ∂tI[0,1](χ) appears in the latter. Indeed, all admissible trajectories
necessarily have finite internal energy. In particular, χ(t) ∈ [0, 1] for all times. Consequently, I[0,1](χ(t)) = 0
everywhere and ∂tI[0,1](χ) = 0.

Equation (2.7) has to be coupled with suitable boundary conditions. We shall ask here for no-flux conditions
on θ (homogeneous Neumann)

θx(0, t) = θx(�, t) = 0,

but note that other choices may be considered as well.
As for the momentum balance of the body we assume quasi-stationarity and reduce to

σx = 0, u(0, t) = 0, σ(�) = g(t)
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for the displacement u and some given traction g. In particular, we can immediately solve for σ(t) (space
homogeneous) and consider it to be a datum in the following. Note that there would be no particular intricacy
in considering the situation σx + b = 0 for some given body force b.

2.8. Notation

Henceforth we will use the symbol c for any positive constant depending on data only. The value c may
possibly change from line to line, even within the same chain of inequalities. In places we shall explicitly specify
dependencies of c upon data.

3. Well-posedness result

We shall use the symbols (·, ·) and ‖ · ‖ in order to indicate the usual scalar product and the corresponding
norm in L2(Ω). Moreover, ‖ · ‖E stands for the norm in the generic normed space E. Let us recall that all
constants c0, E, ε∗, θ∗, L, Eh are assumed to be positive and enlist our assumptions as follows.

Eh < L, (3.1)

σ ∈ H1(0, T ), σ ≥ 0, (3.2)

θ0 ∈ H1(Ω), θ0 > 0, χ0 ∈ [0, 1] a.e., (3.3)

r : R × Ω × [0, T ] → R is a Carathéodory function with

r(0, ·, ·) ∈ L2(Ω × (0, T )), (3.4)

∃Λr > 0 : |r(θ1, ·, ·) − r(θ2, ·, ·)| ≤ Λr|θ1 − θ2| a.e., ∀θ1, θ2 > 0, (3.5)

∃θr > 0 : r(θ, ·, ·) ≥ 0 a.e., ∀θ ≤ θr. (3.6)

Within the frame of Section 2.7, the regularity (3.2) of the tension σ follows at once if g ∈ H1(0, T ). Assump-
tion (3.6) expresses the fact that external heat sources should be prevented from cooling an already very cold
body. Here is our main result.

Theorem 3.1 (well-posedness). Assume (3.1)–(3.6). Then, there exists a unique pair (θ, χ) such that

θ ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), (3.7)

χ ∈ H1(0, T ; L2(Ω)) ∩ L∞(Ω × (0, T )), (3.8)

c0θt − κθxx =
(
Lχ − Eh

2
χ2
)

t
+ ε∗σχt + r(θ, ·, ·) a.e., (3.9)

(σ∗ + L)H(χt) + Ehχ + ∂I[0,1](χ) 
 ε∗σ − L

θ∗
(θ − θ∗) a.e., (3.10)

θx(0, t) = θx(�, t) = 0 for a.e. t ∈ (0, T ), (3.11)

θ(x, 0) = θ0(x), χ(x, 0) = χ0(x) for a.e. x ∈ Ω. (3.12)

Moreover, we have that

∃θ > 0 : θ(x, t) ≥ θ for all (x, t) ∈ Ω × [0, T ]. (3.13)

Finally, given two sets of data (σi, θ0i, χ0i, ri), i = 1, 2 fulfilling (3.2)–(3.6) with

‖σi‖H1(0,T ) + ‖θ0i‖H1(Ω) + ‖ri(0, ·, ·)‖L2(Ω×(0,T )) + Λri ≤ R
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for i = 1, 2 and some given R > 0, the corresponding solutions (θi, χi) satisfy the local Lipschitz continuous
dependence estimate

‖θ1 − θ2‖C([0,T ];L1(Ω)) + ‖χ1 − χ2‖C([0,T ];L1(Ω)) ≤ c(R)

(
‖θ01 − θ02‖L1(Ω) + ‖χ01 − χ02‖L1(Ω)

+ ‖σ1 − σ2‖L2(0,T ) + sup
|θ|≤c1(R)

‖r1(θ) − r2(θ)‖L1(Ω×(0,T ))

)

(3.14)

where c, c1 : (0,∞) → (0,∞) are suitable non-decreasing functions.

4. Proof of Theorem 3.1

4.1. Change of variables

The first step toward the proof of Theorem 3.1 consists in a useful reformulation of the original system (3.9)–
(3.10) in terms of the new variable

v
.= ε∗σ − L

θ∗
(θ − θ∗) (4.1)

which appears to be the input of the play operator in (2.9). The full quasi-static thermo-inelastic evolution
problem (3.9)–(3.12) can hence be conveniently rewritten in terms of the variables (v, χ) as

c0vt + f(χ)t − κvxx = −ε∗σχt + r(v, ·) a.e., (4.2)

χ = Q

(
1

Eh
p[0,σ∗+L][v]

)
.= F [χ0, v] a.e., (4.3)

vx(0, t) = vx(�, t) = 0 for a.e. t ∈ (0, T ), (4.4)

v(x, 0) = v0(x) .= ε∗σ(0) − L

θ∗
(θ0(x) − θ∗), χ(x, 0) = χ0(x) for a.e. x ∈ Ω, (4.5)

where we have set, for notational simplicity, c0
.= c0θ∗/L, κ

.= κθ∗/L and

f(χ) .= Lχ − Eh

2
χ2, r(v, x, t) .= −r

(
θ∗
L

(ε∗σ + L − v), x, t

)
+

c0θ∗
L

ε∗σt(t).

Let us explicitly remark that f is strongly monotone due to the fact that Eh < L (see (2.7)) and χ ∈ [0, 1].
We shall focus on proving well-posedness for the transformed problem (4.2)–(4.5) instead of the original

system (3.9)–(3.12). This new problem turns out to be almost a quasilinear parabolic equation with hysteresis
in the spirit of [44], Problem 1.1, p. 260. Still, we cannot directly reduce to the known theory as we have to
face the additional issues of an explicit time-dependence in the quasilinear hysteretic term as well as an extra
semilinear term r(v). Hence, even by moving essentially in the frame of [44], Section IX.1, p. 258, we are forced
to work out the few differences in the following.

Before moving on, we shall recall here some basic properties of F which are used below. The reader is referred
to the cited monographs for proofs and extensions.
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Lemma 4.1 (properties of F). Let the operator F : L2(Ω; W 1,1(0, T )) → L2(Ω; W 1,1(0, T )) be defined as
in (4.3). Then, given χ = F [χ0, v], we have that

χ(t) = F [χ(s), v(· + s)](t − s) ∀0 ≤ s ≤ t ≤ T, (4.6)

χtvt ≥ 0 a.e., (4.7)

F is strongly continuous in L2(Ω; C([0, T ])), (4.8)

F is bounded in H1(0, T ; L2(Ω)). (4.9)

4.2. Time-discretization

Assume now to be given a partition of [0, T ] which we identify with the corresponding vector τ = (τ1, . . . , τNτ )
of strictly positive time steps. Note that we indicate with superscripts the elements of a generic vector. In
particular τ j represents the j-th component of the vector τ (and not the j-th power of the scalar τ).

We let t0τ = 0 and recursively define

tiτ
.= ti−1

τ + τ i, Ii
τ

.= (ti−1
τ , tiτ ] for i = 1, . . . , Nτ ,

and we will use the symbol τ
.= maxi=1,...,Nτ τ i for the maximum time step (fineness of the partition). Moreover,

we will make use of the notation (u0
τ , . . . , uNτ

τ ) for generic vectors in ENτ +1 (E being a normed space) and let
uτ , uτ : [0, T ] → E be the corresponding piecewise affine and piecewise constant interpolants on the intervals Ii

τ ,
namely

uτ (0) = uτ (0) .= u0
τ ,

uτ (t) .= αi
τ (t)ui

τ + (1 − αi
τ (t))ui−1

τ , uτ (t) .= ui
τ

where αi
τ (t) .= (t − ti−1

τ )/τ i, for all t ∈ Ii
τ , i = 1, . . . , Nτ . Moreover, given (u0

τ , . . . , uNτ
τ ) we define its time-

derivative (δu1
τ , . . . , δuNτ

τ ) as δui
τ

.= (ui
τ − ui−1

τ )/τ i, i = 1, . . . , Nτ .
Our discretization of the system (4.2)–(4.5) reads as follows

c0δv
i
τ + δ(f(χ))i

τ − κvi
τ ,xx = −ε∗σi

τ δχi
τ + ri

τ (vi
τ ) a.e. in Ω, i = 1, . . . , Nτ , (4.10)

χi
τ = F [χ0, vτ ](tiτ ) a.e. in Ω, i = 1, . . . , Nτ , (4.11)

vi
τ ,x(0) = vi

τ ,x(�) = 0, i = 1, . . . , Nτ , (4.12)

v0
τ = v0, χ0

τ = χ0 a.e. in Ω. (4.13)

Here σi
τ

.= σ(tiτ ), δ(f(χ))i
τ = (f(χi

τ ) − f(χi−1
τ ))/τ i and, for all (v, x) ∈ R × Ω and i = 1, . . . , Nτ ,

ri
τ (v, x) .=

1
τ i

∫ ti
τ

ti−1
τ

r(v, x, t) dt.

The existence and uniqueness of a solution ((v0
τ , χ0

τ ), . . . , (vNτ
τ , χNτ

τ )) ∈ (H2(Ω) × L2(Ω))Nτ +1 of the latter
discrete problem can be recovered as in [44], p. 262. Indeed, by exploiting the so-called semigroup property (4.6),
relation (4.11) entails that

χi
τ = F [χi−1

τ , vτ (· + ti−1
τ )](τ i) .= F i

τ (vi
τ )

where F i
τ is bounded and continuous (see (4.8)–(4.9)). Hence, by collecting in the term ρi

τ all the quantities
which are know at time ti−1

τ , we can rewrite equation (4.10) as

c0v
i
τ − τ iκvi

τ ,xx + f(F i
τ (vi

τ )) + ε∗σi
τ F i

τ (vi
τ ) − τ iri

τ (vi
τ ) = ρi

τ . (4.14)
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Note that, by recalling the Lipschitz continuity of r (3.5), we have that, for all v1, v2 ∈ R,

|ri
τ (v1) − ri

τ (v2)| ≤ 1
τ i

∫ ti
τ

ti−1
τ

|r(v1) − r(v2)|

(4.1)
=

1
τ i

∫ ti
τ

ti−1
τ

∣∣∣∣r
(

θ∗
L

(ε∗σ + L − v1)
)
− r

(
θ∗
L

(ε∗σ + L − v2)
)∣∣∣∣ (3.5)

≤ Λr|v1 − v2|

where we have set Λr
.= Λrθ∗/L. Hence, relation (4.14) turns out to be an elliptic equation with a bounded

and continuous (in L2(Ω)) perturbation v �→ f(F i
τ (v)) + ε∗σi

τ F i
τ (v) and a Lipschitz continuous (in L2(Ω))

perturbation v �→ τ iri
τ (v). Finally, by possibly taking τ small, equation (4.14) admits at least a solution.

4.3. A priori estimates

The next step consists in obtaining classical parabolic estimates independently of τ . Let us test equa-
tion (4.10) by δvi

τ getting

c0‖δvi
τ‖2 + (δ(f(χ))i

τ , δvi
τ ) + κ(vi

τ ,x, δvi
τ ,x) = −ε∗σi

τ (δχi
τ , δvi

τ ) + (ri
τ (vi

τ ), δvi
τ ).

The terms (δ(f(χ))i
τ , δvi

τ ) and ε∗σi
τ (δχi

τ , δvi
τ ) are non-negative due to the piecewise monotonicity property

of (4.7) (see [44], (1.11)). Indeed, one has that

δ(f(χ))i
τ δvi

τ ≥ 0 a.e.

as f is non-decreasing (recall (3.1)) and we have that

δ(f(χ))i
τ δvi

τ =
δ(f(χ))i

τ

δχi
τ

δχi
τ δvi

τ

(4.7)

≥ 0 a.e. in {x ∈ Ω | δχi
τ �= 0}.

Then, by multiplying the above equation by τ i and taking the sum for i = 1, . . . , m ≤ Nτ , we obtain

m∑
i=1

c0τ
i‖δvi

τ‖2 +
κ

2
‖vm

τ ,x‖2 ≤ κ

2
‖v0,x‖2 +

m∑
i=1

τ iΛr‖vi
τ‖ ‖δvi

τ‖ +
m∑

i=1

τ i(ri
τ (0), δvi

τ )

≤ κ

2
‖v0,x‖2 +

c0

2

m∑
i=1

τ i‖δvi
τ‖2 +

1
c0

m∑
i=1

τ i‖ri
τ (0)‖2 +

Λ2
r

c0

m∑
i=1

τ i‖vi
τ‖2

≤ κ

2
‖v0,x‖2 +

c0

2

m∑
i=1

τ i‖δvi
τ‖2 +

1
c0

m∑
i=1

τ i‖ri
τ (0)‖2 +

Λ2
r

c0

m∑
i=1

τ i

⎛
⎝2‖v0‖2 + 2T

i∑
j=1

τ j‖δvj
τ‖2

⎞
⎠.

Now, by choosing τ sufficiently small in such a way that

Λ2
r

c0
τ 2T <

c0

2
,

we can apply the discrete Gronwall lemma and obtain that

‖vτ ‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω)) ≤ c (4.15)

where c depends on ‖v0,x‖ and
∑m

i=1 τ i‖ri
τ (0)‖2. Hence, by using the boundedness of F from (4.9) we also get

that
‖χτ‖H1(0,T ;L2(Ω))∩L∞(Ω×(0,T )) ≤ c. (4.16)
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Finally, by a comparison in equation (4.10) we have that

−κvτ ,xx = −c0vτ ,t − f(χ)τ ,t − ε∗στχτ ,t + rτ (vτ )

where the subscript t as in vτ ,t stands for the time derivative and the right-hand side is bounded in L2(Ω×(0, T ))
independently of τ . Hence, by standard elliptic regularity we have that

‖vτ‖L2(0,T ;H2(Ω)) ≤ c. (4.17)

4.4. Passage to the limit

Estimates (4.15)–(4.17) entail that, upon extracting some (non relabeled) subsequences we have that, as
τ → 0,

vτ → v strongly in L2(Ω; C([0, T ])) and weakly in H1(0, T ; L2(Ω)) ∩ L2(0, T ; H2(Ω)), (4.18)

vτ → v strongly in L∞(0, T ; L2(Ω)) and weakly in L2(0, T ; H2(Ω)), (4.19)

χτ → χ weakly in H1(0, T ; L2(Ω)). (4.20)

The strong convergence of vτ from (4.18) and the strong continuity of F in L2(Ω; C([0, T ])) (see (4.8)) entail
that, by letting ξτ (t) .= F [χ0, vτ ](t) (which is a priori not affine on the time-partition) we have that

ξτ → F [χ0, v] strongly in L2(Ω; C([0, T ])).

On the other hand, one has that ξτ (tiτ ) ≡ χτ (tiτ ) and ξτ is bounded in H1(0, T ; L2(Ω)) independently of τ
by (4.9). It is hence a standard matter to conclude that

χτ → F [χ0, v] strongly in L2(Ω; C([0, T ])). (4.21)

The boundary and initial conditions (4.4)–(4.5) directly pass to the limit. As for taking the limit in the
equation

c0vτ ,t + f(χ)τ ,t − κ vτ ,xx = −ε∗στ χτ ,t + rτ (vτ )
we just recall that rτ (vτ ) → r(v) strongly in L2(Ω× (0, T )) [41], Lemma 7.1, and work out the term f(χ)τ ,t as

f(χ)τ ,t = f ′(ξτ )χτ ,t = f ′(χτ )χτ ,t + (f ′(ξτ ) − f ′(χτ ))χτ ,t

where ξi
τ lies on the segment (in L2(Ω)) from χi−1

τ to χi
τ . As f ′ is Lipschitz continuous with constant Eh,

the convergence for χτ in (4.21) entails that f ′(χτ )χτ ,t → f ′(χ)χt weakly in L2(Ω × (0, T )) (indeed, f ′(χτ )
remain uniformly bounded in L∞(Ω× (0, T )), f ′(χτ ) → f ′(χ) strongly, and χτ ,t → χt weakly in L2(Ω× (0, T )))
whereas

‖(f ′(ξτ ) − f ′(χτ ))χτ ,t‖L2(Ω×(0,T )) ≤ Ehτ‖χτ ,t‖L2(Ω×(0,T )) → 0.

Finally, we have proved that f(χ)τ ,t → f ′(χ)χt = f(χ)t weakly in L2(Ω × (0, T )) and we are done.

4.5. Uniqueness

Let us start by recalling a crucial tool from [23].

Lemma 4.2 (Hilpert’s inequality). Let v1, v2 ∈ W 1,1(0, T ) and z01, z02 ∈ [a, b] be given, ξi = p[a,b][z0i, vi],
i = 1, 2. Then for every nondecreasing Lipschitz continuous function h : R → R we have

d
dt

(
h(ξ1) − h(ξ2)

)
sign(v1 − v2) ≥ d

dt
|h(ξ1) − h(ξ2)| a.e.
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Proof. We have by the very definition (2.8) of play operator that

ξ1,t

(
(v1 − v2) − (ξ1 − ξ2)

) ≥ 0 a.e.,

ξ2,t

(
(v2 − v1) − (ξ2 − ξ1)

) ≥ 0 a.e.

Assume for instance that sign(v1(t) − v2(t)) > sign(ξ1(t) − ξ2(t)). Then v1(t) − v2(t) > ξ1(t) − ξ2(t) and
ξ1,t(t) ≥ 0, ξ2,t(t) ≤ 0. Consequently,

d
dt

h(ξ1)
(
sign(v1 − v2) − sign(ξ1 − ξ2)

) ≥ 0 a.e.,

d
dt

h(ξ2)
(
sign(v1 − v2) − sign(ξ1 − ξ2)

) ≤ 0 a.e.

and the assertion follows. �

Let us now assume to be given two strong solutions (v1, χ1) and (v2, χ2) of the system (4.2)–(4.5). Then,
take the difference of the respective equations (4.2) and denote by ṽ

.= v1 − v2, χ̃
.= χ1 −χ2, f̃

.= f(χ1)− f(χ2),
and r̃

.= r(v1) − r(v2), getting
c0ṽt + f̃t − κṽxx = −ε∗σχ̃t + r̃.

By testing the above equation by sign(ṽ) and using (ṽxx, sign(ṽ)) ≤ 0 and Lemma 4.2 along with the choice

ξ �→ h(ξ) .= f(Q(ξ/Eh)) ≡ f(χ)

we have that

c0
d
dt

‖ṽ‖L1(Ω) +
d
dt

‖f̃‖L1(Ω) ≤ −ε∗σ
(
χ̃t, sign(ṽ)

)
+ Λr‖ṽ‖L1(Ω) a.e. in time. (4.22)

The first term in the above right-hand side is to be handled again by Lemma 4.2 by choosing

ξ �→ h(ξ) .= ε∗Q(ξ/Eh) ≡ ε∗χ

(note that for both choices (here and before (4.22)), the function h is increasing and Lipschitz continuous) and
using σ ≥ 0 as

−ε∗σ
(
χ̃t, sign(ṽ)

) ≤ −ε∗σ
d
dt

‖χ̃‖L1(Ω).

Hence, by taking the integral of (4.22) on (0, t) we have that

c0‖ṽ(t)‖L1(Ω) + ‖f̃(t)‖L1(Ω) +
∫ t

0

ε∗σ
d
dt

‖χ̃‖L1(Ω) ≤ Λr

∫ t

0

‖ṽ‖L1(Ω).

Now, from assumption (3.1) there exists ρ > 0 such that

∀χ ∈ [0, 1] : f ′(χ) ≥ min
x∈[0,1]

f ′(x) = min
χ∈[0,1]

(L − Ehx) = L − Eh ≥ ρ.

Eventually, by integrating by parts we have that

c0‖ṽ(t)‖L1(Ω) + ρ‖χ̃(t)‖L1(Ω) + ε∗σ(t)‖χ̃(t)‖L1(Ω) ≤
∫ t

0

ε∗σt‖χ̃‖L1(Ω) + Λr

∫ t

0

‖ṽ‖L1(Ω)

and ṽ = χ̃ = 0 follows by Gronwall.
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4.6. Continuous dependence

The uniqueness proof above can be further specified in order to provide a local Lipschitz continuous de-
pendence estimate which is equivalent to (3.14). Let (σi, ri, θ0i, χ0i), i = 1, 2, be two sets of data fulfilling
assumptions (3.3)–(3.5). In particular, let

‖σi‖H1(0,T ) + ‖θ0i‖H1(Ω) + ‖ri(0, ·, ·)‖L2(Ω×(0,T )) + Λri ≤ R

for some R > 0 and i = 1, 2. Correspondingly define v0i and ri as above and let (vi, χi) be the solution of the
system (4.2)–(4.5) for data (σi, ri, v0i, χ0i). Again, we shorten notations as ṽ

.= v1−v2, χ̃
.= χ1−χ2, σ̃

.= σ1−σ2,
f̃

.= f(χ1) − f(χ2), and r̃
.= r1(v1) − r2(v2). By taking the difference between relation (4.2) written for i = 1

and the same relation for i = 2, testing it on sign(ṽ), and exploiting Lemma 4.2 exactly as in Section 4.5 we get
that

c0
d
dt

‖ṽ‖L1(Ω) +
d
dt

‖f̃‖L1(Ω) + ε∗σ1
d
dt

‖χ̃‖L1(Ω) ≤ −ε∗σ̃(χ2,t, sign(ṽ)) + (r̃, sign(ṽ)) a.e.

Upon integrating in time, the above left-hand side is to be handled as in Section 4.5. As for the right-hand side
we argue as follows.

−
∫ t

0

ε∗σ̃(χ2,t, sign(ṽ)) +
∫ t

0

(r̃, sign(ṽ)) ≤ ε∗‖σ̃‖L2(0,T )‖χ2,t‖L2(0,T ;L1(Ω))

+ ‖r1(v1) − r2(v1)‖L1(Ω×(0,T )) + Λr2

∫ t

0

‖ṽ‖L1(Ω).

Note that χ2,t is bounded in L2(0, T ; L1(Ω)) in terms of data. Moreover, from estimate (4.15),

‖vi‖L∞(Ω×(0,T )) ≤ c(v0i, ri(0, ·), Λri
) .= c1.

Hence, by Gronwall’s lemma we get that

‖ṽ‖C([0,T ];L1(Ω)) + ‖χ̃‖C([0,T ];L1(Ω)) ≤ c(v0i, ri(0, ·), Λri , σi)

(
‖ṽ(0)‖L1(Ω) + ‖χ̃(0)‖L1(Ω)

+ ‖σ̃‖L2(0,T ) + sup
|v|≤c1

‖r1(v) − r2(v)‖L1(Ω×(0,T ))

)
.

It now suffices to translate the latter back into the original variables (θ, χ) in order to get the local Lipschitz
continuity estimate (3.14).

4.7. Positivity of the temperature

Let us complete the proof of Theorem 3.1 by providing the strictly positive lower bound for the temperature
in (3.13). To this end, by recalling (3.6), we set

θ
.= min

{
min θ0, θr,

θ∗
L

(L − Eh)
}

,

test the equation for θ (3.9) by −(θ − θ)− .= min{θ − θ, 0}, and integrate in time getting

c0

2
‖(θ − θ)−(t)‖2 + κ

∫ t

0

‖(θ − θ)−x ‖2 = −
∫ t

0

(f ′(χ)χt + ε∗σχt, (θ − θ)−) −
∫ t

0

(r(θ), (θ − θ)−)

where again f(χ) = Lχ − Ehχ2/2.
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We aim at showing that the above right-hand side is indeed non-positive. In fact, the term containing r is
non-positive due to assumption (3.6). Hence, as f ′(χ) + ε∗σ > 0 almost everywhere, we have that

−
∫ t

0

(f ′(χ)χt + ε∗σχt, (θ − θ)−) −
∫ t

0

(r(θ), (θ − θ)−) ≤ −
∫∫

{χt≤0}
(f ′(χ)χt + ε∗σχt)(θ − θ)−.

This last integrand differs from 0 only for θ < θ ≤ θ∗(L − Eh)/L. On the other hand, by inspecting Figure 1
(or, more precisely, by analyzing the constitutive relation (2.5)) one realizes that(

θ <
θ∗
L

(L − Eh), χt ≤ 0
)

=⇒ χ ≡ 1.

As the set {χt < 0} ∩ {χ = 1} has clearly zero measure, we conclude that

−
∫ t

0

(f ′(χ)χt + ε∗σχt, (θ − θ)−) ≤ 0

and the assertion follows from the fact that (θ − θ)− = 0.
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the GAČR Grant P201/10/2315 are gratefully acknowledged.

References

[1] T. Aiki, A model of 3D shape memory alloy materials. J. Math. Soc. Jpn. 57 (2005) 903–933.
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