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MIXED APPROXIMATION OF EIGENVALUE PROBLEMS:
A SUPERCONVERGENCE RESULT ∗

Francesca Gardini
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Abstract. We state a superconvergence result for the lowest order Raviart-Thomas approximation
of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed ap-
proximation of Laplace problem; here we introduce a new proof, since the one given for the source
problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical ex-
periments confirm the superconvergence property and suggest that it also holds for the lowest order
Brezzi-Douglas-Marini approximation.
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Introduction

This paper deals with a superconvergence result for mixed approximation of eigenvalue problems. It is
well-known that a superconvergence property holds for the mixed approximation of Laplace problem (see [9]).
Nevertheless, the proof given by Brezzi and Fortin [9] cannot be generalized in a easy way to eigenvalue problems.
Indeed, the key point of the proof strongly relies on the Galerkin orthogonality, which holds for the source
problem but not for the eigenvalue one.

In order to prove the superconvergence property we will use the equivalence between the lowest order
Raviart-Thomas (RT0) approximation of Laplace eigenproblem with Neumann boundary conditions and the
non-conforming piecewise linear Crouzeix-Raviart approximation (see [4]). We will also make use of a super-
convergence result proved by Durán et al. in [11] for Laplace eigenproblem with Dirichlet boundary conditions.

An outline of the paper is as follows. Section 2 is devoted to the mathematical formulation of the model
eigenvalue problem and to its mixed Raviart-Thomas and Brezzi-Douglas-Marini approximation. In Section 3
we recall the superconvergence result which holds for the source problem and we highlight the difficulties which
arise changing from source to eigenvalue problem. In Section 4 we prove the superconvergence property by
using the equivalence with a non-conforming approximation. Finally, in Section 5 we report the results of some
numerical experiments which confirm the superconvergence property. Furthermore, numerical computations
suggest that the superconvergence property holds for the lowest order Brezzi-Douglas-Marini (BDM1) space as
well.
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1. Statement of the problem and its discretization

Let Ω ⊂ R
d (d = 2, 3) be a simply connected polygonal or polyhedral domain. We consider the following

eigenvalue problem:

Find λ ∈ R s.t. there exists ϕ �= 0:{ −Δϕ = λϕ in Ω
∂ϕ

∂n
= 0 on ∂Ω,

(1.1)

where n denotes the outward normal unit vector.
For the sake of simplicity we shall develop the analysis in two dimensions, being the extension to three

dimensions straightforward.
We shall use the standard notation for the Sobolev spaces Hm(Ω), their norms ‖ · ‖m, and seminorms | · |m

(see [1]). As usual we denote by (·, ·) the L2-inner product.
Introducing σ = ∇ϕ, we obtain the usual mixed formulation of problem (1.1) which in weak form is given by

Find λ ∈ R s.t. there exists (σ, ϕ) ∈ H0(div,Ω) × L2
0(Ω), with ϕ �= 0:{

(σ, τ ) + (div τ , ϕ) = 0 ∀ τ ∈ H0(div,Ω)
(div σ, ψ) = −λ(ϕ, ψ) ∀ψ ∈ L2

0(Ω),
(1.2)

where L2
0(Ω) is the space consisting of square Lebesgue-integrable functions having zero mean value and

H0(div,Ω) =
{
v ∈ L2(Ω)2 : div v ∈ L2(Ω) and v · n = 0 on ∂Ω

}
is endowed with the usual norm ‖v‖2

div = ‖v‖2
0 + ‖ div v‖2

0. Here and thereafter conditions of the type
v = 0 on ∂Ω are to be understood in the sense of traces (see [16]).

It is well-known that problem (1.2) admits a countable set of real and positive eigenvalues, which can be
ordered in an increasing divergent sequence and the corresponding eigenfunctions give rise to an orthonormal
basis of L2(Ω)2. Moreover each eigenspace is finite dimensional. Finally, due to regularity results (see [15]),
there exists a constant s > 1/2 (depending on Ω), such that (σ, ϕ) belongs to the space Hs(Ω)2 × H1+s(Ω).
Furthermore the following estimate holds true:

‖σ‖s + ‖div σ‖1+s ≤ C‖σ‖0, (1.3)

where C is a constant depending on the eigenvalue λ. In (1.3) s is at least one if Ω is convex, while s is at least
π/ω − ε for any ε > 0 for a non convex domain, ω < 2π being the maximum interior angle of Ω.

Let {Th} denote a shape-regular family (i.e., satisfying the minimum angle condition, see [10]) of simplicial
decomposition of Ω. As usual we require that any two elements in Th share at most a common edge or a
common vertex, and we denote by h the maximum diameter of the elements K in Th.

Let Σh and Φh denote two finite dimensional subspaces of H0(div,Ω) and L2
0(Ω), respectively. The discretiza-

tion of problem (1.2) is then given by

Find λh ∈ R s.t. there exists (σh, ϕh) ∈ Σh × Φh, with ϕh �= 0:{
(σh, τ ) + (div τ , ϕh) = 0 ∀ τ ∈ Σh

(div σh, ψ) = −λh(ϕh, ψ) ∀ψ ∈ Φh.
(1.4)

Usual spaces used to approximate H(div,Ω) are Raviart-Thomas and Brezzi-Douglas-Marini ones. In what
follows we recall their definitions for triangular decompositions of Ω (see [7] for general quadrilateral meshes)
and their main properties.
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The Raviart-Thomas space of order k (k ≥ 0) is defined (see [9]) by

RTk = {τ ∈ H(div,Ω) : τ |K(x1, x2) = Pk(K)2 + (x1, x2)Pk(K)}, ∀K ∈ Th (1.5)

where Pk(K) denotes the space of polynomials of degree at most k on K.
The mixed Raviart-Thomas approximation of problem (1.2) is then obtained taking

Σh = H0(div,Ω) ∩RTk

and
Φh = {ψ ∈ L2

0(Ω) : ψ|K ∈ Pk(K) ∀K ∈ Th},
in (1.4).

As usual using the degrees of freedom it is possible to define an interpolation operator Πhτ , provided τ is
slightly smoother than merely belonging to H(div,Ω), i.e. τ ∈ H(div,Ω) ∩ Hε(Ω), for some ε > 0 (see [9]).
Then the following commuting diagram holds:

H0(div,Ω) ∩Hε(Ω) div−−−−→ L2
0(Ω)⏐⏐�Πh

⏐⏐�Ph

Σh
div−−−−→ Φh

(1.6)

where Ph denotes the L2-projection on Φh.
The following theorem states the approximation properties of Raviart-Thomas finite element spaces.

Theorem 1.1. Given any vectorfield u smooth enough such that the right hand side of the next expression
makes sense, there exists uI = Πhu ∈ Vh such that

‖u − uI‖div ≤ Chk+1(|u|k+1 + | div u|k+1). (1.7)

The Brezzi-Douglas-Marini space of order k (k ≥ 1) is defined (see [9]) by

BDMk = {τ ∈ H(div,Ω) : τ |K ∈ Pk(K)2 ∀K ∈ Th}·

Then the Brezzi-Douglas-Marini mixed approximation of problem (1.2) is obtained taking

Σh = BDMk ∩H0(div,Ω)

and
Φh = {ψ ∈ L2

0(Ω) : ψ|K ∈ Pk−1(K) ∀K ∈ Th},
in (1.4).

Notice that the commuting diagram property (1.6) holds true for BDM elements as well.
Finally, the following theorem states the approximation properties of Brezzi-Douglas-Marini finite element

spaces.

Theorem 1.2. Given any vectorfield u smooth enough such that the right hand side of the next expressions
makes sense, there exists uI = Πhu ∈ Σh such that

‖u − uI‖0 ≤ Chk+1|u|k+1 (1.8)

and
‖ div(u − uI)‖0 ≤ Chk| div u|k. (1.9)
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Assume for simplicity that λ is a simple eigenvalue of problem (1.2), with (σ, ϕ) its corresponding eigenfunc-
tion. Let (λh,σh) denote the RT (BDM) approximation to (λ,σ) and let us assume that ‖σ‖0 = ‖σh‖0 = 1.
Then, it follows from the abstract theory (see [5,6]) and known a priori error estimates that for h small enough
(depending on λ),

‖σ − σh‖div ≤ Cht (1.10)
‖σ − σh‖0 ≤ Chr (1.11)

|λ− λh| ≤ Ch2t, (1.12)

where r = min{k + 1, s}, and t = min{s, k} if Σh is the Brezzi-Douglas-Marini space, otherwise if Σh is the
Raviart-Thomas space then t = r = min{k + 1, s}.
Remark 1.3. If the eigenfunction σ is smooth enough (i.e. belongs to the space H(div,Ω) ∩Hα(Ω) for some
α > 1) then, contrary to RT elements, BDM ones provide a L2-approximation of higher order than the H(div)-
approximation.

2. Source problem

In this section we recall the superconvergence property which holds for the source problem associated with
Laplace eigenproblem, and we highlight why the proof cannot be generalized in a trivial way to show the
analogous result for the eigenvalue problem. For general superconvergence results for Laplace problem and
possible applications to a posteriori error estimation we refer to [8,9] and the references therein.

The standard mixed formulation of Laplace problem with Neumann boundary conditions reads as follows:

Given f ∈ L2
0(Ω), find (σ∗, ϕ∗) ∈ H0(div,Ω) × L2

0(Ω):{
(σ∗, τ ) + (div τ , ϕ∗) = 0 ∀ τ ∈ H0(div,Ω)

(div σ∗, ψ) = −(f, ψ) ∀ψ ∈ L2
0(Ω).

(2.1)

It is well known that problem (2.1) is well-posed. Moreover, due to regularity results (see [15]), there exists
a constant s > 1/2 (depending on Ω), such that (σ∗, ϕ∗) belongs to the space Hs(Ω)2 ×H1+s(Ω). Finally, the
following stability estimate holds true:

‖σ∗‖s + ‖ϕ∗‖1+s ≤ C‖f‖0. (2.2)

We only consider Raviart-Thomas approximation of problem (2.1), since the analysis can be extended to
Brezzi-Douglas-Marini ones in a straightforward way. The discrete problem is then given by

Given f ∈ L2
0(Ω), find (σ∗

h, ϕ
∗
h) ∈ Σh × Φh:{

(σ∗
h, τ ) + (div τ , ϕ∗

h) = 0 ∀ τ ∈ Σh

(div σ∗
h, ψ) = −(f, ψ) ∀ψ ∈ Φh,

(2.3)

where Σh is the Raviart-Thomas finite element space of order k and

Φh = {ψ ∈ L2
0(Ω) : ψ|K ∈ Pk ∀K ∈ Th}·

It is well known that problem (2.3) is well-posed as well. Moreover, it follows from the standard a priori error
analysis for mixed problems that there exists a positive constant C, independent of h such that the following
estimate holds:

‖σ∗ − σ∗
h‖div ≤ Chmin{s,k+1}(|σ∗|s + | div σ∗|s). (2.4)

Then the following superconvergence result holds true (see [9]).
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Theorem 2.1. ‖Phϕ
∗ − ϕ∗

h‖0 is a higher-order term than ‖σ∗ − σ∗
h‖div.

Proof. Let (z, φ) denote the solution of the following auxiliary problem:

Find (z, φ) ∈ H0(div,Ω) × L2
0(Ω):{

(τ , z) + (div τ , φ) = 0 ∀ τ ∈ H0(div,Ω)

(div z, ψ) = (Phϕ
∗ − ϕ∗

h, ψ) ∀ψ ∈ L2
0(Ω).

(2.5)

Then taking into account the commuting diagram property (1.6) together with the definition of Ph and the
Galerkin orthogonality property relative to problems (2.1) and (2.3), it is possible to estimate ‖Phϕ

∗ −ϕ∗
h‖0 in

the following way:

‖Phϕ
∗ − ϕ∗

h‖2
0 = (div z, Phϕ

∗ − ϕ∗
h) = (div Πhz, Phϕ

∗ − ϕ∗
h)

= (div Πhz, ϕ∗ − ϕ∗
h) = −(σ∗ − σ∗

h,Πhz)

= (σ∗ − σ∗
h, z − Πhz) − (σ∗ − σ∗

h, z)

= (σ∗ − σ∗
h, z − Πhz) + (div(σ∗ − σ∗

h), φ)

= (σ∗ − σ∗
h, z − Πhz) + (div(σ∗ − σ∗

h), φ− Phφ). (2.6)

The first term in the right hand side of the above equation can be estimated using the Cauchy-Schwartz
inequality and the interpolation error estimate (1.7) as follows:

(σ∗ − σ∗
h, z − Πhz) ≤ Chmin{k+1,s}|z|s‖σ∗ − σ∗

h‖0.

The second term instead is bounded above using the L2-projection error estimate

(div(σ∗ − σ∗
h), φ− Phφ) ≤ Chmin{k+1,1+s}|φ|1+s‖ div(σ∗ − σ∗

h)‖0.

Putting together the above inequalities, and taking into account the stability estimate (2.2), we get

‖Phϕ
∗ − ϕ∗

h‖0 ≤ Chmin{k+1,s}‖σ∗ − σ∗
h‖0 + Chmin{k+1,1+s}‖ div(σ∗ − σ∗

h)‖0

and hence
‖Phϕ

∗ − ϕ∗
h‖0 ≤ Chα‖σ∗ − σ∗

h‖div,

where α is a strictly positive constant. �

Remark 2.2. Since ‖ div(σ∗−σ∗
h)‖0 and ‖ϕ∗−ϕ∗

h‖0 are of the same order as ‖σ∗−σ∗
h‖0, ‖Phϕ

∗−ϕ∗
h‖0 turns

out to be higher order than ‖σ∗ − σ∗
h‖0 and ‖ϕ∗ − ϕ∗

h‖0 as well.

Remark 2.3. We observe that the proof of Theorem 2.1 can be generalized without any change to Brezzi-
Douglas-Marini approximation. Moreover, since h‖ div(σ∗ − σ∗

h)‖0 is at least of the same order as ‖σ∗ − σ∗
h‖0

and ‖σ∗ − σ∗
h‖0 is at least of the same order as ‖ϕ∗ − ϕ∗

h‖0, Remark 2.2 holds as well.

We end this section observing that the proof of the superconvergence property cannot be straightforwardly
extended to the eigenvalue problem. In fact in this case the Galerkin orthogonality does not hold and hence we
are not allowed to subtract Phφ in the last step of equation (2.6).

3. Eigenvalue problem

In this section we extend the superconvergence result stated in Theorem 2.1 to the eigenvalue problem using
the equivalence between the lowest order Raviart-Thomas approximation and the non-conforming piecewise
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linear Crouzeix-Raviart approximation enriched by local bubbles. This alternative finite element formulation
has been also used in the context of elastoacoustics vibration problem to obtain an accurate pressure post-process
(see [3]).

Following the arguments given in [4,17], it can be seen that the lowest order Raviart-Thomas approximation
of problem (1.2) is equivalent to a nonconforming approximation of the standard formulation of (1.1). Let us
introduce the nonconforming space of Crouzeix and Raviart enriched by local bubbles. Denoting by B(K) the
space of cubic polynomials vanishing on ∂K, we define

Xh = {φ ∈ L2(Ω) : φ|K ∈ P1(K) ∀K ∈ Th, φ is continuous at midpoints of interior interfaces},
Bh = {b ∈ H1

0 (Ω) : b|K ∈ B(K) ∀K ∈ Th},
Wh = Xh

⊕
Bh.

(3.1)

Let
Σd

h = {v ∈ L2(Ω)2 : v|K ∈ RT0(K) ∀K ∈ Th}·
We also introduce the following L2-projection operator:

PΣd
h

: L2(Ω)2 −→ Σd
h

PΣd
h
v ∈ Σd

h such that (v − PΣd
h
v,vh) = 0 ∀vh ∈ Σd

h.
(3.2)

In the following we denote by ∇hψh the elementwise gradient of ψh. Then problem (1.4) is equivalent to the
following one:

Find λh ∈ R s.t. there exists φh ∈Wh, with φh �= 0 s.t.
(PΣd

h
(∇hφh),∇hψh) = λh(Phφh, ψh) ∀ψh ∈ Wh, (3.3)

in the sense that they have the same eigenvalues λh and the eigenvectors are related, up to a constant, by
σh = PΣd

h
(∇hφh) and ϕh = Phφh (see [4,17]).

Applying the general theory developed in [5], Durán et al. in [11] proved (for Dirichlet boundary conditions)
the following result:

‖ϕ− φ̄h‖0 = O(h2t), (3.4)
where φ̄h is a multiple of φh such that ‖φ̄h‖0 = ‖ϕ‖0 and t = min{1, s}. As stated in [2], the above result can
be extended to the case of Neumann boundary conditions.

We now state a result which is useful in the proof of the superconvergence property.

Lemma 3.1. If (λh, φh) is an eigensolution of problem (3.3), then the elementwise H1-seminorm |φh|1,h is
bounded.

Proof. First of all we notice that, since φh is an eigensolution of problem (3.3), it holds

‖PΣd
h
(∇hφh)‖2

0 = λh‖Phφh‖2
0 ≤ λh‖φh‖2

0.

Since φh ∈Wh it can be written as φh = ph+bh, with ph ∈ CRh and bh ∈ Bh. Observing that
∫

Ω

∇hph · ∇bh = 0

and PΣd
h
(∇hph) = ∇hph, we obtain

‖∇hφh‖2
0 = ‖∇hph‖2

0 + ‖∇bh‖2
0

and
‖PΣd

h
(∇hφh)‖2

0 = ‖∇hph‖2
0 + ‖PΣd

h
(∇bh)‖2

0.

Hence it is enough to prove that ‖∇bh‖2
0 is bounded. In particular, we shall prove that there exists a constant C

independent of h such that ‖∇bh‖0 ≤ C‖PΣh
(∇bh)‖0.
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We choose as basis of the space Σd
h the one given on each element K by

(1, 0)t (0, 1)t x − xc,

where x = (x, y) and xc are the coordinates of the barycenter of K. Then it can be easily checked that

(PΣh
∇bh)|K =

−2
∫
K
bh,K∫

K
|x − xc|2

(x − xc), (3.5)

where bh,K = bh|K . From (3.5) it follows that (PΣh
∇bh)|K = 0 if and only if bh,K = 0, equivalently ∇bh,K = 0.

Therefore, there exists a constant C such that ‖∇bh,K‖0,K ≤ C‖PΣh
(∇bh)‖0,K . Finally, since ‖∇bh,K‖0 and

‖PΣd
h
(∇bh,K)‖0 scales in the same way, it turns out that the constant C is independent of the mesh size h. �

Then, the following result which generalise to eigenvalue problem the superconvergence property holds true:

Theorem 3.2. Let (λ, ϕ) be the eigensolution of Laplace eigenproblem (1.1) and (λh, ϕh) be the corresponding
discrete eigenpair of problem (1.4). Then it holds

‖Phϕ− ϕh‖0 = O(h2t),

where t = min{1, s}.

Proof. Since the eigenfunctions are defined up to a constant, we choose σ and σh such that ‖σ‖0 = 1 and
‖σh‖0 = 1. Then it holds

‖ϕ‖0 =
1√
λ

and
‖ϕh‖0 =

1√
λh

·

Let φ̄h be the eigenvector of problem (3.3) corresponding to the eigenvalue λh and satisfying ‖φ̄h‖0 = ‖ϕ‖0.
Then thanks to the equivalence between the lowest order Raviart-Thomas approximation of problem (1.2)
and (3.3),

ϕh =
1√
λh

Phφ̄h

‖Phφ̄h‖0
·

Moreover, since the projection Ph is a contraction, we have

‖Phϕ− ϕh‖0 =
∥∥∥∥Phϕ− 1√

λh

Phφ̄h

‖Phφ̄h‖0

∥∥∥∥
0

≤
∥∥∥∥ϕ− 1√

λh

φ̄h

‖Phφ̄h‖0

∥∥∥∥
0

≤ ‖ϕ− φ̄h‖0 +
∥∥∥∥φ̄h − 1√

λh

φ̄h

‖Phφ̄h‖0

∥∥∥∥
0

·

The first term in the right hand side of the above equation is O(h2t), as we have said in (3.4). Hence, it remains
to prove that ∥∥∥∥φ̄h − 1√

λh

φ̄h

‖Phφ̄h‖0

∥∥∥∥
0

= O(h2t).

This follows from the fact that
‖φ̄h‖0 − ‖Phφ̄h‖0 = O(h2), (3.6)

and ∣∣∣∣ 1√
λ
− 1√

λh

∣∣∣∣ = O(h2t). (3.7)

Indeed ∥∥∥∥φ̄h − 1√
λh

φ̄h

‖Phφ̄h‖0

∥∥∥∥
0

= ‖φ̄h‖0

∣∣∣∣‖Phφ̄h‖0

√
λh − 1

‖Phφ̄h‖0

√
λh

∣∣∣∣ ,
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and ∣∣∣‖Phφ̄h‖0

√
λh − 1

∣∣∣ ≤ √
λh

(∣∣‖φ̄h‖0 − ‖Phφ̄h‖0

∣∣ +
∣∣∣∣ 1√
λ
− 1√

λh

∣∣∣∣
)
·

We now prove (3.7). From the a priori error estimate (1.12) it follows∣∣∣∣ 1√
λ
− 1√

λh

∣∣∣∣ =
|λ− λh|

λh

√
λ+ λ

√
λh

= O(h2t).

Finally,
‖φ̄h‖0 − ‖Phφ̄h‖0 ≤ ‖φ̄h − Phφ̄h‖0 ≤ Ch,

where the last inequality follows from the L2-projection error estimate and from the fact that the broken
H1-seminorm |φ̄h|1,h is bounded as stated in Proposition 3.1. Then (3.6) easily follows since

‖φ̄h‖0 − ‖Phφ̄h‖0 =
‖φ̄h‖2

0 − ‖Phφ̄h‖2
0

‖φ̄h‖0 + ‖Phφ̄h‖0
=

‖φ̄h − Phφ̄h‖2
0

‖φ̄h‖0 + ‖Phφ̄h‖0
= O(h2). �

Remark 3.3. From Theorem 3.2 together with the a priori error estimate (1.10), we get that ‖Phϕ− ϕh‖0 is
of higher order than ‖ϕ− ϕh‖0 and ‖σ − σh‖0.

4. Numerical results

In this section we present the results of some numerical experiments which fully confirm the superconvergence
property stated in the previous section. Moreover, we investigate numerically whether or not the superconver-
gence property holds for BDM1 elements as well.

Numerical computations directed to investigate whether or not the superconvergence property holds for
higher order Raviart-Thomas and Brezzi-Douglas-Marini elements as well are still in progress.

4.1. Square domain

As a first example we consider the domain Ω = (0, π) × (0, π). In this case the eigensolutions of Laplace
eigenproblem with homogeneous Neumann boundary conditions are known and are given by eigenvalues

λ = n2 +m2,

with corresponding eigenfunctions
ϕ = cos(nx) cos(my),

where n,m ∈ N are not simultaneously vanishing.
We choose as exact eigenpair (λ, ϕ) = (2, cosx cos y) and we use RT0 and BDM1 as approximation spaces.
We test the superconvergence property on two sequences of meshes, both structured and unstructured as

shown in Figures 1 and 2. The meshes are obtained from an initial triangulation of the square by regular
refinement, namely subdividing each triangle by joining the midpoints of each edge.

The first test concerns RT0 approximation. In Tables 1 and 2 we report both the L2 and the H(div)-norms
of the error in the approximation of the eigenfunction and we compute the numerical rate of convergence, which
is 1 as predicted by the a priori error estimates (1.10) and (1.11) for regular eigenmodes. We also report the
L2-norm of the error between the projection of the continuous eigenfunction and the discrete one. In this case
the order of convergence is 2, as predicted by Theorem 3.2 for regular eigenmodes. Eventually, in Figure 3 we
plot the above errors using a log/log scale.

In the second test we consider BDM1 finite elements. The results of these experiments are shown in
Tables 3 and 4. As predicted by the a priori error estimates (1.10) and (1.11) for regular eigenmodes, the
order of convergence is 1 in the H(div)-norm and 2 in the L2-norm. Moreover, the numerical results suggest
that the superconvergence property holds as well. Finally, in Figure 4 we plot the errors in a log/log scale.
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Figure 1. Structured meshes.

Figure 2. Unstructured meshes.

Table 1. Error table: RT0 on structured mesh.

Mesh size ‖σ − σh‖0 ‖div(σ − σh)‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order Err. Order
h0 1.018359 1.894110 0.149686
h0/2 0.504852 1.01 0.902151 1.07 0.041618 1.84
h0/4 0.251870 1.00 0.450850 1.00 0.010459 1.99
h0/8 0.125915 1.00 0.225469 0.99 0.002625 1.99
h0/16 0.062959 0.99 0.112742 0.99 0.000657 1.99

Table 2. Error table: RT0 on unstructured mesh.

Mesh size ‖σ − σh‖0 ‖div(σ − σh)‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order Err. Order
h0 0.583376 0.750504 0.063330
h0/2 0.294074 0.98 0.383364 0.96 0.016101 1.97
h0/4 0.147403 0.99 0.192606 0.99 0.004053 1.98
h0/8 0.073762 0.99 0.096416 0.99 0.001016 1.99

4.2. L-shaped domain

In the second example we consider the non-convex and L-shaped domain Ω = Ω0\Ω1, where Ω0 is the square
with side π, as before, and Ω1 is the square (π

2 , π)× (π
2 , π). Since Ω has a reentrant corner, eigenfunctions with

singularities are expected. The numerical computations concern the first eigenfunction (σ, ϕ), which is singular
and belongs to the space Hs(Ω)2 ×H1+s(Ω), with s = 2

3 − ε, ∀ε > 0. Since no analytical expression for the
exact eigenpair is known, in the numerical tests we take as exact eigenpair the one computed on a mesh fine
enough.

We test the superconvergence property on a sequence of embedded meshes, which are obtained from an
initial triangulation by regular refinement; Figure 5 shows the initial triangulation used for RT0 and BDM1

approximation, respectively.
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Figure 3. Errors versus h−1 in log/log-scale for RT0 on structured (left) and unstructured
meshes (right).

Table 3. Error table: BDM1 on structured mesh.

Mesh size ‖σ − σh‖0 ‖div(σ − σh)‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order Err. Order
h0 0.653615 2.020459 0.057680
h0/2 0.134918 2.27 0.921033 1.13 0.006028 3.25
h0/4 0.032997 2.03 0.453273 1.02 0.002522 1.25
h0/8 0.008265 1.99 0.225774 1.00 0.000712 1.82
h0/16 0.002130 1.95 0.112780 1.00 0.000183 1.96

Table 4. Error table: BDM1 on unstructured mesh.

Mesh size ‖σ − σh‖0 ‖div(σ − σh)‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order Err. Order
h0 0.083746 0.766087 0.020439
h0/2 0.022797 1.87 0.385542 0.99 0.006066 1.75
h0/4 0.005837 1.96 0.192885 0.99 0.001578 1.94
h0/8 0.001553 1.91 0.096451 0.99 0.000398 1.98

The first test concerns the lowest order Raviart-Thomas approximation. In Table 5 we report the L2-norm
of the error in the approximation of the eigenfunction and the L2-norm of the error between the projection
of the exact eigenfunction and the discrete one. We also compute the numerical rates of convergence, which
agree with the ones predicted by the a priori error estimate (1.10) and by Theorem 3.2 for singular eigenmodes.
Eventually, in Figure 6 we plot the above errors using a log/log scale.

In the second test we consider BDM1 finite elements. The results of these experiments are shown in Table 6.
The numerical rate of convergence agrees with the one predicted by the a priori error estimate (1.10) for singular
eigenmodes. Moreover, the numerical results suggest that the superconvergence property holds as well. Finally,
in Figure 7 we plot the errors in a log/log scale.
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Figure 4. Errors versus h−1 in log/log-scale for BDM1 on structured (left) and unstructured
meshes (right).

Figure 5. Initial triangulation for RT0 (left) and BDM1 (right) approximation.

Table 5. Error table: RT0 on L-shaped domain.

Mesh size ‖ϕ− ϕh‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order
h0 0.200130 0.078137
h0/2 0.100040 1.00 0.030291 1.36
h0/4 0.050968 0.97 0.011840 1.35
h0/8 0.028115 0.85 0.004660 1.34
h0/16 0.018643 0.59 0.001843 1.33

5. Conclusions

We stated a superconvergence result for the lowest order Raviart-Thomas approximation of Laplace eigen-
problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the
lowest order Brezzi-Douglas-Marini approximation.

For some possible application of this superconvergence result to a posteriori error estimates we refer to [12–14]
and to forthcoming papers.
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Figure 6. Errors versus h−1 in log/log-scale for RT0 on L-shaped domain.

Table 6. Error table: BDM1 on L-shaped domain.

Mesh size ‖ϕ− ϕh‖0 ‖Phϕ− ϕh‖0

Err. Order Err. Order
h0 0.330278 0.031675
h0/2 0.177920 0.89 0.015294 1.05
h0/4 0.091043 0.96 0.005998 1.35
h0/8 0.046512 0.96 0.002365 1.34
h0/16 0.024683 0.91 0.000935 1.33
h0/32 0.014793 0.73 0.000370 1.33

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

 

 

||Phϕ - ϕh||0
||ϕ - ϕh||0

1.33

0.66

Figure 7. Errors versus h−1 in log/log-scale for BDM1 on L-shaped domain.

Finally, possible future developments of the present work go towards the study of the superconvergence
property for higher order elements and for general quadrilateral meshes.
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[7] D. Boffi, F. Kikuci and J. Schöberl, Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes. Math.

Models Methods Appl. Sci. 16 (2006) 265–273.
[8] J.H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994)

311–324.
[9] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-

Verlag, New York (1991).
[10] P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its application 4. North Holland,

Amsterdam (1978).
[11] R. Durán, L. Gastaldi and C. Padra, A posteriori error estimations for mixed approximation of eigenvalue problems. Math.

Models Methods Appl. Sci. 9 (1999) 1165–1178.
[12] F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ist. lombardo Accd. Sci. Lett. Rend. A. 138

(2004) 17–34.
[13] F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interactions, Computational

Fluid and Solid Mechanics. Elsevier, Amsterdam (2005).
[14] F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ph.D. Thesis, Università degli Studi di Pavia,
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