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ON VARIETIES OF LITERALLY IDEMPOTENT
LANGUAGES ∗

Ondřej Kĺıma1 and Libor Polák1

Abstract. A language L ⊆ A∗ is literally idempotent in case that
ua2v ∈ L if and only if uav ∈ L, for each u, v ∈ A∗, a ∈ A. Varieties
of literally idempotent languages result naturally by taking all literally
idempotent languages in a classical (positive) variety or by considering
a certain closure operator on classes of languages. We initiate the sys-
tematic study of such varieties. Various classes of literally idempotent
languages can be characterized using syntactic methods. A starting ex-
ample is the class of all finite unions of B∗

1B∗
2 . . . B∗

k where B1, . . . , Bk

are subsets of a given alphabet A.
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1. Introduction

Papers by Straubing [11] on C-varieties and Ésik et al. [4,5] on literal varieties
of languages enable us to consider new significant classes of languages. Due to the
result by Kunc [7] we also have an equational logic for those classes.

(Positive) varieties of languages corresponding to pseudovarieties of (ordered)
idempotent semigroups/monoids are not very important from the point of lan-
guage theory. This is far from being the case for languages corresponding to
pseudovarieties of literally idempotent homomorphisms.

Most of our classes result by considering intersections of well-known classical
(positive) varieties with literally idempotent languages. Our new classes nicely fit
into the table in Section 8 by Pin [10]. We characterize languages from certain
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classes of languages in various ways. More precisely, we describe the languages
which are literally idempotent and which belong to the level 1/2, level 1, level
3/2 of the so-called Straubing-Thérien hierarchy, respectively. We also consider
other interesting classes of languages, e.g. languages which are finite unions of
the languages of the form B∗

0B
∗
1 . . . B

∗
k, where k is a non-negative integer and

B0, . . . , Bk are subsets of a given alphabet.
Notice that the motivation for studying literally idempotent languages also

comes from the linear temporal logic. The formulas of LTL without the “next”
operator determine literally idempotent languages. We give a logical characteri-
zation of languages from one of our classes.

The paper is organized as follows. In Section 2 we recall known results and
techniques related to syntactic methods. Section 3 presents several new classes
of languages. In Section 4 we introduce literally idempotent languages and their
basic properties. Section 5 contains results concerning intersections of literally
idempotent languages with some well-known classes (level 1/2, 1, 3/2, right-trivial
languages, finite languages). The last section collects remarks dealing with the
relationship to the linear temporal logic.

2. Preliminaries

Valuable treatments on syntactic methods in language theory are books by
Almeida [1], Pin [9] and his chapter [10].

Let M (resp. O) be the class of all surjective homomorphisms from free monoids
over non-empty finite sets onto finite (ordered) monoids. A class V ⊆ M is a
literal pseudovariety if it is closed with respect to the homomorphic images, literal
substructures and products of finite families (see Ésik et al. [4,5] or Straubing [11]
for a more general notion of a C-pseudovariety). More precisely, such class V
satisfies the following:

(H) for each (ϕ : A∗ → M) ∈ V and a surjective monoid homomorphism
σ : M → N , we have σϕ ∈ V ;

(S) for each (ϕ : A∗ →M) ∈ V and for each f : B∗ → A∗ with f(B) ⊆ A, we
have (ϕf : B∗ → (ϕf)(B∗)) ∈ V ;

(P) each mapping of A∗ onto one-element monoid is in V , and for each (ϕ :
A∗ → M), (ψ : A∗ → N) ∈ V ; the natural homomorphism of A∗ onto A∗

factorized by the intersections of kernels of ϕ and ψ is in V .
Similarly, we define the literal pseudovarieties in the ordered case.

Let N = {1, 2, . . .} and N0 = N ∪ {0}. Let In, for n ∈ N, be the set of all n-ary
implicit operations for the class of finite monoids – see e.g. [1]. We write πM :
Mn → M for the realization of π ∈ In on a finite monoid M . A pseudoidentity
π = ρ, where π, ρ ∈ In, is literally satisfied in (ϕ : A∗ →M) ∈ M if

(∀ a1, . . . , an ∈ A) πM (ϕ(a1), . . . , ϕ(an)) = ρM (ϕ(a1), . . . , ϕ(an)).

We write ϕ |=L π = ρ in this case.
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Similarly, a pseudoinequality π ≤ ρ, where π, ρ ∈ In, is literally satisfied in
(ϕ : A∗ → (M,≤) ) ∈ O if

(∀ a1, . . . , an ∈ A) πM (ϕ(a1), . . . , ϕ(an)) ≤ ρM (ϕ(a1), . . . , ϕ(an)).

We write ϕ |=L π ≤ ρ in this case.
Usually we fix an alphabet Σ = {x1, . . . , xn} of variables and we identify a

word u = xi1 . . . xik
∈ Σ∗ with the implicit operation given by uM (a1, . . . , an) =

ai1 . . . aik
, where M is a finite monoid and a1, . . . , an ∈ M . Examples of implicit

operations which are not of this form are uω, for u ∈ Σ+. We define

((xi1 . . . xik
)ω)M (a1, . . . , an) = aω,

where a = ai1 . . . aik
and aω is the unique idempotent in the set {a, a2, a3, . . .}.

A special case of the main result of Kunc [7] follows.

Result 2.1 (Kunc). The literal pseudovarieties of homomorphisms onto finite
monoids are exactly the subclasses of M defined by the literal satisfaction of sets
of pseudoidentities.

One can expect an analogous result in the ordered case – we do not need it
here, we only support it by examples.

By a quotient of L ⊆ A∗ we mean any set u−1Lv−1 = {w ∈ A∗ | uwv ∈ L }
where u, v ∈ A∗.

A class of (recognizable) languages is an operator V assigning to each non-
empty finite set A a set V (A) of recognizable languages over the alphabet A.

Such a class is a positive variety if
(0) for each A, we have ∅, A∗ ∈ V (A);
(i) each V (A) is closed with respect to finite unions, finite intersections and

quotients; and
(ii) for each non-empty finite sets A and B and a homomorphism f : B∗ →

A∗, K ∈ V (A) implies f−1(K) ∈ V (B).
Adding the condition

(iii) each V (A) is closed with respect to complements,
we get a boolean variety.

A modification of (ii) to
(ii’) for each non-empty finite sets A and B and a homomorphism f : B∗ → A∗

with f(B) ⊆ A, K ∈ V (A) implies f−1(K) ∈ V (B)
leads to the notions of literal positive/boolean variety of languages.

For L ∈ V(A), we put Lc = A∗ \ L. Moreover, Vc(A) = {Lc | L ∈ V(A) } for
each A.

Let L ⊆ A∗ be a recognizable language. Recall that the syntactic congruence
∼L on A∗ is defined by

u ∼L v if and only if (∀ p, q ∈ A∗) (puq ∈ L ⇔ pvq ∈ L).
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Further, the structure O (L) = A∗/∼L is called the syntactic monoid of L and the
mapping ϕL : A∗ → O (L), u �→ u ∼L is the syntactic homomorphism.

Moreover, O (L) is implicitly ordered by

u ∼L ≤ v ∼L if and only if (∀ p, q ∈ A∗) (pvq ∈ L ⇒ puq ∈ L).

We speak about the ordered syntactic monoid and the ordered syntactic homomor-
phism.

Often we will use the pseudoinequality x ≤ 1. Notice that (O (L), ·,≤) satisfies
this pseudoinequality if and only if

(∀ u, v, w ∈ A∗) (uw ∈ L ⇒ uvw ∈ L).

Similarly, the homomorphism ϕL satisfies x ≤ 1 literally if and only if

(∀ u, v ∈ A∗, a ∈ A) (uv ∈ L ⇒ uav ∈ L).

In this case the both variants of the satisfiability coincide. This is far from being
true for the pseudoidentity x2 = x.

For a class V of languages, let

M (V ) = 〈 { ϕL : A∗ → O (L) | A non-empty finite alphabet, L ∈ V (A) } 〉

be the literal pseudovariety generated by the syntactic homomorphisms of members
of V , and conversely, for V ⊆ M,

V �→ L (V), where (L (V))(A) = {L ⊆ A∗ | ϕL ∈ V } for each A.

Result 2.2 (Ésik and Larsen [5], Straubing [11]). The operators M and L are
mutually inverse bijections between the classes of literal boolean varieties of lan-
guages and literal pseudovarieties of homomorphisms onto finite monoids.

Similarly as in Result 2.1 one can expect an ordered version of Result 2.2 – we
do not need it here, we only support it by examples.

We recall certain classical (positive) varieties of languages – see [9,10].
(i) The languages of the level 1/2 over A are exactly finite unions of languages

of the form
A∗a1A

∗a2 . . . akA
∗, k ∈ N0, a1, . . . , ak ∈ A. (1/2)

We denote this positive variety of languages by V 1/2 and it is known that L ∈
V 1/2(A) if and only if the ordered syntactic monoid of the language L satisfies
the pseudoinequality x ≤ 1.

(ii) The languages of the level 1 over A are exactly boolean combinations of
languages of the form (1/2). We denote this variety of languages by V 1 and it is
known that L ∈ V 1(A) if and only if the syntactic monoid of the language L is
J -trivial, i.e. it satisfies the pseudoidentities xω = xω+1 and (xy)ω = (yx)ω.
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(iii) The languages of the level 3/2 over A are exactly finite unions of

B∗
0a1B

∗
1a2 . . . akB

∗
k, k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A. (3/2)

We denote this positive variety of languages by V 3/2 and it is known that L ∈
V 3/2(A) if and only if the ordered syntactic monoid of the language L satisfies
the pseudoinequalities xωyxω ≤ xω for every x, y ∈ Σ∗ such that c(x) = c(y) (c(x)
is the set of all variables occurring in x).

(iv) We denote by R the positive variety of languages which can be written as
(disjoint) finite unions of languages of the form B∗

0a1B
∗
1a2 . . . akB

∗
k, where

k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A, B0 �� a1, . . . , Bk−1 �� ak. (R)

The language L belongs to R if and only if its syntactic monoid is R-trivial, i.e.
it satisfies the pseudoidentity (xy)ωx = (xy)ω .

Finally, we consider two well-known classes of +-languages together with the
corresponding pseudovarieties of semigroups.

(v) The class of all finite languages generates the positive variety of languages
consisting of the finite languages and the full languages. This variety corresponds
to the pseudovariety of ordered nilpotent semigroups with 0 being the greatest
element. Such semigroups are characterized by the following pseudoinequalities
xωy = xω = yxω, y ≤ xω .

(vi) The boolean variety of languages generated by the class of all finite lan-
guages is the class consisting of all finite and cofinite languages. This class corre-
sponds to nilpotent semigroups.

3. New natural classes of languages

In this paper we deal mainly with the following classes of languages (we will see
in the next sections that they are literally idempotent). Observe the similarities
with the classes of languages from Section 2.

(i) Finite unions of languages

A∗a1A
∗a2 . . . akA

∗, k ∈ N0, a1, . . . , ak ∈ A, a1 �= a2 �= . . . �= ak. (L 1/2)

(ii) Finite unions of languages

B∗
1B

∗
2 . . . B

∗
k , k ∈ N0, B1, . . . , Bk ⊆ A. (L 1/2 c)

(iii) Boolean combinations of languages of the form (L 1/2).
(iv) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A,

a1 �= a2 �= · · · �= ak, a1 ∈ B1, . . . , ak ∈ Bk. (L 3/2)
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(v) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k , k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A,

a1 �= a2 �= · · · �= ak, B0 �� a1 ∈ B1 �� a2 ∈ · · · �� ak ∈ Bk. (L R)
(vi) Finite unions of languages of the form

B∗
0a1B

∗
1a2 . . . akB

∗
k, k ∈ N0, a1, . . . , ak ∈ A, B0, . . . , Bk ⊆ A

a1 �= a2 �= · · · �= ak, a1 ∈ B0 ∩B1, . . . , ak ∈ Bk−1 ∩Bk. (L E)
(vii) The class of all finite languages generates the literal positive variety of lan-

guages, denoted by N f , consisting of the finite languages and the full languages.
This variety corresponds to the variety of homomorphisms onto ordered monoids
which result from nilpotent semigroups satisfying the pseudoinequality x ≤ 0 with
units incomparable with other elements adjoined. This means L ∈ N f (A) if and
only if

ϕL |=L uωx = uω, xuω = uω, x ≤ uω, for any u ∈ Σ+, x ∈ Σ.

(viii) The literal boolean variety of languages generated by the class of finite
languages is the class N consisting of all finite and cofinite languages. This class
corresponds to homomorphisms onto nilpotent semigroups with the extra unit
elements adjoined.

4. Literally idempotent languages

A recognizable language L over a finite non-empty alphabet A is literally idem-
potent if its syntactic homomorphism ϕL : A∗ → O (L) satisfies the pseudoidentity
x2 = x literally, which means

(∀ a ∈ A) a2 ∼L a

or equivalently

(∀ u, v ∈ A∗, a ∈ A) (uav ∈ L ⇔ ua2v ∈ L). (∗)

We denote the class of all such languages by L .
We can introduce a string rewriting system which is given by rules pa2q → paq

for each a ∈ A, p, q ∈ A∗. Let →∗ be the reflexive-transitive closure of the relation
→. We say that a word u ∈ A∗ is the normal form of a word w if it satisfies the
properties

w →∗ u and (u→∗ v implies u = v ).
It is easy to see that this system is confluent and terminating. Consequently, for
any word w ∈ A∗, there exists the unique normal form −→w ∈ A∗ of the word w.
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We will denote by ∼ the equivalence relation on A∗ generated by the relation →.
In fact, this equivalence relation is a congruence of the monoid A∗.

In what follows we are interested in literal positive/boolean varieties consisting
of literally idempotent languages. These varieties can be induced by classical
varieties in two natural ways. At first, for a class of languages C , we can consider
the class of languages from C which are also literally idempotent languages, i.e.
the intersection C ∩ L of the classes C and L . The second possibility is to
consider the following (closure) operator on languages. For any language L ⊆ A∗,
we define

L = {w ∈ A∗ | (∃ u ∈ L) u ∼ w } which is {w ∈ A∗ | (∃ u ∈ L) −→u = −→w }.

Lemma 4.1. For K,L ⊆ A∗, we have:

(i) L is recognizable whenever L is recognizable;
(ii) K ∪ L = K ∪ L;
(iii) K ∩ L ⊆ K ∩ L.

Proof. (i) Considering the regular substitution ϕ : A∗ → A∗ defined by the rule
ϕ(a) = a+, for each a ∈ A, we can write L = ϕ(ϕ−1(L)). Then we can apply
Theorem 4.4 from [13] saying that the family of recognizable languages is closed
under regular substitutions and inverse regular substitutions.

(ii) and (iii) are trivial observations. �

The following is obvious.

Lemma 4.2. For a recognizable L ⊆ A∗, the following statements are equivalent:

(i) L is literally idempotent;
(ii) L = L;
(iii) ∼ ⊆ ∼L;
(iv) L is a (disjoint) union (not necessarily finite!) of the languages of the

form

a+
1 a

+
2 . . . a

+
k , k ∈ N0, a1, . . . , ak ∈ A, a1 �= a2 �= · · · �= ak.

For a class of languages C , we can consider the class of literally idempotent lan-
guages C where

C (A) = { L | L ∈ C (A)}
for each A. Clearly, the following holds.

Lemma 4.3. Let C be a class of languages. Then:

(i) The class C is closed under union whenever C is closed under union.
(ii) C ∩ L ⊆ C . �
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5. Varieties of literally idempotent languages

Our main results consist in syntactic characterizations of languages from Sec-
tion 3, their relationship to the Straubing-Thérien hierarchy – see Propositions 5.4,
5.6 and 5.9 together with the following result – see Propositions 5.4–5.10.

Theorem 5.1. For each V ∈ {V 1/2, (V 1/2)c,R ,V 1,V 3/2} we have V ∩L =
V .

The key parts of our proofs consist in showing that V ⊆ V . The reasonings are
quite different – we have not found any general method. Moreover, the following
examples show that V needs not be a (positive) literal variety if V is a (positive)
literal variety.

Example 5.2. We consider the class N f . Now N f ∩ L consists of full lan-
guages, the empty language and the unit language, i.e. (N f ∩ L )(A) = {∅, {ε},
A∗}. It is an easy observation that this literal variety is given by the literal pseu-
doidentities x = y, x2 = x and the pseudoinequality 1 ≤ x.

On the other hand, ∅, {ε}, A∗ ∈ N f (A) and a language L �∈ {∅, A∗} over A
belongs to N f (A) if and only if L is a finite union of languages of the form
a+
1 a

+
2 . . . a

+
k where a1, . . . , ak ∈ A, a1 �= a2 �= · · · �= ak (for k = 0 we mean the

language {ε} ). This implies that N f is not a literal positive variety of languages,
because N f is not closed under inverse literal homomorphic images. Indeed, for
A = {a}, B = {b, c}, f : b, c �→ a, L = a+ we have f−1(L) = {b, c}+.

If we consider the literal positive variety of languages generated by N f then it
is easy to see that L belongs to < N f >plv (A) if and only if L is a finite union
of languages of the form B+

1 B
+
2 . . . B

+
k where {B1, B2, . . . , Bk} is a partition of a

subset of the alphabet A (i.e. different Bi’s are disjoint) and B1 �= B2 �= · · · �= Bk.
For example, if A = {a, b, c} then {a, c}+ ∪ {a, b}+{c}+{a, b}+ ∈ < N f >plv (A)
but {a, c}+{b}+{a}+ �∈ < N f >plv (A).

In a subsequent paper the first author will show that this positive variety is given
by the literal satisfaction of the following pseudoidentities and pseudoinequalities

x2 = x, uωvx = uωvy, xvuω = yvuω, x ≤ uω,

for all u, v ∈ Σ+ such that x, y ∈ c(u), x, y ∈ Σ.

Example 5.3. We can also consider the variety N . We have

(N ∩ L )(A) = { ∅, {ε}, A+, A∗}.

Moreover, if the language L over A is cofinite then L ∈ {A+, A∗}. For this reason
N (A) = N f (A) ∪ {A+} and again it is not a literal variety.
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Now, we will study the new classes from Section 3. We start with the variety
V 1/2. For a word u = a1a2 . . . ak, a1, . . . , ak ∈ A, we denote

Lu = A∗a1A
∗a2 . . . akA

∗

the set of all words which contain the word u as a subword.

Proposition 5.4. For a language L over A, the following are equivalent:
(i) L is a finite union of languages of the form (L 1/2);
(ii) L ∈ (V 1/2 ∩ L )(A);
(iii) the syntactic homomorphism ϕL : A∗ → O (L) of the language L satisfies

the pseudoinequalities x ≤ 1 and x2 = x literally;
(iv) L ∈ V 1/2(A).

Proof. “(i) ⇒ (ii)”. It follows from the fact that each language L from (i) satisfies
the condition (∗).

“(ii) ⇔ (iii)” is clear because ϕL satisfies the pseudoinequality x ≤ 1 literally
if and only if O (L) satisfies this pseudoinequality in the classical sense.

“(ii) ⇒ (iv)” follows from Lemma 4.3 (ii).
“(iv) ⇒ (i)”. If L ∈ V 1/2(A) then, by Lemma 4.1 (ii), L is a finite union of

languages of the form Lu . We prove that Lu is of the form (L 1/2).
First, we claim that Lu = L−→u . The inclusion Lu ⊆ L−→u is trivial and Lu ⊆ L−→u

follows. Assuming that w ∈ L−→u then there is a word s ∈ L−→u such that w ∼ s. We
define the word s|u| in such a way, that we replace any letter a in s by a|u|, where
|u| is the length of the word u. Because s contains the word −→u as a subword, we
can see that s|u| contains the word u. Hence w ∼ s|u| ∈ Lu and we can conclude
that w ∈ Lu.

We proved that Lu = L−→u and because L−→u is of the form (L 1/2), i.e. it
is literally idempotent as we proved in ”(i) ⇒ (ii)” at the beginning, we have
L−→u = L−→u which implies that Lu is of the form (L 1/2). �

We prove now a similar proposition for the class (V 1/2)c. At first, we formulate
the following technical lemma which describes the basic properties of languages of
the form (Lu)c.

Lemma 5.5. Let u, u1, . . . , un, w ∈ A∗, n ∈ N, u = a1 . . . ak, a1, . . . , ak ∈ A.
Then:

(i) w ∈ (Lu)c if and only if −→w ∈ (Lu)c.
(ii) (Lu)c = (A \ {a1})∗ a∗1 (A \ {a2})∗ a∗2 . . . a∗k−1 (A \ {ak})∗.
(iii) (Lu1)c ∩ · · · ∩ (Lun)c = (Lu1)c ∩ · · · ∩ (Lun)c.

Proof. (i). The implication “⇐” is trivial.
“⇒” If w ∈ (Lu)c then there is a word v ∈ (Lu)c such that w ∼ v. This means

that v does not contain the word u as a subword. Hence −→v does not contain the
word u as a subword too, i.e. −→w = −→v ∈ (Lu)c.

(ii). We denote K = (A \ {a1})∗ a∗1 (A \ {a2})∗ a∗2 . . . a∗k−1 (A \ {ak})∗ and we
will prove that (Lu)c = K.
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“⊆”. If w ∈ (Lu)c then −→w ∈ (Lu)c by (i). If we read −→w from left to right and
look for the first occurrence of a1 (if it exists) and then look for the first occurrence
of a2 after this first occurrence of a1 (if it exists) and so on, we obtain the following
factorization of −→w :

−→w = w1a1w2a2 . . . alwl+1, where l < k, wi ∈ (A \ {ai})∗.

Hence −→w ∈ K and because K = K we have w ∈ K.
“⊇”. Let w ∈ K. Then w = w1a

α1
1 w2a

α2
2 . . . a

αk−1
k−1 wk where wi ∈ (A \ {ai})∗

and αi ∈ N0 for i = 1, . . . , k−1. Hence −→w is a subword of −→w1a1
−→w2a2 . . . ak−1

−→wk and
one can check by induction with respect to i that the word −→w1a1

−→w2a2 . . . ai−1
−→wi

does not contain the word a1 . . . ai as a subword. This implies that −→w ∈ (Lu)c

and w ∈ (Lu)c follows by (i).
(iii). The inclusion “⊆” is a trivial consequence of Lemma 4.1 (iii) and the

inclusion “⊇” is a consequence of (i). Indeed, w ∈ (Lu1)c∩· · ·∩(Lun)c implies w ∈
(Lui)c and −→w ∈ (Lui)c, for i = 1, . . . , n, follows. Hence −→w ∈ (Lu1)c ∩ · · · ∩ (Lun)c

and consequently w ∈ (Lu1)c ∩ · · · ∩ (Lun)c. �

Proposition 5.6. For a language L over A, the following are equivalent:

(i) L is a finite union of the languages of the form (L 1/2 c).
(ii) L ∈ ((V 1/2)c ∩ L )(A).
(iii) The syntactic homomorphism ϕL : A∗ → O (L) satisfies the pseudoinequal-

ities x2 = x and 1 ≤ x literally.
(iv) L ∈ (V 1/2)c(A).
(v) L ∈ (V 1/2)c(A).
(vi) L is a finite intersection of the languages of the form (L 1/2 c).

Proof. “(i) ⇒ (iii)”. Again the condition (∗) is satisfied, and moreover, for all
u, v ∈ A∗, a ∈ A, uav ∈ L ⇒ uv ∈ L.

As in the previous proof we have that (iii) is equivalent to (ii) and by Lemma 4.3
we have that (ii) implies (iv).

“(iv) ⇒ (vi)”. Let L ∈ (V 1/2)c(A). Then L = R, where R ∈ (V 1/2)c(A).
So, Rc is a finite union of the languages of the form A∗a1A

∗a2 . . . akA
∗, k ∈

N0, a1, . . . , ak ∈ A. This means that R is a finite intersection of the languages
(Lu)c.

The language L = R is an intersection of languages of the form (Lu)c by (iii)
in Lemma 5.5. Moreover, any of these languages is of the form (L 1/2 c) by (ii)
of the same lemma.

“(vi) ⇒ (i)”. Let K = B∗
1B

∗
2 . . . B

∗
k and L = C∗

1C
∗
2 . . . C

∗
l , where k, l ∈ N0 and

B1, . . . , Bk, C1, . . . , Cl ⊆ A, be two languages of the form (L 1/2 c). We prove
that K ∩ L is a union of the languages of this form by induction with respect to
k + l.
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If one of k, l is equal to 0, then the corresponding language is {ε} and the
statement is obvious. If k = 1 then

B∗
1 ∩C∗

1C
∗
2 . . . C

∗
l = (B1 ∩ C1)∗(B1 ∩ C2)∗ . . . (B1 ∩ Cl)∗

and analogically for l = 1.
For k, l > 1 we put K ′ = B∗

2 . . . B
∗
k and L′ = C∗

2 . . . C
∗
l . Then

K ∩ L = (B1 ∩ C1)∗(K ′ ∩ L) ∪ (B1 ∩C1)∗(K ∩ L′)

and we can use the induction assumption for K ′ ∩L and K ∩L′ and the distribu-
tivity law.

So, we proved that the conditions (i)–(iv) and (vi) are equivalent. The condi-
tion (v) is equivalent to those by Proposition 5.4 (iii). �
Proposition 5.7. For a language L over A, the following are equivalent:

(i) L is a finite union of languages of the form (L R).
(ii) L ∈ (R ∩ L )(A).
(iii) L ∈ R (A).

Proof. “(i) ⇒ (ii)” is similar to the previous proofs.
“(ii) ⇒ (iii)”. Again by Lemma 4.3.
“(iii) ⇒ (i)”. If L ∈ R (A), then L = R, where R ∈ R (A). So, R is a

finite union of the languages of the form (R). If we apply Lemma 4.1 we see that
L is a finite union of the languages of the form K = B∗

0a1B∗
1a2 . . . akB∗

k, B0 ��
a1, . . . , Bk−1 �� ak. We show that each such language K can be written as a finite
union of languages of the form (L R). We prove that such K with the set of
“bad” indices { i | ai = ai+1 or ai �∈ Bi } can be written as a union of languages
of the same form, but with the set of bad indices of a less cardinality. Indeed,
let i be such that ai = ai+1 or ai �∈ Bi. First, assume that ai = ai+1. Then
ai �∈ Bi. If Bi = ∅ we can simply remove B∗

i ai+1 from the expression of the
language K. Otherwise we write the language K as a union of certain languages
L(c) for c ∈ Bi ∪ {ai} as follows. The language L(ai) comes from our expression
if we exchange the string aiB

∗
i ai+1 with ai, i.e.

L(ai) = B∗
0a1B∗

1a2 . . . ai−1B∗
i−1aiB∗

i+1 . . . akB∗
k .

This language consists of words from K which do not use letters from Bi. For
c ∈ Bi the language L(c) comes from our expression if we exchange the part
aiB

∗
i ai+1 with aia

∗
i cB

∗
i ai+1, i.e.

L(c) = B∗
0a1B∗

1a2 . . . ai−1B∗
i−1aia∗i cB

∗
i ai+1B∗

i+1 . . . akB∗
k.

The language L(c) consists of words from K which use letters from Bi and the
first such letter is c.

In the second case we have ai �= ai+1 and ai �∈ Bi and we can apply a similar
construction. More precisely, we have ai �∈ Bi, ai+1 �∈ Bi and we write the
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language K as the union of the languages L(c) for c ∈ Bi given above and of the
following language K(ai). The language K(ai) comes from the expression of K if
we exchange B∗

i with a∗i , i.e.

K(ai) = B∗
0a1B∗

1a2 . . . ai−1B∗
i−1aia∗i ai+1B∗

i+1 . . . akB∗
k .

The languageK(ai) consists of words fromK which do not use letters from Bi. �

For a class V of languages we put:

V d(A) = {Ld | L ∈ V (A)}

– the class dual to V , where

Ld = { ak . . . a1 | a1 . . . ak ∈ L, a1, . . . , ak ∈ A};

– the language dual to L.

Corollary 5.8. V 1 ∩ L = V 1.

Proof. By Proposition 5.7 we have R ∩ L = R which has the dual version
R d ∩ L = R d. It is well-known that R ∩ R d = V 1.

The inclusion V 1 ∩ L ⊆ V 1 follows from Lemma 4.3.
If L ∈ V 1(A) then L = K where K ∈ V 1(A). Hence K ∈ R (A) ∩ R d(A)

and we obtain L = K ∈ R (A) ∩ R d(A). Now we use the previous proposition to
get L ∈ (R ∩ L )(A) and L ∈ (R d ∩ L )(A). Hence L ∈ (R ∩ R d ∩ L )(A) =
(V 1 ∩ L )(A). �

Proposition 5.9. For a language L over A, the following are equivalent:
(i) L is a boolean combination of languages of the form (L 1/2).
(ii) L is a boolean combination of languages of the form (L 1/2 c).
(iii) L ∈ (V 1 ∩ L )(A).
(iv) The syntactic homomorphism ϕL : A∗ → O (L) of the language L satisfies

the pseudoidentity x2 = x literally and O (L) is J -trivial.
(v) L ∈ V 1(A).

Proof. The conditions (i) and (ii) are equivalent by Proposition 5.6. The equiva-
lence of conditions (iii) and (iv) follows from the characterization of varieties V 1

and L . The equivalence of conditions (iii) and (v) is contained in Corollary 5.8.
The implication (i) ⇒ (iii) holds as V 1 ∩L is closed under boolean operations.
It remains to show the implication (iii) ⇒ (i).

Let L ∈ (V 1 ∩ L )(A). Then L is a literally idempotent and it is a boolean
combination of the languages of the form

A∗a1A
∗a2 . . . akA

∗, k ∈ N0, a1, . . . , ak ∈ A,
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i.e. L is a finite union of the languages of the form

Lu1 ∩ · · · ∩ Lug ∩ (Lv1)
c ∩ · · · ∩ (Lvh

)c.

We will show that L can be written as a boolean combination of the languages of
the form (L 1/2). In fact, we will follow the original proof of a characterization
of the class V 1, where a piecewise testable language is decomposed into a boolean
combination of the languages Lu – compare our proof with that of Simon’s theorem
in [9].

Because our literally idempotent language L is fully given by the words in
normal form contained in it, we will concentrate on such words. We denote by r
the maximal length of words which occur in the mentioned description of L as a
boolean combination of languages of the form Lu. Now for any word w ∈ L in
normal form we consider two following lists of words in normal forms:
s1, . . . , sp are all words in normal form of the length at most 2r which are

subwords of w;
t1, . . . , tq are all words in normal form of the length at most 2r which are not

subwords of w.
We consider the language

Nw = Ls1 ∩ · · · ∩ Lsp ∩ (Lt1)
c ∩ · · · ∩ (Ltq)

c.

In this way we define finitely many languages (for all w’s we have only finitely
many s’s and t’s). We see that Nw is a boolean combination of languages of the
form (L 1/2), in particular, Nw is literally idempotent.

We will show that

L =
⋃

w∈L

Nw.

Recall that the languages on both sides of this equality are literally idempotent.
“⊆”. Let x ∈ L. Then w = −→x ∈ L and x ∈ Nw.
“⊇”. Let x ∈ Nw where w ∈ L is in normal form. Assume that

w ∈ K = Lu1 ∩ · · · ∩ Lug ∩ (Lv1)
c ∩ · · · ∩ (Lvh

)c ⊆ L.

Because Nw is literally idempotent we have −→x ∈ Nw. We show that −→x ∈ K,
which implies x ∈ L. So, it is enough to prove that −→x ∈ Lui and −→x �∈ Lvj .

If we take an arbitrary u ∈ {u1, . . . , ug} then u is contained in w. Because w
is in normal form and the length of u is ≤ r, we can find a word s which has the
following properties:

i) u is a subword of the word s;
ii) s is a subword of w;
iii) s is a word in normal form; and
iv) s has the length at most 2r.
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The construction of s is straightforward: we look on w and mark the subword u,
then for each two consecutive occurrences of the same letter in u, say aa, we mark
some different letter, say b �= a, in w between these two a’s. Such a letter exists
because w is in normal form. If we separate all marked “double-letters” from u in
w, then we obtain a word s with required properties.

Hence u is a subword of some si which is a subword of −→x and −→x ∈ Lu follows.
Now we take an arbitrary v ∈ {v1, . . . , vh} and assume for a moment that−→x ∈ Lv. This means that −→x contains v as a subword. Again, we can find a

subword s of the word −→x such that s is in normal form, contains v as a subword
and it is of length at most 2r. Because −→x ∈ Nw we know that s ∈ {s1, . . . , sp}.
Hence v is a subword of s, which is a subword of w. This implies that w ∈ Lv and
it is a contradiction with w ∈ K. �

One can prove the following result in the similar way as Proposition 5.9.

Proposition 5.10. For a language L over A, the following are equivalent:

(i) L is a finite union of languages of the form (L 3/2).
(ii) L ∈ (V 3/2 ∩ L )(A).
(iii) L ∈ V 3/2(A).

Example 5.11. We can consider similar variety of all languages which are finite
unions of languages of the form (L E). It is clear that this class is a literal
positive variety contained in V 3/2. The inclusion is proper as we have an example
of the language a∗b+ = a∗bb∗ ∈ V 3/2({a, b}) which can not be written in the form
(L E).

6. Linear temporal logic without the operator “next”

In this section we mention a connection between the Linear Temporal Logic
(LTL) and the concept of the literal idempotency. The expressive power of certain
variants of the temporal logic were successfully characterized applying algebraic
methods; in particular, the concept of the syntactic monoid was used in [2,3,12].
In the center of our interest is the expressive power of LTL formulas which do not
use the “next” operator.

First, we recall basic definitions. A formula of linear temporal logic without
next operator (LTLWN) over a finite set A of letters is built from the elements of
the alphabet A and the logical constant T (true) using the boolean connectives ¬
and ∨ and the temporal logic operator U (until).

Let w ∈ A∗ be a word overA. The length of w is denoted by |w|. For any 1 ≤ i ≤
n = |w| we denote by w(i) the ith letter of w and for any 0 ≤ i ≤ n = |w| we denote
by wi the suffix of w starting after the ith position, i.e. wi = w(i+ 1) . . . w(n), in
particular w0 = w and wn is the empty word.
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The validity of the formula ϕ of LTLWN on w ∈ A∗ is defined as follows:

w |= T
w |= a ⇔ w(1) = a
w |= ¬ϕ ⇔ w �|= ϕ
w |= ϕ1 ∨ ϕ2 ⇔ w |= ϕ1 ∨ w |= ϕ2

w |= ϕ1Uϕ2 ⇔ (∃ i ∈ {0, . . . , |w|}) (wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1).

Every formula ϕ defines the language Lϕ = {w ∈ A∗ | w |= ϕ }.
Traditionally, in linear temporal logic we consider also operator “next” and it

is well-known that language is definable by linear logic formula if and only if it is
star-free, i.e. it has aperiodic syntactic monoid.

It was proved that languages definable by LTLWN are exactly those which are
stutter-invariant (see [8]). This observation can be rephrased to our terminology.

Result 6.1 (Peled and Wilke [8]). The class of languages definable by LTLWN
is a literal boolean variety of languages corresponding to the pseudovariety of
homomorphisms which are aperiodic and literally idempotent. I.e. L ∈ LTLWN
if and only if

ϕL |=L uω = uωu, x2 = x, for any u ∈ Σ+, x ∈ Σ.

We expect that analogical results could be established for many significant sub-
classes of LTLWN and LTL, e.g. subclasses which correspond to certain fragments
of linear temporal logic. Concrete examples could be hierarchies studied in litera-
ture, e.g. in [6,12].

In this paper we just show an example of such subclass. In fact, we will consider
formulas of a special form which correspond to certain literal variety of languages.

For a non-empty subset B = {b1, . . . , bk} ⊆ A we consider the formula ϕB =
b1 ∨ b2 ∨ · · · ∨ bk which defines the language BA∗. We can also put ϕε = ¬ϕA, a
formula getting the language {ε}.

We say that the formula ϕ is easy if it is of the form

ψ = ϕB1U (ϕB2U (. . . (ϕBnUϕε)) . . . ).

The language is easy if it is definable by boolean combinations of easy formulas.

Proposition 6.1. Let L be a language over A. Then L is easy if and only if
L ∈ V 1(A).

Proof. It is easy to see that an easy formula ψ = ϕB1U (ϕB2U (. . . (ϕBnUϕε)) . . . )
define the language B∗

1B
∗
2 . . . B

∗
n. Hence the statement follows from Proposi-

tion 5.9. �
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[3] Z. Ésik, Extended temporal logic on finite words and wreath product of monoids with
distinguished generators, Proc. DLT 02. Lect. Notes Comput. Sci. 2450 (2003) 43–58.
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