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A BURNSIDE APPROACH TO THE TERMINATION
OF MOHRI’S ALGORITHM FOR POLYNOMIALLY

AMBIGUOUS MIN-PLUS-AUTOMATA

Daniel Kirsten
1

Abstract. We show that the termination of Mohri’s algorithm is
decidable for polynomially ambiguous weighted finite automata over
the tropical semiring which gives a partial answer to a question by
Mohri [29]. The proof relies on an improvement of the notion of the
twins property and a Burnside type characterization for the finiteness
of the set of states produced by Mohri’s algorithm.

Mathematics Subject Classification. 68Q45, 68Q70, 20M35.

1. Introduction

Weighted finite automata over the tropical semiring (for short WFA) are of
great theoretical and practical interest in computer science. They play a cru-
cial role in the structure theory of recognizable languages in free monoids and
trace monoids [9,18,28]. However, they have also practical applications in speech
recognition, image compression, and database theory [3,6–8,16,17,29]. Conse-
quently, weighted finite automata over the tropical semiring and the more particu-
lar class of distance automata have been extensively studied by many researchers,
e.g., [10,11,20,21,24,27,31,34–36].

To achieve efficient implementations, one is interested in utilizing subsequen-
tial (deterministic) WFA [29]. In contrast to unweighted automata, there are
WFA which do not admit a subsequential equivalent. Mohri developed an algo-
rithm which determinizes WFA [29] which is implemented within the AT&T FSM
Library TM. This algorithm is not perfect, e.g., there are WFA on which Mohri’s
algorithm does not terminate despite there are subsequential equivalents. Never-
theless, his algorithm is very successful on WFA which occur in speech recognition.
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Mohri raised the question whether it is decidable whether his algorithm termi-
nates on a given WFA [1,29]. For trim, unambiguous WFA, he gave a decidable
characterization of the WFA on which his algorithm terminates [29]1. This char-
acterization is based on the so-called twins property. In general, Mohri’s question
remains open.

A WFA is called polynomially ambiguous if the number of accepting paths
(computations) for some word w is polynomially bounded in the length of w.
We present a polynomially ambiguous WFA which does not admit an equivalent,
finitely ambiguous one. As a main result of this paper, we show that it is decidable
whether Mohri’s algorithm terminates on a given trim, polynomially ambiguous
WFA.

We will consider some examples of WFA to explain the inadequacy of the no-
tion of the twins property for WFA over the tropical semiring, and we will develop
a more appropriate notion which will be called the clones property. The main
result of the paper states that the clones property is a decidable, sufficient, and
necessary condition for the termination of Mohri’s algorithm on trim, polynomi-
ally ambiguous WFA (Th. 3.5, Corol. 3.8). To prove that the clones property
is sufficient, we need involved tools as Simon’s factorization forest theorem and
we develop a Burnside type characterization. This Burnside type characterization
says that Mohri’s algorithm terminates on trim, polynomially ambiguous WFA iff
it terminates on every sequence of the form (vwk)k≥1. We also provide an example
which shows that our Burnside type characterization does not hold for arbitrary
WFA.

For trim, finitely ambiguous WFA, the clones property coincides with the twins
property. Hence, we can generalize a characterization by Mohri from unambiguous
to finitely ambiguous WFA (Th. 3.7). We also show that if Mohri’s algorithm
terminates on some WFA A, then it terminates on the trim part of A.

The paper is organized as follows. In Section 2, we explain our notation. Sec-
tion 3 gives an overview. In Section 3.1, we introduce the concept of weighted
finite automata over the tropical semiring and give some historical background.
In Section 3.2, we give an example of a polynomially ambiguous WFA and prove
that it does not admit an equivalent, finitely ambiguous WFA. In Section 3.3, we
present Mohri’s algorithm. In Section 3.4, we explain and discuss the notion of the
twins property. We replace our main results in Section 3.5, and in Section 3.6, we
try to evaluate our contribution and state some open problems. To keep Section 3
as a lucid survey, the main proofs are shifted to Section 4.

2. Notations

Let N = {0, 1, . . .}. For finite sets M , we denote by |M | the number of elements
in M .

A semigroup (S, ·) consists of a set together with a binary associative operation ·
which is often denoted by juxtaposition. Some e ∈ S is called idempotent if ee = e.

1There is an electronic version of [29] on Mohri’s homepage which contains several corrections.
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The set of all idempotents of S is denoted by E(S). A monoid (M, ·, 1) consists of
a semigroup (M, ·) and some element 1 ∈ M which is an identity for ·.

A semiring (K, +, ·, 1, 0) consists of a set K together with two binary operations
+, and · such that + is commutative, (K, +, 0) is a monoid, (K, ·, 1) is a monoid
which distributes over (K, +), and 0 acts as a zero for all elements.

Let (K, +, ·, 1, 0) and (K′, +, ·, 1′, 0′) be two semirings. A mapping ϕ : K → K′

is called a homomorphism if ϕ preserves the operations + and · and ϕ(1) = 1′ and
ϕ(0) = 0′. Homomorphisms between semigroups and between monoids are defined
similarly.

We denote algebraic structures as semigroups, monoids or semirings just by
their set as long as no confusion arises.

The Boolean semiring (B,∨,∧, 1, 0) consists of the set B = {1, 0} whereas the
operations are forced by the definition of a semiring.

Let Z := {. . . ,−1, 0, 1, . . . ,∞}. We extend the ordering ≤ and the addition
of integers to Z by setting for every z ∈ Z, z ≤ ∞ and z + ∞ = ∞ + z := ∞.
Then, (Z, min, +, 0,∞) is a semiring which is called the tropical semiring. In
the same way, one defines a semiring (Zmax, max, +, 0,−∞) whereas Zmax =
{−∞, . . . ,−1, 0, 1, . . .}. The mapping which maps every z ∈ Z to −z is an isomor-
phism (bijective homomorphism) between Z and Zmax.

The mapping α : Z → B defined by α(∞) = 0 and α(z) = 1 for z ∈ Z \ {∞} is
a homomorphism.

Let Q be a finite set and K be a semiring. We denote by KQ×Q the set of
all Q × Q-matrices over K. For A ∈ KQ×Q and i, j ∈ Q, we denote the entry
in the i-the row and jth column by A[i, j]. The set KQ×Q equipped with matrix
multiplication is a monoid. We extend the homomorphism α componentwise to
matrices.

Let B, B′ ∈ KQ and A ∈ KQ×Q. We understand the product BA as a product
of a 1 × Q-matrix (row matrix) and a Q × Q-matrix. We understand the product
AB′ as a product of a Q×Q-matrix and a Q × 1-matrix (column matrix). In the
same way, the product BAB′ yields a member of K.

We identify the members of BQ with subsets of Q. For example, for C ⊆ Q and
A ∈ BQ×Q, we can write CA, and we can regard the result of the product CA as
a subset of Q but also as a member of BQ.

We have to explain our notations concerning matrix multiplication in the trop-
ical semiring. Although the multiplication in the tropical semiring is denoted by
+, the multiplication of matrices over Z is denoted by juxtaposition. We de-
fine a product ⊕ : Z × ZQ → ZQ by setting for every z ∈ Z, B ∈ ZQ, i ∈ Q,
(z ⊕ B)[i] := z + B[i]. Essentially, ⊕ is the multiplication of a 1 × 1-matrix
and a 1 × Q-matrix. Hence, we have for every z, z′ ∈ Z, B ∈ ZQ, A ∈ ZQ×Q,
(z ⊕ B)A = z ⊕ (BA) and z ⊕ (z′ ⊕ B) = (z + z′) ⊕ B which allows us to shorten
notations to z⊕BA resp. z⊕z′⊕B. We do not write ⊕ by juxtaposition, because
it yields misleading notations like z(z′B) = (z + z′)B.

Let Σ be a finite set of symbols within the entire paper. We denote by Σ∗ the
free monoid over Σ, i.e., Σ∗ consists of all words over Σ with concatenation as
operation. We denote the empty word by ε. We denote by Σ+ the free semigroup
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over Σ, i.e., Σ+ := Σ∗ \ε. For every w ∈ Σ∗, we denote by |w| the length of w. We
call a word u a factor (resp. prefix ) of a word w if w ∈ Σ∗uΣ∗ (resp. w ∈ uΣ∗).

3. Overview

3.1. Weighted finite automata

A weighted finite automaton over Z (for short WFA over Z or WFA) is a tupel
A = [Q, θ, λ, �] whereas

(1) Q is a non-empty, finite set of states,
(2) θ : Σ∗ → ZQ×Q is a homomorphism, and
(3) λ, � ∈ ZQ, whereas we consider λ (resp. �) as a 1×Q-matrix (resp. Q× 1-

matrix).
Let A be a WFA over Z. It computes a mapping |A| : Σ∗ → Z by |A|(w) :=
λθ(w)� for w ∈ Σ∗. The mappings computed by WFA are often called recognizable
formal power series. For an overview on formal power series, the reader is referred
to [2,22,23,30].

In the literature, one often considers WFA over Zmax. Since, Zmax and Z are
isomorphic, one can easily carry over results from Zmax to Z and vice versa.

We call two WFA A1 and A2 over Z equivalent iff they compute the same
mapping.

We call a state q ∈ Q accessible if there are words u, v ∈ Σ∗ such that
(λθ(u))[q] 
= ∞ and (θ(v)�)[q] 
= ∞. We call A trim if every q ∈ Q is accessi-
ble.

It is well-known that for every WFA one can construct in polynomial time an
equivalent trim WFA. We need to recall this construction in Section 4.7.

Let I := { q ∈ Q |λ[q] 
= ∞} and F := { q ∈ Q | �[q] 
= ∞}. We call the states
in I resp. F the initial states resp. accepting states of A.

Let p, q ∈ Q and a ∈ Σ. If θ(a)[p, q] 
= ∞, then we call
(
p, a, θ(a)[p, q], q

)
a tran-

sition in A. Let m ≥ 0 and π = (q0, a1, k1, q1)(q1, a2, k2, q2) . . . (qm−1, am, km, qm)
be a sequence of transitions in A. We call π a path from q0 to qm or for short a
path. We call a1 . . . am the label of π. We call π accepting if q0 ∈ I and qm ∈ F .

Let p, q ∈ Q and w ∈ Σ∗. We denote by p
w� q the set of all paths from p to q

which are labeled by w. For R, R′ ⊆ Q, we denote by R
w� R′ the union of r

w� r′

for every r ∈ R, r′ ∈ R′.
Let k ≥ 1. If for every w ∈ Σ∗, there are at most k paths in I

w� F , then we
call A k-ambiguous. If A is 1-ambiguous, then we call A unambiguous. If A is
k-ambiguous for some k ≥ 1, then we call A finitely ambiguous.

The classes of mappings which are computable by k-ambiguous WFA for k =
1, 2, . . . form a strict hierarchy. Obviously, this hierarchy exhausts the class of
mappings which are computable by finitely ambiguous WFA. The latter class is a
proper subclass of the class of all recognizable formal power series over Z. For the
strictness of these inclusions and other interesting subclasses of WFA the reader
is referred to the excellent survey [20].
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Let P : N → N be some polynomial. If for every w ∈ Σ∗, there are at most
P (|w|) paths in I

w� F , then we call A polynomially ambiguous.
Polynomially ambiguous (unweighted) automata have been studied by vari-

ous authors, e.g., [14,15,25]. The following characterization is shown implicitly
in [14,15] (cf. Proof of Th. 3.1 in [15] or Lem. 4.3 in [14]). Although [14,15]
deal with unweighted automata, the construction carries over to WFA over Z in a
straightforward way.

Theorem 3.1. Let A = [Q, θ, λ, �] be a trim WFA over Z. The following asser-
tions are equivalent.

(1) The WFA A is polynomially ambiguous.
(2) For every q ∈ Q and every w ∈ Σ∗, there is at most one path in q

w� q.

A WFA which satisfies condition (2) in Theorem 3.1 is called cycle-unambiguous
in [1].

It is undecidable whether two given WFA over Z are equivalent [21]. Using
Theorem 3.1 one can deduce from [21] that the same problem is undecidable for
polynomially ambiguous WFA over Z. However, the equivalence of finitely am-
biguous WFA is decidable [12].

A subsequential WFA is a tupel A = [Q, δ, σ, q0, k0, �] such that:

• Q is a finite set of states,
• δ : Q × Σ → Q and σ : Q × Σ → Z,
• q0 ∈ Q, k0 ∈ Z, and
• � : Q → Z is a mapping.

We extend δ and σ to words w ∈ Σ∗ as follows: for every q ∈ Q, we set δ(q, ε) := q
and σ(q, ε) := 0. For q ∈ Q, w ∈ Σ∗, and a ∈ Σ, we set δ(q, wa) := δ(δ(q, w), a)
and σ(q, wa) := σ(q, w) + σ(δ(q, w), a).

A subsequential WFA defines a mapping |A| : Σ∗ → Z by |A|(w) := k0 +
σ(q0, w)+�(δ(q0, w)). The mappings of subsequential WFA are called subsequential
formal power series. They are a strict subclass of the mappings of unambiguous
WFA [19,20].

In the literature, one often allows in the definition of a subsequential WFA that
δ and σ are partial mappings. However, this does not really extend our definition,
since one can achieve totally defined mappings δ and σ by introducing a sink state.

3.2. An example of a polynomially ambiguous WFA

It raises the question whether there are meaningful examples of polynomially
ambiguous WFA over Z, or whether the class of mappings which are computable
by polynomially ambiguous WFA coincides with the class of mappings of some
well-known class of WFA. The largest subclass of polynomially ambiguous WFA
found in the literature are the finitely unambiguous WFA [12,20,36].

Let Σ = {a, b}. We consider the WFA A0 = [Q0, θ0, λ0, �0] whereas λ0 =
(0,∞,∞) and �0 = (∞,∞, 0).
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A0

1 2 3

a, 0 b, 0 a, 1 a, 0 b, 0

b, 0 b, 0

The drawings should be understood as follows. The arrow in A0 from state 1 to
state 2 with the label b, 0 means θ0(b)[1, 2] = 0. The absence of some arrow A1

from 1 to 2 with some label a means θ0(a)[1, 2] = ∞. The incoming unlabeled
arrow at state 1 means λ0[1] = 0. Similarly, the outgoing unlabeled arrow at
3 means �0[3] = 0.

For every w ∈ Σ∗, q ∈ Q0, every path in q
w� q visits only the state q. Hence,

there is exactly one path in q
w� q. By Theorem 3.1, A0 is polynomially ambiguous.

For every w ∈ Σ∗, |A0|(w) is the least � ≥ 0 such that ba�b is a factor of w. If
w does not admit a factor of the form ba∗b, then |A0|(w) = ∞.

Proposition 3.2. There is a polynomially ambiguous WFA over Z which does
not admit an equivalent, finitely ambiguous WFA.

Proof. It remains to show that A0, above, does not admit an equivalent, finitely
ambiguous WFA. By contradiction, let k ≥ 1 and A = [Q, θ, λ, �] be a k-ambiguous
WFA satisfying |A| = |A0|.

To derive a contradiction by showing |A| 
= |A0|, we introduce an equivalent way
to define the semantics of A. Let m ≥ 0 and π = (q0, a1, k1, q1)(q1, a2, k2, q2) . . .
(qm−1, am, km, qm) be a path in A. We define σ(π) :=

∑
i=1,...,m ki and σ̄(π) :=

λ[q0] + σ(π) + �[qm]. By an induction on the length of w, we can show for every
p, q ∈ Q, w ∈ Σ∗,

θ(w)[p, q] = min
π ∈ p

w� q

σ(π) and |A|(w) = min
π ∈ I

w�F

σ̄(π).

Let n := |Q| and L :=
(
bank

a∗)k+1
b. Let k′ be the maximum of the number of

accepting paths in A for some word in L and let w ∈ L such that there are exactly
k′ accepting paths for w.

Let π1, . . . , πk′ the accepting paths of w. We factorize w = u0v1u1 . . . vk+1uk+1

whereas u0, . . . , uk+1 ∈ a∗ba∗ and v1, . . . , vk+1 ∈ a+.
We factorize π1, . . . , πk′ into paths which are labeled by u0, v1, u1, . . . , vk+1,

uk+1, respectively. For every 1 ≤ m ≤ k′, there are paths ξm,0, . . . , ξm,k+1

and νm,1, . . . , νm,k+1 such that πm = ξm,0νm,1ξm,1 . . . νm,k+1ξm,k+1 and ξm,0, . . . ,
ξm,k+1 and νm,1, . . . , νm,k+1 are labeled with u0, . . . , uk+1 and v1, . . . , vk+1, re-
spectively.

By a counting argument, we can assume that for every 1 ≤ m ≤ k′, 1 ≤ i ≤ k+1,
the path νm,i is a cycle. If there are some 1 ≤ m ≤ k′, 1 ≤ i ≤ k + 1 such that
σ(νm,i) < 0, then we can iterate νm,i in πm and construct an accepting path π′

such that σ(π̄′) < 0 which is a contradiction.
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For every 1 ≤ m ≤ k′, there is some 1 ≤ i ≤ k + 1 such that σ(νm,i) > 0. Just
assume the contrary. By iterating the cycles σ(νm,i) in πm, we can construct for
every w′ ∈ u0v

+
1 u1 . . . v+

k+1uk+1 an accepting path π′ such that σ̄(π′) = σ̄(πm),
i.e., |A|(w′) ≤ σ′(πm), which is a contradiction.

Let I � {1, . . . , k + 1} such that for every 1 ≤ m ≤ k′, there is some i ∈ I such
that σ(νm,i) > 0.

Let 1 ≤ j ≤ k + 1, j /∈ I. Let � such that ba�b is a factor of uj−1vjuj.
For every 1 ≤ i ≤ k + 1 let v′i := v�+1

i if i ∈ I and let v′i := vi, otherwise. Let
w′ := u0v

′
1u1 . . . v′k+1uk+1.

Let 1 ≤ m ≤ k′. By iterating for i ∈ I the cycles πm,i in πm �+1 times, we obtain
some accepting path π′

m which is labeled with w′ and σ̄(π′
m) ≥ σ̄(πm) + � > �.

In this way, we can construct k′ distinct accepting paths π′
1, . . . , π

′
k′ which are

labeled with w′ and σ̄(π′
m) > � for 1 ≤ m ≤ k′. Since, w′ ∈ L and by the choice

of k′, there are no other accepting paths beside π′
1, . . . , π

′
k′ . Hence, |A|(w′) > �.

However, since ba�b is a factor of w′, we have |A0|(w′) ≤ �. This contradicts
|A| = |A0|. �

3.3. Mohri’s algorithm

In practical applications as speech processing, the implementation of subse-
quential WFA is more efficient than the implementation of arbitrary WFA [29].
Hence, one is interested in an algorithm which transforms a given WFA over Z

into an equivalent subsequential WFA if an equivalent subsequential WFA exists.
In [29], Mohri presented the following algorithm. We explain his algorithm just in
the tropical semiring. Let A = [Q, E, λ, �] be a WFA over Z. Let n := |Q| and
assume Q = {1, . . . , n}.

We want to construct an equivalent, subsequential WFA A′ = [Q′, δ, σ, q0, k0, �
′].

The states Q′ are a subset of Zn.
For every tupel B ∈ Zn, let min(B) := min1≤i≤n B[i]. For every B ∈ Zn \

{(∞, . . . ,∞)}, let nf(B) ∈ Zn be defined by nf(B) := (−min(B)) ⊕ B, and let
nf

(
(∞, . . . ,∞)

)
= (∞, . . . ,∞).

We show some basic properties of the mapping nf before we explain the algo-
rithm.

For every B ∈ Zn, we have B = min(B) ⊕ nf(B).
Let k ∈ Z and B ∈ Zn. We have min(k ⊕ B) = k + min(B).
For k 
= ∞ and B ∈ Zn, can easily show

nf(k ⊕ B) = nf(B). (3.1)

Indeed, if B 
= (∞, . . . ,∞), then nf(k ⊕ B) = (−min(k ⊕ B)) ⊕ (k ⊕ B) =( − k − min(B)
) ⊕ (k ⊕ B) = (−min(B)) ⊕ B = nf(B). If B = (∞, . . . ,∞),

then B = k ⊕ B, and hence, nf(B) = nf(k ⊕ B).
Let B ∈ Zn and A ∈ Zn×n. If B 
= (∞, . . . ,∞), then we have nf

(
nf(B)A

)
=

nf
(
(−min(B))⊕B A

)
= nf(BA). If B = (∞, . . . ,∞), then nf(B) = B, and hence,
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nf
(
nf(B)A

)
= nf(BA). Consequently, we have for every B ∈ Zn, A ∈ Zn×n,

nf
(
nf(B)A

)
= nf(BA). (3.2)

We construct A′. For every B ∈ Zn and every a ∈ Σ, we define
• δ(B, a) := nf

(
Bθ(a)

)
and

• σ(B, a) := min
(
Bθ(a)

)
.

We show that for every B ∈ Zn, w ∈ Σ+, we have

δ(B, w) = nf(Bθ(w)). (3.3)

For w ∈ Σ, (3.3) is the definition of δ. Let w ∈ Σ+, a ∈ Σ and assume by induction
that (3.3) is true for w (for every B ∈ Zn). We obtain δ(B, wa) = δ

(
δ(B, w), a

)

= nf
(
δ(B, w)θ(a)

)
= nf

(
nf(Bθ(w))θ(a)

) (3.2)
= nf

(
Bθ(w)θ(a)

)
= nf(Bθ(wa)).

For every B ∈ Zn, a ∈ Σ, we have σ(B, a) ⊕ δ(B, a) = Bθ(a). We generalize this
equation by an induction to words, i.e., we show for every w ∈ Σ∗ and B ∈ Zn

σ(B, w) ⊕ δ(B, w) = Bθ(w). (3.4)

We have σ(B, ε) ⊕ δ(B, ε) = 0 ⊕ B = Bθ(ε). For w ∈ Σ∗, a ∈ Σ, and B ∈ Zn,
we get

σ(B, wa) ⊕ δ(B, wa) =
(
σ(B, w) + σ

(
δ(B, w), a

)) ⊕ δ
(
δ(B, w), a

)

= σ(B, w) ⊕
(
σ
(
δ(B, w), a

) ⊕ δ
(
δ(B, w), a

))
= σ(B, w) ⊕ (

δ(B, w)θ(a)
)

=
(
σ(B, w) ⊕ δ(B, w)

)
θ(a) =

(
Bθ(w)

)
θ(a) = Bθ(wa).

We set k0 := min(λ), q0 := nf(λ), and �′(B) = B� for B ∈ Zn. As a conclusion
from (3.4), we get for every w ∈ Σ∗

k0 + σ(q0, w) + �′
(
δ(q0, w)

)
= k0 + σ(q0, w) + δ(q0, w)�

= k0 +
(
σ(q0, w) ⊕ δ(q0, w)

)
� = k0 + q0θ(w)� = min(λ) + nf(λ)θ(w)�

=
(
min(λ) ⊕ nf(λ)

)
θ(w)� = λθ(w)� = |A|(w). (3.5)

Let Q′ :=
{
δ(q0, w)

∣∣ w ∈ Σ∗}. Clearly, Q′ is the least subset of Zn which contains
q0 and is closed under δ, i.e., for every B ∈ Q′, a ∈ Σ, we have δ(B, a) ∈ Q′.

The set Q′ is not necessarily finite, even if there is some subsequential WFA
which is equivalent to T . If Q′ is finite, then we define A′ =

[
Q′, δ|Q′×Σ, σ|Q′×Σ, q0,

k0, �′|Q′
]
. By equation (3.5), A and A′ are equivalent.

In [29], Mohri gives an algorithm which computes the WFA A′. This algorithm
terminates iff Q′ is finite.

We say that Mohri’s algorithm terminates on A if Q′ is finite.
Let (wk)k≥1 be some sequence of words in Σ∗. We say that Mohri’s algorithm

terminates on (wk)k≥1 on A if the set
{
δ(q0, wk)

∣∣ k ≥ 1
}

is finite.
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3.4. On the twins property

The twins property was introduced by Choffrut in 1977 [5] in the framework of
string-to-string transducers. In 1997 [1,29], Mohri generalized the twins property
to WFA over the tropical semiring as follows.

Let A = [Q, θ, λ, �] be a WFA over Z. Two states q, q′ ∈ Q are called siblings if
there exists some u ∈ Σ∗ such that λθ(u)[q] 
= ∞ and λθ(u)[q′] 
= ∞. Two siblings
q, q′ ∈ Q are called twins if they satisfy the following condition (TW):

TW.: For every v ∈ Σ∗ satisfying θ(v)[q, q] 
= ∞ and θ(v)[q′, q′] 
= ∞, we
have

θ(v)[q, q] = θ(v)[q′, q′].
The WFA A has the twins property iff every siblings are twins.

In [29], it is shown that the twins property is a sufficient condition for the
termination of Mohri’s algorithm. Moreover, we have the following theorem:

Theorem 3.3 ([29, Th. 12]). Let A be a trim, unambiguous WFA over the tropical
semiring. Mohri’s algorithm terminates on A iff A satisfies the twins property.

The main weakness of the concept of the twins property is that the twins prop-
erty is not necessary for the termination of Mohri’s algorithm.

Example 3.4. Let Σ = {a, b}. We consider the WFA A1 = [Q, θ1, λ, �] (left) and
A2 = [Q, θ2, λ, �] (right) whereas λ = (0,∞,∞,∞) and � = (∞,∞,∞, 0).

A1

1

2

3

4

a, 5

a, 0

a, 2

b, 0

a, 0

a, 0

a, 0

a, 0

a, 2

a, 1

A2

1

2

3

4

a, 5

a, 0

a, 2

b, 0

b, 0

a, 0

a, 0

a, 0

a, 0

a, 2

a, 1

Note that A2 was constructed by inserting a transition (1, b, 3) into A1.
Let w ∈ Σ∗ and q ∈ Q. Every path in q

w� q does only visit the state q.
Hence, there is at most one path in q

w� q. By Theorem 3.1, both A1 and A2 are
polynomially ambiguous.

We apply Mohri’s algorithm to A1. We get q0 = nf(λ) = λ. We examine the set
Q′

1 = {δ1(q0, w) |w ∈ Σ∗}. It is easy to see that for every word w ∈ Σ+bΣ∗, we have
λθ1(w) = (∞,∞,∞,∞), and hence, δ1(q0, w) = (∞,∞,∞,∞). Let k ∈ N and
w = bak. We obtain λθ1(w) = (∞,∞,∞, k), and by equation (3.3), δ1(q0, w) =
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(∞,∞,∞, 0). Finally, we calculate δ1(q0, a
k) for k = 1, 2, . . . We obtain δ1(q0, a) =

(∞, 5, 0, 2), i.e., (∞, 5, 0, 2) belongs to Q′
1. By continuing for k = 2, 3, . . . , we

figure out that (∞, 5, 2, 0), (∞, 4, 4, 0), (∞, 3, 3, 0), (∞, 2, 2, 0), (∞, 1, 1, 0),
(∞, 0, 0, 0) belong to Q′

1. For k ≥ 7, we obtain δ1

(
q0, a

k
)

= (∞, 0, 0, 0). To sum
up, Q′

1 consists of 10 states, i.e, Mohri’s algorithm terminates on A1.
Now, we apply Mohri’s algorithm to A2. For every k ≥ 0, we get λθ2(bak) =

(∞,∞, 2k, k), and thus, δ2(q0, ba
k) = (∞,∞, k, 0). Thus, Q′

2 is infinite, i.e.,
Mohri’s algorithm does not terminate on A2.

Both A1 and A2 have the same siblings: (1, 1) and {2, 3, 4} × {2, 3, 4}. Both
A1 and A2 do not satisfy the twins property, e.g., we have θi(a)[2, 2] = 0 
= 2 =
θi(a)[3, 3] for i ∈ {1, 2}.

The key question is how to define a variant of the twins property which allows
to distinguish between A1 and A2. Let us try an approach which relies on some
comparison of siblings, i.e., we try to establish some condition (TW’) which is
similar to the above condition (TW), and we define that some WFA satisfies the
(TW’)-twins property if every siblings satisfy (TW’).

Now, consider the siblings (2, 3) in A1 and A2. For every p ∈ Q and every w ∈
Σ∗, we have θ1(w)[2, p] = θ2(w)[2, p] and θ1(w)[3, p] = θ2(w)[3, p]. Consequently, if
(TW’) is somehow defined by a comparison of siblings, then (2, 3) satisfies (TW’) in
A1 iff (2, 3) satisfies (TW’) in A2. Henceforth, (TW’) cannot distinguish between
(2, 3) in A1 and (2, 3) in A2.

Unfortunately, the same effect happens for every pair of siblings in {2, 3, 4} ×
{2, 3, 4}. There is still one more pair of siblings: (1, 1). If (TW’) is somehow
defined by a comparison of siblings, then (TW’) should be satisfied for sibling
pairs of the form (q, q) since it means to compare a state to itself.

As a conclusion, it seems to be impossible to define (TW’) in way that A1

satisfies the (TW’)-twins property but A2 does not. �

3.5. Main results

Let A = [Q, θ, λ, �] be a WFA over Z. Set n := |Q| and assume Q = {1, . . . , n}.
We call some set C ⊆ Q a clone if there is some word w ∈ Σ∗ such that

C =
{
q ∈ Q

∣∣λθ(w)[q] 
= ∞}
.

We denote the set of all clones of A by Clones(A) ⊆ 2Q.
Let p, q ∈ Q. Clearly, p and q are siblings iff there exists some C ∈ Clones(A)

such that p, q ∈ C.
Let C ⊆ Q and A ∈ Zn×n, and assume α(A) ∈ E(Bn×n). We say that C is

stable on A if Cα(A) = C. Assume that C is stable on A. Let q ∈ C. We say
that q has a minimal cycle in C and A if A[q, q] = min

{
A[p, p]

∣∣ p ∈ C
}
. We say

that C and A have the clones property if for every p ∈ C satisfying A[p, p] 
= ∞,
there is some q ∈ C such that q has a minimal cycle in C and A[q, p] 
= ∞.

If C = ∅, then C and A satisfy the clones property by definition.
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We say that A has the clones property if for every C ∈ Clones(A) and every
w ∈ Σ∗, C and θ(w) have the clones property, provided that α(θ(w)) ∈ E(Bn×n)
and θ(w) is stable on C.

Our main result is the following equivalence:

Theorem 3.5. Let A be a trim, polynomially ambiguous WFA over Z. The
following assertions are equivalent:

(1) Mohri’s algorithm terminates on A.
(2) For every v, w ∈ Σ∗, Mohri’s algorithm terminates on the sequence

(vwk)k≥1 on A.
(3) The WFA A satisfies the clones property.

Note that (1) ⇒ (2) in Theorem 3.5 is obvious.
To show (2) ⇒ (3), we assume that (3) is false. There are C ∈ Clones(A) and

w ∈ Σ∗ such that C and θ(w) do not satisfy the clones property. Let v ∈ Σ∗

such that C =
{
q ∈ Q

∣∣λθ(v)[q] 
= ∞}
. We can then show that Mohri’s algorithm

does not terminate on the sequence (vwk)k≥1 which disproves (2) in Theorem 3.5
(Sect. 4.3).

The proof of (3) ⇒ (1) in Theorem 3.5 leads us to a Burnside type problem
which requires ambitious algebraic tools as Simon’s factorization forest theorem
(Sects. 4.4 and 4.5).

Example 3.4 (continued). We continue the examination of A1 and A2 from
Section 3.4. We have Clones(A1) =

{∅, {1}, {4}, {2, 3, 4}} and Clones(A2) ={∅, {1}, {3, 4}, {2, 3, 4}}. Thus, A1 and A2 have different sets of clones, although
they have the same siblings.

In Section 3.4, we have seen that Mohri’s algorithm does not terminate on the
sequence (bak)k≥1 on A2. We utilize this sequence to show that A2 does not satisfy
the clones property. We consider the clone C := {q ∈ Q

∣∣λθ2(b)[q] 
= ∞}
= {3, 4}

and θ2(a). It is easy to see that α(θ2(a)) ∈ E(B4×4). If A2 reads a starting in some
state in C, then it can change the state to 3 or 4. Hence, C is stable on θ2(a).

Since, θ2(a)[3, 3] = 2 and θ2(a)[4, 4] = 1, the state 4 has a minimal cycle in
C and θ2(a). The state 3 has not a minimal cycle in C and θ2(a). We have
θ2(a)[4, 3] = ∞. Consequently, C and θ2(a) do not have the clones property, and
hence, A2 does not satisfy the clones property.

In Section 3.4, we have seen that Mohri’s algorithm terminates on A1. By
Theorem 3.5, A1 satisfies the clones property. �
We show some connections between the clones property and the twins property.

Theorem 3.6. Let A be a WFA over Z. If A has the twins property, then A has
the clones property.

Proof. Let A = [Q, θ, λ, �]. Let C ∈ Clones(A) and w ∈ Σ∗ such that α(θ(w)) ∈
E(Bn×n) and α(θ(w)) is stable on C. We show that C and θ(w) have the clones
property. If C = ∅, then we are done. Assume C 
= ∅. Let C′ := {q ∈
C | θ(w)[q, q] 
= ∞}. Since, A has the twins property, we have θ(w)[p, p] =
θ(w)[q, q] for every p, q ∈ C′. Hence, every q ∈ C′ has a minimal cycle in C
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and θ(w). Let p ∈ C′ be arbitrary. We have to show some q ∈ C′ such that q has
a minimal cycle in C and θ(w) and θ(w)[q, p] 
= ∞. We can set q := p. �

For finitely ambiguous WFA, we have a stronger property.

Theorem 3.7. Let A = [Q, θ, λ, �] be a trim, finitely ambiguous WFA over Z.
The following assertions are equivalent:

(1) The WFA A satisfies the clones property.
(2) The WFA A satisfies the twins property.
(3) Mohri’s algorithm terminates on A.

Note that (1) ⇔ (3) follows directly from Theorem 3.5 and (2) ⇒ (1) follows from
Theorem 3.6. Moreover, (2) ⇒ (3) follows from a result by Mohri in [29] as seen
in Section 3.4.

From Theorem 3.5, we get the following result:

Corollary 3.8. There is an algorithm which decides whether Mohri’s algorithm
terminates on a given trim, polynomially ambiguous WFA over Z.

Proof. The algorithm consists of two simultaneous processes. The first process
generates Q′. It terminates iff Q′ is finite.

The second process generates the set Clones(A) and checks for every word w ∈
Σ∗ whether α(θ(w)) ∈ E(Bn×n) and whether C is stable on α(θ(w)). If so, it
checks whether C and θ(w) satisfy the clones property. It terminates iff C and
θ(w) do not satisfy the clones property. Hence, the second process terminates iff
A does not satisfy the clones property.

By Theorem 3.5(1)⇔(3), exactly one of the processes terminates, and Mohri’s
algorithm terminates on A iff the first process terminates. �

Our main results are restricted to trim, polynomially ambiguous WFA over Z.
It raises the question whether one can generalize our results to other WFA over
Z. We prove the following result in Section 4.7.

Theorem 3.9. Let A = [Q, θ, λ, �]. If Mohri’s algorithm terminates on A, then
Mohri’s algorithm terminates on the trim part of A.

If we are interested in applying Mohri’s algorithm to some WFA A, then we
rather apply Mohri’s algorithm to the trim part of A. We can construct the trim
part of A in polynomial time. The trim part has less or as many states as A. If
A is polynomially ambiguous, then so is the trim part of A. Moreover, if Mohri’s
algorithm terminates on A, then it terminates on the trim part of A. Henceforth,
the restriction to trim WFA is not really a restriction.

3.6. Conclusions and open questions

We can decide whether Mohri’s algorithm terminates on a given polynomially
ambiguous WFA. It is quite interesting to have a decidability result for a class of
WFA for which the equivalence problem is undecidable [21].
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In the tropical semiring, the twins property was a suitable concept just for
unambiguous WFA. By introducing the clones property, we came over the dis-
advantages of the twins property for the class of polynomially ambiguous WFA.
Remarkably, the twins and the clones property coincide for finitely ambiguous
WFA.

The equivalence (2) ⇔ (3) in Theorem 3.7 generalizes Theorem 3.3 by Mohri
from unambiguous WFA to finitely unambiguous WFA.

It raises the question whether one can generalize Theorem 3.5 and Corollary 3.8
to trim WFA which are not necessarily polynomially ambiguous. Let us consider
an example.

Example 3.10. Let Σ = {a, b}. We examine the WFA A3 shown below whereas
λ3 = (0, 0, 0) and �3 = (∞,∞, 0).

A3

1 2 3

a, 0 b, 0 a, 1 a, 0 b, 1

b, 0

For every w ∈ Σ∗, we have λ3θ3(w)[1] = 0. We can imagine A3 as a machine which
reads words and manipulates two counters which correspond to the states 2 and 3.
We do not imagine state 1 as a counter, since such a counter is just a constant
zero.

The counter 3 counts the number of b’s in the input word. When A3 reads
the letter a, it increments the counter 2, but when it reads b, it sets counter 2 to
zero. Thus, counter 2 counts the number of trailing a’s in the input word. More
precisely, we have for every k ≥ 0, w ∈ Σ∗, λ3θ3(wbak)[2] = k.

We modify A3 by inserting two transitions between the states 2 and 3 and
obtain an WFA A4 shown below whereas λ4 = λ3 and �4 = �3.

A4

1 2 3

a, 0 b, 0 a, 1 a, 0 b, 1

b, 0 b, 1

a, 0

For every w ∈ Σ∗, we have λ4θ4(w)[1] = 0, λ4θ4(w)[2] ≥ 0, and λ4θ4(w)[3] ≥ 0.
Hence, we have min(λ4θ4(w)) = 0 and nf(λ4θ4(w)) = λ4θ4(w).

The WFA A4 is not polynomially ambiguous, because there are two different
cycles at the state 3 which are labeled with ab.

When A4 reads the letter b, it increments the counter 3 and sets counter 2 to
zero. However, when reading b, A4 increments counter 3 at most to the value of
counter 2 plus 1.

When A4 reads the letter a, it does not change the counter 3. It increments
the counter 2, if counter 2 is less than counter 3.

We verify condition (3) in Theorem 3.5 for A4. The only clone is the set
C = {1, 2, 3}. Let w ∈ Σ∗ be arbitrary. We check the clones property.
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For w = ε, C and μ4(w) satisfy the clones property obviously.
For w ∈ a+, the minimal cycles of μ4(w) are at state 1 and 3. Clearly, C and

μ4(w) satisfy the clones property, since μ4(w)[1, 1], μ4(w)[3, 2], and μ4(w)[3, 3] are
different from ∞.

If there is exactly one b in w, then α(μ4(w)) /∈ E(B3×3), since μ4(w)[1, 3] = ∞
but (μ4(w))2[1, 3] 
= ∞.

If there are at least two b’s in w, then a minimal cycle is at state 1. Clearly, C
and μ4(w) satisfy the clones property, since μ4(w)[1, p] 
= ∞ for p ∈ Q4.

To sum up, A4 satisfies the clones property.
We verify condition (2) in Theorem 3.5 for A4. Let v, w ∈ Σ∗.
Assume w ∈ a∗. It is easy to see that for every k ≥ 1, we have λ4θ4(v)[3] =

λ4θ4(vwk)[3]. Moreover, we have 0 ≤ λ4θ4(vwk)[2] ≤ λ4θ4(vwk)[3] = λ4θ4(v)[3].
Consequently, the set {λ4θ4(vwk) | k ≥ 1} is finite, i.e., Mohri’s algorithm termi-
nates on the sequence (vwk)k≥1.

Now, assume w /∈ a∗. Let m ≥ 0 such that for every k ≥ 1, the word am+1 is
not a factor of vwk. Let k ≥ 1 and u be a prefix of vwk. If u ∈ a∗, then u = a�

for some � ≤ m, and hence, λ4θ4(u)[2] = � ≤ m. If u /∈ a∗, then there are u′ ∈ Σ∗,
� ≤ m such that u = u′ba�. We have λ4θ4(u′b)[2] = 0 and θ4(a�) = � ≤ m, and
hence, λ4θ4(u)[2] ≤ m.

There are some u ∈ Σ∗ and � ≤ m such that vwk = uba�. We have

λ4θ4(uba�)[3] ≤ λ4θ4(u)[2] + θ4(b)[2, 3] + θ4(a�)[3, 3] ≤ m + 1 + 0.

Thus, we have for every k ≥ 1, λ4θ4(vwk) ∈ {0} × {0, . . . , m} × {0, . . . , m + 1}.
Consequently, Mohri’s algorithm terminates on the sequence (vwk)k≥1, i.e., A4

satisfies (2) in Theorem 3.5.
Now, we consider the sequence defined by w1 := ba and wk+1 := wkbak+1

for k ≥ 1. We have λ4θ4(w1) = (0, 1, 1). By an induction on k, one can easily
show λ4θ4(wkb) = (0, 0, k + 1) and λ4θ4(wk+1) = (0, k + 1, k + 1). Thus, we have
λ4θ4(w�) 
= λ4θ4(wk) for every 1 < � < k. Consequently, Mohri’s algorithm does
not terminate on A4. �

By A4 in Example 3.10, the implications (3) ⇒ (1) and (2) ⇒ (1) in Theo-
rem 3.5 are not true for arbitrary WFA over Z. It is an interesting open ques-
tion whether one can achieve a characterization similar to Theorem 3.5 for arbi-
trary WFA over Z, maybe by utilizing Hashiguchi’s k-expressions which provide
a nested pumping technique and turned out to be very useful in the theory of
WFA [10,18,26,34].

Another open problem is to develop a practical algorithm to decide whether a
given, polynomially ambiguous WFA satisfies the clones property.
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4. The main proofs

4.1. On Boolean matrices

Let n ≥ 1 for this section. Let e ∈ E(Bn×n). We associate a binary relation ≤e

on {1, . . . , n} to e by setting i ≤e j iff e[i, j] = 1.

Lemma 4.1. Let e ∈ E(Bn×n).

(1) The relation ≤e is transitive.
(2) For every 1 ≤ i, j ≤ n satisfying i ≤e j, there is some 1 ≤ k ≤ n such that

i ≤e k, k ≤e k, and k ≤e j.

Proof.

(1) Let 1 ≤ i, j, k ≤ n such that i ≤e j and j ≤e k, i.e., e[i, j] = 1 = e[j, k].
Consequently, 1 = e2[i, k] = e[i, k]. Hence, i ≤e k.

(2) Let 1 ≤ i, j ≤ n satisfying i ≤e j, i.e., e[i, j] = 1. Since, B is an idempotent
semiring and e = en+2, there are i = i0, . . . , in+1 = j such that 1 =
en+2[i, j] = e[i0, i1] ∧ · · · ∧ e[in+1, in+2]. By a counting argument, there
are 1 ≤ p < q ≤ n such that ip = iq. We set k = ip. Since, 1 =
e[i0, i1]∧ · · · ∧ e[ip−1, ip], we obtain 1 = ep[i0, ip] = e[i, k], i.e., i ≤e k, and
similarly, k ≤e k, and k ≤e j.

�

Let S be a subsemigroup of Bn×n for the rest of this section. We call S polynomi-
ally ambiguous (resp. finitely ambiguous) if there is some polynomial P : N → N

(resp. constant P ∈ N) such that for every k ≥ 1, p1, . . . , pk ∈ S, and every
1 ≤ i, j ≤ n, there are at most P (k) (resp. P ) tupels (i0, . . . , ik) ∈ {1, . . . , n}k+1

which satisfy the conditions i0 = i, ik = j, and

p1[i0, i1] ∧ · · · ∧ pk[ik−1, ik] = 1.

Let p ∈ S and 1 ≤ i, j ≤ n satisfying p[i, j] = 1. We call (i, j) unambiguous in p
if for every r, s ∈ S satisfying p = rs, there is exactly one 1 ≤ k ≤ n such that
r[i, k] ∧ s[k, j] = 1.

Assume that (i, j) is unambiguous in p. Let k ≥ 1, p1, . . . , pk ∈ S satisfying
p = p1 · · · pk. There are unique i = i0, . . . , ik = j such that p1[i0, i1] ∧ · · · ∧
pk[ik−1, ik] = 1 and for every 1 ≤ � ≤ k, the pair (i�−1, i�) is unambiguous in p�.

Lemma 4.2. Let S ⊆ Bn×n be a subsemigroup. The following conditions are
equivalent.

(1) For every p ∈ S and every i, j satisfying p[i, i] = p[i, j] = p[j, i] = p[j, j] =
1, we have i = j.

(2) For every p ∈ S and every i satisfying p[i, i] = 1, the pair (i, i) is unam-
biguous in p.

Moreover, if S is polynomially ambiguous, then both conditions are satisfied.
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Proof.
(2)⇒(1) We have p2[i, i] = 1. By (2) on p2 and (i, i), there is a unique k such

that p[i, k] = p[k, i] = 1. Thus, we have i = k but also j = k.
(1)⇒(2) Let p ∈ S and i satisfying p[i, i] = 1. Let r, s ∈ S such that p = rs. Let

k, � such that r[i, k] = s[k, i] = 1 and r[i, �] = s[�, i] = 1. We have to show k = �.
Since s[�, i] = r[i, k] = 1, we have sr[�, k] = 1, and similarly, sr[k, k] = sr[k, �] =
sr[�, �] = 1. By applying (1) for sr and k, �, we observe k = �.

Finally, assume that S is a polynomially ambiguous subsemigroup of Bn×n. We
show (1). Let p and i, j as in (1). Let k ≥ 1 and consider the product pk. According
to the definition of a polynomially ambiguous subsemigroup, the number of tupels
in {i} × {i, j}k−1 × {j} is bounded polynomially in k. Hence, {i, j} is a singleton
set, i.e., i = j. �

Let us mention that it was shown implicitly in [13–15] in an automata theo-
retic framework that every subsemigroup of Bn×n which satisfies condition (2) in
Lemma 4.2 is polynomially ambiguous (cf. Proof of Th. 3.1 in [15] or Lem. 4.3
in [14]).

Assume that S is polynomially ambiguous and let e ∈ E(S). By Lemma 4.2(1),
≤e is antisymmetric. However, ≤e is not necessarily reflexive or irreflexive.

Lemma 4.3. Let S be a polynomially ambiguous subsemigroup of Bn×n. Let
C ⊆ {1, . . . , n} and let e ∈ E(S), and assume that e is stable on C. For every
i ∈ C which is minimal for ≤e in C, we have e[i, i] = 1.

Proof. Let i ∈ C be minimal. Since, e is stable on C, we have (Ce)[i] = 1, and
hence, there is some j ∈ C such that e[j, i] = 1. It follows j ≤e i, and since i is
minimal, we have j = i. Consequently, we have e[i, i] = 1. �

An important consequence from Lemma 4.3 is that for every i ∈ C, there exists
some j ∈ C such that j ≤e i. Just assume that such a j does not exist. Then, i is
minimal for ≤e, and by Lemma 4.3, we have j ≤e i for j := i.

Lemma 4.4. Let S ⊆ Bn×n be a finitely ambiguous subsemigroup. For every
p ∈ S and every i, j satisfying p[i, i] = p[i, j] = p[j, j] = 1, we have i = j.

Proof. By contradiction, let p ∈ S and i 
= j such that p[i, i] = p[i, j] = p[j, j] = 1.
Let k ≥ 1. We apply the definition of a finitely ambiguous semigroup to the entry
(i, j) in the k-th power of p. For every 1 ≤ � ≤ k, consider the tupel {i}�×{j}k+1−�.
Hence, there are at least k tupels, i.e., the number of tupels is not bounded by a
constant. �
Lemma 4.5. Let A = [Q, θ, λ, �] be a trim WFA over Z. The following assertions
are equivalent.

(1) The WFA A is polynomially (resp. finitely) ambiguous.
(2) The subsemigroup α(θ(Σ∗)) ⊆ BQ×Q is polynomially (resp. finitely) am-

biguous.

Proof. Let n := |Q| and assume Q = {1, . . . , n}.
At first, we show the equivalence for the case of polynomial ambiguity.
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(2) ⇒ (1) Let P : N → N be the polynomial from the definition of a poly-
nomially ambiguous subsemigroup for α(θ(Σ∗)). Let I (resp. F ) be the initial
(resp. accepting) states of A. Clearly, for every word w ∈ Σ∗ there are at most
|I| · P (|w|) · |F | ≤ n2P (|w|) accepting paths for w.

(1) ⇒ (2) Let P : N → N be a polynomial such that every word w ∈ Σ∗ has at
most P (|w|) accepting paths in A. We assume that P is monotonic, i.e., for every
k ≤ k′, we have P (k) ≤ P (k′).

For every k ∈ N, let P ′(k) := P
(
2n2

k+2n
)
. Clearly, P ′ : N → N is a polynomial.

Let S := α(θ(Σ∗)). For every p ∈ S, there is some w ∈ Σ∗ such that |w| ≤
|S| ≤ 2n2

and α(θ(w)) = p.
Let k ≥ 1, p1, . . . , pk ∈ S, and 1 ≤ i, j ≤ n such that (p1 . . . pk)[i, j] = 1.
Let w1, . . . , wk ∈ Σ∗ such that for every 1 ≤ � ≤ k, |w|� ≤ 2n2

and α(θ(w�)) = p�.
Since, A is trim, there are w0, wk+1 ∈ Σ∗ such that α(λθ(w0))[i] = 1 and

α(θ(wk+1)�)[j] = 1. We can assume |w0| ≤ n and |wk+1| ≤ n.
Let i = i0, . . . , ik = j such that p1[i0, i1] ∧ · · · ∧ pk[ik−1, ik] = 1. For every

1 ≤ � ≤ k, there is some path in A from i�−1 to i� which is labeled with w�.
Moreover, there is some path in A from an initial state to i which is labeled with
w0, and there is a path in A from j to some accepting state which is labeled with
wk+1. Consequently, we can associate to each tupel i0, . . . , ik an accepting path
in A which is labeled with w0 . . . wk+1. Clearly, this association is injective. Thus,
the number of tupels is less than the number of accepting paths of w0 . . . wk+1 in
A, i.e., the number of tupels is at most

P (|w0 . . . wk+1|) ≤ P
(
2n2

k + 2n
)

= P ′(k).

To show the equivalence for the case of finite ambiguity, we proceed in the same
way by considering P : N → N as a constant. In particular, we can set P ′ := P in
(1) ⇒ (2). �

4.2. On the span of tupels

Let A = [Q, θ, λ, �] be a polynomially ambiguous WFA over Z for this section.
Let n := |Q| and assume Q = {1, . . . , n}.

Let T := θ(Σ∗) ⊆ Zn×n and S := α(θ(Σ∗)) = α(T ) ⊆ Bn×n. By Lemma 4.5, S
is polynomially ambiguous.

Let C ⊆ Q and A ∈ Zn×n. By an abuse of notation, we define a product
CA ∈ Zn, by setting for every 1 ≤ i ≤ n, (CA)[i] = min�∈C A[�, i].

In Section 3.3, we already defined min(B) := min1≤i≤n B[i] for B ∈ Zn. For
every B ∈ Zn \ {(∞, . . . ,∞)}, let

(1) max(B) := max1≤i≤n, B[i] �=∞ B[i];
(2) span(B) := max(B) − min(B), and span

(
(∞, . . . ,∞)

)
:= 0.

We show some connections between span, nf and the termination of Mohri’s algo-
rithm.

Remark 4.6. Let B ∈ Zn \ {(∞, . . . ,∞)} and k ∈ Z \ {∞}. We have:
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(1) min(k ⊕ B) = k + min(B), max(k ⊕ B) = k + max(B);
(2) span(k ⊕ B) = k + max(B) − (k + min(B)) = span(B);
(3) min(nf(B)) = min

(
(−min(B)) ⊕ B

)
= −min(B) + min(B) = 0;

(4) span(nf(B)) = max(nf(B)) − min(nf(B)) = max(nf(B));
(5) span(nf(B)) = span

(
(−min(B)) ⊕ B

)
= span(B).

The equations (3) and (4) are not well-defined for B = (∞, . . . ,∞). However, the
important claim (5) in Remark 4.6 is obviously true for B = (∞, . . . ,∞).

In Section 3.3, we explained that Mohri’s algorithm produces the set Q′ ={
δ(q0, w)

∣∣ w ∈ Σ∗}.
For every w ∈ Σ+, we have

δ(q0, w)
(3.3)
= nf

(
q0θ(w)

)
= nf

(
nf(λ)θ(w)

) (3.2)
= nf

(
λθ(w)

)
,

and δ(q0, ε) = q0 = nf(λ) = nf(λθ(ε)). Consequently, we have

Q′ =
{
nf(λθ(w))

∣∣ w ∈ Σ∗}. (4.1)

Lemma 4.7. The following assertions are equivalent.

(1) Mohri’s algorithm terminates on A.
(2) There is some K ∈ N such that span(λθ(w)) ≤ K for every w ∈ Σ∗.

Proof. (1) ⇒ (2) Since, Mohri’s algorithm terminates, Q′ is finite. Since, Q′ 
= ∅,
we can set K := maxB∈Q′ span(B). For every w ∈ Σ∗, have nf(λθ(w)) ∈ Q′, and
hence,

span(λθ(w))
Rem. 4.6(5)

= span(nf(λθ(w))) ≤ max
B∈Q′

span(B) = K.

(2) ⇒ (1) We show that Q′ is finite. Let B ∈ Q′ \ {(∞, . . . ,∞)}. There
is some w ∈ Σ∗ such that B = nf(λθ(w)). By Remark 4.6(4)(5), we have
max

(
nf(λθ(w))

)
= span(λθ(w)) ≤ K. By Remark 4.6(3), min

(
nf(λθ(w))

)
= 0.

Thus, B = nf(λθ(w)) ∈ {0, . . . , K,∞}n, i.e., Q′ ⊆ {0, . . . , K,∞}n. Hence, Q′ is
finite. �

4.3. The proof of (2) ⇒ (3) in theorem 3.5

Proof of (2) ⇒ (3) in Theorem 3.5. By contradiction, we assume that (3) is false,
and we show words u, v ∈ Σ∗ which violate condition (2).

Since, A does not satisfy (3), there are some C ∈ Clones(A) and some word
w ∈ Σ∗ such that

(a) e := α(θ(w)) ∈ E(Bn×n);
(b) e is stable on C; and
(c) there is some p ∈ C such that θ(w)[p, p] 
= ∞, and every state p′ ∈ C

satisfying θ(w)[p′, p] 
= ∞ does not have a minimal cycle in C and θ(w).
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Let p′ ∈ C such that p′ is minimal for ≤e and p′ ≤e p. Such a p′ exists by
Lemma 4.3. By Lemma 4.3, we have e[p′, p′] = 1 and θ(w)[p′, p′] 
= ∞.

Let q ∈ C, such that q has a minimal cycle at C and θ(w). We have θ(w)[q, q] 
=
∞.

By (c) above, we have θ(w)[p′, p′] > θ(w)[q, q].
Let v ∈ Σ∗ such that C = α(λθ(v)). Let k ≥ 1. We examine λθ(vwk) =

λθ(v)
(
θ(w)

)k.
At first, we consider λθ(vwk)[p′]. We have

λθ(vwk)[p′] =
((

λθ(v)
)(

θ(w)
)k

)
[p′] = min

r∈Q

((
λθ(v)

)
[r] +

(
θ(w)

)k[r, p′]
)
.

For every i ∈ Q \ C, we have (λθ(v))[i] = ∞. Since, p′ is minimal in C for ≤e, we
have for every i ∈ C \ {p′}, e[i, p′] = 0, i.e., θ(w)[i, p′] = ∞. Hence,

=
(
λθ(v)

)
[p′] +

(
θ(w)

)k[p′, p′].

Since, α(θ(Σ∗)) is polynomially ambiguous, the entry (p′, p′) is unambiguous in e
by Lemma 4.2(2). Consequently, there are unique p′ = i0, . . . , ik = p′ such that
e[i0, i1] ∧ · · · ∧ e[ik−1, ik] = 1. For every 0 < � < k, we can have p′ ≤e i� and
i� ≤e p′, and hence, p′ = i�. Thus, (θ(w))k[p′, p′] = k · (θ(w)[p′, p′]

)
. To sum up,

(
λθ(vwk)

)
[p′] =

(
λθ(v)

)
[p′] + k · (θ(w)[p′, p′]

)
.

On the other hand, we have
(
λθ(vwk)

)
[q] ≤ (

λθ(v)
)
[q] + k · (θ(w)[q, q]

) 
= ∞.

From θ(w)[p′, p′] > θ(w)[q, q], it follows that for increasing integers k, the dif-
ference

(
λθ(vwk)

)
[p′] − (

λθ(vwk)
)
[q] tends to infinity. Consequently, Mohri’s

algorithm does not terminate on the sequence (vwk)k≥1. �

4.4. The side entry bound

Lemma 4.8. Let B ∈ Zn and A ∈ Zn×n. We have span(BA) ≤ span(B) +
span

(
α(B)A

)
.

Proof. If BA = (∞, . . . ,∞), then the claim is obvious. Assume BA 
= (∞, . . . ,∞)
in the rest of the proof. There are 1 ≤ i, j ≤ n such that

∞ ≥ min(BA) = B[i] + A[i, j] ≥ min(B) + min
(
α(B)A

)
. (4.2)

Now, let 1 ≤ j′ ≤ n such that max(BA) = BA[j′]. Let i′ ∈ α(B) such that
A[i′, j′] =

(
α(B)A

)
[j′] ≤ max

(
α(B)A

)
. Hence,

max(BA) = BA[j′] ≤ B[i′] + A[i′, j′] ≤ max(B) + max
(
α(B)A

)
. (4.3)
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By combining (4.2) and (4.3), we obtain

span(BA) = max(BA) − min(BA)

≤ max(B) + max
(
α(B)A

) − min(B) − min
(
α(B)A

)
= span(B) + span

(
α(B)A

)
.

�

Let C ∈ Clones(A) and A ∈ T . We denote the side entry bound of C and A by
seb(C, A) and define it as the least integer which satisfies seb(C, A) ≥ span(CA)
and the following condition:

For every i ∈ C and 1 ≤ j ≤ n such that (i, j) is unambiguous in
α(A), we have

if there is some i′ ∈ C \ {i} such that A[i′, j] 
= ∞, then there
is some î ∈ C \ {i} such that

A[̂i, j] ≤ min(CA) + seb(C, A).

Lemma 4.9. Let A1, A2 ∈ T and C1 ∈ Clones(A) and set C2 := α(C1A1) ∈
Clones(A).

(1) If C1A1A2 
= (∞, . . . ,∞), then min(C1A1A2) ≥ min(C1A1)+min(C2A2);
(2) span(C1A1A2) ≤ span(C1A1) + span(C2A2);
(3) seb(C1, A1A2) ≤ seb(C1, A1) + seb(C2, A2).

Proof. (1) If C1A1A2 
= (∞, . . . ,∞), then there are i ∈ C1, j ∈ C2, and 1 ≤ � ≤ n
such that

∞ 
= min(C1A1A2) = C1A1A2[�] = A1[i, j] + A2[j, �].

Thus, A1[i, j] 
= ∞ and A2[j, �] 
= ∞, and hence, C1A1 
= (∞, . . . ,∞) and C2A2 
=
(∞, . . . ,∞). We have A1[i, j] ≥ C1A1[j] ≥ min(C1A1) and A2[j, �] ≥ C2A2[�] ≥
min(C2A2), and (1) follows.

(2) Since, C2 = α(C1A1) claim (2) follows from Lemma 4.8.
(3) To shorten our notation, we denote b := seb(C1, A1) + seb(C2, A2), i.e.,

we have to show seb(C1, A1A2) ≤ b. Above, seb(C1, A1A2) was defined as the
least number which satisfies two conditions. We show that b satisfies these two
conditions, and henceforth, seb(C1, A1A2) ≤ b. More precisely, we have to show
the following two claims:

(3a) b ≥ span(C1A1A2);
(3b) let i ∈ C1 and 1 ≤ j ≤ n such that (i, j) is unambiguous in α(A1A2). We

have to show that if there is some i′ ∈ C1 \ {i} such that A1A2[i′, j] 
= ∞,
then there is some î ∈ C1 \ {i} such that A1A2 [̂i, j] ≤ min(C1A1A2) + b.

By the definition of seb(C1, A1), seb(C2, A2), and (2), we have b ≥ span(C1A1) +
span(C2A2) ≥ span(C1A1A2) which proves (3a).
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To show (3b), let i ∈ C1 and 1 ≤ j ≤ n such that (i, j) is unambiguous in
α(A1A2). Let 1 ≤ � ≤ n such that A1A2[i, j] = A1[i, �] + A2[�, j]. Since, (i, j)
is unambiguous in α(A1A2), (i, �) (resp. (�, j)) is unambiguous in α(A1) (resp.
α(A2)). Let i′ ∈ C1 \ {i} such that A1A2[i′, j] 
= ∞. If such an i′ does not exist,
we are done.

Case 1: For every �′ ∈ C2 \ {�}, we have A2[�′, j] = ∞.
We have C2A2[j] = A2[�, j], and hence A2[�, j] ≤ min(C2A2)+span(C2A2).

Moreover, we have A1[i′, �] 
= ∞. By the definition of seb(C1, A1), there
is some î ∈ C1 \ {i} such that A1 [̂i, �] ≤ min(C1A1)+ seb(C1, A1). To sum
up,

A1A2 [̂i, j] ≤ A1 [̂i, �] + A2[�, j]

≤ min(C1A1) + seb(C1, A1) + min(C2A2) + span(C2A2)

≤ min(C1A1A2) + seb(C1A1) + seb(C2, A2).

Case 2: There is some �′ ∈ C2 \ {�} such that A2[�′, j] 
= ∞.
By the definition of seb(C2, A2), there is some �̂ ∈ C2 \ {�} such that
A2[�̂, j] ≤ min(C2A2) + seb(C2, A2). By the definition of span(C1A1),
there is some î ∈ C1 such that A1 [̂i, �̂] ≤ min(C1A1)+ span(C1A1). Hence,

A1A2 [̂i, j] ≤ A1 [̂i, �̂] + A2[�̂, j]

≤ min(C1A1) + span(C1A1) + min(C2A2) + seb(C2, A2)

≤ min(C1A1A2) + seb(C1, A1) + seb(C2, A2).

It remains to show î 
= i. We have α(A1)[̂i, �̂] ∧ α(A2)[�̂, j] = 1 and
α(A1)[i, �] ∧ α(A2)[�, j] = 1. Since, �̂ 
= � and (i, j) is unambiguous in
α(A1A2), we have î 
= i. �

Lemma 4.10. Assume that A satisfies the clones property. Let k ≥ 1 and
A1, . . . , Ak ∈ T such that α(A1) = · · · = α(Ak) ∈ E(S). Let C ∈ Clones(A)
such that α(A1) is stable on C.

(1) span(CA1 · · ·Ak) ≤ 2(n − 1)max1≤�≤k seb(C, A�);
(2) seb(C, A1 · · ·Ak) ≤ 2n max1≤�≤k seb(C, A�).

Note that the bound on span(CA1 · · ·Ak) in Lemma 4.10(1) depends on the side
entry bound of C and A� for 1 ≤ � ≤ k. As the following example shows, it is
not possible to show an upper bound on span(CA1 · · ·Ak) which is independent
on the side entry bound of C and A�.

Example 4.11. Let S :=
{⎛

⎜⎜⎝
1 1
0 1

⎞
⎟⎟⎠

}
. Let C = {1, 2}, b ≥ 1, and A1 =

⎛
⎜⎜⎝

0 b
∞ 1

⎞
⎟⎟⎠ ∈ T . Let k ≥ b and A� = A1 for 1 ≤ � ≤ k. For every 1 ≤ � ≤ k, we

have span(CA�) = span
(
( 0 1 )

)
= 1 and seb(C, A�) = b.
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However, we have A1 · · ·Ak =
⎛
⎜⎜⎝

0 b
∞ k

⎞
⎟⎟⎠, and hence, span(CA1 · · ·Ak) =

span
(
( 0 b )

)
= b.

Consequently, we cannot derive an upper bound on span(CA1 · · ·Ak) which is
independent of seb(C, A�) for 1 ≤ � ≤ k. �

Proof of Lemma 4.10. Denote e := α(A1) and A := A1 . . . Ak.
We assume C 
= ∅ since otherwise, the claim is obvious.
Assume k = 1. Claim (2) is obvious. If n > 1, then claim (1) is obvious.

Moreover, we have claim (1) for n = 1 because span(CA1) = 0. We assume k ≥ 2
in the rest of the proof.

Let p ∈ C be minimal for ≤e. By Lemma 4.3, we have e[p, p] = 1, and hence,
A�[p, p] 
= ∞ for every 1 ≤ � ≤ k. Since, p is minimal, we have for every 1 ≤ � ≤ k,

(CA1 · · ·A�)[p] = (A1 · · ·A�)[p, p] =
∑

1≤�′≤�

A�′ [p, p]. (4.4)

Since, A satisfies the clones property, we have for every 1 ≤ � ≤ k and q ∈ C,
A�[p, p] ≤ A�[q, q].

To shorten out notations, let mxspan := max1≤�≤k span(CA�) and mxseb :=
max1≤�≤k seb(C, A�). By definition, mxspan ≤ mxseb.

In the first part of the proof, we show the following two claims (C1) and (C2).
Finally, we derive claims (1) and (2) of the lemma from (C1) and (C2).

(C1): For every j ∈ C, we have CA[j] ≥ CA[p] − (n − 1)mxspan.
(C2): For every 1 ≤ � ≤ k, j ∈ C, we have

(CA1 · · ·A�)[j] ≤ (CA1 · · ·A�)[p] + (n − 1)mxseb.

We show (C1). Let j ∈ C be arbitrary. Let 1 ≤ i0, . . . , ik ≤ n, ik = j such
that for every 1 ≤ � ≤ k, we have A�[i�−1, i�] 
= ∞. For every 1 ≤ � ≤ k, we
have e[i�−1, i�] = 1, i.e., i0 ≤e i1 ≤e · · · ≤e ik. Since, e is stable on C, we have
i0, . . . , ik ∈ C.

For every 1 ≤ � ≤ k, we have e[i�−1, i�] = 1, i.e., i0 ≤e i1 ≤e · · · ≤e ik. Since, e
is stable on C, we have i0, . . . , ik ∈ C.

Let 1 ≤ � ≤ k such that i�−1 
= i�. Since p is minimal, we have CA�[p] = A�[p, p].
By the definition of span(CA�), we have A�[i�−1, i�] ≥ CA�[p] − span(CA�) =
A�[p, p] − span(CA�).

Let 1 ≤ � ≤ k such that i�−1 = i�. As seen above, we have A�[i�−1, i�] ≥ A�[p, p]
for every 1 ≤ � ≤ k.

From these bounds on A�[i�−1, i�], we obtain

∑
1≤�≤k

A�[i�−1, i�] ≥
∑

1≤�≤k

A�[p, p] −
∑

1≤�≤k, i�−1 �=i�

span(CA�).
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Since, S is polynomially ambiguous, ≤e is antisymmetric and transitive, and hence,
there are at most n − 1 integers 1 ≤ � ≤ k such that i�−1 
= i�. Hence, we have

∑
1≤�≤k

A�[i�−1, i�] ≥ A[p, p] − (n − 1)mxspan,

and thus, CA[j] ≥ CA[p] − (n − 1)mxspan.
In the next part, we show (C2). Let j ∈ C. We define ind(j) :=

∣∣{i ∈ C | i ≤e

j, i 
= j}∣∣. We have 0 ≤ ind(j) < n. For every i ≤e j satisfying i 
= j, we have
ind(i) < ind(j).

To show (C2), we show that for every j ∈ C, 1 ≤ � ≤ k, we have

(CA1 · · ·A�)[j] ≤ (CA1 · · ·A�)[p] + ind(j)mxseb. (4.5)

We show (4.5) by an induction on j via ≤e.
Let j ∈ C be minimal for ≤e, i.e., ind(j) = 0. Since, A satisfies the clones

property, we have for every 1 ≤ �′ ≤ k, A�′ [j, j] = A�′ [p, p]. Moreover, we have for
every 1 ≤ � ≤ k

(CA1 · · ·A�)[j] = (A1 · · ·A�)[j, j] =
∑

1≤�′≤�

A�′ [j, j].

In combination with (4.4), we obtain (CA1 · · ·A�)[j] = (CA1 · · ·A�)[p] which
proves (4.5) for j.

Now, let j ∈ C and assume by induction, that (4.5) holds for every 1 ≤ � ≤ k,
i ≤e j, i 
= j. Moreover, assume that j is not minimal for ≤e in C, i.e., ind(j) ≥ 1.

Next, we show that there exists some i ∈ C such that i 
= j, i ≤e j, and
A�[i, j] ≤ A�[p, p] + seb(C, A�). For this, we distinguish two cases.

Case 1: e[j, j] = 0.
We have A�[j, j] = ∞. Let i ∈ C such that A�[i, j] = CA�[j]. We have
CA�[j] ≤ CA�[p] + span(CA�), i.e., A�[i, j] ≤ A�[p, p] + span(CA�) ≤
A�[p, p] + seb(C, A�). Since A�[i, j] 
= ∞, we have e[i, j] = 1, and hence,
i 
= j and i ≤e j.

Case 2: e[j, j] = 1.
By Lemma 4.2, (j, j) is unambiguous in e. We utilize the notion of the
side entry bound. Since, j is not minimal for ≤e in C, there is some i′

such that e[i′, j] = 1, i.e., A�[i′, j] 
= ∞. By the definition of seb(C, A�),
there is some i ∈ C \ {j} such2 that A�[i, j] ≤ min(CA�)+ seb(C, A�), i.e.,
A�[i, j] ≤ A�[p, p] + seb(C, A�). Obviously, i 
= j and since, A�[i, j] 
= ∞,
we have e[i, j] = 1, i.e., i ≤e j, which closes the case e[j, j] = 1.

We show (4.5) for � = 1. We have

(CA1)[j] ≤ A1[i, j] ≤ A1[p, p] + seb(C, A1) ≤ (CA1)[p] + seb(C, A1)

≤ (CA1)[p] + ind(j)mxseb.

2The state i was called î in the definition of seb(C, A�).
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Now, we show (4.5) for 2 ≤ � ≤ k. By induction, (4.5) holds for i, i.e.,

(CA1 · · ·A�−1)[i] ≤ (CA1 · · ·A�−1)[p] + ind(i)mxseb. (4.6)

We have
(CA1 · · ·A�)[j] ≤ (CA1 · · ·A�−1)[i] + A�[i, j]

and by (4.6) and the bound on A�[i, j] shown above,

≤ (CA1 · · ·A�−1)[p] + ind(i)mxseb + A�[p, p] + seb(C, A�)

and since, ind(i) < ind(j)

≤ (CA1 · · ·A�)[p] + ind(j)mxseb

which proves (4.5) for j.
By combining (C1) and (C2) for � = k, we obtain for every j ∈ C,

CA[p] − (n − 1)mxseb ≤ CA[j] ≤ CA[p] + (n − 1)mxseb.

Consequently, we have span(CA) ≤ (n− 1)(mxspan +mxseb) which proves claim (1)
of the lemma.

We show claim (2) of the lemma. Let i ∈ C and 1 ≤ j ≤ n such that (i, j) is
unambiguous in e. Let i′ ∈ C \ {i} such that A[i′, j] 
= ∞. If such an i′ does not
exist, then we are done.

Let 1 ≤ � ≤ n such that (A1 · · ·Ak−1)[i, �] + Ak[�, j] 
= ∞. Since (i, j) is
unambiguous, � is unique and A[i, j] = (A1 · · ·Ak−1)[i, �] + Ak[�, j].

By contradiction, assume that there is exactly one �′ ∈ C such that e[�′, j] = 1.
Hence, there is exactly one �′ ∈ C such that A[�′, j] = 1. Consequently, i = i′

which is a contradiction.
Thus, there is some �′ ∈ C \ {�} such that e[�′, j] = 1.
By the definition of seb(C, Ak), there is some �̂ ∈ C \ {�} such that Ak[�̂, j] ≤

min(CAk) + seb(C, Ak) ≤ Ak[p, p] + seb(C, Ak).
By applying (C2) on CA1 · · ·Ak−1, we obtain some î ∈ C such that

(A1 · · ·Ak−1)[̂i, �̂] ≤ (CA1 · · ·Ak−1)[p] + (n − 1)mxseb.

To sum up,
A[̂i, j] ≤ (A1 · · ·Ak−1)[̂i, �̂] + Ak[�̂, j]

≤ (CA1 · · ·Ak−1)[p] + (n − 1)mxseb + Ak[p, p] + seb(C, Ak)

≤ (CA)[p]+nmxseb

(C1)

≤ min(CA)+(n−1)mxspan+nmxseb ≤ min(CA)+2nmxseb.

It remains to show i 
= î. We have e[i, �]∧ e[�, j] = 1 and e[̂i, �̂]∧ e[�̂, j] = 1. Since,
� 
= �̂ and (i, j) is unambiguous in e, we have i 
= î. �
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4.5. The proof of (3) ⇒ (1) in theorem 3.5

To derive the proof of (3) ⇒ (1) in Theorem 3.5 from Lemmas 4.9 and 4.10, we
need the following important theorem due to Simon.

Theorem 4.12 (factorization forest theorem [4,32,33]). Let S be a finite semi-
group and h : Σ∗ → S be a homomorphism. There is a mapping d : Σ∗ →
{1, . . . , 7|S|} such that every w ∈ Σ∗ satisfies the following two conditions:

(1) if d(w) = 1, then |w| ≤ 1, and
(2) if d(w) ≥ 2, then there are some k ≥ 2, w1, . . . , wk ∈ Σ+ such that

(a) w1 . . . wk = w,
(b) for every 1 ≤ � ≤ k, d(w�) < d(w), and
(c) if k ≥ 3, then h(w1) = · · · = h(wk) = h(w) ∈ E(S).

Simon’s original version of the factorization forest theorem from 1990 [32] uti-
lized a mapping d : Σ∗ → {1, . . . , 9|S|}. The improvement on the range of d to
{1, . . . , 7|S|} and a simplified proof are due to Chalopin and Leung [4].

Proof of (3) ⇒ (1) in Theorem 3.5. We utilize the factorization forest theorem on
the homomorphism α ◦ θ : Σ∗ → S. Let d : Σ∗ → {1, . . . , 7|S|} be a mapping from
Theorem 4.12.

We denote mxseb := maxC∈Clones(A), a∈Σ seb(C, θ(a)).
We show the following claim by an induction on d(w):

(C1): For every C ∈ Clones(A) and every w ∈ Σ∗, we have

seb(C, θ(w)) ≤ (2n + 1)d(w)−1 · mxseb.

By Lemma 4.7, (C1) is sufficient for the termination of Mohri’s algorithm on A.
Let w ∈ Σ∗ such that d(w) = 1, i.e., w is a letter. (C1) follows from the

definition of mxseb.
Now, let w ∈ Σ∗ such that d(w) > 1 and assume by induction, that claim (C1)

is true for every w′ ∈ Σ∗ satisfying d(w′) < d(w).
We distinguish two cases according to Theorem 4.12(2).

Case 1: There are w1, w2 ∈ Σ+ such that w = w1w2, d(w1) < d(w), and
d(w2) < d(w).

Let C ∈ Clones(A) be arbitrary and let C′ := Cα(θ(w1)).
By Lemma 4.9(3) and the inductive hypothesis, we have

seb(C, θ(w1w2)) ≤ seb(C, θ(w1)) + seb(C′, θ(w2)) ≤ 2 · (2n + 1)d(w)−2mxseb.

Case 2: There are k ≥ 2 and w0, . . . , wk ∈ Σ+ such that w = w0 . . . wk,
and for every 0 ≤ � ≤ k, we have d(w�) < d(w) and α(θ(w0)) = · · · =
α(θ(w�)) ∈ E(S).

Let C ∈ Clones(A) and C′ := Cα(θ(w0)).
We have C′α(θ(w1)) = Cα(θ(w0))α(θ(w1)) = Cα(θ(w0)) = C′, i.e., C′

is stable at α(θ(w0)). From Lemma 4.10(2) on C′ and θ(w1), . . . , θ(wk),
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we obtain

seb(C′, θ(w1 . . . wk)) ≤ 2n max
1≤�≤k

seb(C′, θ(w�)). (4.7)

By applying Lemma 4.9(3) on C, θ(w0) and C′, θ(w1 . . . wk), and using
(4.7), we obtain

seb(C, θ(w)) ≤ seb(C, θ(w0)) + 2n max
1≤�≤k

seb(C′, θ(w�))

and by the inductive hypothesis,

≤ (2n + 1)d(w)−2mxseb + 2n(2n + 1)d(w)−2mxseb

and (C1) follows. �

4.6. The proof of theorem 3.7

Proof of Theorem 3.7. It remains to show (1) ⇒ (2). Let q, q′ ∈ Q be siblings.
Let C ∈ Clones(A) such that q, q′ ∈ C. Let w ∈ Σ∗ such that θ(w)[q, q] 
= ∞ and
θ(w)[q′, q′] 
= ∞.

There is some k ≥ 1 such that (θ(w))k = θ(wk) ∈ E(Bn×n).
By Lemma 4.5, α(θ(Σ∗)) is finitely ambiguous. Since, finitely ambiguous semi-

groups are polynomially ambiguous, we can apply Lemma 4.2 on α(θ(Σ∗)). From
(2) in Lemma 4.2, we can derive θ(wk)[q, q] = k · θ(w)[q, q] and θ(wk)[q′, q′] =
k · θ(w)[q′, q′].

Let C′ := Cα(θ(wk)). We have C′ ∈ Clones(A). Since, α(θ(wk)) is idempotent,
C′ is stable on α(θ(wk)). By (1), C′ and θ(wk) have the clones property. Conse-
quently, there is some p ∈ C′ such that p has a minimal cycle in C′ and θ(wk) and
θ(wk)[p, q] 
= ∞. By Lemma 4.4, we have p = q. Thus, q has a minimal cycle in
C′ and θ(wk). In the same way, q′ has a minimal cycle in C′ and θ(wk). Hence,
θ(wk)[q, q] = θ(wk)[q′, q′], i.e., θ(w)[q, q] = θ(w)[q′, q′]. �

4.7. Trimming and Mohri’s algorithm

Let A = [Q, θ, λ, �] be a WFA over the tropical semiring. Let R ⊆ Q be the
accessible states of A.

Let θR : Σ∗ → ZR×R be defined by θR(w)[i, j] := θ(w)[i, j] for every w ∈ Σ∗,
i, j ∈ R. Let λR, �R ∈ ZR be the restriction of λ (resp. �) to R.

Clearly, θR(ε) is the identity matrix in ZR×R. Let u, v ∈ Σ∗, i, j ∈ R be
arbitrary. We have
(
θR(u)θR(v)

)
[i, j] = min

�∈R

(
θR(u)[i, �] + θR(v)[�, j]

)
= min

�∈R

(
θ(u)[i, �] + θ(v)[�, j]

)
.

Let � ∈ Q and assume θ(v)[i, �] 
= ∞ and θ(v)[�, j] 
= ∞. Since, i ∈ R, there is
some u′ ∈ Σ∗ such that λθ(u′)[i] 
= ∞, and hence, λθ(u′u)[�] 
= ∞. Similarly, there
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is some v′ ∈ Σ∗ such that θ(vv′)�[�] 
= ∞. Thus, � ∈ R. Consequently, we have
for every � ∈ Q \ R, θ(v)[i, �] = ∞ and θ(v)[�, j] = ∞. Hence, we can then extend
the range of � from R to Q and obtain

min
�∈Q

(
θ(v)[i, �] + θ(v)[�, j]

)
=

(
θ(u)θ(v)

)
[i, j] =

(
θ(uv)

)
[i, j] =

(
θR(uv)

)
[i, j].

Consequently, θR is a homomorphism and AR := [R, θR, λR, �R] is a WFA.
Let w ∈ Σ∗. Let i, j ∈ Q such that λ[i] + θ(w)[i, j] + �[j] 
= ∞. We can

easily conclude that λθ(w)[j], θ(ε)�[j], λθ(ε)[i], and θ(w)�[i] are different from ∞.
Hence, i, j ∈ R. Consequently, we obtain for every w ∈ Σ∗

|A|(w) = min
i,j∈Q

(
λ[i] + θ(w)[i, j] + �[j]

)
= min

i,j∈R

(
λ[i] + θ(w)[i, j] + �[j]

)

= min
i,j∈R

(
λR[i] + θR(w)[i, j] + �R[j]

)
= |AR|(w).

Thus, A and AR are equivalent.
Let w ∈ Σ∗ and i ∈ R. We have

λθ(w)[i] = min
�∈Q

(
λ[�] + θ(w)[�, i]

)
= min

�∈R

(
λ[�] + θ(w)[�, i]

)
= λRθR(w)[i]. (4.8)

Proof of Theorem 3.9. Assume that Mohri’s algorithm terminates on A. Hence,
the set Q′ = {nf(λθ(w)) |w ∈ Σ∗} is finite. We have to show that the set R′ =
{nf(λRθR(w)) |w ∈ Σ∗} is finite.

For this, we show that for every u, v ∈ Σ∗ satisfying nf(λθ(u)) = nf(λθ(v)), we
have nf(λRθR(u)) = nf(λRθR(v)). Let u, v ∈ Σ∗ satisfying nf(λθ(u)) = nf(λθ(v)).

If λθ(u) = (∞, . . . ,∞), then λθ(v) = (∞, . . . ,∞), and hence, nf(λRθR(u)) =
(∞, . . . ,∞) = nf(λRθR(v)). We assume λθ(u) 
= (∞, . . . ,∞) in the rest of the
proof.

Clearly, nf(λθ(u)), nf(λθ(v)), and λθ(v) are different from (∞, . . . ,∞).
Let ku := min(λθ(u)) and kv := min(λθ(v)). By the definition of nf, we have

nf(λθ(u)) = (−ku) ⊕ (λθ(u)) and nf(λθ(v)) = (−kv) ⊕ (λθ(v)). Consequently,
(−ku)⊕ (λθ(u)) = (−kv)⊕ (λθ(v)), and hence, (λθ(u)) = (ku − kv)⊕ (λθ(v)). By
(4.8), we have λRθR(u) = (ku − kv) ⊕ (λRθR(v)). As seen in (3.1) in Section 3.3,
we have nf(λRθR(u)) = nf(λRθR(v)). �
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[19] D. Kirsten and I. Mäurer, On the determinization of weighted automata. Journal of Au-

tomata, Languages and Combinatorics 10 (2005) 287–312.
[20] I. Klimann, S. Lombardy, J. Mairesse and C. Prieur, Deciding unambiguity and sequentiality

from a finitely ambiguous max-plus automaton. Theoretical Computer Science 327 (2004)
349–373.

[21] D. Krob, The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. International Journal of Algebra and Computation 4 (1994) 405–425.

[22] W. Kuich, Semirings and formal power series. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, pages 609–677.
Springer-Verlag, Berlin (1997).

[23] W. Kuich and A. Salomaa, editors. Semirings, Automata, Languages, volume 5 of Mono-
graphs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin (1986).

[24] H. Leung, Limitedness theorem on finite automata with distance functions: An algebraic
proof. Theoretical Computer Science 81 (1991) 137–145.



ON THE TERMINATION OF MOHRI’S ALGORITHM 581

[25] H. Leung, Separating exponentially ambiguous finite automata from polynomially ambigu-
ous finite automata. SIAM Journal of Computing 27 (1998) 1073–1082.

[26] H. Leung, The topological approach to the limitedness problem on distance automata. In
J. Gunawardena, editor, Idempotency, pages 88–111. Cambridge University Press (1998).

[27] H. Leung and V. Podolskiy, The limitedness problem on distance automata: Hashiguchi’s
method revisited. Theoretical Computer Science 310 (2004) 147–158.

[28] Y. Métivier and G. Richomme, New results on the star problem in trace monoids. Informa-
tion and Computation 119 (1995) 240–251.

[29] M. Mohri, Finite-state transducers in language and speech processing. Computational Lin-
guistics 23 (1997) 269–311.

[30] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Texts
and Monographs on Computer Science. Springer-Verlag, Berlin Heidelberg New York (1978).

[31] I. Simon, Recognizable sets with multiplicities in the tropical semiring. In M. P. Chytil
et al., editors, MFCS’88 Proceedings, volume 324 of Lecture Notes in Computer Science,
pages 107–120. Springer-Verlag, Berlin (1988).

[32] I. Simon, Factorization forests of finite height. Theoretical Computer Science 72 (1990)
65–94.

[33] I. Simon, A short proof of the factorization forest theorem. In M. Nivat and A. Podelski,
Eds. Tree Automata and Languages, pages 433–438. Elsevier Science Publishers B.V. (1992).

[34] I. Simon, On semigroups of matrices over the tropical semiring. RAIRO-Theor. Inf. Appl.
28 (1994) 277–294.

[35] A. Weber, Distance automata having large finite distance or finite ambiguity. Mathematical
Systems Theory 26 (1993) 169–185.

[36] A. Weber, Finite valued distance automata. Theoretical Computer Science 134 (1994)
225–251.


	Introduction
	Notations
	Overview
	Weighted finite automata
	An example of a polynomially ambiguous WFA
	Mohri's algorithm
	On the twins property
	Main results
	Conclusions and open questions

	The main proofs
	On Boolean matrices
	On the span of tupels
	The proof of (2)(3) in theorem 3.5
	The side entry bound
	The proof of (3)(1) in theorem 3.5
	The proof of theorem 3.7
	Trimming and Mohri's algorithm

	References

