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COMPATIBILITY RELATIONS ON CODES AND FREE
MONOIDS ∗

Tomi Kärki
1

Abstract. A compatibility relation on letters induces a reflexive and
symmetric relation on words of equal length. We consider these word
relations with respect to the theory of variable length codes and free
monoids. We define an (R,S)-code and an (R, S)-free monoid for arbi-
trary word relations R and S. Modified Sardinas-Patterson algorithm
is presented for testing whether finite sets of words are (R,S)-codes.
Coding capabilities of relational codes are measured algorithmically by
finding minimal and maximal relations. We generalize the stability
criterion of Schützenberger and Tilson’s closure result for (R, S)-free
monoids. The (R,S)-free hull of a set of words is introduced and we
show how it can be computed. We prove a defect theorem for (R,S)-
free hulls. In addition, a defect theorem of partial words is proved as
a corollary.
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Introduction

The theory of variable length codes is firmly related to information theory and
to combinatorics on words [2]. The object of the theory is to study factorization
of words into sequences of words taken from a given set X . In a free monoid X∗

generated by a code X there does not exist two distinct factorizations in X for
any word. This coding property can be strengthened by requiring that two nearly
similar, i.e., compatible words, have the same, or at least similar, factorizations.
This is attained here by introducing word relations and relational codes. More
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precisely, we consider here words together with a compatibility relation induced by
a relation on letters. This notion generalizes that of partial words ; see [1]. The
theory of codes on combinatorics on words is revisited by defining (R, S)-codes
for word relations R and S. If some of the letters in a message generated by an
(R, S)-code are changed to related letters, the message can still be factorized, in
other words decoded, in a proper manner. Thus these codes possess some error
correction capabilities. We describe an algorithm to test whether or not a finite
set of words is an (R, S)-code. In addition, coding properties of finite sets of words
are explored by finding maximal and minimal relations with respect to relational
codes.

The base of a free word monoid is a code. Relational codes, in turn, generate re-
lationally free monoids. Results of free monoids can be generalized for relationally
free monoids. For example, we generalize the stability criterion of Schützenberger
and Tilson’s closure result. Especially, we are interested in the so called defect
effect : if a set of n words satisfies a nontrivial relation, then these words can be
expressed simultaneously as products of less than n words. Another formulation
of the defect effect is to say that the cardinality of the base of the free hull of X,
i.e., the smallest free monoid containing a set of words X is strictly smaller than
the cardinality of X if and only if X is not a code. Actually, there exist several
defect theorems depending on the restrictions that are put to the n−1 words [11].
The defect theorem of words is used in many different connections [3,7,13,15]. In
this paper we generalize the defect theorem for (R, S)-free hulls and we give an
algorithm how to compute these hulls. Moreover, a defect theorem of partial words
is proved as a corollary.

We end this section with some notation. An alphabet A is a nonempty finite set
of symbols and a word over A is a (finite or infinite) sequence of symbols from A.
The empty word is denoted by ε. The sets of all finite words and finite nonempty
words over A are denoted by A∗ and A+, respectively. With the operation of
catenation A∗ is a free monoid and A+ is a free semigroup generated by the letters
of A. The length of a word w, denoted by |w|, is the total number of (occurrences
of) letters in w. The ith symbol of the word w is denoted by w(i). A word w is
a factor of a word u (resp. a left factor or a prefix, a right factor or a suffix ), if
there exist words x and y such that u = xwy (resp. u = wy, u = xw). If w = uv
then we denote v = u−1w.

For subsets L, K ⊆ A∗, we let

LK = {uv | u ∈ L, v ∈ K},
L+ =

⋃
i≥1 Li, L∗ = L+ ∪ {ε},

L−1K = {u−1w | u ∈ L, w ∈ K}.

1. Word relations

Let R ⊆ X × X be a relation on a set X . We often write xR y instead of
(x, y) ∈ R. Then R is a compatibility relation if it is both reflexive and symmetric,
i.e., (i) ∀x ∈ X : xR x, and (ii) ∀x, y ∈ X : xR y =⇒ y R x. The identity
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relation on a set X is defined by ιX = {(x, x) | x ∈ X} and the universal relation
on X is defined by ΩX = {(x, y) | x, y ∈ X}. Subscripts are often omitted
when they are clear from the context. Clearly, both ιX and ΩX are compatibility
relations on X . A compatibility relation R ⊆ A∗ × A∗ on the set of all words will
be called a word relation if it is induced by its restriction on the letters, i.e.,

a1 . . . am R b1 . . . bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A.
Let R be a relation on A. By 〈R〉 we denote the compatibility relation generated

by R, i.e., 〈R〉 is the reflexive and symmetric closure of the relation R. Sometimes
we need to consider the restriction of a relation R on a subset X of A∗. We denote
RX = R ∩ (X × X). Words u and v satisfying u R v are said to be compatible or,
more precisely, R-compatible. If two words are not compatible, they are said to be
incompatible.

Example 1.1. In the binary alphabet A = {a, b} the compatibility relation

R = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a)}

makes all words with equal length compatible with each other. In the ternary
alphabet {a, b, c}, where

S = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a), (c, c)},

we have abba S baab but, for instance, words abc and cac are not S-compatible.

Clearly a word relation R satisfies the following two conditions:

multiplicativity: u R v, u′ R v′ =⇒ uu′ R vv′,
simplifiability: uu′ R vv′, |u| = |v| =⇒ u R v, u′Rv′.

However, a word relation R does not need to be transitive. From now on the
relations on words considered in this presentation are supposed to be word relations
induced by some compatibility relation on letters.

Let 2X denote the power set of X , that is, the family of all subsets of X including
the empty set ∅ and X itself. For a word relation R on A∗, let the corresponding
function R : 2A∗ → 2A∗

be defined by

R(X) = {u ∈ A∗ | ∃x ∈ X : xR u}.

If X contains only one word w ∈ A∗, we denote R(X) shortly by R(w). Note
that the function R is multiplicative: R(X)R(Y ) = R(XY ) for all X, Y ⊆ A∗ and
R(X)∗ = R(X∗) for all X ⊆ A∗.

As another example of word relations we consider partial words. The notion of
partial words was introduced by Berstel and Boasson in 1999 [1]. This subject has
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been widely studied under the recent years; see, e.g., the references in [4]. Moti-
vation for the research of partial words comes partly from the study of biological
sequences such as DNA, RNA and proteins; see [4,12].

Example 1.2. A partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p)
is defined. The set H(w) = {1, 2, . . . , n} \ D(w) is the set of holes of w. To
each partial word we may associate a total word w♦ over the extended alphabet
A♦ = A ∪ {♦}. This companion of w is defined by

w♦(p) =
{

w(p) if p ∈ D(w),
♦ if p ∈ H(w).

Thus, the holes are marked with the “do not know” symbol ♦. Clearly, partial
words are in one-to-one correspondence with words over A♦.

The compatibility relation of partial words is defined as follows. Let x and y be
two partial words of equal length. The word x is contained in y if D(x) ⊆ D(y) and
x(k) = y(k) for all k in D(x). Two partial words x and y are said to be compatible
if there exists a partial word z such that z contains both x and y. Then we write
x ↑ y. For example, we see that the following partial words are compatible by
comparing them with the total word “knowledge”.

k n ♦ w l ♦ d g e
♦ n o w ♦ ♦ d g ♦
k n o w l e d g e

It was shown in [9] that the compatibility relation ↑ of partial words can be con-
sidered as a word relation

R↑ = 〈{(♦, a) | a ∈ A}〉

over the alphabet A♦. Namely, compatible partial words x and y must have equal
letters in the positions i ∈ D(x)∩D(y). This makes them also R↑-compatible and
vice versa.

2. Relational codes

Let R and S be two word relations on the monoid A∗. A subset X ⊆ A∗ is an
(R, S)-code if for all n, m ≥ 1 and x1, . . . , xm, y1, . . . , yn ∈ X , we have

x1 . . . xm R y1 . . . yn =⇒ n = m and xi S yi for i = 1, 2, . . . , m.

A set X is called a relational code if it is an (R, S)-code for some word relations
R and S. If S is the identity relation ι, then an (R, S)-code is called a strong
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R-code, or shortly just an R-code. A strong R-code is always a set where the
elements are pairwise R-incompatible, but the converse does not hold generally.
An (R, R)-code is called a weak R-code. An (ι, ι)-code is simply called a code. The
definition coincides with the original definition of a variable length code.

Example 2.1. We consider the following set X = {ab, c}. This set is clearly a
(prefix) code and also an (R, ι)-code for R = 〈{(a, c)}〉. On the other hand, for
R′ = 〈{(a, c), (b, c)}〉, we have ab R ′cc. This shows that X is not an (R′, R′)-code.

The following results are proved in [9]. Suppose that R1, R2 and S are relations
on A∗ satisfying R1 ⊂ R2. If X is an (R2, S)-code, then X is an (R1, S)-code.
Similarly, consider relations R, S1 and S2 satisfying S1 ⊂ S2. If X is an (R, S1)-
code, then X is an (R, S2)-code. Note that (R, S)-codes are always (ι, ι)-codes,
i.e., codes in the usual meaning.

Proposition 2.2 [9]. Every (R, S)-code X is a code.

Moreover, we have the following characterization of (R, S)-codes.

Proposition 2.3 [9]. Let X be a subset of A∗. X is an (R, S)-code if and only if
X is an (R, R)-code and RX ⊆ SX .

We note that (R, S)-codes are more general than pcodes of partial words defined
by F. Blanchet-Sadri in [4]. Indeed, pcodes are (R, S)-codes where R = R↑ and
S = ι. However, the concept of an (R, S)-code is more general. First, it enables us
to consider weak R-codes. This case seems to be very natural and worth studying.
Actually, by Proposition 2.3, all (R, S)-codes are weak R-codes, and therefore
weak R-codes are the basis of our considerations. Secondly, we may consider
more complex compatibility relations on letters than in the case of partial words.
Namely, the compatibility relation of partial words has a very special structure. In
A♦ there is a universal letter ♦ compatible with all other letters. Most reflexive
and symmetric but not transitive relations are not of this form. For example, the
“cyclic” relation 〈{(a, b), (b, c), (c, d), (d, a)}〉 does not have a universal letter.

In [14] Sardinas and Patterson gave their famous algorithm for deciding whether
a given finite set X of words is a code or not. Blanchet-Sadri proved in [4] that
the corresponding problem for partial words is decidable. Here we give a simple
algorithm for the more general problem of deciding whether a given finite set X is
an (R, S)-code or not. The essential part of the algorithm is to solve the problem
for (R, R)-codes.

Algorithm 2.4 modified Sardinas-Patterson. Let the input be a finite set X ⊆
A+. Let U1 = R(X)−1X \ {ε}, and define Un+1 = R(X)−1Un ∪ R(Un)−1X for
n ≥ 1. Let i ≥ 2 satisfy Ui = Ui−t for some t > 0. Then X is a weak R-code if
and only if

ε �∈
i−1⋃
j=1

Uj.

The proof of correctness of this algorithm in [9] is a modification of the proof of the
Sardinas-Patterson algorithm in [2]. Thus, we have the following theorem. In [5]
a similar kind of result for partial words is proved using the same guidelines.
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Theorem 2.5 [9]. The set X is a weak R-code if and only if none of the sets Un

contains the empty word.

Note that there exist only finitely many different sets Un, since all the lengths
of the elements of Un are less than max{|x| | x ∈ X}. Secondly, if Ui = Uj then,
for any t ≥ 0, Ui+t = Uj+t. Thus once a repetition in the sequence U1, U2, . . . is
found, all Ui sets are found as well. Now it is clear by the previous proposition
and Proposition 2.3 that the (R, S)-coding property of a finite subset X of A+ can
be verified by using Algorithm 2.4 and checking that RX ⊆ SX .

3. Minimal and maximal relations

Coding properties of an (R, S)-code X can be measured by defining maximal
and minimal relations. These notions describe how well information can be de-
coded if R-compatibility of code words is allowed, or how much changes of the
message, i.e. compatibility of words, can be allowed in order to decode the mes-
sage with a precision of S. More precisely, let X be a subset of A∗. Let Smin(X, R)
be the set of word relations S such that X is an (R, S)-code, and for all S′ with
S′ ⊂ S, X is not an (R, S′)-code. Similarly, let Smax(X, R) be the set of word
relations S such that X is an (R, S)-code, and for all S′ with S ⊂ S′, X is not
an (R, S′)-code. Relations belonging to Smin(X, R) (resp. Smax(X, R)) are called
minimal (resp. maximal) S-relations with respect to a set X and a relation R.
The minimal and maximal relations in Rmin(X, S) and Rmax(X, S) are defined
symmetrically.

Note that Smax(X, R) = {Ω}, where Ω = ΩA∗ and Rmin(X, S) = {ι}, where ι =
ιA∗ , for all (R, R)-codes X . It can be proved that, for weak R-codes, Smin(X, R)
is a unique element, but there may be several maximal relations belonging to
Rmax(X, S). For example, if X = {ab, bccb, ca} and S = 〈{(a, b), (a, c)}〉, then
Rmax(X, S) = {〈{(b, c)}〉, 〈{(a, b), (a, c)}〉}. These two maximal R relations are by
no means isomorphic. They do not even have the same size, i.e., the number of
pairs in the corresponding compatibility relation of letters.

In [9] two algorithms were given for finding minimal and maximal relations.
Finding the minimal S-relation Smin(X, R) can be done in a polynomial time
with respect to the size of the given set X . Finding the maximal R-relations in
Rmax(X, S) is a more complicated task. For a fixed alphabet, finding all the max-
imal relations R with respect to a given set X and a given word relation S can
be done in polynomial time. This is based on a polynomial time version of the
Sardinas-Patterson algorithm; see [6]. From another viewpoint, i.e., if we allow
arbitrary alphabets, the problem of finding maximal R relations is actually very
difficult. The corresponding decision problem is namely NP-complete. Let us
denote the size of a word relation R by sz(R). Define the number MR(X, S) to
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be the maximal size of the relations in Rmax(X, S), i.e., MR(X, S) = max{sz(R) |
R ∈ Rmax(X, S)}. We formulate the following problem:

Problem: MAXIMAL RELATION
Instance: A set X ⊆ A+, a relation S on A and a positive integer k
Question: Is MR(X, S) ≥ k?

This problem is related to an NP-complete problem called VERTEX COVER
problem of graphs ([8], GT1). In [9] it was proved that VERTEX COVER can
be polynomially reduced to MAXIMAL RELATION. Thus we have the following
result.

Proposition 3.1 [9]. The problem MAXIMAL RELATION is NP-complete.

4. Relationally free monoids and stability

A monoid M ⊆ A∗ is (R, S)-free if it has a subset B ⊆ M (called an (R, S)-base
of M) such that

(i) M = B∗;
(ii) B is an (R, S)-code.

Strong R-freeness, weak R-freeness and freeness are defined similarly using the
corresponding definitions of codes.

Remark 4.1. In [5] pfreeness, i.e., the freeness of monoids of partial words was de-
fined using pinjective morphisms: A monoid M is pfree if there exists a morphism
ϕ : B∗ → M of a free word monoid B∗ onto M that satisfies

ϕ(x) ↑ ϕ(y) =⇒ x = y.

Although pfreeness equals (R↑, ι)-freeness, the above definition seems quite differ-
ent from ours. In the matter of fact, there is no straightforward way to generalize
the definition of pfreeness in [5] for (R, S)-codes, if S �= ι. For example, con-
sider a morphism α : B∗ → X∗, where B = {a, b, c, d}, R = 〈{(a, b), (c, d)}〉,
X = {ab, abc, cdb, db} and α(a) = ab, α(b) = abc, α(c) = cdb, α(d) = db. It is easy
to show that α is “(R, R)-injective”, i.e,

α(x)R α(y) =⇒ xR y.

The only nontrivial relation on X∗ that we have to consider is (ab)(cdb) = (abc)(db).
Here we have α(ac)R α(bd) and ac R bd. Hence, α satisfies the condition above.
However, X∗ is not (R, R)-free.

A subset B of a monoid M such that M = B∗ is called a generating set of
M . A generating set is called minimal if no proper subset of B is a generating set
of M . Each monoid M ⊆ A∗ has a unique minimal generating set consisting of the
indecomposable elements of M , that is the set (M \{ε})\ (M \{ε})2. For a subset
X ⊆ A∗, the unique minimal generating set of X∗ is (X \ {ε}) \ (X+ \ {ε})2.
The following result holds for all relationally free monoids. We note that this
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proposition and other results concerning (R, S)-free monoids can be proved also
using so called unique factorization extensions; see [10].

Proposition 4.2. Let X ⊆ A∗. The set X is an (R, S)-code if and only if X∗ is
(R, S)-free and X is its minimal generating set.

Proof. Suppose first that X is an (R, S)-code. By the definition of (R, S)-free
monoids, it is clear that X∗ is (R, S)-free. Thus it satisfies to show that X is the
minimal generating set of X∗, i.e., X = (X \ {ε}) \ (X+ \ {ε})2. Clearly, X ⊇
(X \{ε})\ (X+ \{ε})2. Assume now that x ∈ X . By Proposition 2.2, X is a code.
Therefore, x ∈ X \ {ε} and x �∈ (X+ \ {ε})2. Hence, X ⊆ (X \ {ε}) \ (X+ \ {ε})2.

Suppose then that X∗ is (R, S)-free and X is its minimal generating set. Let
Y be an (R, S)-base of X∗. Assume that x ∈ X . Since Y ∗ = X∗, we have
x = y1 . . . ym for some words yi ∈ Y , where i = 1, 2, . . . , m. Moreover, yi =
xi1 . . . ximi , where xij ∈ X for all i and j. Since ε �∈ Y ∪X and the elements of X
are indecomposable, we conclude that m = 1 and mi = 1. Thus, X ⊆ Y . Since Y
satisfies the definition of an (R, S)-code, so does X . �

As a consequence of the previous proposition and Proposition 2.3 we have a
characterization of (R, S)-free monoids using weak R-free monoids and a condition
on the order of the relations R and S.

Proposition 4.3. A monoid M ⊆ A∗ is (R, S)-free, if and only if M is (R, R)-free
with (R, R)-base B and RB ⊆ SB.

Proof. A monoid M ⊆ A∗ is (R, S)-free if and only if M has a base B such that
B is an (R, S)-code. By Proposition 2.3, this is possible if and only if B is an
(R, R)-code and RB ⊆ SB, i.e., M is (R, R)-free and RB ⊆ SB. �

A monoid M ⊆ A∗ is called (R, S)-stable if for all for all u, v, w, u′, v′, w′ ∈ A∗

satisfying conditions
(i) u R u′, w R w′ and v R v′;
(ii) uw, v, u′, w′v′ ∈ M ,

we have u, w ∈ M and u S u′. This situation is illustrated in Figure 1. As above,
we talk about strong and weak R-stability depending on whether S = ι or S = R.
The definition of (R, S)-stable monoids coincides with the original definition of
stable monoids in the case R = S = ι.

Relational stability can be used to characterize relationally free monoids like
in the case of Schützenberger’s criterion for normal (ι, ι)-free monoids. For pfree
monoids, the stability criterion was first given in [5]. Our proof follows the guide-
lines of [2].

Proposition 4.4 (generalized Schützenberger’s criterion). A submonoid of A∗ is
(R, S)-free if and only if it is (R, S)-stable.

Proof. Let M be an (R, S)-stable submonoid of A∗. By Proposition 4.2 it is
enough to show that the minimal generating set X = (M \ {ε}) \ (M \ {ε})2
of M is an (R, S)-code. Suppose that this is not the case. Then there exist
words x1, . . . , xm, y1, . . . , yn ∈ X such that x1 . . . xm R y1 . . . yn and (x1, y1) �∈ S.
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u w v

︸ ︷︷ ︸ ︸ ︷︷ ︸
∈ M ∈ M

u′ w′ v′
︷ ︸︸ ︷ ︷ ︸︸ ︷∈ M ∈ M

R R R ⇒ u, w ∈ M, u S u′

Figure 1. Illustration of (R, S)-stability.

We may suppose that |x1| ≤ |y1|. Hence there exist words w, z ∈ A∗ such that
y1 = wz, x1 R w and x2 . . . xm R zy2 . . . yn. By (R, S)-stability, we have w, z ∈ M
and w S x1. Note that |w| = |x1| > 0 since x1 ∈ X ⊆ M \ {ε}. Since y1 is
indecomposable and w �= ε, we must have z = ε. Thus it follows that y1 = w S x1.
A contradiction.

Conversely, let M be (R, S)-free and let X be its (R, S)-base. Furthermore,
assume that uw, v, u′, w′v′ ∈ M satisfy u R u′ and wv R w′v′. We write the words
uw, v, u′, w′v′ as products of elements of the base X :

uw = x1 . . . xk,

v = v1 . . . vl,

u′ = u1 . . . um,

w′v′ = y1 . . . yn.

Since u R u′ and wv R w′v′, we have by the multiplicativity of word relations that

x1 . . . xkv1 . . . vl R u1 . . . umy1 . . . yn.

Since X is an (R, S)-code, we conclude that k + l = m + n and corresponding
elements of the both sides are S-compatible and furthermore of the same length.
Since |u′| = |u| ≤ |uw|, we have

u′ = u1 . . . um S x1 . . . xm = u and w = xm+1 · · ·xk ∈ X∗.

In other words, u, w ∈ M and u S u′. Hence, M is (R, S)-stable. �

As a corollary of the previous proposition we get the following result concerning
(R, S)-free semigroups. It is called here the generalized Tilson’s result; see [16].
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Proposition 4.5 (generalized Tilson’s result). Any intersection of (R, S)-free
monoids of A∗ is (R, S)-free.

Proof. Let Mi be (R, S)-free monoids for each i ∈ I. Set M = ∩i∈IMi. As an
intersection of monoids, M is a monoid. Consider now words u, v, w, u′, v′, w′ ∈ A∗

satisfying u R u′, w R w′, v R v′ and uw, v, u′, w′v′ ∈ M . Now uw, v, u′, w′v′ ∈ Mi

for each i ∈ I and by the (R, S)-stability of (R, S)-free monoids Mi (Proposi-
tion 4.4), we conclude that u, w ∈ Mi and u S u′ for all i ∈ I. Thus, u, w ∈ M and
M is (R, S)-stable. Hence, M is (R, S)-free by Proposition 4.4. �

5. Hulls

Let X be a set of words over A and consider now the following set of submonoids
of A∗:

F(R,S)(X) = {M | X∗ ⊆ M ⊆ A∗, M is an (R, S)-free monoid}.

This is the set of all (R, S)-free submonoids of A∗ containing X . Note that
F(R,S)(X) may be empty. For example, choose X = {ab, ac}, R = 〈{(b, c)}〉
and S = ι. Let M be an (R, S)-free monoid containing X∗ and let B be the
base of M . Then RM ⊆ SM , since every R-compatible pair of words in M has a
similar B-factorization and RB ⊆ SB by Proposition 4.3. This is impossible, since
considering relations ab Rac and ab �= ac we see that RX �⊆ SX . Even more easily,
we notice that there does not exists an (R, S)-free monoid containing X = {a, b}
for R = Ω and S = ι.

On the other hand, it follows from Proposition 4.5 that the set F(R,S)(X) is
closed under intersection. Thus, if F(R,S)(X) is nonempty, there exists a monoid

F(R,S)(X) =
⋂

M∈F(R,S)(X)

M,

which is the smallest (R, S)-free monoid containing X . It is called the (R, S)-free
hull of X . Unlike in the case of a normal free hull (R = S = ι), the existence of
F(R,S)(X) depends on the relations R and S and the set X itself. Proposition 4.3
implies that A∗ is (R, S)-free if R ⊆ S. Then A∗ ∈ F(R,S)(X) and F(R,S)(X)
exists. Moreover, we always have F(R,R)(X) �= ∅, since A∗ is (R, R)-free. The
situation is characterized more precisely in the next proposition.

Proposition 5.1. Let FR be the weak R-free hull of X. The (R, S)-free hull of X
exists, if and only if RFR ⊆ SFR , in which case F(R,S)(X) = FR.

Proof. Suppose that F(R,S)(X) exists. By Proposition 4.3, it is (R, R)-free. Thus
we must have FR ⊆ F(R,S)(X) by the definition of FR. Now the definition of
(R, S)-freeness implies that RF(R,S)(X) ⊆ SF(R,S)(X). Especially, this is valid for
the subset FR, i.e., RFR ⊆ SFR .
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Conversely, suppose that RFR ⊆ SFR . Let B be the base of the (R, R)-free hull
FR. Then RB ⊆ SB, since B ⊆ FR and, by Proposition 4.3, FR is (R, S)-free.
Hence, F(R,S)(X) is not empty and F(R,S)(X) exists. Moreover, F(R,S)(X) ⊆ FR

by the definition of the (R, S)-free hull.
Furthermore, if F(R,S)(X) exists, we have showed that FR ⊆ F(R,S)(X) and

F(R,S)(X) ⊆ FR. Hence, F(R,S)(X) = FR in this case. �

Next we consider a method to find the free hull in practice. Let X be a finite
subset of A+. In order to construct free monoids containing X , we must prevent
“nontrivial” relations on X+. We define the set

Cf (X) = {(u, v) ∈ X × X | (u, v) �∈ R, uX∗ ∩ R(vX∗) �= ∅}.

By the definition, X is an (R, R)-code if and only if Cf (X, R) = ∅. Let us now
define the following iterative procedure similar to the procedures introduced in [11].

Algorithm 5.2 (free hull Af ). Let the input be a finite set X ⊆ A+ Set X0 = X,
and iterate for j ≥ 0.

(1) Choose (u, v) ∈ Cf (Xj , R) such that u = u′u′′, where |u′| = |v| and u′′ ∈
A+. If no such pair exists, then stop and return Af (X) = Xj.

(2) Set R′(u) = {pref|u′|(w) | w ∈ (RXj )+(u)} and set R′′(u) = {suf|u′′|(w) |
w ∈ (RXj )+(u)}, where (RXj )+ is the transitive closure of RXj .

(3) Set Xj+1 =
(
Xj \ (RXj )+(u)

) ∪ R′(u) ∪ R′′(u).

Note that in each iteration at least one of the words in Xj is factorized into two
proper factors, since ε �∈ Xj for any j ≥ 0. For a finite set of words there are only
finitely many factors of words, and therefore the algorithm must terminate. Now
we prove that the previous algorithm computes the free hull of X .

Proposition 5.3. Let X be a finite subset of A+. Then Algorithm 5.2 with input
X returns the base B of the (R, R)-free hull of X, i.e., B = Af (X).

Proof. As mentioned above the algorithm Af always terminates with finite input
X ⊆ A+. Suppose now that the algorithm terminates after k iterations. Let us
first show by induction that X∗

j ⊆ F(R,R)(X) for all j = 0, 1, . . . , k. The case
j = 0 is clear by the definition of F(R,R)(X). Suppose now that X∗

j ⊆ F(R,R)(X)
and the pair (u, v) ∈ Cf (Xj , R) is chosen in Step (1). By the stability condition
(Proposition 4.4) and the induction assumption X∗

j ⊆ F(R,R)(X), we conclude
that the sets R′(u) and R′′(u) must be subsets of F(R,R)(X). Since (RXj )+(u) ⊆
R′(u)R′′(u), we have X∗

j ⊆ X∗
j+1 ⊆ F(R,R)(X).

Since Cf (Xk, R) = ∅, the monoid X∗
k is (R, R)-free by the definition of (R, R)-

freeness. Hence X∗
k ⊆ F(R,R)(X) by the above and the minimality of the free

hull implies that X∗
k = F(R,R)(X). Since Xk consists only of the indecomposable

elements of X∗
k , it is the (R, R)-base B of F(R,R)(X). In other words, Af (X) =

Xk = B. �
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6. Defect effect

The well know defect theorem of words says that if a set of n words satisfies a
nontrivial relation, then these words can be expressed simultaneously as products
of less than n words. This is the so called defect effect. See [3,11] for more on
defect theorems of words.

We formulate now a defect effect with respect to a word relation R. Note that
the original defect theorem does not hold in general and we need a new nontrivial
formulation for the defect in the relational case. Let X be a finite subset of A∗. Let
us consider a graph GR(X) = (V, E) defined as follows. The vertices are the words
in X , and (u, v) ∈ E if and only if u R v. We consider the connected components
of G. Denote the transitive closure of R by R+ as above. We note that the set
of vertices in the connected component containing x is exactly (RX)+(x). Denote
the number of connected components of GR(X) by c(X, R). We formulate a defect
effect of words with respect to a word relation in the following way.

Theorem 6.1. Let X be a finite subset of A+ and let B be the base of the (R, R)-
hull of X. Then c(B, R) ≤ c(X, R), and the equality holds if and only if X is an
(R, R)-code.

Proof. If X is an (R, R)-code, then B = X by Proposition 4.2 and the equality
holds trivially. Suppose now that X is not an (R, R)-code. Thus, X∗ �= F(R,R)(X).
By Proposition 5.3, Algorithm 5.2 computes the base of the (R, R)-free hull cor-
rectly.

Let Xj be any intermediate set of the procedure such that Xj is not a code.
First we prove that the number of connected components cannot increase in any
iteration step from GR(Xj) to GR(Xj+1). Assume that (u, v) ∈ Cf (Xj , R) is
chosen in Step (1) and u = u′u′′, where |u′| = |v| and u′′ ∈ A+. More precisely,
suppose that us R vt, where u, v ∈ Xj and s, t ∈ X∗

j . Denote t = t1 . . . tn, where
ti ∈ Xj for all i = 1, 2, . . . , n. Let us denote the set of vertices in the connected
component of Xj containing a vertex u by Vj(u). Since u splits into two parts
u′ and u′′, we have components Vj+1(u′) and Vj+1(u′′) in G(Xj+1, R). Thus, the
number of connected components could increase by two. On the other hand, the
whole connected component Vj(u) disappears. In addition, we know that u′ R v
and therefore Vj+1(u′) = Vj+1(v) ⊇ Vj(v)∪R′(u). Thus, the new vertices R′(u) are
connected to an old component containing v. Therefore, the number of connected
components does not increase.

Now it remains to show that in some stage of the procedure the number of
components strictly decreases. Suppose that Xj is the last intermediate step be-
fore the output Xj+1 and words u and v satisfy the conditions described above.
Suppose first that t1 R u′′. This means that Vj+1(u′′) = Vj+1(t1). In other words
Vj(u) disappears and both Vj+1(u′) and Vj+1(u′′) are joint to old components.
Thus the number of connected components has decreased by one.

Suppose next that t1 �∈ R(u′′). If t1 �∈ (RXj )+(u), then t1 is not split and
t1 ∈ Xj+1. Hence, the relation us R vt implies the following nontrivial relation in
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Xj+1 × Xj+1:

u′′s R t1 . . . tn.

Therefore (u′′, t1) ∈ Cf (Xj+1) and Xj+1 is not the final outcome of the algo-
rithm Af . A contradiction. Thus, we must have t1 ∈ (RXj )+(u). We may denote
t1 = t′1t

′′
1 , where |t′1| = |u′|, |t′′1 | = |u′′| and t′1 ∈ (RXj+1 )+(u′). If t′1 �∈ R(u′′), then

u′′s R t′1t
′′
1t2 . . . tn

is a nontrivial relation in Xj+1. This is again impossible, since Cf (Xj+1, R) must
be empty. Thus t′1 R u′′. We have

u′′ (RXj+1)
+ t′1 (RXj+1 )

+ u′ (RXj+1 )
+ v.

In other words, Vj+1(u′′) = Vj+1(v) and the number of connected components
must be reduced by one. This proves the defect effect for free (R, R)-hulls. �

Finally we note that the defect effect is valid also for (R, S)-free hulls by Propo-
sition 5.1. Namely, if B is the base of the (R, S)-free hull of X , then it is the base
of the (R, R)-free hull and c(B, R) ≤ c(X, R). Like above the equality holds if
and only if X is an (R, S)-code. Moreover, since partial words can be seen as a
special case of words with word relations, the previous theorem implies a defect
theorem of partial words [5]. Recall that pcodes are (R↑, ι)-codes over A♦ and
pfree monoids are (R↑, ι)-free. We may state:

Corollary 6.2. Let X be a finite set of partial words, i.e., a set of words over the
alphabet A♦. Suppose that the pfree hull of X exists and let B be its base. Then
|B| ≤ |X |, and the equality holds if and only if X is a pcode.

Proof. As mentioned above the pfree hull is the (R↑, ι)-free hull of X . By Propo-
sition 5.1, (R↑, ι)-free hull is also the (R↑, R↑)-free hull of X . Thus, by Theo-
rem 6.1, we have c(B, R↑) ≤ c(X, R↑) and the equality holds if and only if X is
an (R↑, R↑)-code. Since M = B∗ is an (R↑, ι)-free monoid, we have (R↑)M ⊆ ιM .
This means that all the connected components of GR↑(B) and GR↑(X) must con-
sist of single elements. Thus c(B, R↑) = |B| and c(X, R↑) = |X |. This implies our
statement. �

Note that Theorem 6.1 is more general than the defect theorem of partial words
in [5]. Firstly, the (R, R)-free hull always exists, which is not the case for pfree
hulls. Secondly, we want to point out that no algorithm for finding the base of the
pfree hull is given in [5] but in our paper the algorithm for finding the (R, R)-base
is essential. In the Algorithm 5.2 the simultaneous splitting of the elements in a
connected component is crucial to our proof of the defect effect. Such splitting
is not needed in the case of partial words. Namely, if the pfree hull of partial
words exists, then the connected components Vj(u) appearing in our proof must
be trivial, i.e., Vj(u) = u.
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