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DRUNKEN MAN INFINITE WORDS COMPLEXITY

Marion Le Gonidec1

Abstract. In this article, we study the complexity of drunken man
infinite words. We show that these infinite words, generated by a deter-
ministic and complete countable automaton, or equivalently generated
by a substitution over a countable alphabet of constant length, have
complexity functions equivalent to n(log2 n)2 when n goes to infinity.

Mathematics Subject Classification. 11B85, 68R15.

Introduction

The structure of an infinite word, and especially the diversity of the subwords
appearing in an infinite word m = m0m1m2 . . . over a finite alphabet, can be
described by a function measuring the subword complexity. This function, usually
denoted pm, is the function from N to N which maps an integer n to the number
of different subwords of length n appearing in m. Namely, if we denote by Fn(m)
the set of subwords of length n ≥ 0 appearing in m, the subword language of m is
L(m) = ∪n≥0Fn(m) and pm(n) = Card (Fn(m)).

Even if a complexity function must fit many simple properties, its compu-
tation often remain awkward and their possible behaviours are various, from
constant functions to exponential growth functions and from simple to irregu-
lar non-decreasing functions. Consequently, there are several questions related to
the computation of subword complexity: can the complexity of a given word be
computed exactly? Can we, at least, give an equivalent or the growth order of
the complexity? Which function can be realized as a complexity function? Which
properties holds for words with same complexity? All these questions have been
the aims of many works. See for example [1] or [6] for surveys about these ques-
tions.

As further motivations for computing complexity functions, the sequence
log pm(n)

n tends to the entropy of the dynamical system associated with the word
(see for example [9]) and the function pm(n) is also linked to the Kolmogorov
complexity of the infinite word m (see [15]).
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Figure 1. Automaton generating the drunken man infinite words.

If we cannot, in the general case, compute exactly all the complexity functions
of large classes of infinite words, we can determine for some classes of words, the
possible growth orders of the complexity functions. This is the case for classes
of words generated by simple algorithms as automatic words, generated by finite
automata. A result of Cobham [5] ensures that an automatic word which is not
ultimately periodic (so that its complexity is at least n �→ n + 1) have a sublinear
complexity function (see [2] for an overview on automatic words). This theorem has
been extended to fixed points of substitutions over finite alphabet by Pansiot [14].

One can ask, in order to extend the result of Cobham, if we can obtain a similar
result for infinite words generated by deterministic countable automata. As a first
result in this direction, we have shown in [10] that the complexity functions of
a large class of words over finite alphabets, generated by complete, deterministic
and countable automata of uniformly bounded degree, are at most polynomial,
that is, pm(n) ≤ Cnα for a constant α. Moreover, the constant α only depends on
the number of transition labels and on the uniform bound of the in-degree.

The purpose of this article is to study the complexity functions of a family of
infinite binary words, generated by the first basic example of countable automaton
A represented in Figure 1. These words have their complexity functions equivalent
to n(log2 n)2 when n goes to infinity.

We construct the family of drunken man infinite words from a unique word,
denoted m, over the infinite alphabet Z ∪ {e0}, which is the output word of the
automaton. The n-th letter of m is given by the label of the output state obtained
by feeding the automaton with the proper binary representation of n, read from
the most to the least significant digit. That is, if we denote by the word ρ2(n) =
nl . . . n1n0 the proper binary representation of a positive integer n =

∑l
i=0 ni2i,

with ni ∈ {0, 1} and the convention ρ2(0) = ε, the output state obtained by feeding
the automaton with ρ2(n) is labeled by mn = |ρ2(n)|1 − |ρ2(n)|0, where |ρ2(n)|i
represents the number of occurrences of the letter i in the word ρ2(n).

The initial state e0 allows to feed the automaton with non proper binary rep-
resentations without changing the output state.
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The family of the drunken man infinite words
{
m(f) ∈ {0, 1}N, f ∈ Z

}
, where

m(f) is generated by the countable automaton A and the following output func-
tion Πf ,

Πf : Z ∪ {e0} → {0, 1}
f �→ 1
e0 �→ 1

e �= f, e0 �→ 0
extended by concatenation to (Z ∪ {e0})N, so that, for example,

m(−1) = Π−1(m) = 00001000000000000110100010000000000000000000000000 . . .

m(0) = Π0(m) = 10100000011010000000000000000000000101100110100001101 . . .

m(1) = Π1(m) = 01000110000000000001011001101000000000000000000000000 . . .

m(2) = Π2(m) = 00010000000101100000000000000000000000010001011000010 . . .

These words are 2∞-automatic in the sense of [11] and [12] and are closely related
to some context-free languages of binary representations. Indeed, the infinite word
m(f) is the characteristic word of the following set:

Sf = {n ∈ N, |ρ2(n)|1 = |ρ2(n)|0 + f}.

That is, by definition of m(f),

∀n ∈ N, m(f)
n =

{
1 if n ∈ Sf ,
0 otherwise.

We can find in [8,13] and [12] a study of arithmetic and statistical properties of
the set S0.

Thanks to the correspondence between countable automata and substitutions
over countable alphabets (we refer to [12] regarding to this correspondence), there
is another way to construct the word m(f). Indeed, the substitution σ over the
alphabet Z ∪ {e0}, that is,

σ : Z ∪ {e0} → Z
∗ ∪ {e01}

e �→ (e − 1)(e + 1)
e0 �→ e01

admits m as unique fixed point:

m = σ(m) = e0102(−1)113(−2)0020224(−3)(−1)(−1)1(−1)113(−1)1131335(−4)
(−2)(−2)0(−2)002(−2)0020224(−2)002022402242446(−5)(−3)(−3)(−1)(−3)
(−1)(−1)1(−3)(−1)(−1)1(−1)113(−3)(−1)(−1)1(−1)113(−1)1131335(−1)1131
33513353557 . . .

and the drunken man infinite words m(f) are obtained from m by the projec-
tion Πf .
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Ferenczi have studied in [7] dynamical systems associated with substitutions
over countable alphabets. He shows that, under conditions of aperiodicity and
irreducibility, subshifts associated with substitutions over countable alphabets ad-
mit invariant measures, which can be finite or infinite. These invariant measures
are also ergodic for some examples of substitutions.

In this article, we will focus on combinatorial aspects of the words m(f) to show
that their complexity functions are equivalent to n(log2 n)2 when n goes to infinity.
It seems that the construction of m(f) as projection of the fixed point of σ is the
best point of view to obtain this result.

1. Drunken man infinite word complexity

Theorem 1.1. The complexity function of all drunken man infinite word is equiv-
alent to n log2

2 n.

To prove this theorem, we search an upper bounding function and a lower
bounding function for pm(f) , both equivalent to n log2

2 n. Thus, we will show the
following two results.

Claim 1.2. For all integers f in Z, the complexity function of m(f) admits the
following upper bound:

∀n ≥ 1, pm(f)(n) ≤ n(log2 n + 9)(log2 n + 2).

Claim 1.3. For all integers f in Z, the complexity function of m(f) admits the
following lower bound:

∀n ∈ N, n ≥ 3, pm(f)(n) ≥ n
(
(log2 n)2 − 2

)
+ 2.

The upper bound of Claim 1.2 follows from a thin bounding of the number of
subwords of length 2 appearing in m, based on methods from [10]. The lower
bound of Claim 1.3 results from computing special subwords of fixed length and
need a deep study of the words σk(e)’s structure, for all e in Z ∪ {e0}.
Note 1.4. To lighten the following proofs, we will fix for the end of the section,
an integer f of Z and we denote, for all positive integers k, σk = Πf ◦ σk.

We will also denote by �x, y� the set {z ∈ Z | x ≤ z ≤ y}.
Remark 1.5. Even if the words m(f) share the same kind of complexity function
and also share special subwords and their constructions, we must notice that, they
do not necessarily share the same language. For example, the word w = 100011
belongs to L(m(1)) but does not belong to L(m(0)).

Indeed, if we assume w = 100011, w belongs to L(m(1)) and also belongs to
L(m(0)), there is, by definition of m(0), a word w = 0x1x2x300 in m which projects
on w by Π0. As m is the fixed point of σ and as 00 is not the image of a letter by σ,
x1x2 and x30 have to be the images of letters so x3 = −2 and there exists a letter x
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such that w = 0(x−1)(x+1)(−2)00. Moreover, w always appears in m followed by
a 2 and preceded by a −2. As (−2)w2 is a subword of m, its pre-image by σ is also
a subword of σ as m is the fixed point of σ so the word u = (−1)x(−1)1 must be a
subword of m. According to the images of letters by σ, x could be a letter 1 or −3.
The case x = 1 is excluded because it would imply x1x2 = 02 so the second letter
of w should be a 1 which is not the case. Thereby, the word u = (−1)(−3)(−1)1 is
the only possibility, but it also lead to a contradiction. Indeed, as (−3)(−1) is not
the image of a letter by σ, u always appears in m followed by a 3 and preceded
by a −3. The pre-image (−2)(−2)2 of (−3)u3 by σ must also be a subword of σ,
which is not the case as neither (−2)(−2) nor (−2)2 are images of letters by σ.

So there is no subword of m projecting on w by Π0, that is, w = 100011 does
not belong to L(m(0)).

Using similar arguments, one can shows that the word 000100000001011 belongs
to L(m(2)) but does not belong to L(m(0)) and the word 10001100 belongs to
L(m(1)) but does not belong to L(m(2)).

1.1. An upper bound for the complexity functions

To give an upper bound of the complexity function, we need combinatorial
results on fixed points of substitutions of constant length over countable alphabets,
which are recalled in the following proposition (see [10] for the proof).

Proposition 1.6. Let m be the fixed point beginning by the letter a0 of a sub-
stitution ς of constant length q over a countable alphabet A, defined by ς(a) =
ς0(a)ς1(a) . . . ςq−1(a).

For a given letter a appearing in m and a given positive integer k ≥ 1, the word
ςk(a) = u0u1 . . . uqk−1, called the k-th iterated of a by ς, satisfies:

∀n ∈ {0, 1, . . . , qk − 1}, un = ςn0 ◦ ςn1 ◦ · · · ◦ ςnl
◦ ς

k−(l+1)
0 (a),

where ρq(n) = nl . . . n1n0 is the q-ary representation of n.

This proposition allows to obtain useful facts about the structure of the sub-
words σk(x) which appear in the drunken man infinite word:

Lemma 1.7. Let x be an element of Z and k be a positive integer, we have:
(1) If x − f and k have the same parity, all the values in �x − k, x + k� with

the same parity as f , and only these, appear in σk(x).
(2) If x − f and k have different parity, all the values in �x − k, x + k� with

different parity from f , and only these, appear in σk(x).

In particular, the word σk(x) �= 02k

if and only if there exists an integer p ∈ �0, k�
such that x = f + k − 2p.

Proof. The first two item of this lemma are consequence of the fist part of Propo-
sition 1.6. Indeed, if we note σk(x) = w0w1 . . . w2k−1 then, using Proposition 1.6,
we have wi = x + |ρ2(i)|1 − (|ρ2(i)|0 + k − |ρ2(i)|), that is wi = x + 2|ρ2(i)|1 − k.
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Thus all the letters wi belong to �x − k, x + k� and have same parity as x if k is
even and have different parity from x if k is odd.

From it, we obtain that letters wi have the same parity as f if and only if x
and f have the same parity and k is even or if x has different parity from f and
k is odd, that is letter wi have the same parity as f when x − f and k have the
same parity. �

To obtain Claim 1.2, we are going to give an upper bound to the number of
subwords of m(f) of length 2k. The idea is to extract from the words of F2(m)
the words leading to subwords of m(f) of type σk(x1)σk(x2) which are not 02k+1

.
Indeed, if w is a subword of length 2k of m, w is a subword of some σk(x1)σk(x2),
due to the structure of fixed point of m. Nevertheless, infinitely many pairs (x′

1, x
′
2)

can lead to subwords σk(x′
1)σ

k(x′
2) containing w as a subword, due to the pro-

jection Πf , but we can find a finite set of subwords x1x2 of m such that every
subword of length 2k of m(f) is a subword of one of the σk(x1)σk(x2). The follow-
ing proposition about subwords of length two of m, proved in [10], will help us to
find this finite set.

Proposition 1.8. The set of subwords of length two of m is:

F2(m) = {e01}∪{x1x2 | x1 ∈ Z, x2 = x1−2p, p ≥ −1 or x2 = −x1 +1 if x1 > 0}.

Lemma 1.9. For some integer k ≥ 1, we denote by Uk(f) the following set of
words of length two:

{e01}∪
{

(f+k−2q)(f+k−2p) | (q, p) ∈ �−1, k�×�0, k+1�\{(−1, k+1)}, p ≥ q−1
}
.

For every word w of m(f) of length 2k, there is a word x1x2 of Uk(f) such that w
is a subword of σk(x1)σk(x2).

Proof. There is a suitable word for 02k

in Uk(f), for example σk(f +k)σk(f +k) =
102k+1−21.

Let w a subword of m(f) of length 2k different from 02k

. If w is not a subword
of σk(e0)σk(1), there is at least one pair (x1, x2) of Z

2 such that w is a subword
of σk(x1)σk(x2).

As w is not 02k

, σk(x1) or σk(x2) contains an occurrence of 1 and then, the
letter x1 or the letter x2 belongs to �f − k, f + k� and can be written f + k − 2q
for some q in �0, k�.

Assume x1 = f + k − 2q for a q in �0, k�. Proposition 1.8 implies x2 = e1 − 2p
for some p ≥ −1 or x2 = −e1+1 if x2 ≤ 0. According to the cases, we get different
words of Uk(f):

• if x2 = x1−2p and x2 also belongs to �f −k, f +k�, the word x1x2 belongs
Uk(f);

• if x2 = −x1 + 1 or x2 = x1 − 2p does not belong to � − k, k�, then
σk(x2) = 02k

, so σk(x2) = σk(f − k − 2).
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Proposition 1.8 ensures that x1(f − k − 2) is also a subword of m and it follows:
w is a subword of σk(x1)σk(f − k − 2) and x1(f − k − 2) belongs to Uk(f).
Assume x2 = f + k − 2q for a q in �0, k�. Proposition 1.8 implies x1 = x2 + 2p
for some p ≥ −1 or x1 = −x2 + 1, only if x2 < 0. According to the cases, we get
different words of Uk(f):

• if x1 = x2 +2p and x1 belongs to �f −k, f +k�, the word x1x2 is in Uk(f);
• if x1 = −x2 − 1 or x1 = x2 + 2p does not belong to �f − k, f + k�, we get

σk(x1) = 02k

= σk(f + k + 2). Proposition 1.8 ensures that (f + k + 2)x2

is a subword of m and it follows: w is a subword of σk(f + k + 2)σk(x2)
and (f + k + 2)x2 belongs to Uk(f).

Thus, we found, for all words w of length 2k of m(f), a word x1x2 of Uk(f) such
that w is a subword of σk(x1)σk(x2). �
Proof of Claim 1.2. According to Lemma 1.9, every subword of length 2k of m
is a subword of some σk(x1)σk(x2) where (x1, x2) belongs to Uk. It leads to the
following inequality: pm(2k) ≤ 2k · Card(Uk(f)), where 2k represents the number
of possible ways of extracting a subword of length 2k from a subword σk(x1)σk(x2)
and Card(Uk(f)) is the cardinal of Uk(f). As

Card(Uk(f)) = 1 + (k + 1) + (k + 2) +
k+2∑
i=3

i =
k2 + 9k + 8

2
,

it follows

pm(f)(2k) ≤ 2k k2 + 9k + 8
2

and pm(f)(2k+1) ≤ 2k+1 k2 + 11k + 18
2

·

As the complexity function is an increasing function, using the fact that, for all
integers n in �2k, 2k+1�, log2(n) belongs to �k, k + 1�, we obtain:

∀n ≥ 1, pm(f)(n) ≤ n(log2 n + 9)(log2 n + 2),

that is the announced upper bound for pm(f)(n). �

1.2. A lower bound for the complexity functions

Among all the subwords of a given infinite word, the special factors form the
main tool to find a lower bound for complexity function.

The left special factors (resp. right special factors, bispecial factors) of m are
subwords of m appearing in m extended on the left (resp. on the right, on the
both sides) by at least two different letters. For binary words, the difference
pm(n + 1)− pm(n) is exactly the number of right special factors or the number of
left special factors. Many other deeper formulas hold between special factors and
complexity (see [3,4]).

These subwords are really useful to compute complexity, especially when we
consider infinite words generated by simple algorithms (so we can organize special
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Figure 2. Production process of the words σk(x) �= 02k

.

factors in families) or when we consider infinite words of low complexity (so the
special factors are not too numerous).

To find a lower bound for the complexity function of the drunken man infinite
words, we need to know more precisely the structure of the subwords σk(f +k−2p)
for a fixed integer k and some p in �0, k�, that means the subwords σk(x) which
are different from 02k

. Indeed, knowing exactly where are the occurrences of 1 in
the subwords σk(f +k−2p) will leads us to localize and extract a family of special
factors of m(f). Thanks to this family of subwords, we will be able to give a lower
bound for the complexity function of the drunken man infinite word m(f).

First of all, there is a simple way to compute the subwords σk(x) different
from 02k

. We can construct a triangle (see Fig. 2), using the substitutive relation
σk(x) = σk−1(x− 1)σk−1(x+1), where the p-th element of the k-th row is σk(f +
2p − k).

We now focus on the properties of words σk(f + k − 2p) for p ∈ �0, k�.

Note 1.10. Let k > 0 and q > 0 be two positive integers and x be an integer.
We denote by Rk(x, q) the rank, from 0 to 2k − 1, of the q-th occurrence of 1 in

σk(x), that is, if we set σk(x) = u0u1 . . . u2k−1, then Rk(x, q) is characterized by:

Rk(x,q)−1∑
i=0

ui = q − 1 and
Rk(x,q)∑

i=0

ui = q.

Proposition 1.11. Let k > 0 be a positive integer and p be in �0, k�. We have
the following properties:
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(1) For all integers n, 0 ≤ n ≤ 2k − 1,

(σk(f − (k − 2p)))n = (σk(f + k − 2p))2k−n−1,

that is, the words σk(f − (k − 2p)) and σk(f + k − 2p) are mirror image
one of each other. In particular, σ2k(f) is a palindrome different from 02k

if k is even.
(2) The letter 1 occurs in σk(f + k − 2p) exactly

(
k
p

)
times.

(3) For all integer p in �0, k� and all integers q in �1,
(
k
p

)
�:

Rk(f + k − 2p, q) =
{

Rk−1(f + k − 2p − 1, q) if q ≤ (
k−1
p

)
,

2k−1 + Rk−1(f + k − 2p + 1, q − (
k−1
p

)
) otherwise.

In particular, thanks to this formula, we can obtain, for x = f + k − 2p:
• Rk(x, 1) = 2p − 1,
• Rk(x, 2) = 2p + 2p−1 − 1,
• Rk(x,

(
k
p

)
) = 2k − 2k−p,

• Rk(x,
(

k
p

) − 1) = 2k − 2k−p − 2k−p−1.

Proof. Let k > 0 be a positive integer and p be in �0, k�.
(1) First, we must notice that σk(f) = u0 . . . u2k−1 satisfies:

∀n ∈ �0, 2k − 1�, ∀b ∈ � − k, k�, un = f + b ⇐⇒ u2k−1−n = f − b.

It can be shown by induction on k ≥ 1.
If we denote σk(f) = u0 . . . u2k−1, we have directly:

∀n ∈ �0, 2k − 1�, un = 1 ⇐⇒ u2k−1−n = 1,

and so σk(f) is a palindrome of length 2k, different from 02k

when k is even.
To show that σ(f − (k − 2p)) and σk(f + k − 2p) are mirror images, we denote

σk(f + k − 2p) = y0 . . . y2k−1, σk(f + k − 2p) = y0 . . . y2k−1,

σk(f − (k − 2p)) = w0 . . . w2k−1, σk(f − (k − 2p)) = w0 . . . w2k−1.

As the coordinates applications of σ: σ0 : n �→ n−1 and σ1 : n �→ n+1 are linear,
we get: ∀n ∈ �0, 2k − 1�, yn = un + (k − 2p) and wn = un − (k − 2p). Thus, we
obtain the following equivalences for n in �0, 2k − 1�:

yn = 1 ⇐⇒ yn = f ⇐⇒ un = f − (k − 2p),

and, on the other hand,

w2k−1−n = 1 ⇐⇒ w2k−1−n = f ⇐⇒ u2k−1−n = f + (k − 2p).

This is sufficient to show from those equivalences that σk(f − (k−2p)) and σk(f +
k − 2p) are mirror images.
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(2) For p an element of N, we note Nk(p) the number of occurrences of the letter
1 in σk(f + k − 2p). The set {Nk(p) | k ≥ 1, p ∈ N} have the following properties:

• ∀p /∈ �0, k�, Nk(p) = 0.
• As σk(k) = 102k−1 and σk(−k) = 02k−11, we get

∀k ≥ 1, Nk(0) = Nk(k) = 1.

• The relation σk(k − 2p) = σk−1(k − 1− 2p)σk−1(k − 1− 2(p− 1)) implies

Nk(p) = Nk−1(p) + Nk−1(p − 1).

Thus, the function (k, p) �→ Nk(p) satisfies the same functional properties as the
function (k, p) �→ (

k
p

)
so:

∀k ≥ 1, ∀p ∈ �0, k�, Nk(p) =
(

k

p

)
.

Notice that the construction in Figure 2, expounded at the beginning of the section,
allows to see directly this property.

(3) From the relation σk(f+k−2p) = σk−1(f+k−1−2p)σk−1(f+k−1−2(p−1))
and the equality Nk(p) =

(
k
p

)
, we obtain:

∀q ∈ �1,
(
k−1
p

)
�, Rk(f + k − 2p, q) = Rk−1(f + k − 1 − 2p, q),

as the first letters 1 of an iterate σk(x) are the letters 1 of σk−1(x − 1), but we
also obtain

∀q ∈ �
(
k−1
p

)
+1,

(
k
p

)
�, Rk(f +k−2p, q) = 2k−1 +Rk−1(k−1−2(p−1), q− (

k−1
p

)
)

because the last letters 1 of an iterate σk(x) are those of σk−1(x + 1).
The values of Rk(f +k−2p, 1) and Rk(f +k−2p, 2) for p in �0, k� can be easily

computed by induction on k. We obtain the values of Rk(f + k − 2p,
(
k
p

)
) and

Rk(f+k−2p,
(
k
p

)−1) using the fact that σ(f−(k−2p)) and σk(f+k−2p) are mirror
images and thus Rk(f+k−2p,

(
k
p

)
) = Rk(f−(k−2p), 1) and Rk(f+k−2p,

(
k
p

)−1) =
Rk(f − (k − 2p), 2). �
Lemma 1.12. Let (x, q) be an element in Z × N.

The word (x)(x−2q) is a subword of m and (x−2) is the unique letter extending
(x)(x − 2q) on the left to form a subword of m. That is

∀(x, q) ∈ Z × N, ∀n ∈ N, mnmn+1 = (x)(x − 2q) =⇒ mn−1 = (x − 2).

Proof. For all pairs (x, q) of Z×N, according to Proposition 1.8, the word (x)(x−
2q) is a subword of m. Furthermore, as any element of Z gives, a word of this type,
by σ, the subword (x)(x − 2q) appears at a junction σ(x1)σ(x2), with x1 = x − 1
and x2 = x − 2q + 1. �
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σk(f + k − 2(p + 1))

σk(f + k − 2(p + 1)) σk(f + k − 2p)

σk(f + k − 2p) σk(f + k − 2q)

σk(f − k − 2)

w(p,q) 1

0

Figure 3. Construction of the special factor w(p,q).

Lemma 1.13. Let k be a positive integer and n be an integer satisfying 2k ≤ n ≤
2k+1 − 1. Let (p, q) be a pair of integers such that 0 ≤ p ≤ q ≤ k − 1.

The subword v = σk(f + k − 2(p + 1))σk(f + k − 2p)σk(f + k − 2q) contains
a special factor of length n of m(f), denoted w(p,q). More precisely, if we set
v = v0v1 . . . v3·2k−1, we have:

w(p,q) = y2k+1+2q−n−2y2k+1+2q−n−1 . . . y2k+1+2q−2.

Moreover, if we set

W = {(1, q)| q ∈ �1, k − 3�} ∪ {(p, q) ∈ N
2| 2 ≤ p ≤ q ≤ k − 1},

the function (p, q) �→ w(p,q) is one-to-one on W and every word w(p,q) with (p, q) ∈
W contains at least two occurrences of the letter 1.

Proof. Let k be a positive integer, n be an integer satisfying 2k ≤ n ≤ 2k+1 − 1
and a pair (p, q) of integers such that 0 ≤ p ≤ q ≤ k − 1. The word w(p,q) is
extracted from the subword σk(f + k− 2(p+1))σk(f + k− 2p)σk(f + k− 2q) such
that the last letter of w(p,q) is the Rk(f + k− 2q, 1)-th letter of σk(f + k− 2q) (see
Note 1.10), that is the (2q − 1)-th letter of σk(f + k − 2q) (see Fig. 3).

The words w(p,q) are right special factors of m(f). Indeed, as (f + k − 2(p +
1))(f + k− 2p)(f + k− 2q) and (f + k− 2(p + 1))(f + k− 2p)(f + k− 2(q + 1)) are
subwords of m, the word w(p,q) can be extended on the right by the letter 1 if we
see it as a subword of σk(f +k−2(p+1))σk(f +k−2p)σk(f +k−2q) or by the letter
0 if we see it as a subword of σk(f +k−2(p+1))σk(f +k−2p)σk(f +k−2(q+1)),
because the first occurrence of the letter 1 in σk(f + k − 2(q + 1)) only appears at
the 2q+1 letter (rank 2q+1 − 1).

Nevertheless, we have to ensure that those special factors are different, and this
is unfortunately not the case. But if we assume that p belongs to �1, k − 1� (this
ensures that σk(f + k − 2p) contains more than two occurrences of the letter 1)
and w(p,q) contains the last two occurrences of 1 of σk(f + k − 2p), all the words
w(p,q) are different.

Indeed, in this configuration, the two last occurrences of 1 of w(p,q) are the last
two occurrences of 1 of σk(f +k−2p). The length of the block of letters 0 between
the last two occurrences of 1 of w(p,q) uniquely determines the integer p, because
the length of this block is Rk(f + k − 2p,

(
k
p

)
) − Rk(f + k − 2p,

(
k
p

) − 1) − 1, that
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is 2k−p−1. Then, the integer q is uniquely determined by the length of the block
of letters 0 ending the word w(p,q), because the length of this block is Rk(f + k −
2q, 1) − 1 + 2k − Rk(f + k − 2p,

(
k
p

)
), that is 2k−p + 2q − 2.

According to property 3. of Proposition 1.11, w(p,q) contains the two last oc-
currences of 1 of σk(f + k − 2p) if and only if:

2k + Rk(f + k − 2q, 1)− Rk(f + k − 2p,
(
k
p

) − 1) ≤ n.

As n belongs to �2k, 2k+1 − 1�, no matter if we loose a few special factors, we can
restrict this condition to the following one:

2k + Rk(f + k − 2q, 1) − Rk(f + k − 2p,
(
k
p

) − 1) ≤ 2k,

that is, the word w(p,q) contains the two last occurrences of 1 of σk(f + k − 2p)
when (p, q) ∈ S. So, by construction, the function (p, q) �→ w(p,q) is injective
on S. �
Lemma 1.14. Let k be a positive integer and n an integer satisfying 2k ≤ n ≤
2k+1 − 1. For an integer q of �1, k − 1�, the word u(q) = 0n−2q−1

102q−1−1 is a
special factor of m(f).

Proof. First, let q be an integer of �1, k − 2�. The word u(q) can be extracted
from σk(f + k + 2)σk(f + k + 4)σk(f + k − 2q) so that the last letter of u(q) is
Rk(f + k − 2q, 2)-th letter of σk(f + k − 2q), i.e., the (2q + 2q−1 − 1)-th letter of
σk(f + k − 2q), just before the second occurrence of the letter 1 in σk(f + k − 2q)
(see Fig. 4). In other words, if we set σk(f + k + 2)σk(f + k + 4)σk(f + k − 2q) =
v0v1 . . . v32k−1, then

u(q) = u2k+1+2q+2q−1−n−2u2k+1+2q+2q−1−n−1 . . . u2k+1+2q+2q−1−2.

But the word u(q) can also be extracted from σk(f +k+2)σk(f +k+4)σk(f +k−
2(q+1)) so that the last letter of u(q) is the (Rk(f +k−2(q+1), 1)+2q−1)-th letter
of σk(f+k−2(q+1)), that is the (2q+1+2q−1−1)-th letter of σk(f+k−2(q+1)). In
other words, if we set σk(f+k+2)σk(f+k+4)σk(f+k−2(q+1)) = x0x1 . . . x32k−1,
then

u(q) = x2k+1+2q+1+2q−1−n−2x2k+1+2q+1+2q−1−n−1 . . . x2k+1+2q+1+2q−1−2.

The words u(q) are right special factors. Indeed, as (f +k+2)(f +k+4)(f +k−2q)
and (f + k + 2)(f + k + 4)(f + k − 2(q + 1)) appear in m, the word u(q) can be
extended on the right by the letter 1 if we see it as a subword of σk(f + k +
2)σk(f + k + 4)σk(f + k − 2q) or by the letter 0 if we see it as a subword of
σk(f + k + 2)σk(f + k + 4)σk(f + k − 2(q + 1)) as the first occurrence of 1 in
σk(f + k − 2(q + 1)) only appears at the 2q+1 + 2qth letter (rank 2q+1 + 2q − 1).

The restriction q ≤ k − 2 is needed for u(q)0 being a subword of σk(f + k +
2)σk(f +k+4)σk(f +k−2(q +1)), but the word u(k−1) = 0n−2k−2

102k−2−1 is also
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02k

02k

02k

02k

σk(k − 2q)

σk(k − 2(q + 1))

u(q) 11

1 0

Figure 4. Construction of special factor u(p).

special. Using the same construction, the occurrence of the letter 1 of u(k−1) is the
last letter and the unique 1 of σk(f − k) = 02k−11. On the other hand, the word
(f+k+2)(f−k)(f−k+2) is a subword of m and σk(f+k+2)σk(f−k)σk(f−k+2)
contains u(k−1)0 as a subword because the length of the block of letters 0 between
the first two occurrences of 1 in this subword is 2k−1 − 1. �
Proof of Claim 1.3. Let k be a positive integer and n be an integer satisfying
2k ≤ n ≤ 2k+1 − 1.

Lemmas 1.13 and 1.14 provide a lower bound for pm(f)(n + 1) − pm(f)(n), for
a fixed n. Indeed, this lemmas show up two different families of different special
factors: words w(p,q) for (p, q) ∈ S, which are all different and contains at least two
occurrences of the letter 1 and words u(q), for q ∈ �1, k−1�, which are all different
and contain only one occurrence of the letter 1. Moreover, the subword 0n is a
right special factor too. Thereby, there is at least 2k − 3 +

∑k−2
i=1 i = (

∑k
i=1 i)− 2

right special factors of length n, so

∀k 0, ∀n ∈ �2k, 2k+1 − 1�, pm(f)(n + 1) − pm(f)(n) ≥ k(k + 1)
2

− 2.

Summing those inequalities, we get, for all integers k > 0 and all n ∈ �2k, 2k+1−1�,
n ≥ 3:

pm(f)(n) − pm(f)(2) ≥ (n − 2k)
(

k(k + 1)
2

− 2
)

+
k−1∑
i=0

2i

(
i(i + 1)

2
− 2

)
.

As pm(f)(2) = 4, it becomes, for all integers k > 0 and all n ∈ �2k, 2k+1−1�, n ≥ 3:

pm(f)(n) ≥ (n − 2k)
(

k(k + 1)
2

− 2
)

+ (k + 1)(k + 2)2k−1 − 2k+1 − 2 + 4,

it follows,

pm(f)(n) ≥ n

(
k(k + 1)

2
− 2

)
+ (k + 1)2k + 2.

Using k ≥ log2 n − 1 and 2k ≥ n
2 , we obtain:

∀n ∈ N, n ≥ 3, pm(f)(n) ≥ n

(
(log2 n + 1) log2 n

2
− 2

)
+

n log2 n

2
+ 2,
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and it leads to

∀n ∈ N, n ≥ 3, pm(f)(n) ≥ n
(
(log2 n)2 − 2

)
+ 2. �

2. Open problems

We found an equivalent for the complexity functions of drunken man infinite
words, but their exact computation remain an open problem. Another question,
probably linked to this problem, concerns the languages L(m(f)) of drunken man
infinite words. Indeed, as mentioned in Remark 1.5, the words m(0), m(1) and
m(2) have pairwise different languages even if they share many subwords and in
particular special factors. One can ask whether this property is also true for any
pair of words m(f) and m(f ′) or not.

As the drunken man infinite words are naturally associated with context-free
languages over {0, 1}, a natural question is, as mentioned in the introduction, to
characterize, in the spirit of Cobham’s theorem [5], the possible growth orders of
complexity functions of infinite words generated in the same way by transition
graphs of deterministic pushdown automata. It can be proved from [10], that
complexity functions of many of these words are at most polynomial but the upper
bound given in the article can probably be improved.

In the other hand, methods displayed in this article can be adapted to more
general automata, for example automata supported by lattices of R

d, with similar
output functions Π (constant except on a finite number of states). The way we
have obtained upper bound for complexity functions can easily be adapted to
deterministic and complete automaton with uniformly bounded degree and with
a finite number of output states and give thin upper bound for the complexity
function (see [10]). The search of lower bounds for complexity functions of words
generated by more general automata is also linked to problems of reachability,
shortest paths and counting paths in infinite graphs.
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[1] J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc. Simon Stevin 1
(1994) 133–143.

[2] J.-P. Allouche and J. Shallit, Automatic sequences. Theory, applications, generalizations.
Cambridge University Press (2003).

[3] J. Cassaigne, Special factors of sequences with linear subword complexity. In Developments
in language theory (Magdeburg, 1995), World Sci. Publishing (1996) 25–34.
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