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PARIKH TEST SETS FOR COMMUTATIVE
LANGUAGES ∗

Štěpán Holub1

Abstract. A set T ⊆ L is a Parikh test set of L if c(T ) is a test set
of c(L). We give a characterization of Parikh test sets for arbitrary
language in terms of its Parikh basis, and the coincidence graph of
letters.
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1. Introduction

Commutative languages represent a class of languages with the rare property of
having known upper bound for the cardinality of their test sets (see [1,2]). Namely,
each commutative language has a test set with cardinality at most 3n2, where n is
the number of letters. Moreover, the bound is optimal up to a constant, since for
each n there is a language the smallest test set of which has cardinality 1

9n2. On
the other hand, there is a large class of commutative languages having a linear test
set. The motivation for this paper was to find out which commutative languages
have only test sets of quadratic size.

Commutative languages are fully described by the set of their Parikh vectors;
the number of different Parikh vectors present in the language is thus the right
measure for the size of test sets. It turns out that even in this measure test sets
of a commutative language can be of size Ω(n2).

Parikh basis of a language and the information about joint occurrence of letters
in a word is basic finite information about a language over finite alphabet. In this
paper we show that this information is sufficient to characterize Parikh test set of
arbitrary commutative language.
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For an introduction into the importance of commutative languages in general
see for example [3].

2. Definitions and known facts

The reader is supposed to be familiar with common notation and basic facts of
combinatorics on words.

Commutative closure of a word u = �1 . . . �n, where �i are letters, is the language

c(u) = {�σ(1) . . . �σ(n) | σ ∈ Sn}.

In other words, the commutative closure of u contains all words, which arise from
u by permutation of its letters. Commutative closure of a language L is defined by

c(L) =
⋃
u∈L

c(u).

Language L is said to be commutative if L = c(L). We say that morphisms g and
h agree on a language L if g(u) = h(u) for each u ∈ L, write g ≡L h. A subset T
of a language L is called its test set if for any two morphisms g, h

g ≡L h ⇔ g ≡T h.

For sake of clarity we shall sometimes call those sets classical test sets.
The set of letters occurring in a word w is denoted by alph(w).
Parikh vector of a word u = ak1

1 . . . akn
n over the alphabet A = {a1, . . . , an},

where ki are nonnegative integers denoted also by |u|ai , is defined by

Ψ(u) = (k1, . . . , kn).

Note that a commutative language L over A is given uniquely by the set Ψ[L] ⊆ Nn
0

of its Parikh vectors.
Parikh basis of a commutative language L is a set B ⊆ L such that Ψ[B] is

basis of the vector space over Q generated by Ψ[L].
Two morphisms g and h are said to agree lengthwise on L if |g(u)| = |h(u)| for

all u ∈ L.
It is easy to see that the following lemma holds.

Lemma 2.1. Morphisms g and h agree lengthwise on L if and only if they agree
lengthwise on a Parikh basis of L.

The following facts about test sets of commutative languages are known:

Theorem 2.2 (see [1]). Any commutative language over n letters has a test set
of cardinality at most 3n2.

There is a commutative language over 3n letters the smallest test set of which
has cardinality at least n2.
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Theorem 2.3 (see [2]). The commutative language c(a1 . . . an) has a test set of
cardinality at most 5n.

Each test set of the commutative language c(a1 · · ·an) has cardinality at least
n − 1.

The commutative language c(ak1
1 · · ·akn

n ) has a test set of cardinality at most
10n.

We shall call the cardinality of the set Ψ[L], that is the number of Parikh vectors
contained in the language, the Parikh size of L. Since a commutative language is
fully described by its Parikh image, it suggests itself to measure the size of its test
set by its Parikh size. We therefore introduce the following notion. A set T ⊆ L
is called a Parikh test set of L if c(T ) is a test set of c(L). Note that, given a
commutative language, the minimal Parikh size of its test set corresponds exactly
to the minimal size of its Parikh test set.

3. Classical vs. Parikh test sets

In this section we give several examples, which illustrate the theory of test sets
for commutative languages, and the relationship between classical and Parikh test
sets.

Example 3.1. This is the example given in [1] of a language that has only test
sets of size Ω(n2) . The alphabet is

X1 = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn}

with cardinality 3n, and the language is

L1 = {aibjci | i, j = 1, . . . , n}.

Both the cardinality and the Parikh size of L1 is equal to n2.
It turns out that no proper subset of L1 is its test set. To prove this, suppose

that a set T ⊂ L1 does not contain anbncn. The following morphisms testify that
T is not a test set of L1:

g(an) = a2, g(bn) = b, g(cn) = a,

h(an) = a, h(bn) = b, h(cn) = a2,

and

g(ai) = a, g(bi) = a, g(ci) = a,

h(ai) = a, h(bi) = a, h(ci) = a

for i = 1, . . . , n − 1. The morphisms agree on all words from L1 with the only
exception of anbncn.
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The same reasoning and the same morphisms show that also any Parikh test
set has the Parikh size of full n2. Note that g and h in fact agree on whole
c(L1) \ {anbncn}.
Example 3.2. The language L1 should be compared with the language

L2 = {aibj | i, j = 1, . . . , n},

which also has the Parikh size n2. In this case, however, the set

T2 = {a1bi | i = 1, . . . , n} ∪ {aib1 | i = 1, . . . , n}

is a Parikh test set of L2, with the Parikh size 2n − 1.

Example 3.3. The language

L3 = c({a1 . . . anbi | i = 1, . . . , n})

contains only n Parikh vectors, and the same holds for any of its Parikh test sets.
On the other hand it can be shown that any classical test set has at least n(n−4)

4 ,
because the classical test set has to contain many words with the same Parikh
vector. Exactly this source of the size of the classical test set is ignored by Parikh
test sets.

Example 3.4. For n > 2 denote

T = {aibi | i = 1, . . . , n}, S = {aibiajbj | i, j = 1, . . . , n, i < j},

and consider the (non-commutative) language L4 = T ∪ S. Clearly T is a test set
of L4, while any Parikh test set R of L4 has to contain a permutation of each word
from S. Indeed, suppose for instance that the intersection of R with c(a1b1a2b2)
is empty. Then morphisms g and h defined by

g(a1) = a2, g(b1) = a,

h(a1) = a, h(b1) = a2,

g(a2) = b, g(b2) = b,

h(a2) = b, h(b2) = b,

and by
g(ai) = g(bi) = h(ai) = h(bi) = a

for 2 < i ≤ n, agree on c(R), but do not agree on c(L4), for instance on a1a2b1b2.

The previous example shows that T being test set of L does not imply that T
is also Parikh test of L. It also shows that a test set can have smaller cardinality
than any Parikh test set. If L is commutative, however, the implication trivially
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holds, and Parikh test sets give a lower bound to the cardinality of classical test
sets.

Theorem 2.3 moreover implies that if T is a Parikh test set of L, then L has a
classical test set of cardinality at most

10
∑
v∈T

|alph(v)|.

To see this, it is enough to consider the set

T ′ =
⋃
v∈T

Tv,

where Tv is a test set of c(v), with |Tv| ≤ 10 · |alph(v)|.

4. Coincidence graph and difference supports

In this section we define two basic concepts needed for characterization of Parikh
test sets, and show some of their properties.

The basic description of a language L over an alphabet X is an undirected
graph called coincidence graph, and denoted G(L). It is defined as follows. The
set of vertices of the graph is the alphabet X . The set of edges E = E(L) is
defined by saying that (a, b) is in E if and only if there is a word w in L such that
ab is a factor of c(w). The graph admits loops, since we do not require a 	= b.
Therefore, the loop (a, a) is in E if and only if L contains a word with at least two
occurrences of the letter a.

The sequence of vertices x0, . . . , xm is called path if (x0, x1), . . . , (xm−1, xm) ∈
E. The length of such a path is m, that is the number of edges.

Let L be a language over X = {a1, . . . , an}. Given morphisms g, h : X → A∗,
define

D(g, h) = {ai | |g(ai)| 	= |h(ai)|}.
A subset D ⊆ X is called a difference support of L if there are morphisms g and
h that agree lengthwise on L, and D = D(g, h).

Difference supports have the following equivalent characterization, which allows
to find all of them by means of linear algebra.

Lemma 4.1. Let L be a language over X = {a1, . . . , an} and B a Parikh basis of
L. Then a subset D of X is difference support of L if and only if there is a vector
d = (d1, . . . , dn) ∈ Qn such that

D = {ai | di 	= 0},

and

b · d :=
n∑

i=1

bi · di = 0

for each b = (b1, . . . , bn) ∈ Ψ[B].
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Proof. Given D = D(g, h) for morphisms g and h that agree lengthwise on L, put
di = |g(ai)| − |h(ai)|. The length agreement implies that for each v ∈ B

n∑
i=1

|v|ai · |g(ai)| =
n∑

i=1

|v|ai · |h(ai)|,

and therefore
n∑

i=1

bi · di = 0.

Let, on the other hand, D be the set {ai | di 	= 0}, where the vector d =
{d1, . . . , dn} solves the system of equations

b · d = 0, b ∈ Ψ[B]. (1)

We can choose d such that d ∈ Zn. Then D is equal to D(g, h) for any g and h
defined by

g(ai) = aki , h(ai) = a�i ,

where ki and �i are nonnegative integers such that ki − �i = di for all i = 1, . . . , n.
Equalities (1) imply that g and h agree lengthwise on B. Since B is a Parikh basis,
they agree lengthwise on the whole L. �

Denote by B a matrix the rows of which form basis of Ψ[B]. Denote the columns
of B by C = {c1, . . . , cn}. By the previous Lemma, the difference supports cor-
respond to subsets {i1, . . . , ik} of {1, . . . , n} for which there are nonzero integers
di1 , . . . , dik

satisfying

k∑
j=1

dij · cij = 0. (2)

All difference supports can be found using following three lemmas. With a slight
abuse of terminology we shall say, within those lemmas, that the difference sup-
ports are subsets of C, instead of X . This should cause no confusion, since both
X and C have cardinality n.

Lemma 4.2. Let D be a minimal linearly dependent subset of C. Then D is a
minimal difference support.

Proof. Since the set D = {ci1 , . . . , cik
} is linearly dependent, there are coefficients

di1 , . . . , dik
such that (2) holds. All dij are nonzero, because all proper subsets of

D are linearly independent, by hypothesis. For the same reason, no proper subset
of D is a difference support. �
Lemma 4.3. If D and D′ are difference supports then also D ∪ D′ is difference
support.
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Proof. Let d, d′ ∈ Zn be vectors such that B · d = B · d′ = 0, with nonzero entries
corresponding to sets D and D′, respectively. It is not difficult to see that for some
integer α the vector d′′ = d + αd′ is a vector with nonzero entries corresponding
to the set D ∪ D′. �

Lemma 4.4. Each difference support is a union of minimal difference supports.

Proof. Let D be a difference support. We have to show that each vector c ∈ D is
an element of a minimal difference support that is a subset of D. Consider any
subset S of D \ {c} that is minimal with respect to the property that c is in the
vector space spanned by S. It is easy to see that S ∪ {c} is a minimal difference
support. �

We can summarize the previous three lemmas.

Lemma 4.5. A subset D = {ai1 , . . . , aik
} of X is difference support if and only

if the set C = {ci1 , . . . , cik
}, which is a subset of C, is a union of minimal linearly

dependent subsets of C.

Given a set D of vertices of a graph G, we say that x0, . . . , xk is a D-path in G
if for each 0 ≤ i ≤ k − 1 at least one of the vertices xi, xi+1 is in D (i.e., there is
no edge in the path with both vertices out of D). If there is a D-path between a
and b, we say that they are D-connected.

The most obvious case in which two morphisms g and h agree on the commu-
tative closure of a word w is when g(a) = h(a) for all a ∈ alph(w).

The following lemmas describe two other possibilities. Proofs may be found for
example in [2].

Lemma 4.6. Let g and h agree on c(ab), and g(a) 	= h(a). Suppose that g(a) and
h(a) do not commute. Then there are unique nonempty words r, s, such that rs
is primitive, and

g(a) = (rs)�r g(b) = (sr)js

h(a) = (rs)�+kr h(b) = (sr)j−ks

for some nonnegative integers � and j, and k is a nonzero integer satisfying −� ≤
k ≤ j.

Lemma 4.7. Let g and h agree on c(w), where |w| ≥ 3, g(a)h(a) is nonempty for
all a ∈ alph(w), and for at least one a ∈ alph(w) the inequality g(a) 	= h(a) holds.
Then all words in

g[alph(w)] ∪ h[alph(w)]
commute.

Fix a commutative language L over X and morphisms g and h that agree on
L. In the rest of this section we shall also suppose that g(x)h(x) is nonempty for
each x ∈ X . In other words, we restrict the alphabet X to those letters that are
not erased. Put D = D(g, h).
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For each primitive t define

Pt = {a | g(a), h(a) ∈ t∗},

and let
P =

⋃
t

Pt.

Denote
Z = X \ D = {a | g(a) = h(a)}.

Define also a symmetric relation ∼ on X by a ∼ b if and only if a and b satisfy
conditions of Lemma 4.6. Denote

S = {a | a ∼ b for some b}.

From the definitions, and from Lemmas 4.6 and 4.7, we deduce the following claim.

Lemma 4.8. If (a, b) ∈ E then at least one of the following conditions is satisfied:
(1) a, b ∈ Z; or
(2) a ∼ b; or
(3) there is a primitive word t such that a, b ∈ Pt.

Moreover, Z ⊆ P , and S and P are disjoint.

Proof. Suppose that neither the first nor the second possibility holds. If ab is a
factor of some w ∈ L, |w| ≥ 3, then (3) follows from Lemma 4.7.

By Lemma 4.6, it remains that g(a) and h(a) commute, as well as g(b) and
h(b), and g(ab) = h(ab). Since |g(a)| 	= |h(a)|, it is easy to see that all four words
commute. �

The relation ∼ has the following property.

Lemma 4.9.
(1) If x0 ∼ x1 ∼ · · · ∼ xm, then x0 ∼ xj for all 1 ≤ j ≤ m odd.
(2) If x0 ∼ x1 ∼ · · · ∼ xm ∼ x0 then m is odd.

Proof. For each i the words ri and si such that risi is primitive, and

g(xi) = (risi)�iri, h(xi) = (risi)�i+kiri

are given uniquely by g(xi)−1h(xi) and h(xi)g(xi)−1. Moreover,

g(xi)−1h(xi) = g(xi+1)h(xi+1)−1.

This implies (1).
The second claim follows from the fact that x0 ∼ x0 implies that r0 and s0

commute, a contradiction with the primitivity of the word r0s0. �

We point out the following facts about paths.
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Lemma 4.10.

(1) If x0, . . . , xm is a D-path in G(L) then either xi ∈ S for all i = 0, . . . , m,
or there is a primitive word t such that xi ∈ Pt for all i = 0, . . . , m.

(2) If x0, . . . , xm, x0 is a path in G(L) of odd length, and x0 ∈ D, then x0 is
in P .

Proof. (1) For each 0 ≤ i < m either xi /∈ Z, or xi+1 /∈ Z, since x0, . . . , xm is a
D-path. The rest follows from Lemma 4.8.

(2) If x0 ∈ S, then x0 ∼ · · · ∼ xm ∼ x0, by Lemma 4.8, and we have a
contradiction with Lemma 4.9(2). Also, x0 is not in Z, since x0 is an element of
the difference support. �

5. Recognizing Parikh test sets

Our criterion of Parikh test sets is formulated for non-erasing pairs of mor-
phisms. We say that the pair (g, h) is non-erasing if g(x)h(x) is nonempty for all
x ∈ X . Erased letters do not influence the agreement, and can be omitted from
the alphabet. If we want to decide whether T is a Parikh test set of L for all
morphisms, even erasing pairs, it is necessary to apply the criterion to all subsets
of X and corresponding modifications of languages T and L obtained by erasing
the missing letters.

The formulation “T is Parikh test set of L for non-erasing pairs of morphisms”
therefore means that for each non-erasing pair of morphisms g and h we have
g ≡c(T ) h if and only if g ≡c(L) h.

Theorem 5.1. The language T is a Parikh test set of L for non-erasing pairs of
morphisms if and only if the following conditions are satisfied

(A) T contains a Parikh basis of L.
(B) If there is a difference support D such that letters a and b are D-connected

in G(L), then a and b are D-connected in G(T ) too.
(C) Let a ∈ D for a difference support D. If in G(L) there is a cycle of odd

length containing the letter a then also in G(T ) there is such a cycle.

Proof.
1. We first prove that our criterion of the test set is sufficient. Let g, h be two
morphisms that agree on c(T ). We want to show that they agree on c(w) for each
w ∈ L.

Pick a word w ∈ L. Since T contains a basis of L, the morphisms agree
lengthwise on c(L). If g(a) = h(a) for each a ∈ alph(w), then there is nothing to
prove. Let therefore d ∈ alph(w) be a letter for which g(d) 	= h(d); therefore d is
element of the difference support D = D(g, h). By a length argument, there is at
least one more letter e 	= d in D.
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Consider an arbitrary letter a ∈ alph(w), a 	= d. The letters a and d are
D-connected in G(L), therefore, by (B), there is a D-path

d = d0, d1, . . . , dm = a

in G(T ).
1.1. If |w| ≥ 3, then there is a path of odd length from d to d in G(L), for example
d, e, b, d, where ebd is a factor of c(w). Therefore, by (C), there is a path of odd
length from d to d also in G(T ). By Lemma 4.10(2), d ∈ Pt for some t, and thus
also a ∈ Pt, by Lemma 4.10(1).

We have shown that if |w| ≥ 3, then alph(w) ⊆ Pt and g(w) = h(w).
1.2. Suppose now that |w| = 2, which means c(w) = c(ed), and a = d.

If d ∈ Pt for some t, then the path d, d1, . . . , dm−1, a guarantees that a ∈ Pt

too, by Lemma 4.10(1).
Suppose d ∈ S. If m is odd, then a ∼ d, by Lemma 4.9(1), and we are through.

If m is even then G(L) contains the path

d, d1, . . . , dm−1, a, d

of odd length. By (C) and Lemma 4.10 (2), the letter d is in P , a contradiction.
This completes the “only if” part of the proof.
2. Let us approach the question whether the criterion is necessary.

Clearly, T has to contain a Parikh basis of L, otherwise it is easy to define
periodic morphisms, which agree on T , but do not agree lengthwise on L.
2.1. Let now T be a subset of L that contains a Parikh basis of L, and D be
a difference support, for which T does not satisfy the condition (B). This means
that there are letters a and b which are D-connected in G(L), but not in G(T ).
We define morphisms g and h, which agree on c(T ) and do not agree on c(L), in
the following way. Let

g(a) = aia , h(a) = aja ,

and

g(x) = aix , h(x) = ajx

for each a 	= x ∈ X that is D-connected to a in G(T ). Similarly, let

g(y) = bky , h(y) = b�y ,

for each a 	= y ∈ X that is not D-connected to a in G(T ). Then X = Pa ∪ Pb.
Integers ix, jx, ky and �y are chosen to make sure that D = D(g, h).

Let
a = x0, x1, . . . , xk = b

be a D-path in G(L). Since a ∈ Pa and b ∈ Pb, there is some 0 ≤ i ≤ k − 1 such
that xi ∈ Pa and xi+1 ∈ Pb. Moreover, at least one of the vertices xi, xi+1 is in
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the difference support. Since there is an edge between xi and xi+1 in G(L), there
is a word w in L such that xi and xi+1 are elements of alph(w). It is manifest
that g and h do not agree on c(w).

It remains to prove in this part that g and h agree on c(T ). Suppose, on the
contrary, that g and h do not agree on c(u) for some u ∈ T . Then, obviously,
there are letters d and e in alph(u) such that d ∈ Pa and e ∈ Pb, and at least
one of the letters e and d is an element of D. By definition of g and h, there is
a D-path between a and d. Then the same path extended by the edge (d, e) is a
D-path between a and e, a contradiction with e ∈ Pb. Therefore (B) is a necessary
condition.
2.2. We show that also (C) is necessary. Let again T be a subset of L containing
a Parikh basis of L; suppose that for some difference support D of L there is a
path of odd length from a letter a ∈ D to itself in the graph G(L), but there is no
such cycle in G(T ). Let g′ and h′ be morphisms, which are length equivalent on
L, such that D = D(g′, h′).

Denote by Y all letters connected in G(T ) to a, including a itself. We claim that
each word in T containing a letter from Y has length 2. Suppose the contrary,
and let a word w in T contain a factor cde, where c, d, e are (not necessarily
distinct) letters from Y . (Clearly, if one letter in alph(w) is in Y , then all are.)
Let a, z1, . . . , z�, c be a path in G(T ). Then

a, z1, . . . , z�, c, d, e, c, z�, . . . , a

has odd length, a contradiction.
The morphisms g′ and h′ are length equivalent on T , and a is in D(g, h), that

is, |g(a)| 	= |h(a)|; therefore, by the above claim, the set Y is a subset of D.
Define morphisms g and h in the following way. Let

g(x) = ab h(x) = a

for each x ∈ X , for which there is a D-path from a to x of even length in G(T )
(in particular this definition applies a itself); let

g(y) = a h(y) = ba

for each y ∈ X , for which there is a D-path from a to y of odd length in G(T );
and, finally, let

g(z) = c|g
′(z)| h(z) = c|h

′(z)|

for each z ∈ X that is not D-connected to a in G(T ).
First, we have to assure that the definition is correct, namely that for each x in

Y any two paths in G(T ) from a to x have length of the same parity. This holds,
because, by assumption, any path a, . . . , x, . . . a, linking two paths from a to x,
has even length.
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Figure 1. Coincidence graphs of sets T1 and T2, n = 4.

Since Y has been proved to be a subset of D, our construction implies that
D = D(g′, h′) = D(g, h).

It is straightforward to verify that g and h agree on c(T ). On the other hand,
Lemma 4.10(2) implies that g and h do not agree on c(L). �

The theorem claims that the Parikh test set has to preserve three properties of
the tested language: Parikh basis, D-connectedness and cycles of odd length.

The first requirement is obvious. The second one is well illustrated by languages
L1 and L2 from Section 3, which have Parikh test sets of significantly different
size. The dividing line between them is the set of difference supports. The only
nonempty difference support of L2 is the whole X2. Therefore, to satisfy the
condition (B) it is enough to choose a test set T , for which G(T ) is connected. To
be connected, and to be D-connected coincides. That is why the set T2 is Parikh
test set of L2.

By contrast, a similar set

T1 = {a1bic1 | i = 1, . . . , n} ∪ {aib1ci | i = 1, . . . , n}

is not a Parikh test set of L1. For instance, if g and h are as in Example 1, then
we obtain

D = D(g, h) = {an, cn},
and the letters an and bn are D-connected in G(L1), but not in G(T1).

The importance of the third condition can be seen from the following example.

Example 5.2. Let

L5 = {a1a2, a2a3, a3a4, a4a5, a5a6, a6a1, a1a3}.
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Figure 2. Coincidence graphs of sets L5 and L′
5.

The language

T5 = {a1a2, a2a3, a3a4, a4a5, a5a6, a6a1} = L5 \ {a1a3}

is not a Parikh test set of L5, since it misses the odd cycle a1, a2, a3. Indeed, the
morphisms g, h defined by

g(ai) =
{

aba i = 1, 3, 5
b i = 2, 4, 6

h(ai) =
{

a i = 1, 3, 5
bab i = 2, 4, 6

agree on T5, but not on a1a3.
On the other hand, the language

L′
5 = {a1a2, a2a3, a3a4, a4a5, a5a1, a1a3}

has a Parikh test set

T ′
5 = {a1a2, a2a3, a3a4, a4a5, a5a1},

since the cycle a1, . . . , a5 has also odd length, which makes the edge a1a3 unnec-
essary.

References

[1] Ismo Hakala and Juha Kortelainen, Polynomial size test sets for commutative languages.
RAIRO-Theor. Inf. Appl. 31 (1997) 291–304.
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