FROM BI-IDEALS TO PERIODICITY

$J\bar{A}NIS BULS^1 AND AIVARS LORENCS^2$

Abstract. The necessary and sufficient conditions are extracted for periodicity of bi-ideals. They cover infinitely and finitely generated bi-ideals.

Mathematics Subject Classification. 68R15, 94A55, 68Q15.

1. INTRODUCTION

The periodicities are fundamental objects, due to their primary importance in word combinatorics [8,9] as well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6] and computer science. Particularly, we mention here such fields as string matching algorithms [4], text compression [13] and cryptography [11].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify some objects according to their complexity. Here we deal with the hierarchy

 $\mathfrak{B} \supset \mathfrak{P}, \quad \text{where}$

 \mathfrak{B} is the class of bi-ideals,

 \mathfrak{P} is the class of periodic words.

This hierarchy comes from combinatorics on words, where these classes are being investigated intensively (*cf.* [2,8-10]). Bi-ideal sequences have been considered, with different names, by several authors in algebra and combinatorics [1,3,7,12,14].

Every bi-ideal x is the limit of some bi-ideal sequence (v_i) . This bi-ideal sequence can be represented uniquely by the sequence (u_i) , where $v_0 = u_0$ and

Article published by EDP Sciences

Keywords and phrases. Periodic words, bi-ideals, the sequence generates the bi-ideal, finitely generated bi-ideals.

¹ Department of Mathematics, University of Latvia, Raiņa bulvāris 19, Rīga, 1586, Latvia; buls@fmf.lu.lv; web site: http://home.lanet.lv/~buls

 $^{^2}$ Institute of Electronics and Computer Science, Dzērbenes street 14, Rīga, 1006, Latvia; <code>lorencs@edi.lv</code>

 $\forall i \geq 0 \ v_{i+1} = v_i u_{i+1} v_i$. We characterize the periodic words through this representation. At first we give an exhaustive description (Th. 3.7) of periodicity for all classes of bi-ideals. Then for periodic bi-ideals we demonstrate if every u_i appears infinitely often then every u_i is a power of the certain word. This leads to the effective method for finitely generated bi-ideals to check whether the bi-ideals are periodic.

2. Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need arise.

Let A be a finite non-empty set and A^* the free monoid generated by A. The set A is also called an *alphabet*, its elements *letters* and those of A^* *finite words*. The role of the identity element is performed by the *empty word* which is denoted by λ . We set $A^+ = A^* \setminus \{\lambda\}$.

A word $w \in A^+$ can be written uniquely as a sequence of letters as $w = w_1 w_2 \dots w_l$, with $w_i \in A$, $1 \le i \le l$, l > 0. The integer l is called the *length* of w and denoted |w|. The length of λ is 0. We set $w^0 = \lambda$ and $\forall i w^{i+1} = w^i w$;

$$w^+ = \bigcup_{i=1}^{\infty} \{w^i\}, \qquad w^* = w^+ \cup \{\lambda\}.$$

A positive integer p is called a *period* of $w = w_1 w_2 \dots w_l$ if the following condition is satisfied:

$$1 \le i \le l - p \implies w_i = w_{i+p}$$

We recall the important periodicity theorem due to Fine and Wilf [5]:

Theorem 2.1. Let w be a word having periods p and q and denote by gcd(p,q) the greatest common divisor of p and q. If $|w| \ge p + q - gcd(p,q)$, then w has also the period gcd(p,q).

The word $w' \in A^*$ is called a *factor* (or *subword*) of $w \in A^*$ if there exist $u, v \in A^*$ such that w = uw'v. The word u (respectively v) is called a *prefix* (respectively a *suffix*) of w. The ordered triple (u, w', v) is called an *occurrence* of w' in w. The factor w' is called a *proper* factor if $w \neq w'$. We denote respectively by F(w), Pref(w) and Suff(w) the sets of w factors, prefixes and suffixes.

An (indexed) infinite word x on the alphabet A is any total map $x : \mathbb{N} \to A$. We set for any $i \ge 0$, $x_i = x(i)$ and write

$$x = (x_i) = x_0 x_1 \dots x_n \dots$$

The set of all the infinite words over A is denoted by A^{ω} .

The word $w' \in A^*$ is a *factor* of $x \in A^{\omega}$ if there exist $u \in A^*$, $y \in A^{\omega}$ such that x = uw'y. The word u (respectively y) is called a *prefix* (respectively a *suffix*)

of x. We denote respectively by F(x), $\operatorname{Pref}(x)$ and $\operatorname{Suff}(x)$ the sets of x factors, prefixes and suffixes. For any $0 \le m \le n$, both x[m, n] and x[m, n+1) denote a factor $x_m x_{m+1} \ldots x_n$. The indexed word x[m, n] is called an *occurrence* of w' in x if w' = x[m, n]. The suffix $x_n x_{n+1} \ldots x_{n+i} \ldots$ is denoted by $x[n, \infty)$.

If $v \in A^+$ we denote by v^{ω} the infinite word $v^{\omega} = vv \dots v \dots$ This word v^{ω} is called a *periodic* word. The *concatenation* of $u = u_1 u_2 \dots u_k \in A^*$ and $x \in A^{\omega}$ is the infinite word

$$ux = u_1 u_2 \dots u_k x_0 x_1 \dots x_n \dots$$

A word x is called *ultimately periodic* if there exist words $u \in A^*$, $v \in A^+$ such that $x = uv^{\omega}$. In this case, |u| and |v| are called, respectively, an *anti-period* and a *period* of x.

A sequence of words of A^*

$$v_0, v_1, \ldots, v_n, \ldots$$

is called a *bi-ideal sequence* if $\forall i \geq 0$ $(v_{i+1} \in v_i A^* v_i)$. The term "a bi-ideal sequence" is due to the fact that $\forall i \geq 0$ $(v_i A^* v_i)$ is a bi-ideal of A^* .

Corollary 2.2. Let (v_n) be a bi-ideal sequence. Then

$$v_m \in \operatorname{Pref}(v_n) \cap \operatorname{Suff}(v_n)$$

for all $m \leq n$.

A bi-ideal sequence $v_0, v_1, \ldots, v_n, \ldots$ is called *proper* if $v_0 \neq \lambda$. In the following the term bi-ideal sequence will be referred only to proper bi-ideal sequences.

If $v_0, v_1, \ldots, v_n, \ldots$ is a bi-ideal sequence, then there exists a unique sequence of words

 $u_0, u_1, \ldots, u_n, \ldots$

such that

 $v_0 = u_0, \quad \forall i \ge 0 \ (v_{i+1} = v_i u_{i+1} v_i).$

Let us consider $u, v \in A^{\infty} = A^* \cup A^{\omega}$. Then d(u, v) = 0 if u = v, otherwise

$$d(u,v) = 2^{-n}$$

where

$$n = \max\{ |w| \mid w \in \operatorname{Pref}(u) \cap \operatorname{Pref}(v) \}.$$

It is called a *prefix metric*.

Let $v_0, v_1, \ldots, v_n \ldots$ be an infinite bi-ideal sequence, where $v_0 = u_0$ and $\forall i \geq 0$ $(v_{i+1} = v_i u_{i+1} v_i)$. Since for all $i \geq 0$ the word v_i is a prefix of the next word v_{i+1} the sequence (v_i) converges, with respect to the prefix metric, to the infinite word $x \in A^{\omega}$

$$x = v_0(u_1v_0)(u_2v_1)\dots(u_nv_{n-1})\dots$$

This word x is called a *bi-ideal*. We say the sequence (u_i) generates the bi-ideal x.

Convention. Let x be a bi-ideal generated by (u_i) , then $x = \lim_{i \to \infty} v_i$, where $v_0 = u_0$ and $v_{i+1} = v_i u_{i+1} v_i$. We adopt this notational convention henceforth.

Let x be an infinite word. A factor u of x is called *recurrent* if it occurs infinitely often in x. The word x is called *recurrent* when any of its factors is recurrent.

Proposition 2.3. (see, e.g., [10]) A word x is recurrent if and only if it is a bi-ideal.

Lemma 2.4. (see, e.g., [10]) Let $x \in A^{\omega}$ be an ultimately periodic word. If x is recurrent, then x is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals and say nothing about ultimate periodicity.

3. The periodicity of bi-ideals

The following three lemmas are very easy, but they turn out to be extremely useful:

Lemma 3.1. If $x = w^{\omega}$ and T is the minimal period of the word x, then $T \setminus |w|$, *i.e.* T divides |w|.

Proof. Let n = T|w|, then both T and |w| are periods of the word x[0, n). Hence (Th. 2.1) t = gcd(T, |w|) is a period of x[0, n). Now we have

$$\forall i \ x[0,n) = x[ni, n(i+1)).$$

Therefore t is a period of x. Since T is the minimal period of the word x, then $t \ge T \ge \gcd(T, |w|) = t$. Hence $T = \gcd(T, |w|)$, thereby $T \setminus |w|$.

Lemma 3.2. If $x = w^{\omega} = uvy$ and |w| = |v|, then $vy = y = v^{\omega}$.

Proof. Let |w| = t and |u| = k + 1, then $v = x_{k+1}x_{k+2}\dots x_{k+t}$, since |v| = |w|. We have $\forall i \ x_{i+t} = x_i$, therefore

$$\forall j \in 1, t \; \forall s \; x_{k+j} = x_{k+j+st}.$$

Lemma 3.3. If $\exists u \in A^+ \ ux = x \in A^{\omega}$, then a word x is periodic with the minimal period $T \setminus |u|$.

Proof. Let $u = a_1 a_2 \dots a_{t-1}$, where $\forall j \ a_j \in A$, and y = ux, then $\forall i \ x_i = y_{i+t}$. Let

y = ux = x.

Hence

$$\forall i \ y_i = x_i = y_{i+t}$$

This means that y is periodic with a period t. Since y = x, then x is periodic with a period t too. Let T is the minimal period of x, then by Lemma 3.1 $T \setminus t$, *i.e.* $T \setminus |u|$.

Corollary 3.4. Let |v| be the minimal period of $x = v^{\omega}$.

If
$$v = x[k, k + |v|)$$
 then $|v| \setminus k$.

Proof. If, for any k, v = x[k, k + |v|), then (see Lem. 3.2)

$$x = x[0,k)v^{\omega} = x[0,k)x.$$

Hence by Lemma 3.3 $|v| \setminus |x[0,k)| = k$.

Lemma 3.5. If exists n such that $v_n u \in v^*$ and $\forall i \in \mathbb{Z}_+$ $(u_{n+i} \in uv^*)$, then

$$\forall i \in \mathbb{N} \left(v_{n+i} \in v^* v_n \right).$$

Proof. If i = 0 then $v_{n+i} = v_n = \lambda v_n \in v^* v_n$.

Further, we shall prove the lemma by induction on i, *i.e.*, suppose that $v_{n+i} \in v^* v_n$, namely,

$$\exists k \in \mathbb{N} \ (v_{n+i} = v^k v_n)$$

By assumption, $v_n u \in v^*$ and $u_{n+i+1} \in uv^*$, *i.e.*

$$\exists l \in \mathbb{N} \ (v_n u = v^l) \ \land \ \exists m \in \mathbb{N} \ (u_{n+i+1} = uv^m).$$

Hence

$$v_{n+i+1} = v_{n+i}u_{n+i+1}v_{n+i} = (v^k v_n)(uv^m)(v^k v_n) = v^k(v_n u)v^{m+k}v_n = v^k v^l v^{m+k}v_n \in v^* v_n .$$

We have completed the inductive step.

Lemma 3.6. If t is the period of the bi-ideal x and $|v_n| \ge t$, then

$$\forall i \in \mathbb{Z}_+ \ u_{n+1}x = u_{n+i}x.$$

Proof. We have $v_{n+i} = v_{n+i-1}u_{n+i}v_{n+i-1}$. Hence, if $i \in \mathbb{Z}_+$ then (Cor. 2.2)

$$\forall i \in \mathbb{Z}_+ \exists v'_i \ v_{n+i} = v_n v'_i v_n \,.$$

Now, by definition of x

$$x = v_n u_{n+1} v_n \dots$$

$$x = v_{n+i} u_{n+i+1} v_{n+i} \dots = v_n v'_i v_n u_{n+i+1} v_n \dots$$

By assumption, x is periodic, therefore

$$x = v^{\omega}$$
, where $|v| = t$.

Since $v \in \operatorname{Pref}(v_n)$ then by Lemma 3.2

$$\begin{aligned} x &= v_n u_{n+1} x \,, \\ x &= v_n u_{n+i+1} x \end{aligned}$$

Hence $\forall i \in \mathbb{Z}_+ \ x = v_n u_{n+i} x$. Thus $\forall i \in \mathbb{Z}_+ \ u_{n+1} x = u_{n+i} x$.

Theorem 3.7. A bi-ideal x is periodic if and only if

$$\exists n \in \mathbb{N} \; \exists u \exists v \; (v_n u \in v^* \; \land \; \forall i \in \mathbb{Z}_+ \; u_{n+i} \in uv^*) \, .$$

Proof. \Rightarrow Let T be the minimal period of the word x, then $\exists n \in \mathbb{N} |v_n| \ge T$. Thus by Lemma 3.6

$$\forall i \in \mathbb{Z}_+ \quad u_{n+1}x = u_{n+i}x$$

Let u be the longest word of the set $\bigcap_{i=1}^{\infty} \operatorname{Pref}(u_{n+i})$ then

$$\forall i \in \mathbb{Z}_+ \exists u'_i \ (u_{n+i} = uu'_i) \,.$$

Particularly, $\exists k \ u_{n+k} = u$. This means that

$$\forall i \in \mathbb{Z}_+ \quad uu'_i x = u_{n+i} x = u_{n+k} x = ux.$$

Thus

$$\forall i \in \mathbb{Z}_+ \quad u'_i x = x \,.$$

Hence by Lemma 3.3

 $\forall i \in \mathbb{Z}_+ \quad T \setminus |u_i'|.$

Thereby

$$\forall i \in \mathbb{Z}_+ \quad u_i' \in v^* \,,$$

where v = x[0, T). Thus

$$\forall i \in \mathbb{Z}_+ \quad u_{n+i} = uu'_i \in uv^* \,.$$

Note

 $x = v_n u_{n+1} v_n \ldots = v_n u u'_1 v_n \ldots$

Since $u'_1 \in v^*$ and $v \in \operatorname{Pref}(v_n)$, then [Lemma 3.2] $x = v_n ux$. Hence [Lem. 3.3] $v_n u \in v^*$.

 $\Leftarrow \mathrm{By} \ \mathrm{Lemma} \ 3.5$

$$\forall i \in \mathbb{N} \, \exists k_i \in \mathbb{N} \, v_{n+i} = v^{k_i} v_n$$

Since $\lim_{k \to \infty} |v_k| = \infty$ then $\lim_{i \to \infty} k_i = \infty$. Thus

$$x = \lim_{k \to \infty} v_k = \lim_{i \to \infty} v_{n+i} = \lim_{i \to \infty} v^{k_i} v_n = v^{\omega} . \qquad \Box$$

472

4. Powers

Observation. If all $u_i \in w^*$ for some word $w \neq \lambda$, then the bi-ideal generated by (u_i) is periodic.

The following example demonstrates the converse is not true in general.

Example 4.1. Let x be the bi-ideal generated by (u_i) , where

$$u_0 = 0,$$

 $u_1 = 1,$
 $\forall i > 1 \quad u_i = 00100.$

Then

$$\begin{array}{rcl} v_0 &=& 0, \\ v_1 &=& 010, \\ v_2 &=& 010\ 00100\ 010, \\ v_3 &=& 01000100010\ 00100\ 01000100010, \\ & \ddots & \ddots \end{array}$$

and $x = \lim_{i \to \infty} v_i = (0100)^{\omega}$. Thus x is periodic.

Nevertheless, if every u_j appears infinitely often in (u_i) , then the converse is valid.

Theorem 4.2. Let (u_i) be a sequence of words, which contains every u_j infinitely often. The bi-ideal x generated by (u_i) is periodic if and only if

$$\exists w \forall i \ u_i \in w^*$$

Proof. \Rightarrow Let x be a periodic bi-ideal, then by Theorem 3.7

$$\exists n \in \mathbb{N} \; \exists u \exists v \; (v_n u \in v^* \; \land \; \forall i \in \mathbb{Z}_+ \; u_{n+i} \in uv^*) \, .$$

Hence by Lemma 3.5 |v| is the period of x. Therefore we can assume that |v| is the minimal period of x and |u| < |v|. Since the sequence (u_i) contains every u_j infinitely often then by Theorem 3.7 $\forall i \in \mathbb{N} \ (u_i \in uv^*)$.

Now suppose that $u_i = u$ for all i < m but $u_m = uv^k$, where k > 0. Then there exist $\alpha \in \mathbb{Z}_+$ and y such that

$$x = u^{\alpha} v^k y.$$

(i) If $u = \lambda$ then $\forall i \ u_i \in v^*$.

(ii) Otherwise $u \neq \lambda$. Then (Corollary 3.4) $|v| \setminus \alpha |u|$. Hence, there exists $\beta \in \mathbb{Z}_+$ such that $\alpha |u| = \beta |v|$. Thus $x = v^{\omega} = u^{\omega}$. Contradiction, since |u| < |v| and |v| is the minimal period of x.

 \Leftarrow See Observation.

Now we turn our attention to the problem of effectiveness.

Definition 4.3. Assume that (u_i) generates a bi-ideal x. The bi-ideal x is called *finitely generated* if

$$\exists m \,\forall i \,\forall j \ (i \equiv j \,(\mathrm{mod}\,m) \Rightarrow u_i = u_j).$$

In this situation, we say that the *m*-tuple $(u_0, u_1, \ldots, u_{m-1})$ generates the biideal *x*.

Theorem 4.4. A bi-ideal x generated by $(u_0, u_1, \ldots, u_{m-1})$ is periodic if and only if

$$\exists w \forall i \in \overline{0, m-1} \ u_i \in w^*.$$

Proof. As a corollary from Definition 4.3 and Theorem 4.2.

This theorem gives a method to generate nonperiodic bi-ideals. Let

$$(u_0, u_1, \ldots, u_{m-1})$$

be any m-tuple chosen at random. Let v be any shortest word from the set

$$\{u_0, u_1, \ldots, u_{m-1}\}$$

and w be the shortest prefix of v such that $v \in w^+$. If there exists u_i such that $u_i \notin w^*$ then the bi-ideal generated by $(u_0, u_1, \ldots, u_{m-1})$ is not periodic. This can be easily checked by a deterministic algorithm.

Acknowledgements. The useful suggestions of two referees are gratefully acknowledged.

References

- D.B. Bean, A.E. Ehrenfeucht and G. McNulty. Avoidable patterns in strings of symbols. *Pacific J. Math.* 85 (1979) 261–294.
- [2] J. Berstel, J. Karhumäki. Combinatorics on Words A Tutorial. TUCS Technical Report (No. 530, June) (2003).
- [3] M. Coudrain and M.P. Schützenberger. Une condition de finitude des monoïdes finiment engendrés. C.R. Acad. Sci. Paris, Sér. A 262 (1966) 1149–1151.
- [4] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string searchinng. Algorithmica 13 (1995) 405–425.
- [5] N.J. Fine, H.S. Wilf. (1965) Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109–114.
- [6] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997).
- [7] N. Jacobson. Structure of Rings. American Mathematical Society, Providence, RI (1964).
- [8] M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17. Addison-Wesley, Reading, Massachusetts (1983).

474

- [9] M. Lothaire. *Algebraic Combinatorics on Words*. Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press, Cambridge (2002).
- [10] Aldo de Luca, Stefano Varricchio. Finiteness and Regularity in Semigroups and Formal Languages. Springer-Verlag, Berlin, Heidelberg (1999).
- [11] R.A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin (1986).
- [12] I. Simon. Infinite words and a theorem of Hindman. Rev. Math. Appl. 9 (1988) 97–104.
- [13] J.A. Storer. *Data compression: methods and theory.* Computer Science Press, Rockville, MD (1988).
- [14] A.I. Zimin. Blocking sets of terms. Матем. сб., 119, 363–375 (Russian) (1982).