FROM BI-IDEALS TO PERIODICITY

JĀnis Buls ${ }^{1}$ and Aivars Lorencs ${ }^{2}$

Abstract

The necessary and sufficient conditions are extracted for periodicity of bi-ideals. They cover infinitely and finitely generated bi-ideals.

Mathematics Subject Classification. 68R15, 94A55, 68Q15.

1. Introduction

The periodicities are fundamental objects, due to their primary importance in word combinatorics $[8,9]$ as well as in various applications. The study of periodicities is motivated by the needs of molecular biology [6] and computer science. Particularly, we mention here such fields as string matching algorithms [4], text compression [13] and cryptography [11].

In different areas of mathematics, people consider a lot of hierarchies which are typically used to classify some objects according to their complexity. Here we deal with the hierarchy

$$
\mathfrak{B} \supset \mathfrak{P}, \quad \text { where }
$$

\mathfrak{B} is the class of bi-ideals, \mathfrak{P} is the class of periodic words.
This hierarchy comes from combinatorics on words, where these classes are being investigated intensively ($c f .[2,8-10]$). Bi-ideal sequences have been considered, with different names, by several authors in algebra and combinatorics [1,3,7,12,14].

Every bi-ideal x is the limit of some bi-ideal sequence $\left(v_{i}\right)$. This bi-ideal sequence can be represented uniquely by the sequence $\left(u_{i}\right)$, where $v_{0}=u_{0}$ and

[^0]$\forall i \geq 0 v_{i+1}=v_{i} u_{i+1} v_{i}$. We characterize the periodic words through this representation. At first we give an exhaustive description (Th. 3.7) of periodicity for all classes of bi-ideals. Then for periodic bi-ideals we demonstrate if every u_{i} appears infinitely often then every u_{i} is a power of the certain word. This leads to the effective method for finitely generated bi-ideals to check whether the bi-ideals are periodic.

2. Preliminaries

In this section we present most of the notations and terminology used in this paper. Our terminology is more or less standard (cf. [10]) so that a specialist reader may wish to consult this section only if need arise.

Let A be a finite non-empty set and A^{*} the free monoid generated by A. The set A is also called an alphabet, its elements letters and those of A^{*} finite words. The role of the identity element is performed by the empty word which is denoted by λ. We set $A^{+}=A^{*} \backslash\{\lambda\}$.

A word $w \in A^{+}$can be written uniquely as a sequence of letters as $w=$ $w_{1} w_{2} \ldots w_{l}$, with $w_{i} \in A, 1 \leq i \leq l, l>0$. The integer l is called the length of w and denoted $|w|$. The length of λ is 0 . We set $w^{0}=\lambda$ and $\forall i w^{i+1}=w^{i} w$;

$$
w^{+}=\bigcup_{i=1}^{\infty}\left\{w^{i}\right\}, \quad w^{*}=w^{+} \cup\{\lambda\}
$$

A positive integer p is called a period of $w=w_{1} w_{2} \ldots w_{l}$ if the following condition is satisfied:

$$
1 \leq i \leq l-p \Rightarrow w_{i}=w_{i+p}
$$

We recall the important periodicity theorem due to Fine and Wilf [5]:
Theorem 2.1. Let w be a word having periods p and q and denote by $\operatorname{gcd}(p, q)$ the greatest common divisor of p and q. If $|w| \geq p+q-\operatorname{gcd}(p, q)$, then w has also the period $\operatorname{gcd}(p, q)$.

The word $w^{\prime} \in A^{*}$ is called a factor (or subword) of $w \in A^{*}$ if there exist $u, v \in A^{*}$ such that $w=u w^{\prime} v$. The word u (respectively v) is called a prefix (respectively a suffix) of w. The ordered triple $\left(u, w^{\prime}, v\right)$ is called an occurrence of w^{\prime} in w. The factor w^{\prime} is called a proper factor if $w \neq w^{\prime}$. We denote respectively by $F(w), \operatorname{Pref}(w)$ and $\operatorname{Suff}(w)$ the sets of w factors, prefixes and suffixes.

An (indexed) infinite word x on the alphabet A is any total map $x: \mathbb{N} \rightarrow A$. We set for any $i \geq 0, x_{i}=x(i)$ and write

$$
x=\left(x_{i}\right)=x_{0} x_{1} \ldots x_{n} \ldots
$$

The set of all the infinite words over A is denoted by A^{ω}.
The word $w^{\prime} \in A^{*}$ is a factor of $x \in A^{\omega}$ if there exist $u \in A^{*}, y \in A^{\omega}$ such that $x=u w^{\prime} y$. The word u (respectively y) is called a prefix (respectively a suffix)
of x. We denote respectively by $F(x), \operatorname{Pref}(x)$ and $\operatorname{Suff}(x)$ the sets of x factors, prefixes and suffixes. For any $0 \leq m \leq n$, both $x[m, n]$ and $x[m, n+1$) denote a factor $x_{m} x_{m+1} \ldots x_{n}$. The indexed word $x[m, n]$ is called an occurrence of w^{\prime} in x if $w^{\prime}=x[m, n]$. The suffix $x_{n} x_{n+1} \ldots x_{n+i} \ldots$ is denoted by $x[n, \infty)$.

If $v \in A^{+}$we denote by v^{ω} the infinite word $v^{\omega}=v v \ldots v \ldots$ This word v^{ω} is called a periodic word. The concatenation of $u=u_{1} u_{2} \ldots u_{k} \in A^{*}$ and $x \in A^{\omega}$ is the infinite word

$$
u x=u_{1} u_{2} \ldots u_{k} x_{0} x_{1} \ldots x_{n} \ldots
$$

A word x is called ultimately periodic if there exist words $u \in A^{*}, v \in A^{+}$such that $x=u v^{\omega}$. In this case, $|u|$ and $|v|$ are called, respectively, an anti-period and a period of x.

A sequence of words of A^{*}

$$
v_{0}, v_{1}, \ldots, v_{n}, \ldots
$$

is called a bi-ideal sequence if $\forall i \geq 0\left(v_{i+1} \in v_{i} A^{*} v_{i}\right)$. The term "a bi-ideal sequence" is due to the fact that $\forall i \geq 0\left(v_{i} A^{*} v_{i}\right)$ is a bi-ideal of A^{*}.
Corollary 2.2. Let $\left(v_{n}\right)$ be a bi-ideal sequence. Then

$$
v_{m} \in \operatorname{Pref}\left(v_{n}\right) \cap \operatorname{Suff}\left(v_{n}\right)
$$

for all $m \leq n$.
A bi-ideal sequence $v_{0}, v_{1}, \ldots, v_{n}, \ldots$ is called proper if $v_{0} \neq \lambda$. In the following the term bi-ideal sequence will be referred only to proper bi-ideal sequences.

If $v_{0}, v_{1}, \ldots, v_{n}, \ldots$ is a bi-ideal sequence, then there exists a unique sequence of words

$$
u_{0}, u_{1}, \ldots, u_{n}, \ldots
$$

such that

$$
v_{0}=u_{0}, \quad \forall i \geq 0\left(v_{i+1}=v_{i} u_{i+1} v_{i}\right)
$$

Let us consider $u, v \in A^{\infty}=A^{*} \cup A^{\omega}$. Then $d(u, v)=0$ if $u=v$, otherwise

$$
d(u, v)=2^{-n}
$$

where

$$
n=\max \{|w| \mid w \in \operatorname{Pref}(u) \cap \operatorname{Pref}(v)\}
$$

It is called a prefix metric.
Let $v_{0}, v_{1}, \ldots, v_{n} \ldots$ be an infinite bi-ideal sequence, where $v_{0}=u_{0}$ and $\forall i \geq 0\left(v_{i+1}=v_{i} u_{i+1} v_{i}\right)$. Since for all $i \geq 0$ the word v_{i} is a prefix of the next word v_{i+1} the sequence $\left(v_{i}\right)$ converges, with respect to the prefix metric, to the infinite word $x \in A^{\omega}$

$$
x=v_{0}\left(u_{1} v_{0}\right)\left(u_{2} v_{1}\right) \ldots\left(u_{n} v_{n-1}\right) \ldots
$$

This word x is called a bi-ideal. We say the sequence $\left(u_{i}\right)$ generates the bi-ideal x.

Convention. Let x be a bi-ideal generated by $\left(u_{i}\right)$, then $x=\lim _{i \rightarrow \infty} v_{i}$, where $v_{0}=u_{0}$ and $v_{i+1}=v_{i} u_{i+1} v_{i}$. We adopt this notational convention henceforth.

Let x be an infinite word. A factor u of x is called recurrent if it occurs infinitely often in x. The word x is called recurrent when any of its factors is recurrent.

Proposition 2.3. (see, e.g., [10]) A word x is recurrent if and only if it is a bi-ideal.

Lemma 2.4. (see, e.g., [10]) Let $x \in A^{\omega}$ be an ultimately periodic word. If x is recurrent, then x is periodic.

Due to this lemma we can restrict ourselves. Therefore we investigate only the periodicity of bi-ideals and say nothing about ultimate periodicity.

3. The Periodicity of Bi-IDEALS

The following three lemmas are very easy, but they turn out to be extremely useful:

Lemma 3.1. If $x=w^{\omega}$ and T is the minimal period of the word x, then $T \backslash|w|$, i.e. T divides $|w|$.

Proof. Let $n=T|w|$, then both T and $|w|$ are periods of the word $x[0, n)$. Hence (Th. 2.1) $t=\operatorname{gcd}(T,|w|)$ is a period of $x[0, n)$. Now we have

$$
\forall i x[0, n)=x[n i, n(i+1))
$$

Therefore t is a period of x. Since T is the minimal period of the word x, then $t \geq T \geq \operatorname{gcd}(T,|w|)=t$. Hence $T=\operatorname{gcd}(T,|w|)$, thereby $T \backslash|w|$.
Lemma 3.2. If $x=w^{\omega}=u v y$ and $|w|=|v|$, then $v y=y=v^{\omega}$.
Proof. Let $|w|=t$ and $|u|=k+1$, then $v=x_{k+1} x_{k+2} \ldots x_{k+t}$, since $|v|=|w|$. We have $\forall i x_{i+t}=x_{i}$, therefore

$$
\forall j \in \overline{1, t} \forall s \quad x_{k+j}=x_{k+j+s t} .
$$

Lemma 3.3. If $\exists u \in A^{+} u x=x \in A^{\omega}$, then a word x is periodic with the minimal period $T \backslash|u|$.

Proof. Let $u=a_{1} a_{2} \ldots a_{t-1}$, where $\forall j a_{j} \in A$, and $y=u x$, then
$\forall i x_{i}=y_{i+t}$. Let

$$
y=u x=x .
$$

Hence

$$
\forall i y_{i}=x_{i}=y_{i+t}
$$

This means that y is periodic with a period t. Since $y=x$, then x is periodic with a period t too. Let T is the minimal period of x, then by Lemma $3.1 T \backslash t$, i.e. $T \backslash|u|$.

Corollary 3.4. Let $|v|$ be the minimal period of $x=v^{\omega}$.

$$
\text { If } \quad v=x[k, k+|v|) \quad \text { then } \quad|v| \backslash k .
$$

Proof. If, for any $k, v=x[k, k+|v|$), then (see Lem. 3.2)

$$
x=x[0, k) v^{\omega}=x[0, k) x .
$$

Hence by Lemma $3.3|v| \backslash|x[0, k)|=k$.
Lemma 3.5. If exists n such that $v_{n} u \in v^{*}$ and $\forall i \in \mathbb{Z}_{+}\left(u_{n+i} \in u v^{*}\right)$, then

$$
\forall i \in \mathbb{N}\left(v_{n+i} \in v^{*} v_{n}\right)
$$

Proof. If $i=0$ then $v_{n+i}=v_{n}=\lambda v_{n} \in v^{*} v_{n}$.
Further, we shall prove the lemma by induction on i, i.e., suppose that $v_{n+i} \in v^{*} v_{n}$, namely,

$$
\exists k \in \mathbb{N}\left(v_{n+i}=v^{k} v_{n}\right)
$$

By assumption, $v_{n} u \in v^{*}$ and $u_{n+i+1} \in u v^{*}$, i.e.

$$
\exists l \in \mathbb{N}\left(v_{n} u=v^{l}\right) \wedge \exists m \in \mathbb{N}\left(u_{n+i+1}=u v^{m}\right)
$$

Hence

$$
\begin{aligned}
v_{n+i+1} & =v_{n+i} u_{n+i+1} v_{n+i}=\left(v^{k} v_{n}\right)\left(u v^{m}\right)\left(v^{k} v_{n}\right) \\
& =v^{k}\left(v_{n} u\right) v^{m+k} v_{n}=v^{k} v^{l} v^{m+k} v_{n} \in v^{*} v_{n}
\end{aligned}
$$

We have completed the inductive step.
Lemma 3.6. If t is the period of the bi-ideal x and $\left|v_{n}\right| \geq t$, then

$$
\forall i \in \mathbb{Z}_{+} u_{n+1} x=u_{n+i} x
$$

Proof. We have $v_{n+i}=v_{n+i-1} u_{n+i} v_{n+i-1}$. Hence, if $i \in \mathbb{Z}_{+}$then (Cor. 2.2)

$$
\forall i \in \mathbb{Z}_{+} \exists v_{i}^{\prime} v_{n+i}=v_{n} v_{i}^{\prime} v_{n}
$$

Now, by definition of x

$$
\begin{aligned}
x & =v_{n} u_{n+1} v_{n} \ldots \\
x & =v_{n+i} u_{n+i+1} v_{n+i} \ldots=v_{n} v_{i}^{\prime} v_{n} u_{n+i+1} v_{n} \ldots
\end{aligned}
$$

By assumption, x is periodic, therefore

$$
x=v^{\omega}, \quad \text { where } \quad|v|=t
$$

Since $v \in \operatorname{Pref}\left(v_{n}\right)$ then by Lemma 3.2

$$
\begin{aligned}
x & =v_{n} u_{n+1} x \\
x & =v_{n} u_{n+i+1} x .
\end{aligned}
$$

Hence $\forall i \in \mathbb{Z}_{+} x=v_{n} u_{n+i} x$. Thus $\forall i \in \mathbb{Z}_{+} u_{n+1} x=u_{n+i} x$.
Theorem 3.7. A bi-ideal x is periodic if and only if

$$
\exists n \in \mathbb{N} \exists u \exists v\left(v_{n} u \in v^{*} \wedge \forall i \in \mathbb{Z}_{+} u_{n+i} \in u v^{*}\right)
$$

Proof. \Rightarrow Let T be the minimal period of the word x, then $\exists n \in \mathbb{N}\left|v_{n}\right| \geq T$. Thus by Lemma 3.6

$$
\forall i \in \mathbb{Z}_{+} \quad u_{n+1} x=u_{n+i} x
$$

Let u be the longest word of the set $\bigcap_{i=1}^{\infty} \operatorname{Pref}\left(u_{n+i}\right)$ then

$$
\forall i \in \mathbb{Z}_{+} \exists u_{i}^{\prime}\left(u_{n+i}=u u_{i}^{\prime}\right)
$$

Particularly, $\exists k u_{n+k}=u$. This means that

$$
\forall i \in \mathbb{Z}_{+} \quad u u_{i}^{\prime} x=u_{n+i} x=u_{n+k} x=u x .
$$

Thus

$$
\forall i \in \mathbb{Z}_{+} \quad u_{i}^{\prime} x=x
$$

Hence by Lemma 3.3

$$
\forall i \in \mathbb{Z}_{+} \quad T \backslash\left|u_{i}^{\prime}\right|
$$

Thereby

$$
\forall i \in \mathbb{Z}_{+} \quad u_{i}^{\prime} \in v^{*}
$$

where $v=x[0, T)$. Thus

$$
\forall i \in \mathbb{Z}_{+} \quad u_{n+i}=u u_{i}^{\prime} \in u v^{*}
$$

Note

$$
x=v_{n} u_{n+1} v_{n} \ldots=v_{n} u u_{1}^{\prime} v_{n} \ldots
$$

Since $u_{1}^{\prime} \in v^{*}$ and $v \in \operatorname{Pref}\left(v_{n}\right)$, then [Lemma 3.2] $x=v_{n} u x$. Hence [Lem. 3.3] $v_{n} u \in v^{*}$.
\Leftarrow By Lemma 3.5

$$
\forall i \in \mathbb{N} \exists k_{i} \in \mathbb{N} v_{n+i}=v^{k_{i}} v_{n}
$$

Since $\lim _{k \rightarrow \infty}\left|v_{k}\right|=\infty$ then $\lim _{i \rightarrow \infty} k_{i}=\infty$. Thus

$$
x=\lim _{k \rightarrow \infty} v_{k}=\lim _{i \rightarrow \infty} v_{n+i}=\lim _{i \rightarrow \infty} v^{k_{i}} v_{n}=v^{\omega} .
$$

4. Powers

Observation. If all $u_{i} \in w^{*}$ for some word $w \neq \lambda$, then the bi-ideal generated by $\left(u_{i}\right)$ is periodic.

The following example demonstrates the converse is not true in general.
Example 4.1. Let x be the bi-ideal generated by $\left(u_{i}\right)$, where

$$
\begin{aligned}
u_{0} & =0 \\
u_{1} & =1 \\
\forall i>1 \quad u_{i} & =00100
\end{aligned}
$$

Then

$$
\begin{aligned}
& v_{0}=0 \\
& v_{1}=010 \\
& v_{2}=01000100010 \\
& v_{3}=010001000100010001000100010
\end{aligned}
$$

and $x=\lim _{i \rightarrow \infty} v_{i}=(0100)^{\omega}$. Thus x is periodic.
Nevertheless, if every u_{j} appears infinitely often in $\left(u_{i}\right)$, then the converse is valid.

Theorem 4.2. Let $\left(u_{i}\right)$ be a sequence of words, which contains every u_{j} infinitely often. The bi-ideal x generated by $\left(u_{i}\right)$ is periodic if and only if

$$
\exists w \forall i u_{i} \in w^{*}
$$

Proof. \Rightarrow Let x be a periodic bi-ideal, then by Theorem 3.7

$$
\exists n \in \mathbb{N} \exists u \exists v\left(v_{n} u \in v^{*} \wedge \forall i \in \mathbb{Z}_{+} u_{n+i} \in u v^{*}\right)
$$

Hence by Lemma 3.5 $|v|$ is the period of x. Therefore we can assume that $|v|$ is the minimal period of x and $|u|<|v|$. Since the sequence $\left(u_{i}\right)$ contains every u_{j} infinitely often then by Theorem $3.7 \forall i \in \mathbb{N}\left(u_{i} \in u v^{*}\right)$.

Now suppose that $u_{i}=u$ for all $i<m$ but $u_{m}=u v^{k}$, where $k>0$. Then there exist $\alpha \in \mathbb{Z}_{+}$and y such that

$$
x=u^{\alpha} v^{k} y
$$

(i) If $u=\lambda$ then $\forall i u_{i} \in v^{*}$.
(ii) Otherwise $u \neq \lambda$. Then (Corollary 3.4) $|v| \backslash \alpha|u|$. Hence, there exists $\beta \in \mathbb{Z}_{+}$ such that $\alpha|u|=\beta|v|$. Thus $x=v^{\omega}=u^{\omega}$. Contradiction, since $|u|<|v|$ and $|v|$ is the minimal period of x.
\Leftarrow See Observation.

Now we turn our attention to the problem of effectiveness.
Definition 4.3. Assume that $\left(u_{i}\right)$ generates a bi-ideal x. The bi-ideal x is called finitely generated if

$$
\exists m \forall i \forall j\left(i \equiv j(\bmod m) \Rightarrow u_{i}=u_{j}\right)
$$

In this situation, we say that the m-tuple $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ generates the biideal x.

Theorem 4.4. A bi-ideal x generated by $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ is periodic if and only if

$$
\exists w \forall i \in \overline{0, m-1} u_{i} \in w^{*} .
$$

Proof. As a corollary from Definition 4.3 and Theorem 4.2.
This theorem gives a method to generate nonperiodic bi-ideals. Let

$$
\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)
$$

be any m-tuple chosen at random. Let v be any shortest word from the set

$$
\left\{u_{0}, u_{1}, \ldots, u_{m-1}\right\}
$$

and w be the shortest prefix of v such that $v \in w^{+}$. If there exists u_{i} such that $u_{i} \notin w^{*}$ then the bi-ideal generated by $\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ is not periodic. This can be easily checked by a deterministic algorithm.

Acknowledgements. The useful suggestions of two referees are gratefully acknowledged.

References

[1] D.B. Bean, A.E. Ehrenfeucht and G. McNulty. Avoidable patterns in strings of symbols. Pacific J. Math. 85 (1979) 261-294.
[2] J. Berstel, J. Karhumäki. Combinatorics on Words - A Tutorial. TUCS Technical Report (No. 530, June) (2003).
[3] M. Coudrain and M.P. Schützenberger. Une condition de finitude des monoïdes finiment engendrés. C.R. Acad. Sci. Paris, Sér. A 262 (1966) 1149-1151.
[4] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string searchinng. Algorithmica 13 (1995) 405-425.
[5] N.J. Fine, H.S. Wilf. (1965) Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114.
[6] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1997).
[7] N. Jacobson. Structure of Rings. American Mathematical Society, Providence, RI (1964).
[8] M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17. Addison-Wesley, Reading, Massachusetts (1983).
[9] M. Lothaire. Algebraic Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press, Cambridge (2002).
[10] Aldo de Luca, Stefano Varricchio. Finiteness and Regularity in Semigroups and Formal Languages. Springer-Verlag, Berlin, Heidelberg (1999).
[11] R.A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag, Berlin (1986).
[12] I. Simon. Infinite words and a theorem of Hindman. Rev. Math. Appl. 9 (1988) 97-104.
[13] J.A. Storer. Data compression: methods and theory. Computer Science Press, Rockville, MD (1988).
[14] A.I. Zimin. Blocking sets of terms. Матем. сб., 119, 363-375 (Russian) (1982).

[^0]: Keywords and phrases. Periodic words, bi-ideals, the sequence generates the bi-ideal, finitely generated bi-ideals.
 ${ }^{1}$ Department of Mathematics, University of Latvia, Raiņa bulvāris 19, Rīga, 1586, Latvia; buls@fmf.lu.lv; web site: http://home.lanet.lv/~buls
 2 Institute of Electronics and Computer Science, Dzērbenes street 14, Rīga, 1006, Latvia; lorencs@edi.lv

