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A HIERARCHY FOR CIRCULAR CODES

Giuseppe Pirillo
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Abstract. We first prove an extremal property of the infinite
Fibonacci∗ word f : the family of the palindromic prefixes {hn | n ≥ 6}
of f is not only a circular code but “almost” a comma-free one (see
Prop. 12 in Sect. 4). We also extend to a more general situation the
notion of a necklace introduced for the study of trinucleotides codes on
the genetic alphabet, and we present a hierarchy relating two important
classes of codes, the comma-free codes and the circular ones.
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1. Introduction

The notion of a “code” has very different meanings in biology and theoretical
computer science. In biology the “genetic code” associates the 64 trinucleotides
with 20 amino acids. While in theoretical computer science a “code” is a set
of uniquely decipherable words. Nevertheless, some notions in theoretical com-
puter science, such as comma-free codes and circular codes, are useful in biology,
see [1,2,6]. A theoretical method based on the notion of a necklace [20] has been
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useful for a complete description of the set of the trinucleotides self-complementary
circular codes [21] and also for a detailed study of the trinucleotides comma-free
codes [15].

We introduce the key notion of “tiling” (tessellation) of a word w which is,
roughly speaking, just a sequence w1, w2, . . . , wn of words such that w is a factor
of w1w2 · · ·wn (the sequence fills w with no overlaps and no gaps in accordance
with the Latin sense of the word “tessella”, a small cubical piece used to make
mosaics). When the wi belong to a finite set, even if there are potentially infinitely
many tilings of a word w, only the minimal ones (see Defs. 1 and 2) are interesting.
Using these notions of tilings and minimal tilings, we present here a general result,
which “in nuce” was already in [20]: there is a hierarchy of codes P0, P1, . . . ,
Pn, . . . such that P0 is the class of comma-free codes and a finite code X is
circular if and only if there exists a positive integer n such that X is in class Pn.

We like to conclude this introduction, pointing out that our result (which be-
longs to theoretical computer science) has pratically been suggested by the con-
crete study of the combinatorial properties of trinucleotides (which belongs to
bio-informatics). More precisely, this result is a fruit of the reflection on the fact
that, under certain conditions, the Arquès and Michel code (see [1,2]) allows us
to retrieve the frame 0 using a window of length 13, i.e., four trinucleotide and a
nucleotide.

2. Preliminary definitions and properties

We denote by A an alphabet, by A∗ the free monoid on A, by A+ the free
semigroup on A, by ε the empty word, and, finally, by |u| the length of a word
u ∈ A∗. We consider a word u of length k ≥ 1 as a map u : {1, 2, . . . , k−1, k} → A;
we write u = u(1)u(2) · · ·u(i) · · ·u(k − 1)u(k); we denote by ũ the mirror image
u(k)u(k−1) · · ·u(2)u(1) of u and we say that a non-empty word v is a palindrome
if v = ṽ. A word u is a factor of a word v if there exist two words u′, u′′ ∈ A∗

such that v = u′uu′′. When u′ = ε (resp. u′′ = ε) we say that u is a prefix (resp.
suffix) of v. A proper factor (resp. proper prefix, proper suffix) u of v is a factor
(resp. prefix, suffix) u of v such that |u| < |v|.

A (right) infinite word on A is a map q from the set of positive integers into A.
We write q = q(1)q(2) · · · q(i) · · · . A word u is a factor of q if there exist a word
u′ and an infinite word q′ such that q = u′uq′. If u′ = ε we say that u is a prefix
of q. A non-empty word u may be a factor of another (finite or infinite) word w
in more than one way. So it is useful to speak about occurrences. For this reason,
let i, j be integers such that 1 ≤ i ≤ j (with j ≤ |w| if w is a finite word) and let
us denote by w(i, j) the factor w(i) · · ·w(j) of w. We say that the pair of integers
(i, j) is an occurrence of the factor u in the word w if u = w(i, j). We denote by
F (t) the set of all non-empty factors of a finite or infinite word t. Given a subset
X of A∗ we denote by Xn the set of the words on A which are product of n words
of X . We denote by Aω the set of the infinite words on A and by Xω the set of
the infinite words on A which have the form x1x2 · · ·xi · · · with xi ∈ X .
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Hereafter β4 is the 4-letter genetic alphabet. A nucleotide is a letter of β4. A
domino (resp. trinucleotide) is a word of length 2 (resp. 3) over β4. We denote
by β3

4 the set of all trinucleotides over β4. For more details, see for example, [1,2]
or [20]. An ordered sequence l1, d1, l2, d2, . . . , dn−1, ln, dn of nucleotides li and
dominoes di is an n-necklace for a subset X ⊂ β3

4 if l1d1, l2d2, . . . , lndn ∈ X and
d1l2, d2l3, . . . , dn−1ln ∈ X . In [20], we proved that if X is a subset of β3

4 then
the condition “X is a circular code” is equivalent to the condition “X has no
5-necklace”.

Now imagine writing an infinite sequence (this is a concept extraneous to biol-
ogy!) of trinucleotides xi, with xi ∈ X , where X is a subset of β3

4 . Furthermore,
imagine shifting the reading frame by one or two trinucleotides. Perhaps, we are
able to read as a prefix just one trinucleotide of X in the shifted sequence (in this
case X is not a comma-free code). Or maybe we are able to read as a prefix only
the product of two, three, four, etc. consecutive trinucleotides of X . We might
even be able to factorize the whole shifted sequence by trinucleotides of X . Any-
way, if X is a circular code, then we are able to read at most four consecutive
trinucleotides of X . This corresponds to the window of Arquès and Michel, which
has 13 nucleotides, and is also the meaning of the above result recalled from [20].

In [20], using the notion of a necklace, we characterized the (necessarily finite)
languages of trinucleotides that are circular codes. In this paper, using the notion
of a tiling, we characterize all the finite languages that are circular codes and we
also present a hierarchy of circular codes.

Definition 1. Given an infinite word s = s(1)s(2) · · · s(i) · · · and factors

w = s(i, j), w1 = s(i1, j1), w2 = s(i2, j2), . . . , wn = s(in, jn)

of s, we say that w1, w2, . . . , wn is a tiling (tessellation) of w if j1 + 1 = i2,
j2 + 1 = i3, . . . , jn−1 + 1 = in and i1 ≤ i ≤ j ≤ jn. We say that w = s(i, j) is the
trivial tiling of w.

Definition 2. We say that a tiling s(i1, j1), s(i2, j2), . . . , s(in, jn) of w = s(i, j)
is minimal if s(i2, j2), . . . , s(in−1, jn−1), s(in, jn) is not a tiling of w = s(i, j) and
s(i1, j1), s(i2, j2), . . . , s(in−1, jn−1) is not a tiling of w = s(i, j). In other words,
s(i1, j1), s(i2, j2), . . . , s(in, jn) is minimal if i1 ≤ i < i2 and jn−1 < j ≤ jn.

Examples. Consider f = f(1)f(2) · · · f(i) · · · = abaababaa · · · and note that
f(2, 4) = baa, f(5, 7) = bab is a minimal tiling of f(3, 6) = aaba. Note also that
aba = f(4, 6) is a minimal tiling of aba = f(4, 6) (a factor is always a trivial tiling
of itself and is clearly minimal) and, for each n ≤ 4 and n′ ≥ 6, the factor f(n, n′)
is again a minimal tiling of aba = f(4, 6). So minimal is intended in the sense that
no unnecessary word is used on the left and on the right, i.e., at the beginning
and end of the sequence of the occurrences. In Figure 1, x1, x2 is a minimal tiling
of y1; x3, x4 is a minimal tiling of y2; x4, x5 is a minimal tiling of y3 but, for
example, x1, x2 x3 is not a minimal tiling of y1 and x2, x3 x4 is not a minimal
tiling of y2.

Definition 3. Let s = s(1)s(2) · · · s(i) · · · be an infinite word and let s(i, j)
and s(i′, j′) be two occurrences of the same factor w of s. Then, given a tiling
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Figure 1. Examples of tilings.

s(i1, j1), s(i2, j2), . . . , s(in, jn) of s(i, j) and a tiling s(i′1, j
′
1), s(i′2, j

′
2), . . . , s(i′n, j′n)

of s(i′, j′), we say that these two tilings are equivalent if there exists factors w1,
w2, . . . , wn of s such that s(i1, j1) = s(i′1, j

′
1) = w1, s(i2, j2) = s(i′2, j

′
2) = w2, . . . ,

s(in, jn) = s(i′n, j′n) = wn (see Fig. 2).

Definition 4. A subset X of A+ is said to be a code over A if for all n, m ≥ 1
and x1, . . . , xn, x′

1, . . . , x
′
m ∈ X the condition

x1 · · ·xn = x′
1 · · ·x′

m

implies
n = m and xi = x′

i for i = 1, . . . , n.

Definition 5. Let {xα}α≥1 be a fixed infinite sequence of finite words from a
set X and let x be an infinite sequence such that x = x1x2 · · ·xα · · · ∈ Xω.
We say that the infinite set of integers {1 = i1, i2, . . . , iα, . . .} satisfying i1 <
i2 < · · · < iα < · · · is the natural tiling set of x if x1 = x(i1, i2 − 1), x2 =
x(i2, i3 − 1), . . . , xα = x(iα, iα+1 − 1), . . . and we denote it by T (x). If y =
y1y2 · · · yn ∈ Xn and y1y2 · · · yn = x(j1, j2 − 1)x(j2, j3 − 1) · · ·x(jn, jn+1 − 1) is
an occurrence of y in x, we say that the finite set of integers {j1, j2, . . . , jn, jn+1},
with j1 < j2 < · · · < jn < jn+1, is the local tiling set of this occurrence of y in x
and, shortly, we denote it by T (y).

The relationship between local tiling sets and natural tiling sets can be very
different. Consider, for example, the first four occurrences of aa in an infinite word
x in Xω where X is the suffix code {a, aaab} and x begins with aaaaab.

Definition 6. Let X be a subset of A+ and let k be a non-negative integer. We
say that X has the property Pk if, for each infinite sequence x ∈ Xω and local
tiling set T (y) of an occurrence of a factor y in x, we have

Card(T (y) \ T (x)) ≤ k.

In other words, at most k elements of T (y) are not in T (x). That is, the intersection
of T (y) with the complement of T (x) has at most k elements.

Examples. For each k ≥ 1, the subsets {akb, a} and {abk, b} of {a, b}+ belong to
Pk, and the subset {abkc, b} of {a, b}+ belongs to Pk+1, as one can easily verify.
Moreover {a, b} and {ac, b} belong to P0. In Figure 1, an occurrence of y = y1y2y3

in x = x1x2x3x4x5 · · · has a local tiling set with 3 integers which do not belong
to the natural tiling set of x.

Proposition 1. If a subset X of A+ has the property Pk for some non-negative
integer k, then X is a code.

Proof. Suppose, by way of contradiction, that X has the property Pk, for some
integer k, but X is not a code. Consider the equality x1x2 · · ·xn = y1y2 · · · ym,
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Figure 2. The equivalent minimal tilings of yi1 and yi2 .

where x1x2 · · ·xn and y1y2 · · · ym are different, and suppose without loss of gener-
ality that x1 �= y1. Consider the infinite word x = (x1x2 · · ·xn)ω ∈ Xω. Then the
word y = y1y2 · · · ym has an occurrence as a prefix of x and Card(T (y)∩(T (x)) ≥ 1.
But clearly yp = (y1y2 · · · ym)p is again a prefix of x and Card(T (yp)∩(T (x)) ≥ p.
Since this holds for any p, there is no positive integer k such that X has the
property Pk. Contradiction. �
Definition 7. Let X be a subset of A+. We say that X has the property P if X
has the property Pk for some non-negative integer k.

Proposition 2. If a subset X of A+ has the property P, then X is a code.

Proof. It is very easy. Suppose that X has the property P . By definition, for some
integer k, X has the property Pk, and hence X is a code by Proposition 1. �

Definition 8. Given a code X over A we say that it is prefix (resp. suffix ) if
u = v whenever u, v ∈ X and u is a prefix (resp. suffix) of v. A code is bifix if it
is both a prefix code and a suffix code.

The set X = {ab, ba} does not have the property P , as one can easily see
considering the factors (ba)n of (ab)ω , but it is a bifix code.

Definition 9. A code X over A is said to be comma-free if, for each y ∈ X and
u, v ∈ A∗ such that uyv = x1 · · ·xn with x1, . . . , xn ∈ X , we have u, v ∈ X∗.

A comma-free code X has the easiest deciphering [4]: if w = x1 · · ·xn ∈ X∗ and
x ∈ F (w) ∩ X then there is an integer i, 1 ≤ i ≤ n, such that x = xi. We have

Proposition 3. A code X has the property P0 if and only if it is comma-free.

Definition 10. A subset X of A+ is a circular code over A if, for each n, m ≥ 1
and for each x1, . . . , xn, x′

1, . . . , x
′
m in X , p ∈ A∗ and s ∈ A+, the conditions

sx2 · · ·xnp = x′
1 · · ·x′

m

and x1 = ps imply n = m, p = ε and, for i = 1, . . . , n, xi = x′
i.

3. The infinite Fibonacci word

Let ϕ : {a, b}∗ → {a, b}∗ be the morphism given by ϕ(a) = ab, ϕ(b) = a. The
n–th finite Fibonacci word fn is defined in the following way: f0 = b and, for each
n ≥ 0, fn+1 = ϕ(fn). For each n ≥ 2, |fn| is the n-th element Fn of the sequence
of Fibonacci numbers. The infinite Fibonacci word f (see, [7–9,11–14,16,18,19,22])
is the unique infinite word over {a, b} such that, for each n, the word fn is a prefix
of f . For each n ≥ 2, we denote by hn the prefix of f of length |fn| − 2.
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We will often consider some subsets of the family of palindromes {hn | n ≥ 3}
that are very useful examples of codes with the property P .

Lemma 1 (below) is often useful in the study of properties of f . It belongs
to the folklore and is very easy to prove. Item i) of the lemma is known as the
“near-commutative property” (see [13]) and plays a central role in the combina-
torics of the Fibonacci word. Note that, for each n ≥ 2, gn = fn−2fn−1 and a
factor v of f is special if va, vb ∈ F (f).

Lemma 1. For each n ≥ 2,
i) fn = hnxy and gn = hnyx, where xy = ab if n is even and xy = ba if n is odd;
ii) |hn| = Fn − 2;
iii) hn is a special factor;
iv) hn+3 = hn+1xyhnyxhn+1, where x, y ∈ {a, b}, x �= y;
v) hn is a palindrome;
vi) hn+2 = fnhn+1 = hn+1

˜fn = hn
˜fn+1 = fn+1hn;

vii) for each integer m ≥ 0, hn is a prefix and a suffix of hn+m;
viii) v ∈ F (f) if and only if ṽ ∈ F (f).

Some properties of the family {hn | n ≥ 3} also hold for the palindromic prefixes
of a standard Sturmian word. See [5].

We will often use the following result of Karhumäki.

Proposition 4 [11]. The Fibonacci word f is 4-power free, i.e., no factor of f
has the form u4.

Let u, v, w, z, z′ ∈ F (f). We say that (u, v, w) is an overlap of z and z′ if uv = z,
vw = z′. When the central component v of an overlap (u, v, w) is non-empty, we
say that the overlap is strict. In this case, v is a proper suffix of z and a proper
prefix of z′.

Proposition 5. Let j ≥ 3. If (u, v, w) is a strict overlap of hj and hj then we
have v ∈ {hn | n ≥ 3}.
Proof. Let v = v(1)v(2) · · · v(k − 1)v(k). For 1 ≤ i ≤ k, we also have v(i) =
hj(i) = hj(|hj |− i+1) = v(k− i+1). So v(i) = v(k− i+1) and v is a palindrome.
Since v is a prefix of hj and consequently a prefix of f , we have v ∈ {hn | n ≥ 3}
by a well-known property of the palindromic prefixes of f (the so called central
words). See [5]. �
Remark 1. In [18] we studied the strict overlaps of the fn, gn and hn under
the supplementary condition that uvw ∈ F (f) and we proved that, in this case,
there are exactly two strict overlaps of hn and hn, namely (fn−1, hn−2, ˜fn−1) and
(fn−2, hn−1, ˜fn−2).

Several properties of the Fibonacci words belong, or are in relation, to the
theory of codes. We presented in [19] some relations between Fibonacci numbers,
Fibonacci words and the theory of codes. For example: if f = u0u1 · · ·ui · · · is
the factorization of f such that |ui| = F2i+1 then {ui | i ≥ 0} is a prefix code.
We also proved a similar result with |ui| = F2(i+1) and another one concerning a
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factorization of f starting from the beginning and using only words of a bifix code.
Related results are proved in [10,17]. Now, recall the following well-known

Proposition 6 [7]. Each element of the family {fn | n ≥ 1} is a primitive word.

Proposition 7. Each element of the family {hn | n ≥ 3} is a primitive word, with
the only exception being abaaba = h5.

Proof. Suppose, by way of contradiction, that hj ∈ {hn | n ≥ 3} \ {abaaba} is not
primitive. Then hj = vk with k ≥ 2. If k ≥ 3 then a cube is a prefix of f . But,
by a preliminary result on fractional powers in the Fibonacci word [16], no cube
is a prefix of f . So, there remains only the possibility k = 2. In this case, using
a result concerning squares in the Fibonacci word [22], we should have, for some
m > 0, hj = fmfm. Observe that h3 = a, h4 = aba, which clearly do not have the
form fmfm (while h5 = abaaba = f3f3). Now |h6| = 11 = F4 + F4 + F3 − 2, which
is not even, and hence h6 is not a square. In general, for j ≥ 7, |hj | = Fj − 2 =
2Fj−2 + Fj−3 − 2 from which it easily follows that, for j ≥ 7, |hj | (i.e., Fj − 2)
cannot be equal to 2Fm for some m. So we reach a contradiction. �

Corollary. Each singleton {hj}, with hj ∈ {hn | n ≥ 3} \ {abaaba}, is a comma-
free code.

Proof. Suppose, by way of contradiction, that the singleton {hj} with j ≥ 3, j �= 5,
is not a comma-free code. Since {hj} is a singleton, there exists u, v ∈ {a, b}∗,
such that hα

j , α ≥ 2, can be written as hα
j = uhjv where u �= hβ

j for any positive
integer β. This implies that hjhj contains an occurrence of hj that is different from
those at the beginning and end. Hence, hj = ww′ = w′w for some w, w′ ∈ {a, b}+.
Now, by a well-known result in the theory of words, we know that if two words
commute, then they are powers of a common word (e.g., see [14]). Therefore,
w = vp and w′ = vq for some word v and positive integers p, q. But then hj = vp+q

where p + q ≥ 2, contradicting the primitivity of hj (Prop. 7). �

Lemma 2. Each element of the family {hn | n ≥ 3} \ {abaaba} is not the product
of two or more elements of the family.

Proof. Suppose, by way of contradiction, that, for j �= 5, the palindrome hj is the
product of two or more elements of the family. This is not the case for h3 = a
and h4 = aba. So j ≥ 6. Suppose hj = u1u2 · · ·uk with k ≥ 2 and ui ∈ {hn | n ≥
3} \ {abaaba} and note that a is both a prefix and a suffix of each ui. None of the
ui can be equal to a. Otherwise, if u1 = a then hj has aa as a prefix, if uk = a
then hj has aa as a suffix and finally if ui = a, 1 < i < k, then hj has aaa as a
factor, all of which are impossible.

So we have to prove that each element hj of the family {hn | n ≥ 3} \ {abaaba}
is not the product of two or more elements of the family {hn | n ≥ 4} \ {abaaba}.
Case k = 2. If u1 = u2 = aba we have hj = abaaba. Contradiction. If u1 = aba
and u2 �= aba then (aba)3 is a prefix of hj . Contradiction. If u1 �= aba and
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u2 = aba then (aba)3 is a suffix of hj. Contradiction. If u1 �= aba or u2 �= aba
then (aba)4 is a factor of hj . By Proposition 4, we have a contradiction.

Case k ≥ 3. Consider u1u2u3. If u1 = u2 = u3 = aba we have hj = (aba)3.
Contradiction. So at least one ui with 1 ≤ i ≤ 3 is in {hn | n ≥ 6}. If this
happens for exactly one i, 1 ≤ i ≤ 3, then (aba)3 is a prefix or a suffix of hj . If
this happens for at least two values of i, 1 ≤ i ≤ 3, then (aba)4 is a factor of hj .
Again, we have a contradiction, by Proposition 4.

It now remains to prove that each hj , j �= 5, is not the product of two or more
elements of the family {hn | n ≥ 6}. In this case uiui+1 (and consequently hj)
contains (aba)4 as a factor. So we have a contradiction by Proposition 4. �

The family {fn | n ≥ 1} is not at all a code (indeed fn+2 = fn+1fn). But we
do have:

Proposition 8. The family {hn | n ≥ 3} \ {abaaba} is a code.

Proof. Suppose, by way of contradiction, that {hn | n ≥ 3}\{abaaba} is not a code.
Consider the equality x1x2 · · ·xn = y1y2 · · · ym and, without loss of generality,
suppose x1 �= y1. Suppose also, again without loss of generality, that x1 is a prefix
of y1. Consider the smallest positive integer i, 1 ≤ i ≤ n, such that y1 is a prefix
of x1x2 · · ·xi. For some u, v we have x1x2 · · ·xi = x1x2 · · ·xi−1uv = y1v. So
y1 = x1x2 · · ·xi−1u. The word u is the central component of a strict overlap of y1

and xi and, by Proposition 5, it belongs to {hn | n ≥ 3}. So y1 is the product of
at least two elements of {hn | n ≥ 3} which contradicts Lemma 2. �

Proposition 9. Each subset of A+ with at least two elements in the family
{hn | n ≥ 3} \ {abaaba} is not a comma-free code.

Proof. Suppose that X is such that |X ∩ ({hn | n ≥ 3} \ {abaaba})| ≥ 2 and
suppose that, for some positive integers p, q, p < q, the palindromes hp, hq are
in X . We claim that {hp, hq} is not a comma-free code. Indeed, by Lemma 1,
for some u ∈ {a, b}∗, hq = hpu and if, by way of contradiction, we suppose that
{hp, hq} is a comma-free code, then we also have hq = hpu1u2 · · ·uα, for some u1,
u2 . . . , uα ∈ {hp, hq}α, α ≥ 1. That is, hq is the product of two or more elements
of {hn | n ≥ 3}, which contradicts Lemma 2. Now, X cannot be a comma-free
code because it contains a subset which is not a comma-free code. �

Proposition 10. The family {hn | n ≥ 3} \ {abaaba} is a circular code.

Proof. Suppose, by way of contradiction, that {hn | n ≥ 3} \ {abaaba} is not a
circular code. Then, there exist x1, . . . , xn, x′

1, . . . , x
′
m in {hn | n ≥ 3} \ {abaaba},

p ∈ {a, b}+ and s ∈ {a, b}+, such that sx2 · · ·xnp = x′
1 · · ·x′

m and x1 = ps. Note
that s and p are central components of strict overlaps of x1 and x′

1 and of x′
m and

x1 respectively. So, by Proposition 5, s, p ∈ {hk | k ≥ 3}. Since x1 is the product
of two elements of {hk | k ≥ 3} and since x1 �= abaaba, we reach a contradiction
by Lemma 2 or by Proposition 8. �
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4. A hierarchy

In this section, we give a characterization of all the finite languages that are cir-
cular codes (Th. 1). A first relationship between our property P and some classical
notions of theory of codes (limited codes and uniformly synchronous codes) is in
Theorem 2. Finally, the classes P0, P1, . . . , Pk, Pk+1, . . . constitute a hierarchy
of codes (Prop. 11).

Theorem 1. Given an alphabet A and a finite subset X of A+, the following
conditions are equivalent:

i) X has the property P;
ii) X is a circular code.

Proof. i) implies ii). Suppose that X has the property P . By Proposition 2, X
is a code. Suppose, by way of contradiction, that X is not a circular code. Then
there exist x1, . . . , xn, x′

1, . . . , x
′
m ∈ X , p ∈ A+ and s ∈ A+, such that sx2 · · ·xnp =

x′
1 · · ·x′

m, x1 = ps and the conditions of Definition 10 are not satisfied. Consider
the infinite word x:

x1x2 · · ·xnx1x2 · · ·xn · · ·x1x2 · · ·xn · · · = (x1x2 · · ·xn)ω

and its natural tiling set

j1 = 1 < j2 < · · · < jn < · · ·
Note that x has a factor u which admits two factorizations

u = sx2 · · ·xnp = x′
1 · · ·x′

m.

Consider an occurrence of x′
1 · · ·x′

m in x and its local tiling set:

j′1 < j′2 < · · · < j′m < j′m+1.

For each integer α ≥ 1, the element j′α does not belong to {j1, j2, . . . , jn, . . .},
otherwise, since X is a code, we reach a contradiction.

So x′
1 · · ·x′

m has an occurrence with m + 1 elements of its local tiling set in the
complement of the natural tiling set of x = (x1x2 · · ·xn)ω.

In a similar way, for each positive integer β, the factor (x′
1 · · ·x′

m)β has an
occurrence with βm + 1 elements of its local tiling set in the complement of the
natural tiling set of x = (x1x2 · · ·xn)ω.

Thus for each positive integer k, X does not have the property Pk and conse-
quently does not have the property P . Contradiction. �

Proof. ii) implies i). Suppose that X is a circular code and, by way of contra-
diction, suppose that X does not have the property P , i.e., there is no positive
integer k such that X has the property Pk.

For each positive integer k, there exist x = x1x2 · · ·xα · · · ∈ Xω (having {i1 =
1, i2, . . . , iα, . . .} as a natural tiling set), a factor y of x such that y = y1y2 · · · yn

(with yi ∈ X) and the local tiling set {j1, j2, . . . , jn, jn+1} of an occurrence of y
in x has more than k elements in the complement of {i1 = 1, i2, . . . , iα, . . .}. This
means that at least k factors yi of y have a minimal non-trivial tiling set with
the xi.
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Since X is finite and each factor of x has finitely many minimal non-trivial tiling
sets with the xi, we can choose k (for example k = (2M + 3)δ · |X |+ 1, where δ is
the maximum number of minimal non-trivial tiling sets of an element z ∈ X and
M is the maximum of the lengths of elements of X) such that two yi, say yi1 and
yi2 , satisfy yi1 = yi2 = w for some w. Furthermore, for suitable integers h, h′, h′′,
h′′′, h′′ > h + h′, the minimal tiling of yi1 is xh, . . . , xh+h′ , the minimal tiling of
yi2 is xh′′ , . . . , xh′′+h′′′ and xh = xh′′ ,. . . , xh+h′ = xh′′+h′′′ . In other words, the
minimal tilings of yi1 and yi2 are equivalent. See Figure 2. Moreover, there exist
words p, s and p′, s′, p �= ε, p′ �= ε, such that the tilings of the occurrences yi1 and
yi2 of w satisfy

xh = ps = xh′′ , xh+h′ = p′s′ = xh′′+h′′′ ,
pyi1s

′ = xh · · ·xh+h′ , yi1 = sxh+1 · · ·xh+h′−1p
′,

pyi2s
′ = xh′′ · · ·xh′′+h′′′ ,

s′xh+h′+1 · · ·xh′′−1p = yi1+1 · · · yi2−1.
Now, we have

sxh+1 · · ·xh+h′−1(xh+h′)xh+h′+1 · · ·xh′′−1p
= sxh+1 · · ·xh+h′−1(p′s′)xh+h′+1 · · ·xh′′−1p

= (sxh+1 · · ·xh+h′−1p
′)(s′xh+h′+1 · · ·xh′′−1p)

= yi1yi1+1 · · · yi2−1.
Since, by assumption, p is non-empty, X is not a circular code. Contradiction. �

We refer to [4] for the definitions of limited codes and uniformly synchronous
codes. Combining our Theorem 1 with Theorem 2.6 of [4] we have

Theorem 2. Given an alphabet A and a finite subset X of A+, the following
conditions are equivalent:

i) X has the property P;
ii) X is a circular code;
iii) X is a limited code;
iv) X is a uniformly synchronous code.

The hierarchy is justified by the following very easy

Proposition 11. A code X in A+ which has the property Pk also has the prop-
erty Pk+1.

Remark 2. In the first two classes of our hierarchy there are codes whose elements
are factors of the Fibonacci word. Indeed {ab, b} and {a, ab} belong to the class
P1. Moreover, by Lemma 1, the family {hk | k ≥ 6} is very far from being
bifix, so it cannot be comma-free (see [4]). Anyway, we will see now (Prop. 12)
that {hk | k ≥ 6} belongs to the class P2 and, in this sense, it is “almost” a
comma-free code. Note that the relation {hk | k ≥ 6} ∈ P2 requires only a
short proof, presented hereafter. On the other hand, some relations (for example
X = {hn | n ≥ 3}\{abaaba} ∈ P4) require arguments which, as far as we know at
the moment, are too long to be contained in this paper. In a forthcoming paper
we will discuss these relations.

The following result shows that the family {hk | k ≥ 6} is “almost” comma-free.
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Proposition 12. The code {hk | k ≥ 6} belongs to the class P2.

Proof. Set X = {hk | k ≥ 6} and consider an infinite sequence x = x1 · · ·xi · · ·
∈ Xω, its natural tiling set {i1 = 1, i2, . . . , iα, . . .} and a factor y of x with y =
y1y2 · · · yn, yi ∈ X . Suppose, by way of contradiction, that the local tiling set
{j1, j2, . . . , jn, jn+1} of an occurrence of y in x has more than 3 elements in the
complement of the natural tiling set of x. Without loss of generality we can
suppose that exactly three integers i, j, k, i < j < k, belong to this local tiling set.
Consider β ∈ {1, . . . , n − 1} such that yβ = x(j′, j − 1) and yβ+1 = x(j, j′′) for
some j′, j′′. Set yβ = v and yβ+1 = w. Consider also, in the natural tiling set of
x, the greatest integer iγ that is smaller than j. Then, in the natural tiling set of
x, the smallest integer that is greater than j is iγ+1. We have four possibilities:

Case 1. iγ ≤ j′ and iγ+1 ≥ j′′. In this case x(iγ , iγ+1 − 1) contains (aba)4. By
Proposition 4, we have a contradiction.

Case 2. iγ > j′ and iγ+1 ≥ j′′. In this case x(iγ , j−1) is the central component of
a strict overlap of two elements of X and, by Proposition 5, it belongs to {hk | k >
3}. If x(iγ , j−1) = a then w must begin with b. Contradiction. If x(iγ , j−1) = aba
then w must begin with ababa. Contradiction. If x(iγ , j − 1) = abaaba then w
must begin with b. Contradiction. Finally, if x(iγ , j − 1) ∈ {hk | k > 3} then
x(iγ , iγ+1) must contain (aba)4, which is again a contradiction by Proposition 4.

Case 3. iγ ≤ j′ and iγ+1 < j′′. In this case x(j, iγ+1−1) is the central component
of a strict overlap of two elements of X and, by Proposition 5, it belongs to
{hk | k > 3}. If x(j, iγ+1 − 1) = a then v must end with b. Contradiction. If
x(j, iγ+1 − 1) = aba then v must end with ababa. Contradiction. If x(j, iγ+1 −
1) = abaaba then v must end with b. Contradiction. Finally, if x(j, iγ+1 − 1) ∈
{hk | k > 3} then x(iγ , iγ+1) must contain (aba)4, which is again a contradiction
by Proposition 4.

Case 4. iγ > j′ and iγ+1 < j′′. In this case x(iγ , j − 1) is the central component
of a strict overlap of two elements of X and, by Proposition 5, it belongs to
{hk | k > 3}. With the the same arguments as above, x(j, iγ+1 − 1) belongs to
{hk | k > 3}. Consequently x(iγ , iγ+1 − 1) is the product of two elements of
{hk | k > 3}. By Lemma 2 we have a contradiction. �

The result of Proposition 12 is optimal. Indeed h7 = abaababaabaababaaba =
abaababah6 = h6ababaaba and h7h7 = abaababah6h6ababaaba. So hω

7 has an oc-
currence of h6h6 with local tiling set 9, 20, 30. Since 9 and 30 are in the complement
of 1, 20, 39, . . . , 1 + 19n, . . . we have {hk | k ≥ 6} /∈ P1.
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