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Abstract. In this paper, we characterize the substitutions over a
three-letter alphabet which generate a ultimately periodic sequence.
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The study of periodicity is a central topic in combinatorics and presents some
important applications in algebra, in formal language theory and in string search-
ing algorithms. In this paper, we study the substitutions which generate a periodic
sequence.

Introduction

Let S be the alphabet of finite letters. Let S∗ and S̃ be respectively the free
monoid and the free group generated by S. The empty word ε is their neutral
element. Let S+ = S∗\{ε}. Let SN be the set of infinite sequences on S.

Let v and w be two words. We say that v is a factor of w and then write v ≺ w,
if there exist u, u′ ∈ S∗, such that w = uvu′. We say that v is a prefix (resp.
suffix) of a word w and then note v � w (resp. v � w), if there exists u ∈ S∗ such
that w = vu (resp. w = uv). We say that v is a proper factor of w if v ≺ w and
v �= w. Likewise, we define the notions of proper prefix and proper suffix. The
notions of prefix and factor extend in a natural way to sequences.

A morphism ϕ : S∗ → S∗ is called a substitution of S∗. In this work, except
in the last section, we deal only with non-erasing substitutions, which means that
the image of any letter is different from the empty word ε.
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Let ϕ be a substitution. If there is a letter a ∈ S such that the word ϕ(a)
begins with a and is of length at least equal to 2, in other words,

ϕ(a) = av for some v ∈ S+,

then, for n ≥ 1, ϕn(a) is a prefix of ϕn+1(a), and thus there is a unique (infi-
nite) sequence ξ beginning with a such that ϕ(ξ) = ξ. In this case, we say that
the substitution ϕ generates, with the axiom a, the sequence ξ. And we write
ξ = ϕ∞(a).

Ultimately periodic sequences are sequences of the lowest (subword) complexity.
In this paper we study the substitutions which generate a ultimately periodic
sequence. The decidability result on this kind of problem is proved independently
by, on the one hand, Harju and Linna [2] and, on the other hand, Pansiot [6],
that is, they give an algorithm which, for a substitution, determines whether this
substitution has a ultimately periodic fixed point or not. And Lando [4] provides
the bounds for the period and index of the substitution.

Finding all substitutions which generate a ultimately periodic sequence is a
quite different problem from determining whether a given substitution generates
a ultimately periodic sequence or not.

In the binary alphabet case, Séébold [8] has found all the substitutions which
generate a ultimately periodic sequence:

Theorem 0.1. Let ϕ be a (non-erasing) substitution over a two-letter alphabet
{a, b}. Then ϕ generates, with the axiom a, a ultimately periodic sequence ξ if and
only if ϕ has one of the following forms:

1. ϕ(a) = ap, ϕ(b) ∈ {a, b}+, p ≥ 2, and ξ = a∞;
2. ϕ(a) = abp, ϕ(b) = bq, p, q ≥ 1, and ξ = ab∞;
3. ϕ(a) = (av)p, ϕ(b) = (av)q, p, q ≥ 1, v ∈ {a, b}+, and ξ = (av)∞;
4. ϕ(a) = (ab)pa, ϕ(b) = (ba)qb, p, q ≥ 1, and ξ = (ab)∞;
5. ϕ(a) = (abp)qa, ϕ(b) = b, p, q ≥ 1, and ξ = (abp)∞.

In this paper, we consider the same problem over a ternary alphabet and our main
result is:

Theorem 0.2. Let ϕ be a (non-erasing) substitution over S. Suppose that ϕ
generates, with the axiom a, a sequence ξ. Then ξ is ultimately periodic if and
only if there is a permutation (x, y) of the letters (b, c) such that ϕ has one of the
following forms:
1. ϕ(a) = ak, ϕ(x) ∈ S+, ϕ(y) ∈ S+ (k ≥ 2), and ξ = a∞;
2. ϕ(a) = axk, ϕ(x) ∈ x+, ϕ(y) ∈ S+ (k ≥ 1), and ξ = ax∞;
3. ϕ(a) = (av)p, ϕ(x) = (av)q, ϕ(y) ∈ S+ (v ∈ {a, x}+, p, q ≥ 1), and ξ = (av)∞;
4. ϕ(a) = (ax)pa, ϕ(x) = (xa)qx, ϕ(y) ∈ S+ (p, q ≥ 1), and ξ = (ax)∞;
5. ϕ(a) = (axp)qa, ϕ(x) = x, ϕ(y) ∈ S+ (p, q ≥ 1), and ξ = (axp)∞;
6. ϕ(a) = av, ϕ(x) = x, ϕ(y) = y (v ∈ {x, y}+), and ξ = av∞;
7. ϕ(a) = av, ϕ(x) = y, ϕ(y) = x (v ∈ {x, y}+), and ξ = a(vϕ(v))∞;
8. ϕ(a) = av, ϕ(x) ∈ r+, ϕ(y) ∈ r+ (v, r ∈ {x, y}+), and ξ = avr∞;
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9. ϕ(a) = a(xy)n, ϕ(x) = (xy)lx, ϕ(y) = (yx)my (l, n ≥ 1,m ≥ 0), and ξ =
a(xy)∞;
10. ϕ(a) = a(xy)nx, ϕ(x) = y(xy)l, ϕ(y) = x(yx)m (l ≥ 1,m, n ≥ 0), and
ξ = a(xy)∞;
11. ϕ(a) = a(yixyl−i)n, ϕ(x) = (xyl)mx, ϕ(y) = y (l,m, n ≥ 1, 0 ≤ i ≤ l), and
ξ = ayi(xyl)∞;
12. ϕ is ultimately cyclic, in other words, ϕ2(a) ∈ w+, ϕ2(x) ∈ w+, ϕ2(y) ∈ w+

(w ∈ S+, a� w), and ξ = w∞;
13. ϕ(a) = (axy)la, ϕ(x) = (xya)mx, ϕ(y) = (yax)ny (l,m, n ≥ 1), and ξ =
(axy)∞;
14. ϕ(a) = (axy)lax, ϕ(x) = (yax)mya, ϕ(y) = (xya)nxy (l,m, n ≥ 0), and
ξ = (axy)∞;
15. ϕ(a) ∈ w+, ϕ(xy) ∈ w+ (w ∈ {a, xy}+, a� w, y � ϕ(y)), and ξ = w∞;
16. ϕ(ay) ∈ w+, ϕ(x) ∈ w+ (w ∈ {ay, x}+, a� w, y � ϕ(y)), and ξ = w∞;
17. ϕ(ay) ∈ w+, ϕ(xy) ∈ w+ (w ∈ {ay, xy}+, a� w, y � ϕ(y)), and ξ = w∞;
18. ϕ(a) = (aymxyn)ia, ϕ(x) = (xynaym)jx, ϕ(y) = y (m,n ≥ 0, i, j ≥ 1), and
ξ = (aymxyn)∞;
19. There exist two words u = u1 · · ·un ∈ w+ and v = v1 · · · vm ∈ w+ for some
word w = w1 · · ·wk ∈ {a, x}+ with w1 = a, and integers P(α), D(α, β) and S(α)
for any α, β ∈ {a, x} satisfying the following two conditions:

(∗) P(a) = 0; If β � w, then S(β) = 0;
(∗∗) there is a constant C, such that for any factor αβ of length 2 of w2, we

have S(α) + D(α, β) + P(β) = C,
such that ϕ(a) = u1y

D(u1,u2) · · · yD(un−1,un)uny
S(a),

ϕ(x) = yP(x)v1y
D(v1,v2) · · · yD(vm−1,um)vmy

S(x),
ϕ(y) = y,

and then ξ = [w1y
D(w1,w2) · · · yD(wk−1,wk)wny

C ]∞;
20. ϕ(a) = (au)ka, ϕ(x) = x, ϕ(y) = y (u ∈ {x, y}+, k ≥ 1), and ξ = (au)∞;
21. ϕ(a) = au1a · · ·auka, ϕ(x) = x, ϕ(y) = x (ui ∈ {x, y}+, |u1| = · · · = |uk| =
L, k ≥ 1), and ξ = (au1a · · ·aukax

L)∞.

In the last section, we give several remarks concerning the (possibly erasing)
substitutions which fix a ultimately periodic sequence.

1. Preliminaries

In this paper, we shall use the following terminology. The readers can find more
details in [5].

Let w ∈ S∗ be a word. We denote by |w| the length of w, and, for a letter s ∈ S,
by |w|s the number of occurrences of the letter s in w. We denote by Alph(w) the
set of letters appearing in w, that is Alph(w) = {s ∈ S : |w|s ≥ 1}. In particular,
Alph(ε) = ∅.

A word u ∈ S+ is said to be primitive if it is not a power of another word, that
is, the condition u = vk for some v ∈ S+ implies k = 1. Any word is a power of a
primitive word.



750 B. TAN AND Z.-Y. WEN

Two words u and v are said to be conjugate if there exist words x, y ∈ S∗ such
that u = xy and v = yx. In this case, we also say that v is a conjugate word of u.

The next facts are basic results in Combinatorics on Words (see below for the
definition of w∗).

Lemma 1.1. Let w be a primitive word, u be a word. Then
1. if u and w are conjugate, then u is also primitive;
2. if uw ≺ wk for some k, then u� wk; if wuw ≺ wk, then u ∈ w∗;
3. u ∈ w∗ ⇐⇒ uk ∈ w∗ for some k ≥ 1 ⇐⇒ uk ∈ w∗ for any k.

The following theorem is classical in the study of periodicity [1].

Theorem 1.2 (Fine and Wilf). Let x, y ∈ S∗, n = |x|, m = |y|, d = gcd(n,m).
If two powers xp and yq of x and y have a common prefix of length at least equal
to n+m− d, then there is a word w such that x, y ∈ w∗.

Let ξ ∈ SN be a sequence. We call ξ periodic if there exists a word w such that
ξ = w∞(:= www · · · ); we call ξ ultimately periodic if there exist words u and w
such that ξ = uw∞.

Let ξ be a sequence. The language of length n of ξ, denoted by Ln(ξ), is the set
of all factors of length n occurring in ξ. We call complexity function of ξ, denoted
by pξ(n), the function which with each positive integer n associated the number
#Ln(ξ), where # denotes the cardinality of a finite set. A factor w of ξ is called
a (right) special factor if it has more than one right extensions, that is, there are
different letters x and y such that both wx and wy are factors.

The following lemma is elementary.

Lemma 1.3. Let ξ be a sequence. The following are equivalent:
1. the sequence ξ is ultimately periodic;
2. the complexity function of ξ is bounded;
3. the lengths of the special factors of ξ are bounded.

Let ξ be a sequence. We say that ξ is recurrent if every factor of ξ occurs for
infinitely many times. If ξ is recurrent, then ξ is ultimately periodic if and only if
it is periodic.

Given a nonempty subset X of the free monoid S∗, we denote by X∗ the sub-
monoid of S∗ generated by X (for simplification, we will write w∗ instead of {w}∗
for w ∈ S+). Conversely, given a submonoid P of S∗, there exist a unique set X
that generates P and is minimal for set-inclusion.

Also, we put X+ = X∗\{ε} and w+ = w∗\{ε}.
A monoid M is said to be free if there exist an alphabet A and an isomorphism

of the free monoid A∗ onto M . For example, for any w ∈ S+, w∗ is free.

Proposition 1.4 ([5], p. 5). Let P be a submonoid of S∗ and X be its minimal
generating set. Then P is free if and only if any equality

x1x2 · · ·xm = y1y2 · · · yn, n,m ≥ 0, xi, yj ∈ X

implies n = m and xi = yi, 1 ≤ i ≤ n.
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The minimal generating set of a free submonoid P of S∗ is called a code. the
intersection of all free submonoids of S∗ containing X is the smallest free sub-
monoid containing X ; the code generating this submonoid is called the free hull
of X .

Theorem 1.5 (defect theorem, [5], p. 6). The free hull Y of a finite subset
X ⊂ S∗, which is not a code, satisfies the inequality

#Y ≤ #X − 1.

Let ϕ be a substitution of S∗. A letter s ∈ S is growing (for ϕ) if {|ϕn(s)| : n ≥ 1}
is unbounded; otherwise the letter s will be called a bounded letter.

A substitution ϕ is called cyclic if there is a word w ∈ S+ such that for every
letter s ∈ S, ϕ(s) ∈ w∗. And ϕ is called ultimately cyclic if some power ϕn is cyclic.
It is easy to see that the sequence generated by a ultimately cyclic substitution is
periodic.

Let ϕ : S∗ → S∗ be a substitution. It is simplifiable if there exist an alphabet
X , #X < #S and two morphisms σ : S∗ → X∗, and τ : X∗ → S∗ such that
ϕ = τ ◦ σ. And ϕ is elementary if it is not simplifiable.

If a substitution ϕ is elementary, then it is injective overS∗ and the set {ϕ(s) :
s ∈ S} is a code ([7], p. 131).

2. Periodicity problem over a three-letter alphabet

Now we will concentrate on the case of the three-letter alphabet. We always
use S = {a, b, c} to denote the alphabet. The notation ϕ = (u, v, w) denotes the
substitution ϕ(a) = u, ϕ(b) = v, ϕ(c) = w. In this section, we find all substitutions
over S which generate a ultimately periodic sequence.

Hereafter we assume that ϕ is a substitution over S which, with the axiom a,
generates the sequence ξ = ϕ∞(a), and ξ is ultimately periodic.

According as whether each letter appears in the sequence ξ for infinitely many
times, we consider two cases.

2.1. The sequence ξ contains some letter for only finite times

Suppose that ξ contains some letter for only finite times, then, writing

ξ = uw∞ with u ∈ S∗, w ∈ S+,

we have
1 ≤ #Alph(w) ≤ 2.

There are two possibilities:

Case I. #Alph(w) = 1.
Without loss of generality, we take w = x ∈ S. And thus ϕ(x) ∈ x+.
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Subcase I.1. x = a.
Then the substitution ϕ is of the form:

• ϕ(a) = ak, ϕ(b), ϕ(c) ∈ S+, k ≥ 2, and ξ = a∞.
Subcase I.2. x �= a.

In this subcase, ϕ(a) = av, a �∈ Alph(v) (otherwise, the sequence ξ contains a
for infinite times).

Let y be the letter such that {a, x, y} = {a, b, c}. If y ∈ Alph(v), then ϕ(y) ∈ x+

(otherwise, the letter y occurs for infinitely many times in ξ).
Therefore, the substitution ϕ is of one of the following forms:

• ϕ(a) = axk, ϕ(x) ∈ x+, ϕ(y) ∈ S+, k ≥ 1, and ξ = ax∞;
• ϕ(a) = av, ϕ(x) ∈ x+, ϕ(y) ∈ x+, v ∈ {x, y}+, and ξ = avx∞.

Case II. #Alph(w) = 2. Let x, y ∈ S such that Alph(w) = {x, y}. Then
ϕ(x), ϕ(y) ∈ {x, y}+.

Subcase II.1. a ∈ {x, y}.
In this subcase, the restriction ϕ|{x,y}∗ of ϕ to {x, y}∗ generates the sequence

ξ, and thus (with z ∈ S such that {x, y, z} = {a, b, c}):
• ϕ|{x,y}∗ is one of the forms in Theorem 0.1, ϕ(z) ∈ S+.

Subcase II.2. a �∈ {x, y}.
In this subcase, we have ϕ(a) = av with v ∈ {x, y}+ (in fact, as in Subcase I.2,

a ∈ Alph(v) implies that a appears infinitely often).
Subsubcase II.2.1. Suppose both x and y are bounded. There are 3 possibilities:

(i) ϕ(x) = x, ϕ(y) = y. Then ξ = av∞;
(ii) ϕ(x) = y, ϕ(y) = x. Then ξ = a(vϕ(v))∞;
(iii) ϕ(x) = ϕ(y) ∈ {x, y}. In this case, without loss of generality, suppose

ϕ(x) = x, and thus ξ = ϕ∞(a) = avx∞. The sequence ξ contains the letter y for
only finite times, and it is a contradiction.

So, in this subsubcase, the substitution ϕ is of one of the following forms:
• ϕ(a) = av, ϕ(x) = x, ϕ(y) = y, v ∈ {x, y}+, and ξ = av∞;
• ϕ(a) = av, ϕ(x) = y, ϕ(y) = x, v ∈ {x, y}+, and ξ = a(vϕ(v))∞.

Subsubcase II.2.2. Suppose either x or y is growing. Then the substitution
ϕ2|{x,y}∗ generates an infinite sequence η. Without loss of generality, we assume
that η = (ϕ2|{x,y}∗)∞(x). It is easy to see that all factors of η are factors of ξ,
thus η is also ultimately periodic. Then by Theorem 0.1, and noticing that both
x and y occur in η for infinitely many times, there are 3 possibilities:

(i) ϕ2(x) ∈ t+ and ϕ2(y) ∈ t+ for some t ∈ {x, y}+.
In this case, we have that {ϕ(x), ϕ(y)} is not a code. Then by defect theo-

rem (Th. 1.5), there is a word r ∈ {x, y}+ such that ϕ(x), ϕ(y) ∈ r+, and thus
• ϕ(a) = av, ϕ(x) ∈ r+, ϕ(y) ∈ r+, v, r ∈ {x, y}+, and ξ = avr∞.

(ii) ϕ2(x) = (xy)ix and ϕ2(y) = (yx)jy.
In this case we have either ϕ(x) = (xy)lx, ϕ(y) = (yx)my or ϕ(x) = y(xy)l,

ϕ(y) = x(yx)m.



PERIODICITY PROBLEM OF SUBSTITUTIONS OVER TERNARY ALPHABETS 753

Since ξ = ϕ∞(a) = avϕ(v)ϕ2(v) · · · = t(xy)∞ for some word t, then for k large
enough, we have ϕk(v) ≺ (xy)∞, hence v ≺ (xy)∞.

Without loss of generality, we suppose x � v. An easy discussion gives that ϕ
is of one of the following forms:

• ϕ(a) = a(xy)n, ϕ(x) = (xy)lx, ϕ(y) = (yx)my, l, n ≥ 1,m ≥ 0, and
ξ = a(xy)∞;

• ϕ(a) = a(xy)nx, ϕ(x) = y(xy)l, ϕ(y) = x(yx)m, l ≥ 1,m, n ≥ 0, and
ξ = a(xy)∞.

(iii) ϕ2(x) = (xyp)qx and ϕ2(y) = y.
Then we have that ϕ(x) = (xyl)mx, ϕ(y) = y. In this case, the word v is a

conjugate word of some power of (xyl), and thus

• ϕ(a) = a(yixyl−i)n, ϕ(x) = (xyl)mx, ϕ(y) = y, l,m, n ≥ 1, 0 ≤ i ≤ l, and
ξ = ayi(xyl)∞.

Up to now, we have shown:

Theorem 2.1. Let ϕ be a substitution over S. Suppose that ϕ generates, with the
axiom a, a sequence ξ, and ξ = uw∞ with 1 ≤ #Alph(w) ≤ 2. Then there is a
permutation (x, y) of the letters (b, c) such that ϕ has one of the following forms:
(i) ϕ(a) = ak, ϕ(x) ∈ S+, ϕ(y) ∈ S+ (k ≥ 2), and ξ = a∞;
(ii) ϕ(a) = axk, ϕ(x) ∈ x+, ϕ(y) ∈ S+ (k ≥ 1), and ξ = ax∞;
(iii) ϕ(a) = (av)p, ϕ(x) = (av)q, ϕ(y) ∈ S+ (v ∈ {a, x}+, p, q ≥ 1), and ξ =
(av)∞;
(iv) ϕ(a) = (ax)pa, ϕ(x) = (xa)qx, ϕ(y) ∈ S+ (p, q ≥ 1), and ξ = (ax)∞;
(v) ϕ(a) = (axp)qa, ϕ(x) = x, ϕ(y) ∈ S+ (p, q ≥ 1), and ξ = (axp)∞;
(vi) ϕ(a) = av, ϕ(x) = x, ϕ(y) = y (v ∈ {x, y}+), and ξ = av∞;
(vii) ϕ(a) = av, ϕ(x) = y, ϕ(y) = x (v ∈ {x, y}+), and ξ = a(vϕ(v))∞;
(viii) ϕ(a) = av, ϕ(x) ∈ r+, ϕ(y) ∈ r+ (v, r ∈ {x, y}+), and ξ = avr∞;
(ix) ϕ(a) = a(xy)n, ϕ(x) = (xy)lx, ϕ(y) = (yx)my (l, n ≥ 1,m ≥ 0), and ξ =
a(xy)∞;
(x) ϕ(a) = a(xy)nx, ϕ(x) = y(xy)l, ϕ(y) = x(yx)m (l ≥ 1,m, n ≥ 0), and
ξ = a(xy)∞;
(xi) ϕ(a) = a(yixyl−i)n, ϕ(x) = (xyl)mx, ϕ(y) = y (l,m, n ≥ 1, 0 ≤ i ≤ l), and
ξ = ayi(xyl)∞.

Remark that the second case in Subcase I.2 and (i) in Subsubcase II.2.2 is
summarized into case (viii) in the above theorem.

2.2. The sequence ξ contains each letter for infinite times

In this subsection, we suppose that the sequence ξ contains each letter for
infinite times. The study is divided into two parts, depending on whether the
substitution is ultimately cyclic or not.
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2.2.1. Ultimately cyclic substitution

As mentioned before, the sequence generated by a ultimately cyclic substitution
is periodic. In this subsection we study the ultimately cyclic substitutions.

In the binary alphabet case, we have

Proposition 2.2. Let ϕ be a substitution over a two-letter alphabet, then ϕ is
ultimately cyclic if and only if ϕ is cyclic.

Proof. Denote the alphabet S = {a, b}. Suppose that ϕ is ultimately cyclic and
let n be the minimal integer such that ϕn is cyclic.

Assume n > 1, then we have ϕn(ab) = ϕn(ba) and ϕn−1(ab) �= ϕn−1(ba). Since
ϕ(ϕn−1(ab)) = ϕ(ϕn−1(ba)), by Theorem 1.4, we know that {ϕ(a), ϕ(b)} is not
a code. By defect theorem (Th. 1.5), ϕ(a), ϕ(b) ∈ w∗ for some word w. Hence
ϕn−1(ab) = ϕn−1(ba). This is a contradiction.

So n = 1 and ϕ itself is cyclic. �

In the ternary alphabet case, the above theorem does not hold. For example,
(ac, acb, b)2 = (acb, acbacb, acb). But a little weaker result holds.

Theorem 2.3. Let ϕ be a substitution over a three-letter alphabet, then ϕ is
ultimately cyclic if and only if ϕ2 is cyclic.

Proof. Write S = {a, b, c} and suppose ϕn is cyclic over S.
In the same way as in the proof of the above theorem, we show that {ϕ(a), ϕ(b),

ϕ(c)} is not a code. Denote by Y the free hull of {ϕ(a), ϕ(b), ϕ(c)}. By defect
theorem (Th. 1.5), #Y ≤ 2.

If #Y = 1, then ϕ is cyclic, thus ϕ2 is also cyclic.
If Y = {u, v}. Let us introduce a new two-letter alphabet X = {A,B} and

define two morphisms as follows: For each letter s ∈ S, ϕ(s) ∈ Y ∗. Since Y =
{u, v} is a code, ϕ(s) has a unique decomposition ϕ(s) = w1w2 · · ·wm ∈ Y m (wi ∈
Y ). Then define the morphism ψ : S∗ → X∗ as ψ(s) = C1C2 · · ·Cm ∈ Xm, where
Ci = A if wi = u and Ci = B if wi = v. Another morphism π : X∗ → S∗ is
defined as π(A) = u and π(B) = v.

Then ϕ = π ◦ ψ. And Φ := ψ ◦ π defines a substitution over X∗.
Since ϕn is cyclic, there is a word w ∈ S∗ such that ϕn(s) ∈ w∗ for any s ∈ S.

Thus for any letter x ∈ X , ϕn(π(x)) ∈ w∗, hence

Φn+1(x) = (ψ ◦ π)n+1(x) = ψ ◦ (π ◦ ψ)n ◦ π(x)
= ψ ◦ ϕn ◦ π(x) = ψ(ϕn(π(x)))
∈ ψ(w∗) = (ψ(w))∗.

Since ψ(w) is a word in X∗, this implies that Φ is ultimately cyclic over the
alphabet X . By Proposition 2.2, Φ is cyclic, i.e. there is a word W ∈ X∗ such
that Φ(x) ∈ W ∗ for any x ∈ X , and thus for any letter s ∈ S, Φ(ψ(s)) ∈ W ∗.
Hence

ϕ2(s) = π ◦ ψ ◦ π ◦ ψ(s) = π(Φ(ψ(s))) ∈ π(W ∗) = (π(W ))∗,
this is to say that ϕ2 is cyclic. �



PERIODICITY PROBLEM OF SUBSTITUTIONS OVER TERNARY ALPHABETS 755

Now an induction on n gives the following result.

Proposition 2.4. A substitution ϕ over an n-letter alphabet is ultimately cyclic
if and only if ϕn−1 is cyclic.

2.2.2. Non-ultimately cyclic substitution

Now we turn to study the non-ultimately cyclic substitutions.
When ξ contains each letter for infinite times, it is recurrent. Recall that if a

sequence is recurrent and ultimately periodic, then it is periodic. Therefore, in
the subsection, we will always write that ξ = w∞ with w a primitive word and
Alph(w) = {a, b, c}.

We will consider three cases according to the number of growing letters. Re-
calling that ϕ(a) = av with v ∈ S+, the letter a is growing.

Case I. All letters are growing.

Theorem 2.5. Let ϕ be a non-ultimately cyclic substitution over S. Suppose that
ϕ generates, with the axiom a, a periodic sequence ξ, and ξ contains each letter
for infinite times. If any letter is growing, then there is a permutation (x, y) of
the letters (b, c) such that ϕ has one of the following forms:
(i) ϕ(a) = (axy)la, ϕ(x) = (xya)mx, ϕ(y) = (yax)ny (l,m, n ≥ 1), and ξ =
(axy)∞;
(ii) ϕ(a) = (axy)lax, ϕ(x) = (yax)mya, ϕ(y) = (xya)nxy (l,m, n ≥ 0), and
ξ = (axy)∞;
(iii) ϕ(a) ∈ w+, ϕ(xy) ∈ w+ (w ∈ {a, xy}+, a� w, y � ϕ(y)), and ξ = w∞;
(iv) ϕ(ay) ∈ w+, ϕ(x) ∈ w+ (w ∈ {ay, x}+, a� w, y � ϕ(y)), and ξ = w∞;
(v) ϕ(ay) ∈ w+, ϕ(xy) ∈ w+ (w ∈ {ay, xy}+, a� w, y � ϕ(y)), and ξ = w∞.

Remark that, in above theorem, the substitutions of types (i) and (ii) are el-
ementary, while the ones of the last three types are simplifiable. Also, the proof
will be divided into two parts.

First we consider the elementary substitutions. The following lemma comes
from [6].

Lemma 2.6. Let ϕ be an elementary substitution. Then ϕ generates a ultimately
periodic sequence ξ if and only if ξ has no special word of form xu, where x is a
growing letter and u, possibly empty, is a word consisting of bounded letters.

Proof for the elementary cases in Theorem 2.5. If ϕ is an elementary substitution
and every letter is growing, then ϕ generates a periodic sequence ξ if and only if ξ
has no special words. In this case, ξ = (axy)∞ for some permutation (x, y) of the
letters (b, c). From here we can derive easily the type of ϕ.

In fact, since ϕ is elementary, we get that ϕ is of one of the following forms:
• ϕ(a) = (axy)la, ϕ(x) = (xya)mx, ϕ(y) = (yax)ny (l,m, n ≥ 1), and
ξ = (axy)∞;

• ϕ(a) = (axy)lax, ϕ(x) = (yax)mya, ϕ(y) = (xya)nxy (l,m, n ≥ 0), and
ξ = (axy)∞.
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These are just the cases (i) and (ii) in Theorem 2.5. �
Let us consider the simplifiable substitutions.

Proof for the simplifiable cases in Theorem 2.5. Suppose that ϕ is simplifiable,
and Y is the free hull of {ϕ(a), ϕ(b), ϕ(c)}. Then #Y ≤ 2.

Since #Y = 1 implies that ϕ is cyclic, we only need consider the case that
#Y = 2.

Take n large enough such that |ϕn−1(s)| > |w| for any letter s ∈ S. Since
{ϕ(a), ϕ(b), ϕ(c)} ⊂ Y ∗, by Pigeon hole principle, at least two of {ϕ(a), ϕ(b), ϕ(c)}
have the same first letter. Denote the two words by ϕ(x) and ϕ(y), and the same
first letter by α. Hence ϕn−1(α) is the prefix of both ϕn(x) and ϕn(y), and the
length of ϕn−1(α) is larger than |w|. Since ϕn(x), ϕn(y) ≺ w∞, there exists a
conjugate word w1 of w such that ϕn(x) = wl

1r, ϕ
n(y) = wm

1 t with l,m ≥ 1 and
r, t proper prefixes of w1.

Recalling that x, y and z occur infinitely often, at least one of zx or zy is a
factor of ξ, ϕn(z)w1 ≺ ξ, and thus ϕn(z)w1 ≺ w∞

1 . By Lemma 1.1, we can write
ϕn(z) = uwp

1 with p ≥ 1 and u a proper suffix of w1. So we have

ϕn(x) = wl
1r, ϕ

n(y) = wm
1 t, ϕ

n(z) = uwp
1 with l,m, p ≥ 1 and r, t� w1, u� w1.

Subcase I.1 Either r or t, say r, is empty.
If xz is a factor, then u = ε, and the fact that one of yx and yz is a factor

implies t = ε, thus ϕ is ultimately cyclic.
If zz is a factor, then u = ε and ϕ is ultimately cyclic.
If either yx or yy is a factor, then t = ε and ϕ is ultimately cyclic.
Thus if ϕ is non-ultimately cyclic, then L2(ξ) ⊂ {xx, xy, yz, zx, zy}. Moreover

we claim that w1 ∈ {x, yz}∗.
In fact, suppose z � w1. Since ϕ generates an infinite sequence, z � ϕ(z), thus

ϕn(z) � w∞
1 , and thus u = ε and ϕ is ultimately cyclic.

Since z is not a prefix of w1, and neither yx nor yy is a factor, then y is
not a suffix of w1 (otherwise either yx ≺ w2

1 or yy ≺ w2
1). Thus, by L2(ξ) ⊂

{xx, xy, yz, zx, zy}, we have w1 ∈ {x, yz}∗. The claim follows.
Hence ϕn(x), ϕn(yz) ∈ w∗

1 with w1 ∈ {x, yz}∗.
Now ϕn(x) and ϕn(y) have the same prefix as w1, but ϕn(z) has a different

prefix (otherwise ϕ will be ultimately cyclic). By enumerating all the possible
cases, we show that the first letter of both ϕ(x) and ϕ(y) is either x or y, and the
last letter of both ϕ(x) and ϕ(z) is either x or z. Moreover y�ϕ(y) and z�ϕ(z).
Thus ϕ(x), ϕ(yz) ∈ {x, yz}∗.

We can look the substitution ϕ as a substitution over the alphabet {x, yz}
(with a slight abuse of notation), and ϕ is ultimately cyclic over this alphabet. By
Proposition 2.2, ϕ is cyclic over this alphabet, i.e. we have that

• ϕ(x) ∈ w+, ϕ(yz) ∈ w+ with w ∈ {x, yz}+, z � ϕ(z), and ξ = w∞.

This corresponds to the cases (iii) and (iv) in Theorem 2.5.
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Subcase I.2 Neither r nor t is empty.
If either xx or xy is a factor, r = ε; if either yx or yy is a factor, t = ε; if zz is

a factor, then u = ε, and (since one of xx, xy and xz is a factor) r = ε.
Thus, in this case, we have L2(ξ) = {xz, yz, zx, zy}.
As in case Subcase I.1, we have that either x � w1 or y � w1, and ξ = w∞

1 .
Moreover ϕn(xz), ϕn(yz) ∈ w∗

1 with w1 ∈ {xz, yz}∗.
Similar to case Subcase I.1, ϕ(xz), ϕ(yz) ∈ {xz, yz}∗ and ϕ is a ultimately

cyclic substitution over the alphabet {xz, yz}, z � ϕ(z). Thus
• ϕ(xz) ∈ w+, ϕ(yz) ∈ w+ with w ∈ {xz, yz}+, z � ϕ(z), and ξ = w∞.

This corresponds to the case (v) in Theorem 2.5. �
Case II. One and only one letter is bounded.

Theorem 2.7. Let ϕ be a non-ultimately cyclic substitution over S. Suppose that
ϕ generates, with the axiom a, a periodic sequence ξ, and ξ contains any letter
for infinite times. If one letter is bounded and other letters are growing for ϕ,
then there is a permutation (x, y) of the letters (b, c) such that ϕ has one of the
following forms:
(i) ϕ(a) = (aymxyn)ia, ϕ(x) = (xynaym)jx, ϕ(y) = y (m,n ≥ 0, i, j ≥ 1), and
ξ = (aymxyn)∞;
(ii) there exist two words u = u1 · · ·un ∈ w+ and v = v1 · · · vm ∈ w+ for some
word w = w1 · · ·wk ∈ {a, x}+ with w1 = a, and integers P(α), D(α, β) and S(α)
for any α, β ∈ {a, x} satisfying the following two conditions:

(∗) P(a) = 0; If β � w, then S(β) = 0;
(∗∗) there is a constant C, such that for any factor αβ of length 2 of w2,

we have
S(α) + D(α, β) + P(β) = C

such that
ϕ(a) = u1y

D(u1,u2) · · · yD(un−1,un)uny
S(a),

ϕ(x) = yP(x)v1y
D(v1,v2) · · · yD(vm−1,um)vmy

S(x),
ϕ(y) = y,

and then ξ = [w1y
D(w1,w2) · · · yD(wk−1,wk)wny

C ]∞.

Proof. We denote by y the bounded letter, and by x the growing letter in {b, c}.
Then ϕ(y) = y.

First, we have

Claim 1. Fixed α, β ∈ {a, x}, then all the powers of y between the letter α and
β are the same, i.e. if αyiβ ≺ ξ and αyjβ ≺ ξ, then i = j.

In fact, since both α and β are growing and ξ = w∞, there exists n such
that ϕn(α) = dwpe and ϕn(β) = fwqg with d, f proper prefixes of w, e, g
proper suffixes of w; and p, q ≥ 1. Since ϕn(αyiβ) and ϕn(αyjβ) are factors,
we have weyifw,weyjfw ≺ ξ = w∞. Since the word w is primitive, we have, by
Lemma 1.1, that eyif, eyjf ∈ w∗. And, noticing that w �∈ y∗, this implies that
i = j. Claim 1 follows.

Define a morphism π : {a, x, y}∗ → {a, x}∗ as π(a) = a, π(x) = x, and π(y) = ε.
Then for w ∈ {a, x, y}∗, the word π(w) is obtained by erasing all the y’s from w.
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The substitution ϕ induces a substitution θ over the alphabet {a, x} as follows:
θ(a) = π(ϕ(a)) and θ(x) = π(ϕ(x)).

Since ϕ(y) = y, we know that θ generates, with the axiom a, the sequence
π(ξ) = θ∞(a). Thus by the periodicity of ξ, the sequence π(ξ) is also periodic.
Then by Theorem 0.1, we can get the form of the substitution θ. The rest thing
is deriving the substitution ϕ from θ. There are three cases:

Subcase II.1. θ(a) ∈ u+, θ(x) ∈ u+ with u ∈ {a, x}+.
For α, β ∈ {a, x}, define the integer D(α, β) as follows: if αykβ is a factor of ξ,

then D(α, β) = k; if for any k, αykβ is not a factor of ξ, then D(α, β) = −1.
For α ∈ {a, x}, P(α) (resp. S(α)) is defined as the maximal integer k such that

yk � ϕ(α) (resp. yk � ϕ(α)).
So P(a) = 0. And if β � u, then

S(β) = 0. (∗)

(Indeed, if yk � ϕ(β), then ynk � ϕn(β) for any n. And thus ynk is a factor of ξ
for any n, while this is possible only if k = 0.)

Moreover, we have

Claim 2. There is a constant C such that, for any α, β ∈ {a, x} with D(α, β) ≥ 0,

S(α) + D(α, β) + P(β) = C. (∗∗)

In fact, for α ∈ {a, x}, since θ(α) ∈ u+,

ϕ(α) = yP(α) r tα s y
S(α),

where r ∈ {a, x} (resp. s ∈ {a, x}) is the first letter (resp. the last letter) of u,
and tα is a word depending on α.

If D(α, β) ≥ 0, then αyD(α,β)β ≺ ξ, and ϕ(αyD(α,β)β) ≺ ξ, hence
syS(α)+D(α,β)+P(β)r ≺ ξ. Recall that, for αyiβ and αyjβ factors of ξ, i = j.
So there is a constant C such that the condition sykr ≺ ξ implies k = C. And then
S(α) + D(α, β) + P(β) = C. Claim 2 follows.

Now, if the numbers D,P and S are known, we can rebuild ϕ(a) and ϕ(x) from
θ(a) and θ(x). In fact, if θ(α) = u1 · · ·un, then

ϕ(α) = yP(α)u1y
D(u1,u2) · · · yD(un−1,un)uny

S(α).

Conversely, for any substitution θ = (ui, uj) and numbers D,P and S satisfying
the conditions (∗) and (∗∗), it is easy to check that the derived substitution ϕ
generates ξ = w∞, where w = u1y

D(u1,u2) · · · yD(un−1,un)uny
C with u = u1 · · ·un

and C the constant in (∗∗). This is just the case (ii) in Theorem 2.7.

Subcase II.2. θ(a) = (ax)ia, θ(x) = (xa)jx with i, j ≥ 1.
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Just as in Subcase II.1, y ��ϕ(a), y ��ϕ(a), y ��ϕ(x), y ��ϕ(x). And we have
• ϕ(a) = (aymxyn)ia, ϕ(x) = (xynaym)jx, ϕ(y) = y (m,n ≥ 0, i, j ≥ 1),

and ξ = (aymxyn)∞.
This is the case (i) in Theorem 2.7.

Subcase II.3. θ(a) = (axi)ja, θ(x) = x with i, j ≥ 1.
Consider ϕ(x). Just as before, y ��ϕ(x), y ��ϕ(x). Then ϕ(x) = x and the letter

x is bounded. This is a contradiction. �

Case III. Two letters are bounded.

Theorem 2.8. Let ϕ be a non-ultimately cyclic substitution over S. Suppose that
ϕ generates, with the axiom a, a periodic sequence ξ, and ξ contains any letter for
infinite times. If two letters are bounded for ϕ, then there is a permutation (x, y)
of the letters (b, c) such that ϕ has one of the following forms:
(i) ϕ(a) = (au)ka, ϕ(x) = x, ϕ(y) = y (u ∈ {x, y}+, k ≥ 1), and ξ = (au)∞;
(ii) ϕ(a) = au1a · · ·auka, ϕ(x) = x, ϕ(y) = x (ui ∈ {x, y}+, |u1| = · · · = |uk| =
L, k ≥ 1), and ξ = (au1a · · ·aukax

L)∞.

Proof. In this case, the letters b and c are bounded. There are three subcases:

Subcase III.1. ϕ(b) = b and ϕ(c) = c.
Write ϕ(a) = au1a · · ·aukauk+1, where ui ∈ {b, c}∗.
Since un

k+1 � ϕn(a) for any n, we have uk+1 = ε.
Take n large enough such that ϕn(a) = wlr with r a proper prefix of w and

l ≥ 1. And the formula

ϕn+1(a) = ϕn(a)u1ϕ
n(a) · · ·ϕn(a)ukϕ

n(a)

implies that wlru1w
lr · · ·wlrukw

lr ≺ w∞. Recalling that w is a primitive word
and Alph(w) = {a, b, c}, and noticing that ui ∈ {b, c}+, we have ru1 = · · · =
ruk = w. Hence u1 = · · · = uk. So we have

• ϕ(a) = (au)ka, ϕ(b) = b, ϕ(c) = c (u ∈ {b, c}+, k ≥ 1), and ξ = (au)∞.
This is the case (i) in Theorem 2.8.

Subcase III.2. ϕ(b) = c and ϕ(c) = b.
In this case ϕ2 fulfils the condition in Subcase III.1, then ϕ2(x) = (xu)kx with

u �= ε. But it is easy to see that this is impossible.

Subcase III.3. ϕ(b) = ϕ(c) ∈ S.
Suppose that ϕ(b) = ϕ(c) = x ∈ S. Write that ϕ(a) = au1a · · ·aukauk+1,

where ui ∈ {b, c}∗.
Since xn|uk+1| � ϕn+1(a), we have uk+1 = ε.
Take n large enough such that w�ϕn(a). And, as in Subcase III.1, the formula

ϕn+1(a) = ϕn(a)x|u1|ϕn(a) · · ·ϕn(a)x|uk|ϕn(a)

implies that |u1| = · · · = |uk|.
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So we have
• ϕ(a) = au1a · · ·auka, ϕ(x) = x, ϕ(y) = x (ui ∈ {x, y}+, |u1| = · · · =

|uk| = L, k ≥ 1), and ξ = (au1a · · ·aukax
L)∞.

This is the case (ii) in Theorem 2.8. �
Now combining Theorems 2.1, 2.3, 2.5, 2.7 and 2.8, we get the proof of our

main Theorem 0.2.

3. Remarks

In this section, we give some remarks concerning the periodicity of a fixed point
of a (possibly erasing) substitution.

• Fixed point of a substitution

Let ϕ be a non-erasing substitution over S. If ϕ generates a sequence ξ, say
ξ = ϕ∞(a), then ϕ(ξ) = ξ. In general, we say that a substitution ϕ fixes an
infinite sequence ξ or that ξ is a fixed point of ϕ if ϕ(ξ) = ξ.

Obviously, a fixed point of ϕ is also a fixed point of ϕn for any n ≥ 1.

Let ϕ be a non-erasing substitution, and ξ be a fixed point of ϕ. Write

ξ = ξ1ξ2ξ3 · · · (ξi ∈ S).

There are two cases:

Case I. The letter ξi is bounded for any i ≥ 1.

In this case, taking the formula ϕ(ξ) = ξ into account, a simple induction on i
implies that ϕ(ξi) = ξi for any i.

Case II. There is some letter ξi which is growing.
Put n = min{i ≥ 1 : ξi is growing}. Then we have ϕ(ξi) = ξi for i < n, and

the substitution ϕ generates, with the axiom ξn, the sequence ξnξn+1ξn+2 · · ·
From the above characterization of the fixed point, we have

Theorem 3.1. Let ϕ be a non-erasing substitution, and ξ be a fixed point of ϕ.
Then ξ is ultimately periodic if and only if one of the following conditions holds:

1. ϕ generates ξ, and ξ is ultimately periodic;
2. ξ = wη, where w ∈ S+ with Alph(w) � S; η ∈ SN, and ϕ|Alph(w) is the

identity; ϕ generates the ultimately periodic sequence η;
3. there is a nonempty subset X of S such that ϕ|X is the identity, and ξ is

any ultimately periodic sequence over X.

• Erasing substitution

We consider the erasing substitutions over S = {a, b, c}. There are several cases
depending on the number of empty words among ϕ(a), ϕ(b) and ϕ(c):

Case I. ϕ(a) = ϕ(b) = ϕ(c) = ε.
In this case, the substitution ϕ fixes nothing but ε.
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Case II. Two of ϕ(a), ϕ(b) and ϕ(c) are empty, say ϕ(b) = ϕ(c) = ε.
In this case, if a �∈ Alph(ϕ(a)), then ϕ2 fulfils the condition in Case I, and thus

ϕ fixes nothing but ε.
If a ∈ Alph(ϕ(a)), then the periodic sequence (ϕ(a))∞ is the unique fixed point

of ϕ.

Case III. Just one of ϕ(a), ϕ(b) and ϕ(c) is empty, say ϕ(c) = ε.
Define a morphism π : {a, b, c}∗ → {a, b}∗ as π(a) = a, π(b) = b, and π(c) = ε.

Then θ = π ◦ ϕ is a substitution over {a, b}.
Suppose that ξ is a fixed point of ϕ, then ϕ contains at least one letter in {a, b}

for infinitely many times (otherwise ϕ(ξ) will be a finite word). Thus we can write

ξ = zl1u1z
l2u2 · · · (li ≥ 0, ui ∈ {a, b}).

Therefore ξ = ϕ(ξ) = ϕ(u1u2 · · · ), and thus

u1u2 · · · = π(ξ) = π(ϕ(u1u2 · · · )) = θ(u1u2 · · · ).

Without loss of generality, we assume that u1 = a, and thus a� θ(a).

Subcase III.1. θ(b) = ε, or ϕ(b) ∈ c+.
In this subcase ϕ2 fulfils the condition in Case II, and it is easy to see that

(ϕ2(a))∞ is the unique fixed point of ϕ.

Subcase III.2. θ is non-erasing over {a, b}.
In this subcase, the sequence η = u1u2 · · · is a fixed point of the non-erasing

substitution θ.
Since η = π(ξ) and ξ = ϕ(η), the sequence ξ is ultimately periodic if and only

if η is ultimately periodic.

Up to now, we have shown that

Theorem 3.2. Let ϕ be an erasing substitution over S = {a, b, c}, and ξ be a
fixed point of ϕ. Then ξ is ultimately periodic if and only if there is a permutation
(x, y, z) of the letters (a, b, c) such that one of the following conditions holds:

1. ϕ(x) ∈ S+, ϕ(y) = ϕ(z) = ε with |ϕ(x)|x ≥ 1, and ξ = (ϕ(x))∞;
2. ϕ(x) ∈ S+, ϕ(y) ∈ z+, ϕ(z) = ε with zlx � ϕ(x) for some l ≥ 0, and

ξ = (ϕ2(x))∞;
3. ϕ(x) = u, ϕ(y) = v, ϕ(z) = ε with the words u, v ∈ S+ such that the

substitution θ over {x, y} defined by θ(a) = π(u) and θ(b) = π(v) is non-erasing
and fixes a ultimately periodic sequence η ∈ {x, y}N, and ξ = ϕ(η).

Where the morphism π is defined as π(x) = x, π(y) = y and π(z) = ε.

• Substitution fixing a finite word

Let ϕ be a substitution. If there is a word w ∈ S+ such that ϕ(w) = w, we say
that ϕ fixes a finite word. And in this case, we have that ϕ fixes the periodic
sequence w∞. The interested reader is referred to [3] for a characterization of such
substitutions.



762 B. TAN AND Z.-Y. WEN

Acknowledgements. We would like to thank the anonymous referees of the present paper
for their valuable remarks which have improved the readability of the paper.

References

[1] N.J. Fine and H.S. Wilf, Uniqueness theorem for periodic functions. Proc. Amer. Math.
Soc. 16 (1965) 109–114.

[2] T. Harju and M. Linna, On the periodicity of morphisms on free monoids. RAIRO-Theor.
Inf. Appl. 20 (1986) 47–54.

[3] T. Head, Fixed languages and the adult language of 0L schemes. Int. J. Comput. Math.
10 (1981) 103–107.

[4] B. Lando, Periodicity and ultimate periodicity of D0L systems. Theor. Comput. Sci. 82
(1991) 19–33.

[5] M. Lothaire, Combinatorics on Words. Encyclopedia of Mathematics and its Applications,
Vol. 17, Addison-Wesley (1983).

[6] J. Pansiot, Decidability of periodicity for infinite words. RAIRO-Theor. Inf. Appl. 20
(1986) 43–46.

[7] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press,
New York (1980).
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