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AN INTRINSICALLY NON MINIMAL-TIME
MINSKY-LIKE 6-STATES SOLUTION TO THE FIRING

SQUAD SYNCHRONIZATION PROBLEM

Jean-Baptiste Yunès
1

Abstract. Here is presented a 6-states non minimal-time solution
which is intrinsically Minsky-like and solves the three following prob-
lems: unrestricted version on a line, with one initiator at each end of
a line and the problem on a ring. We also give a complete proof of
correctness of our solution, which was never done in a publication for
Minsky’s solutions.

Mathematics Subject Classification. 65Y05, 68Q25, 68Q80,
68W10.

1. Introduction

Among the variety of problems in cellular automata, the Firing Squad Synchro-
nization Problem (FSSP) plays a very special role. It is one of the oldest and most
vivid questions. Despite the fact that numerous solutions actually exist, it is very
interesting to build new ones either to solve the problem in some new conditions
(new communication graphs, faulty environments, etc), or to study how currently
used algorithms really work, in order to better understand how we can compute
with such a computation model. So is the quest for few states FSSP algorithms,
for which the best records are the famous 6-states minimal-time solution on a line
of cells (see [8]), the 6-states minimal-time solution on a rectangle (see [20]) and
some other tricky 6-states solutions on a line (see [17]).

1.1. The problem

A one-dimensional cellular automata, CA, consists of an array (a line) of iden-
tical finite automata, each one being wired to its two direct neighbors. The whole
machine operates at discrete time-steps; every automaton reads its inputs (states
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of its neighbors and its own state) and changes state according to a given tran-
sition function. Its new state is then available to its neighbors at the next step.
We define the quiescent state such that any quiescent cell remains quiescent when
its neighborhood is quiescent. Then, we can define the firing squad synchroniza-
tion problem, in short FSSP, as follows. Consider arrays of identical automata
which are initially all in the quiescent state except the initiator (located at, say,
the left end of the array and set up in a special initiator state). The FSSP is
to design a transition function such that after some steps all cells are in the same
state (firing state) which never occurred before. What is really challenging is
that such a transition function mustn’t depend on the length of the line, and that
the same function must be used for every possible finite line.

That problem has been studied long ago and has been first stated by Myhill in
1957 (as reported by Moore in 1964, see [11]) to synchronously start a copy of an
original machine in a self-reproducing CA. Since then, a very rich set of solutions
has grown up. Solutions to the original problem have been set up for a long time
and the very first published solution is due to McCarthy and Minsky (see [10]).
Goto (see [3]) has built a so-called minimal-time solution: one which takes only
2n − 2 steps to synchronize a line of n automata (one can easily realize that it
is the minimal time required for an information to be sent from the initiator to
the other end and get the answer back). After that and independently, Waksman
[23] and Balzer [1] have got minimal-time solutions with very few states (resp. 16
and 8 states). Balzer also proved that no 4-state minimal-time solution exists. A
famous record is held by Mazoyer who exhibited a 6-states minimal-time solution
(see [8]) to the FSSP. Since then the design of a 5-states solution remains as an
open problem. One can note that nobody knows how to solve that question:
building a solution with few states seems to require new ideas.

Of course many very different variants of the original problem have been con-
sidered. One can change the underlying network of cells, extend the line to higher
dimensions giving grids, cubes, etc. (see [18–20]), generate different regular graphs
like fireflies-graphs, Cayley graphs, etc. (see [14,15]), or even free many constraints
(see [4–6, 16]) like communication delays, fan-outs, etc. One can also limit the
bandwidth down to a single bit (see [9]). Another common modification to the
original problem is to consider faulty environments, i.e. to consider that some
cells are unable to compute the transition function, see [7, 21, 25].

1.2. Our contribution

In this paper we present a 6-state non minimal-time solution to the unrestricted
problem inspired by a solution given by Pierre [13]. By unrestricted we mean that
the initiator can be located at any end of the line. We will also show that the
same transition function also solves the problem with initiators at both ends and
on a ring. What is new in this solution is that it does not involve some “trick” in
extending the 6-state minimal-time Mazoyer’s solution as does that in the paper
of Settle and Simon (see [17]). As illustrated in Figure 1, their strategy is to delay
the original Mazoyer’s solution when the initiator is located at the right: a right
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Mazoyer’s solution

initiator at left

right−to−left signal

Figure 1. The Settle/Simon’s 6-states non minimal-time solution.

to left traversal is done before starting the original solution from the left. In case
the initiator is at the left the original solution is launched as usual. What is tricky
(and hard to do) in this solution is that some unused transitions of the original
solution were used to produced the desired effect: the right-to-left signal is not
obvious (see Fig. 1). This solution is thread-like and use O(n log n) state changes)
which makes it different from a 6-states solution designed by Umeo et al. (see [22])
which use O(n2) state changes.

In contrast, our solution computes the Minsky strategy (see Fig. 2). This con-
tradicts what Mazoyer sometimes claimed, namely that to minimize the number of
states it is necessary to synchronize in minimal-time and to break the symmetry of
the solution. Though very interesting, Settle and Simon’s solution did not violate
this last assertion. Our solution does since it is intrinsically non minimal-time
and symmetric. In this paper we will prove the correctness of our solution for the
following problems:

• the restricted problem;
• the unrestricted problem;
• the problem with initiators at both ends;
• the problem for the ring.
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(a) The skeleton (b) A sample run

• =

A =

B =

C =

D =

E =

(c) State encoding

Figure 2. The Minsky’s solution.

As far as we know, there are only two formal proofs of the correctness of solution
to the FSSP (see [8, 12]), moreover, Mazoyer’s proof has been verified with the
help of the theorem prover Coq by Duprat (see [2]). This one is the first proof of
a Minsky based solution.

2. A 6-state solution to the problem

We first remind the reader that Minsky’s strategy is to solve the problem with
a “divide-and-conquer” method: cut the line into two equals parts and recursively
compute it on each part (as illustrated in Fig. 2a).

Cutting the line into two equal parts is done using two basic signals launched
from the initiator. The first one evolves at maximum speed from the initiator up to
the other end of line and bounces back. Simultaneously, the second signal evolves
from the initiator at 1

3 the maximum speed up to the moment it encounters the
first one. This meeting takes place at the middle of the line, and that process is
repeated again on each of the two new sub-lines. The end of the process is reached
when automata detects that it is unnecessary or impossible to cut the line (one
cannot cut a single automaton).

The complete transition function of our solution is given in Figure 3. To ease
the read of the table, we used the following conventions: the initiator is denoted
by “A”, the quiescent state by “•”, the border by “$” and the firing state by “E”.
The number of transitions is 132, which can be compared to the 119 rules solution
by Mazoyer [8] or Nogushi [12]. Figure 2b shows how the process takes place on a
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• $ • A B C D

$ • C B • •
• • • C B • •
A C C C B C
B B B B B A
C • • A • •
D • • C • •

A $ • A B C D

$ E B E A C C
• B B B A
A E B E A C C
B A A A A
C C A C C C
D C C A C C

B $ • A B C D

$ D A A B
• D D C D D D
A A C A A A
B D A A B
C A D A A
D B D A B B

C $ • A B C D

$ D B C
• D B C
A D D D D D
B B B D B B
C D B C
D C C C C

D $ • A B C D

$ • •
• • • A
A • • • B •
B • • • •
C A B A
D • • A

Figure 3. The 6-state Minsky-like transition function.

line of 30 automata, and for convenience a different grey tone has been attributed
to each significant state.

3. The proof of correctness of the solution

In the following, we shall use t : s1 . . . sl to denote that automaton i ∈ [1, l]
at time t ≥ 0 is in state si ∈ {•, A, B, C, D, E}. For convenience, we shall use

[i,j]︷ ︸︸ ︷
s . . . s to denote that each automaton k ∈ [i, j] is in state s, and � (the wildcard)
to denote any suitable state.

Definition 3.1. The starting configuration of a firing squad is a line of l automata
so that

0 : A

[2,l]︷ ︸︸ ︷• . . . • .

Lemma 3.2 (first lines). Our transition function synchronizes every line of length
1 ≤ l ≤ 5.

Proof. The 5 runs (see Fig. 4) of the automaton constitute the proof. The rules
used in these runs are: $A$→E, $A•→B, A•$→C, $BC→A, BC$→B, $AB→A,
AB$→A, $AA→E, AA$→E, A••→C, ••$→•, BC•→B, C•$→•,
AB•→C, B•$→B, $AC→C, ACB→D, CB$→A, $CD→C, CDA→B, DA$→C,
$CB→B, CBC→A, $BA→A, AAA→E, • • •→•, C••→•, B••→B, CB•→D,
CDD→A, DDB→•, DB$→B, $CA→D, CA•→A, A•B→B, •B$→D, $DA→•,
DAB→A, ABD→A, BD$→•, $•A→C, •AA→B, AA•→B, CBB→A, BBC→A,
BAA→A, AAB→A. �
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(a) l = 1 (b) l = 2 (c) l = 3 (d) l = 4 (e) l = 5

• =

A =

B =

C =

D =

E =

(f) State encoding

Figure 4. Simple runs.

Lemma 3.3 (quiescent upright triangle). From a starting configuration of length
l, every configuration at time 0 ≤ t < l − 1 is a pattern of the form

t :
[1,t+1]︷ ︸︸ ︷
� . . . �

[t+2,l]︷ ︸︸ ︷• . . . • .

Proof. Obvious from the definition of the quiescent state. �

Lemma 3.4 (starting). If 4 ≤ l then from the starting configuration of length l
we have

0 : A

[2,l]︷ ︸︸ ︷• . . . • ⇒ 4 : CDDB

[5,l]︷ ︸︸ ︷• . . . • .

Proof. it is easy to check that it is true for l = 4 and l = 5 (see Lem. 3.2 and
Figs. 4d-e). The general case (l ≥ 5) is then a corollary of Lemma 3.3. �

Lemma 3.5 (upright triangle). If 3 ≤ l then

t :
[1,i]︷ ︸︸ ︷

� . . . � DB

[i+3,l]︷ ︸︸ ︷• . . . • ⇒ t + 1 :
[1,i+1]︷ ︸︸ ︷
� . . . �DB

[i+4,l]︷ ︸︸ ︷• . . . • .

Proof. The following transition rules are sufficient: DB•→D, B••→B, • • •→•
••$→•, and at boundaries (i + 3 = l): B•$→B. �

Lemma 3.6 (forward propagation). Configurations at time t when 5 ≤ t ≤ l, are
of the kind

t :
[1,k]︷ ︸︸ ︷• . . . •CA

[k+3,t−2]︷ ︸︸ ︷• . . . • DB

[t+1,l]︷ ︸︸ ︷• . . . • if t = 5 + 3k (1)

t :
[1,k]︷ ︸︸ ︷• . . . •DAC

[k+4,t−2]︷ ︸︸ ︷• . . . • DB

[t+1,l]︷ ︸︸ ︷• . . . • if t = 6 + 3k (2)

t :
[1,k+1]︷ ︸︸ ︷• . . . •CD

[k+4,t−2]︷ ︸︸ ︷• . . . • DB

[t+1,l]︷ ︸︸ ︷• . . . • if t = 7 + 3k. (3)
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Proof. We will prove the correctness by recursion.

Initial case k = 0, (t = 5 + 3k). From Lemmas 3.4 and 3.5 and with the use
of the rules $CD→C, CDD→A, and DDB→•, we have

5 : CA • DB

[6,l]︷ ︸︸ ︷• . . . • .

Induction step. We will now prove that if l ≥ t + 1, then equation (1) at time t
yields equation (2) at t + 1, equation (2) at time t yields equation (3) at t + 1 and
equation (3) at time t yields equation (1) at t + 1.

Suppose that it is true for any 0 ≤ k. If 6 ≤ l then with the help of Lemma 3.5
and the rules ••C→•, •CA→D, CA•→A, A••→C (and for the boundary cases
i.e. when k = 0: $CA→D, A•D→C and when k = 1 $•C→•), we get

t + 1 :
[1,k]︷ ︸︸ ︷• . . . •DAC

[k+4,t−1]︷ ︸︸ ︷• . . . • DB

[t+2,l]︷ ︸︸ ︷• . . . • .

If 7 ≤ l, then with the rules ••D→•, •DA→•, DAC→C, AC•→D, C••→• (and
for boundary cases k = 0: $DA→•, C•D→•, and k = 1: $•D→•) we get

t + 2 :
[1,k+1]︷ ︸︸ ︷• . . . •CD

[k+4,t]︷ ︸︸ ︷• . . . •DB

[t+3,l]︷ ︸︸ ︷• . . . • .

And if 8 ≤ l, then with •CD→C, CD•→A, D••→• (and for boundary cases with
k = 0: $•C→•, and if k = 1: $••→•) we get

t + 3 :
[1,k+1]︷ ︸︸ ︷• . . . •CA

[k+4,t+1]︷ ︸︸ ︷• . . . • DB

[t+4,l]︷ ︸︸ ︷• . . . •

which is exactly the property for k + 1. �

As a consequence we have the following lemmas:

Lemma 3.7 (end of forward propagation). The configuration at time 5 ≤ t = l is

l :
[1, l−6

3 ]︷ ︸︸ ︷• . . . •DAC

[ l+6
3 ,l−2]︷ ︸︸ ︷• . . . • DB, if l = 0 mod 3

l :
[1, l−4

3 ]︷ ︸︸ ︷• . . . •CD

[ l+5
3 ,l−2]︷ ︸︸ ︷• . . . • DB, if l = 1 mod 3

l :
[1, l−5

3 ]︷ ︸︸ ︷• . . . •CA

[ l+4
3 ,l−2]︷ ︸︸ ︷• . . . • DB, if l = 2 mod 3.

Proof. This is a direct application of Lemma 3.6. �
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Lemma 3.8 (bouncing). The configuration at time l + 1 when 5 ≤ l is

l + 1 :
[1, l−3

3 ]︷ ︸︸ ︷• . . . •CD

[ l+6
3 ,l−1]︷ ︸︸ ︷• . . . • B, if l = 0 mod 3

l + 1 :
[1, l−4

3 ]︷ ︸︸ ︷• . . . •CA

[ l+5
3 ,l−1]︷ ︸︸ ︷• . . . • B, if l = 1 mod 3

l + 1 :
[1, l−5

3 ]︷ ︸︸ ︷• . . . •DAC

[ l+7
3 ,l−1]︷ ︸︸ ︷• . . . • B, if l = 2 mod 3.

Proof. With the help of the rule DB$→B and the preceding lemma. �
Lemma 3.9 (backward propagation). The configurations at times l+2 ≤ t < l+ l

2
when 6 ≤ l are of the kind

l + 2 + 3k :
[1, l−3

3 +k]︷ ︸︸ ︷• . . . • CA

[ l+6
3 +k,l−2−3k]︷ ︸︸ ︷• . . . • BD

[l+1−3k,l]︷ ︸︸ ︷• . . . • , if l = 0 mod 3

l + 2 + 3k :
[1, l−4

3 +k]︷ ︸︸ ︷• . . . • DAC

[ l+8
3 +k,l−2−3k]︷ ︸︸ ︷• . . . • BD

[l+1−3k,l]︷ ︸︸ ︷• . . . • , if l = 1 mod 3

l + 2 + 3k :
[1, l−2

3 +k]︷ ︸︸ ︷• . . . • CD

[ l+7
3 +k,l−2−3k]︷ ︸︸ ︷• . . . • BD

[l+1−3k,l]︷ ︸︸ ︷• . . . • , if l = 2 mod 3.

Proof. From Lemma 3.8 and with the rules ••B→B and •B$→D. Note that
only the maximum speed signal moves backwards, so the CA → DAC → CD
transformation is as in Lemma 3.6. �

We define the end of the backward propagation process as the time when the
quiescent middle segment is of length 1.

Lemma 3.10 (end of backward propagation). If 6 ≤ l then we have

⎧⎪⎪⎨
⎪⎪⎩

l + l
2 − 1 :

[1, l
2−2]︷ ︸︸ ︷• . . . • CA • BD

[ l
2 +4,l]︷ ︸︸ ︷• . . . • if l = 0 mod 2

l + l−1
2 − 1 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • DAC • BD

[ l+1
2 +4,l]︷ ︸︸ ︷• . . . • if l = 1 mod 2.

Proof. From Lemma 3.9 we have:

Case l = 0, mod 3.
We first show that the length ∆ of the quiescent middle segment (when surrounded
by CA and BD) is either 4p + 1 or 4p + 3. As l = 3n, we have

∆ = (l−2−3k)−
(

l + 6
3

+ k

)
+1 = 3n−2−3k−n−2−k+1 = 2n−4k−4+1.

So {
if n = 2m, ∆ = 4m− 4k − 4 + 1 = 4(m − k − 1) + 1
if n = 2m + 1, ∆ = 4m + 2 − 4k − 4 + 1 = 4(m − k − 1) + 3.

(4)
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Subcase l = 0, mod 6. i.e. l = 3n = 6m. Observe that for k = m − 1 we
have t = l + 2 + 3k = l + 2 + 3( l

6 − 1) = l + l
2 − 1 and ∆ = 1:

l +
l

2
− 1 :

[1, l
2−2]︷ ︸︸ ︷• . . . • CA • BD

[ l
2+4,l]︷ ︸︸ ︷• . . . • .

Subcase l = 3, mod 6. i.e. l = 3n = 3(2m + 1) = 6m + 3. Observe that for
k = l−3

6 − 1 we have t = (l + 1)+2 + 3k = l + 2+ l−3
2 − 3 = l + l−1

2 − 2 and ∆ = 3
then

l + l−1
2 − 2 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • CA • • • BD

[l− l−1
2 +5,l]︷ ︸︸ ︷• . . . •

1 + l−1
2 − 1

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • DAC • BD

[l− l−1
2 +4,l]︷ ︸︸ ︷• . . . • .

Case l = 1, mod 3.
As in the previous case, we can see that the length of the middle segment (when
surrounded by DAC and BD) is either 4p + 1 or 4p + 3. As l = 3n + 1 we have

∆ = l − 2 − 3k − l + 8
3

− k + 1 = 2n − 4k − 4 + 1

and then the property of equation (4).

Subcase l = 1, mod 6. i.e. l = 3n + 1 = 6m + 1. Observe that for k = m− 1
we have t = l+2+3k = l+2+ l−1

2 −3 = l+ l−1
2 −1 and ∆ = 4m−4(m−1)−4+1 = 1

then

l +
l − 1

2
− 1 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • DAC • BD

[ l+1
2 +4,l]︷ ︸︸ ︷• . . . • .

Subcase l = 4, mod 6. i.e. l = 3n + 1 = 6m + 4. Observe that for k = m− 1
we have t = l+2+3k = l+2+ l−4

2 −3 = l+ l
2−3 and ∆ = 4m+2−4m+4−1+1 = 3

then

l + l
2 − 3 :

[1, l
2−3]︷ ︸︸ ︷• . . . • DAC • • • BD

[l− l
2+6,l]︷ ︸︸ ︷• . . . •

l + l
2 − 2

[1, l
2−2]︷ ︸︸ ︷• . . . • CD • •BD

[l− l
2 +5,l]︷ ︸︸ ︷• . . . •

l + l
2 − 1 :

[1, l
2−2]︷ ︸︸ ︷• . . . • CA • BD

[l− l
2+4,l]︷ ︸︸ ︷• . . . • .

Case l = 2, mod 3.
We first see that the length of the middle segment (when surrounded by CD and
BD) is either 4p or 4p + 2. As l = 3n + 2 we have

∆ = l − 2 − 3k − l + 7
3

− k + 1 = 3n + 2 − 2 − 3k − n − 3 − k + 1 = 2n − 4k − 2.

So {
if n = 2m, ∆ = 4m − 4k − 2 = 4(m − k) − 2)
if n = 2m + 1, ∆ = 4m + 2 − 4k − 2 = 4(m − k).
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Subcase l = 2, mod 6. i.e. l = 3n + 2 = 6m +2. Observe that for k = m− 1,
we have t = l + 2 + 3k = l + 2 + 3( l−2

6 − 1) = l + l
2 − 2 and ∆ = 4(m − k) − 2 =

4(m − m + 1) − 2 = 2 then

l + l
2 − 2 :

[1, l
2−2]︷ ︸︸ ︷• . . . • CD • •BD

[ l
2+5,l]︷ ︸︸ ︷• . . . •

l + l
2 − 1

[1, l
2−2]︷ ︸︸ ︷• . . . • CA • BD

[ l
2+4,l]︷ ︸︸ ︷• . . . • .

Subcase l = 5, mod 6. i.e. l = 3n + 2 = 6m + 5. Observe that for k = m− 1
we have t = l+2+3k = l+2+3( l−5

6 −1) = l+ l−1
2 −3 and ∆ = 4(m−k) = 4 then

l +
l − 1

2
− 3 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • CD • • • •BD

[ l−1
2 +7,l]︷ ︸︸ ︷• . . . •

l +
l − 1

2
− 2 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • CA • • • BD

[ l−1
2 +6,l]︷ ︸︸ ︷• . . . •

l +
l − 1

2
− 1 :

[1, l−1
2 −2]︷ ︸︸ ︷• . . . • DAC • BD

[ l−1
2 +5,l]︷ ︸︸ ︷• . . . • . �

Lemma 3.11 (cuts). If 6 ≤ l then
⎧⎪⎪⎨
⎪⎪⎩

l + l
2 :

[1, l
2−2]︷ ︸︸ ︷• . . . • DABD

[ l
2+3,l]︷ ︸︸ ︷• . . . • if l = 0 mod 2

l + l−1
2 :

[1, l−1
2 −1]︷ ︸︸ ︷• . . . • CDAD

[ l+1
2 +3,l]︷ ︸︸ ︷• . . . • if l = 1 mod 2.

Proof. Obvious from Lemma 3.10 and the rules A•B→B and C•B→A. �
Lemma 3.12 (recursive start). If 6 ≤ l then

⎧⎪⎪⎨
⎪⎪⎩

l + l
2 + 1 :

[1, l
2−1]︷ ︸︸ ︷• . . . • AA

[ l
2+2,l]︷ ︸︸ ︷• . . . • if l = 0 mod 2

l + l−1
2 + 1 :

[1, l−1
2 −1]︷ ︸︸ ︷• . . . • CBC

[ l+1
2 +2,l]︷ ︸︸ ︷• . . . • if l = 1 mod 2

and then ⎧⎪⎪⎨
⎪⎪⎩

l + l
2 + 2 :

[1, l
2−2]︷ ︸︸ ︷• . . . • CBBC

[ l
2+3,l]︷ ︸︸ ︷• . . . • if l = 0 mod 2

l + l−1
2 + 1 :

[1, l−1
2 −1]︷ ︸︸ ︷• . . . • CBC

[ l+1
2 +2,l]︷ ︸︸ ︷• . . . • if l = 1 mod 2.

Proof. From Lemma 3.11 and with the help of the rules DAB→A, ABD→A,
CDA→B, DAD→C, and ••A→C, •AA→B, AA•→B, A••→C (and for bound-
ary case l = 6, $•A→C and A•$→C). �
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Lemma 3.13 (virtual borders). If 6 ≤ l and l = 0 mod 2 (respectively when
l = 1 mod 2) then each segment [1, l

2 ] and [ l
2 + 1, l] (resp. [1, l+1

2 ] and [ l+1
2 , l])

evolves independently and symmetrically.

Proof. One can easily check that the transition function is symmetric, i.e. for every
states s, s′, s′′, if ss’s”→x is a transition then s”s’s→x also. Then, obviously if a
configuration is symmetric, its evolution is symmetric too. The recursive starting
configurations (Lem. 3.12) being symmetric, so is their evolution.

Finally, observing that after any cut, the middle of the configurations is either
of the form ss′s′s (for even length) or ss′s (for odd length), independence of the
configurations of the two sub-lines is obtained with the following properties of the
transition rules (and their symmetric counterpart):

if $s’s→x is a transition, then so is ss’s→x
if $ss’→x is a transition, then so is sss’→x

which insures that any such state s plays the role of a border. �

Theorem 3.14 (FSSP). The transition function synchronizes every line of l > 1
cells in time Ts(l) = 3(l − 1) + �log2(l)�.
Proof. We already know that Ts(2) = 4 and from preceding lemmas we have:

Length Cut at time Subline length
2p 3p + 1 p
2p + 1 3p + 1 p + 1

Suppose it is true for l then we have

Ts(2l) = 3l + 1 + Ts(l) = 3l + 3(l − 1) + 1 + �log2(l)�
= 3(2l − 1) + �log2(2l)�

and as x > 1 yields �log2(2x)� = �log2(2x − 1)� we also have

lllTs(2l − 1) = 3(l − 1) + 1 + Ts(l) = 3(l − 1) + 3(l − 1) + 1 + �log2(l)�
= 3[(2l − 1) − 1] + �log2(2l)�
= 3[(2l − 1) − 1] + �log2(2l − 1)�. �

Theorem 3.15 (unrestricted FSSP). The transition function solves the unre-
stricted problem, i.e. synchronizes every line of l > 0 cells with the initiator at the
left or the right.

Proof. The transition function is symmetric, so computing the transition function
on a line as t : s1s2 . . . sl is the same as computing the function on the line
t : sl . . . s2s1. The Figure 5b shows such a run on a line of length 14. �
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(a) left-FSSP (b) right-FSSP (c) left-right-FSSP

Figure 5. Various runs.

4. Some more solved problems

Our transition function also solves some more variants of the problem. It does
synchronize lines with two initiators on the line (one at each end), and it also
synchronizes rings of cells as stated in the following theorems.

Theorem 4.1 (left-right-FSSP). The transition function synchronizes every line

of l > 0 cells in the configuration A

[2,l−1]︷ ︸︸ ︷• . . . •A.

Proof. From Lemma 3.13 and Theorem 3.15. The Figure 5c shows a sample of a
such a computation on a line of length 28. �

Theorem 4.2 (ring). The automata synchronizes every ring of perimeter l > 0.

Proof. It is sufficient to remark that taking a linear configuration with initiator at
both ends and sticking the first cell on the last gives a ring. Then synchronizing
a ring of perimeter l > 0 is the same as synchronizing a line of length l + 1 with
initiators at both ends. �

5. Conclusion

In this paper we have exhibited a 6-state symmetric non time-optimal solution to
some firing squad synchronization problems: unrestricted, both initiators and ring
variants. This solution has two interesting features. First, it is intrinsically non
minimal-time, i.e. not built on top of some minimal-time solution, charging down
the intuitive argument stating that minimal-state solution implies minimal-time.
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Second, it is symmetric which also contradicts another intuition about minimal-
state solutions.

We also gave a complete proof of the correctness of the solution, which was
never done since Mazoyer’s solution [8] and Noguchi’s [12]. As the nature of their
solutions is very different, that proof is significant, and not only because proofs
are sine qua non in science, but also because we think that we can extract, from
it, some very interesting information about the solution.

Acknowledgements. I would like to extend my grateful thanks to Professor Serge Grigorieff.
I met him during the late years of my student time when he was teaching “Calculabil-
ity and Models of Computation”. To my astonishment, that great teacher and fount of
knowledge, was always well-disposed towards me, and so much far beyond what could
be expected in such situation. He introduced me to the firing squad synchronization
problem and encouraged me to make a doctorate in the field of Cellular Automata – he
was a great director, I felt and indeed was free. Later on, he pushed me to compete
for an “Mâıtre de Conférence” position in the University, and now that I am in a very
comfortable position, I had some time to observe what happened during those years and
what is due to Serge – absolutely invaluable. Folklore says that “we don’t have more true
friends than fingers in one hand”, and according to this I can say that Serge is one of
the few person whom I can really reckon with. I didn’t know so much people so peaceful
and full of kindness and, I hope that the time which passes will never change anything
in our mutual respect and humble admiration. Sincerely.

References

[1] R. Balzer, An 8-state minimal time solution to the firing squad synchronization problem.
Inform. Control 10 (1967) 22–42.

[2] J. Duprat, Proof of correctness of the Mazoyer’s solution of the firing squad problem in
Coq. http://hdl.handle.net/2332/792 (2002).

[3] E. Goto, A Minimum Time Solution of the Firing Squad Problem. Course Notes for Applied
Mathematics 298, Harvard University (1962).

[4] S. Grigorieff, Synchronization of a bounded degree graph of cellular automata with non
uniform delays in time δ�logm(δ)�. Theor. Comput. Sci. 356 (2006) 170–185.

[5] T. Jiang, The synchronization of non-uniform networks of finite automata. Inform. Control
97 (1992) 234–261.

[6] K. Kobayashi, The firing squad synchronization problem for a class of polyautomata net-
works. J. Comput. Syst. Sci. 17 (1978) 300–318.

[7] M. Kutrib and R. Vollmar, The firing squad synchronization problem in defective cellular
automata. IEICE T. Inf. Syst. E78-D (1995) 895–900.

[8] J. Mazoyer, A six-state minimal time solution to the firing squad synchronization problem.
Theor. Comput. Sci. 50 (1987) 183–238.

[9] J. Mazoyer, A Minimal Time Solution to the Firing Squad Synchronization Problem with

Only One Bit of Information Exchanged. Rapport Technique LIP 89.03, École Normale
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