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ARITHMETIZATION OF THE FIELD OF REALS
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Abstract. (1) Shepherdson proved that a discrete unitary commu-
tative semi-ring A+ satisfies IE0 (induction scheme restricted to quan-
tifier free formulas) iff A is integral part of a real closed field; and
Berarducci asked about extensions of this criterion when exponentia-
tion is added to the language of rings. Let T range over axiom systems
for ordered fields with exponentiation; for three values of T we pro-
vide a theory T in the language of rings plus exponentiation such
that the models (A, expA) of T are all integral parts A of models M
of T with A+ closed under expM and expA = expM � A+. Namely
T = EXP, the basic theory of real exponential fields; T = EXP+
the Rolle and the intermediate value properties for all 2x-polynomials;
and T = Texp, the complete theory of the field of reals with expo-
nentiation. (2) Texp is recursively axiomatizable iff Texp is decid-
able. Texp implies LE0(x

y) (least element principle for open formulas
in the language <, +,×,−1, xy) but the reciprocal is an open ques-
tion. Texp satisfies “provable polytime witnessing”: if Texp proves

∀x∃y : |y| < |x|k)R(x, y) (where |y| := log(y) , k < ω and R is an
NP relation), then it proves ∀x R(x, f(x)) for some polynomial time
function f . (3) We introduce “blunt” axioms for Arithmetics: axioms
which do as if every real number was a fraction (or even a dyadic num-
ber). The falsity of such a contention in the standard model of the
integers does not mean inconsistency; and bluntness has both a heuris-
tic interest and a simplifying effect on many questions – in particular
we prove that the blunt version of Texp is a conservative extension of
Texp for sentences in ∀∆0(x

y) (universal quantifications of bounded
formulas in the language of rings plus xy). Blunt Arithmetics – which
can be extended to a much richer language – could become a useful tool
in the non standard approach to discrete geometry, to modelization and
to approximate computation with reals.
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1. Shepherdson’s criterion with exponentiation

1.1. Arithmetizing ordered fields

Let R be a model of the axioms OF of ordered field; an integral part of R is
a subring A such that for every element x of the field there is a unique element
x of the ring such that x < x ≤ x + 1; x is called the integral part of x

(in A). In general A is not unique; in fact as soon as R is real closed and non
archimedean the number of integral parts of R is infinite and large. Nevertheless
we sometimes write A = R to mean that A is an integral part of R. Note that
A then satisfies the axioms DUCR + ED of discrete unitary commutative ring +
euclidean division (for x/y is the euclidean quotient of x by y). The converse
is true: every model A of DUCR + ED is integral part of a model R of OF –
we can take R to be any field in between the fraction field Q(A) and its Cauchy
completion Q(A)c. We are interested in results of this type, relating extensions
of OF with extensions of DUCR. We denote L the language {≤, +,×,−1} of
DUCR, tacitly considering R, Z as L-structures and not only as sets; henceforth,
A tacitly ranges over all models of DUCR. We write rcl for real closed or real
closure and RCF for the theory of rcl fields; remember that RCF axiomatizes the
complete theory of R, and is axiomatized by the theory RF of real fields plus the
intermediate value scheme IV for all polynomials. IE0 denotes (the extension of
DUCR by) the quantifier free induction scheme of L.

Shepherdson [8] proved that A is a model of IE0 iff A = R for some rcl field R
– we can take for R the rcl of Q(A). And Mourgues and Ressayre [3] proved that
every rcl field has an integral part. Together these results establish a kind of weak
duality A :�−→ rcl(Q(A)) from IE0 to RCF and back. We introduce a convenient
terminology to discuss results of this kind: if T extends OF then mod T denotes
the class { R ; R satisfies T }; T denotes the (first order L-) theory of mod T .
Thus the preceding result are expressed by: mod T = mod T for T = OF and
T = RCF ; and by: OF ≡ ED, RCF ≡ IE0 (modulo DUCR).

Let L(...) denote L extended by all function and relation symbols written inside
(...); when exp is xy or ax (a > 1 some constant) we call exp-polynomials the terms
of L(exp). Berarducci [B] asked for extensions of Shepherdson’s criterion when
L(exp) replaces L. We partially answer his question, keeping the above definition
of mod T and mod T when L(2x) is the language of T while L(xy)) is the
language of T . The reason for choosing 2x in the first place but xy in the second
one is that for every expansion (R, 2x) of R which satisfies some basic properties
of exponentiation we set xy

R := 2y log(x); whereas this kind of relation between xy

and 2x is not to be expected in (R, 2x) . Granted this we have to define integral
parts (R, 2x) so that they come equipped with a function xy : we say that A is
an xy-integral part of (R, 2x) (also denoted (A, xy) = (R, 2x) ) iff A = R and
A+ is closed under xy

R; then xy
A := xy

R � A+.
Let Texp denote the complete theory of (R, 2x); we prove that mod Texp equals

mod Texp and we axiomatize Texp . Since every model of Texp has an xy-integral
part this establishes the same amount of duality between Texp and Texp as do
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Shepherdson and Mourgues and Ressayre between IE0 and RCF . One would like
Texp to reduce to LE0(xy) (least element scheme for quantifier free formulas of
L(xy)), in analogy with Shepherdson’s criterion. Alas Texp implies LE0(xy) but
the reciprocal is beyond reach; furthermore our axiomatization of Texp is ad hoc:
it expresses natural properties of reals, not of integers. In contrast Shepherdson’s
criterion is not ad hoc: IE0 is as natural a theory for integers as is IV for reals.

But we are interested in axiomatizations T even if they are ad hoc: at least
they prove that the class of integral parts of models of T is first order; and they are
a useful step towards a better axiomatization. In addition we shall prove two other
extensions of Shepherdson’s criterion with nothing ad hoc; they characterize the
xy-integral parts of models of T for T = EXP – the basic axioms of (real) expo-
nential fields, and for T = EXP plus IV R(2x) – which denotes the intermediate
value and Rolle properties for all 2x-polynomials.

1.2. The theory EXP

• An exponential field – here with exponentiation of base 2 – is a model
(R, 2x) which satisfies the axioms EXP: (i) 21 = 2 and 2x is a homomor-
phism of + on (the restriction to positive elements of) × (ii) 2x is an
ordermorphism such that 2 < x −→ x2 < 2x (iii) ∀x > 0 log(x) exists
(that is: ∃y 2y = x).

• In any such field, xy denotes 2y log x.
Note that the last axiom implies: yn < 2y as soon as n ≤ log(y); indeed yn ≤
ylog(y) which for y = 2x equals 2x2

< 2y. It is easy to prove that mod EXP =
mod EXP and to axiomatize EXP : one provides a first, roundabout axiomati-
zation of mod EXP ; it begins with EXP− which is EXP without its last axiom
(of existence of log(x)). Note that in the present context of EXP we think of the
quantifiers as ranging over the integers, no longer the reals. This applies also to
the next axiom although it is the “exponentiation of fractions” denoted E :

(∀p, q, x > 0)(∃a, b > 0) |2p − (a/b)q| < 1/x.

This axiom implies that inside Q(A) the cut 2p/q := {a/b|(a/b)q < 2p} is a Cauchy
cut; so that it defines 2p/q as an element of Q(A)c. The function 2x is thus defined
as a map from Q(A) into its Cauchy completion; and by the usual argument, this
map has an extension sending the totality of Q(A)c to Q(A)c. Then for every
sentence φ of EXP there is an “fc-translation of φ”, that is: a sentence φfc of
L(xy) which is true in (A, xy) iff (Q(A)c, 2x) satisfies φ (the superscript fc is chosen
in reference to “Completion of the Fraction field of A”; such an fc-translation is
easy to provide in the present case φ ∈ EXP but it is more complicated than φ and
it exists only when φ is simple enough). Here is our first axiomatization of EXP :

• DUCR + ED + EXP− + E ,
• EXPfc (:= {φfc; φ ∈ EXP}, the fc-translation of EXP).

This system is an ad hoc way to express that (A, xy) is an xy-integral part of a
model of EXP; but we can reduce it to natural axioms.
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Theorem 1. EXP is axiomatized by the following system A0, where all variables
tacitly range over positive elements:

• ED and ∃a, b |bq2p − aq| < 1/x.
• xy+z = xyxz, x−yxy = 1; xyz = (xy)z; xy strictly increasing with respect

to x, y > 1.
• 2 < x −→ x2 < 2x.
• ∃y 2y ≤ z < 2y+1; ∃x xz ≤ 2y < (x+1)z; ∃y 2(xy) < (x+1)y; ∃x (x+1)y <

2(xy).

Here we skip the proof of this theorem, which is lengthy but along familiar lines.

1.3. The theory IVR(2x)

For a number of other extensions T of OF a systematic and direct fc-translation
T fc of T exists, which is heavy but straightforward. It proves that mod T =
mod T ; the axiomatization T fc that it provides of mod T is ad hoc but is
often a step towards a better one. For instance RCF is axiomatized by IV (over
RF ), and IV fc is not hard to write down; it is an axiomatization of RCF –
ad hoc but which can be finally reduced to IE0. In the same way it will be easy to
provide IV R(2x)fc; it proves the existence of IV R(2x) and provides an ad hoc
axiomatization – but a nice argument does better:

Theorem 2. Over EXP the theory IV R(2x) is axiomatized by LE0(2x) – least
element scheme for quantifier free formulas of L(2x) with fractional parameters.

The allowance for fractional parameters in the scheme LE0(2x) needs to be
made precise; it is easy to provide for every open formula φ(x̄, X) ∈ L(2x) a formula
φ(x̄, ȳ, X)fc ∈ L(xy) such that we have for all b̄, d̄, X in A: [Q(A)c, 2x) satisfies
φ(b1/d1, ...bk/dk, X)] iff (A, xy) satisfies φ(b̄, d̄, X)fc. And LE0(2x) denotes ( EXP
plus) the least element axiom for the formula φ(b̄, d̄, X)fc – when φ(x̄, X) ranges
over the quantifier free formulas of L(2x):

∃Xφ(b̄, d̄, X)fc −→ ∃min X : φ(b̄, d̄, X)fc.

A difference between Theorem 2 and Shepherdson’s criterion is that the latter uses
the induction scheme IE0 which is a priori weaker than the least element scheme
LE0: in fact LE0(E) implies IE0(E) in any extended language L(E), but the
converse implication is not true in general. Still LE0(E) is true in the case below;
we start to often write Rexp and Aexp in place of (R, 2x) and (A, xy).
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Proposition 3.
(a) LE0(xy) holds in every xy-integral part of every model of Texp.
(b) If Rexp satisfies EXP + IV R(2x) then LE0(2x) holds in every 2x-integral

part of R.

Proof of Proposition 3.
(a) Let Rexp be a model of Texp; Wilkie [10] proved that Texp is an o-minimal

theory hence Rexp is an o-minimal structure. That is: if Φ(x) is any formula of
L(2x) with parameters in R then the interpretation of Φ(x) in Rexp is a finite
union of intervals with endpoints ai, bi ∈ R ∪ {−∞, +∞}. Thus if A = R then
min x ∈ A : Φ(x) can only be one of the following elements:

ai (in a case where ai = ai ∈ A); ai + 1; or bi .

Hence the conclusion when Φ(x) expresses (with the help of 2y log(x)) an E0(xy)
formula.

(b) Let (A, xy) be a 2x-integral part of a model Rexp of EXP + IV R(2x);
by a result of van den Dries [9] every non trivial 2x-polynomial has but a finite
number of roots in (R, 2x). This allows to prove for every quantifier free formula
Φ(x) ∈ L(2x) that the interpretation of Φ(x) in Rexp is a finite union of intervals
with endpoints ai, bi ∈ R ∪ {−∞, +∞}. The end of the proof is the same as
for (a). �

Proof of Theorem 2.
One direction of the theorem is established by (b) of the preceding proposition.
Conversely we consider a model (A, xy) of EXP + LE0(2x) and we set up to

prove that (Q(A)c, 2x) satisfies IV (2x). Given a 2x-polynomial P (x̄, Y ) and given
x̄ ⊂ Q(A)c suppose P (x̄, a) > 0 > P (x̄, b); we want a zero of P between a and b.
We first assume x̄ ⊂ Q(A); an induction on the length of the 2x-polynomial
P (x̄, Y ) derives from EXP the uniform continuity of P (x̄, Y ) for fixed x̄ and when
Y ranges over [a, b]. Thus given ε > 0 in Q(A) we can find N ∈ A such that the
variation of P (x̄, Y ) is less than ε on every subinterval of [a, b] of length (b−a)/N ;
hence on [ci, ci+1] where ci := a + (b − a)i/N . We can be sure that on one of
these intervals P (x̄, Y ) changes its sign – otherwise a contradiction with IE0(2x)
is easily reached. Assume that A is countable and choose a sequence (εn), n < ω
with limit 0 in Q(A). By iterating for each n < ω the preceding fact applied
with 1/N ≤ εn and with [an, bn] in place of [a, b] we obtain a decreasing chain of
subintervals [an, bn] of [a, b] which tends to an element r ∈ Q(A)c, such that on
the interval [an, bn], P (x̄, Y ) changes sign and its variation is less than εn. Thus r
is a root of P (x̄, Y ) and IV (2x) is proved – for fractional parameters only; but by
proving the uniform continuity of P (x̄, Y ) on every finite k + 1-dimensional box
we extend the result to arbitrary “real” parameters. Note that only IE0(2x) has
been used; but we need a similar argument – omitted in present version – to prove
the Rolle scheme; and it is there that we use LE0(2x). �
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1.4. The theory Texp

Let Mexp be a model of Texp and Aexp an xy-integral part of Mexp; in a unique
way we can identify M with a subfield of (Q(A)c and then Mexp ⊂ (Q(A)c, 2x) =
(Mexp)c. In addition and because Texp is o-minimal Mexp satisfies a continuous
cell decomposition property of its definable functions which implies that Mexp is
an elementary submodel of (Mexp)c. Thus (Q(A)c, 2x) is a model of Texp; hence
we could axiomatize Texp by EXP + T fc

exp if a direct fc-translation existed for
Texp. This is definitely not the case; however there exists an axiomatization A of
Texp which consists of sentences φ simple enough for φfc to exist – thus:

Theorem 4. Texp exists and is axiomatized by EXP + Afc.

The proof of Proposition 3(a) shows that Texp implies LE0(xy). But the recip-
rocal is an open question; it could hold if a highly remarkable phenomenon took
place in (R, 2x): non singular systems of 2x-algebraic equations should reduce
to single such equations, in a uniform way (that is in every model of Texp in
addition to (R, 2x)). Although this is the analog of a basic property of real alge-
braic closure, it is very demanding. . . In view of this uncertainty it is interesting
to have a subtheory T of Texp, as strong as we are able to find and for which we
know a natural axiomatization of T ; this is what S.I.C. already provided with
T = IV R(2x).

The axiomatization Afc that we shall give of Texp is ad hoc, but the theory
Texp itself is definitely not an ad hoc one. The first way to see it is to consider a

second order form Texp + IP (xy) of Texp , which is natural:

• Let IP ⊂ L(A(x)) with A(x) predicate symbol denote the obvious axioms
which are satisfied by (R, A) iff A = R .

• More generally, for any function f = f(x̄)) over the reals IP (f) adds to
IP that A+ is closed under f .

We can regard OF +IP (f) as a second order arithmetic of some kind: the elements
x of the field are the “reals” or second order objects; among them the “integers”
or first order objects are the elements of A – these integers form an f -integral part
of these reals. In the sequel a formula of L(A(x), ...) is called first order if all its
quantifiers are restricted to A(x); whereas a second order formula has also quan-
tifiers ranging over the whole field. Note that formulas with no occurrence of the
symbol A(x) have all their quantifiers ranging over the reals – we call them pure
second order; and we denote L2 the least element scheme asserted for all formulas
of the form A(x) and φ(x, ū) where φ(x, ū) is pure second order. The first order,
arithmetical part IP (xy) of the theory Texp + IP (xy) looks rather limited but
any way one kind or another of drastic restriction is necessary on a theory T of
Arithmetics if we want it to correspond to a well behaved theory like T = Texp; for
Texp has excellent algebraic properties while Arithmetics cannot avoid Goedel’s
incompleteness theorem and Tennenbaum’s theorem of non existence of recur-
sive non-standard models. And notwithstanding the limited character of IP (xy),
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the whole scheme L2 is consequence of Texp+IP (xy) – as established by the above
proof of Proposition 3(a).

Now comes the promised axiomatization A of Texp such that Afc exists – hence
axiomatizes Texp and proves mod Texp = mod Texp . Let e(x) stand for 2x �
]0, 1[ and let Re,Le, Te denote (R, e(x)), its language and its complete theory; we
shall first provide an axiomatization Ae of Te such that Afc

e exists.
Let t(X̄, Y ) = t be a real function;

• Assume that t is C∞ with arguments ranging over [0, 1]) and for each
x̄y ∈ [0, 1]k+1 that

t(x̄, 0) > 0 > t(x̄, 1) and t′Y (x̄, y) < 0;

then ft denotes the function of domain ]0, 1[k defined by

0 < ft(x̄) < 1 and t(x̄, ft(x̄)) = 0.

Otherwise ft := 0.
• We denote t/Y the function t/Y extended by continuity to Y = 0 and

restricted to ]0, 1[k×]− 1/2, 1/2[ – in case this function is C∞ on [0, 1]k ×
[−1/2, 1/2]; t/Y := 0 otherwise.

• We let J denote the closure of Le, 1/X and X1/p (1 < p < ω) under
composition and under the operations: t �−→ ft, t �−→ t/Y (t a term
of J ).

Theorem 5.

(a) Every f ∈ J is C∞ with open domain and there is a polytime (:= polynomial
time computable) algorithm which for every x in the domain of f produces the
bits of f(x).
(b) Every 0-definable function f ∈ Re is piecewise in J (:= ∀x̄

∨
t∈F f(x̄) =

t(x̄) for some finite set F ⊂ J ).
(c) Te is axiomatized by Ae := ∀(Re) + (∀x �= 0)∃y xy = 1 plus the defining
axiom of every function ft or t/Y of J ; where ∀(Re) denotes the universal
theory of Re.
(d) For any axiomatization A of Te, EXP + A is an axiomatization of Texp.
(e) For every φ ∈ Ae there is a sentence φfc which naturally expresses in the
structure Aexp that (Q(A)c, e(x)) satisfies φ.

Proof of Theorem 5. See [7] for (a); see [5] for (b,c) and [6] for (d); the proof of
(e) is an exercise. �

Let Aexp be an xy-integral part of an exponential field Rexp; then e(x) is de-
finable in Rexp and from (c+e) follows that Re satisfies Te iff Aexp satisfies Acf

e .
Then from (d) follows that Texp exists and is axiomatized by A0 + Acf

e .
The definition of t/Y hence of J is not effective. The second author has a

variant J 1 of J which still satisfies Theorem 5 and in addition is recursively
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presentable – see [7]. But Rambaud’s J though not known to be effective is
simpler than J 1 in some ways.

So far we considered arithmetizations T of a theory T ⊃ OF which are “true”
– in the standard model (Z, xy � Z+). But it is rewarding to allow for the
consideration of arithmetizations T which are false and thus simpler.

1.5. Blunt Arithmetics T

Blunt Arithmetics begins with the idea of adding the false but not so contra-
dictory axiom: “every real is a fraction” (or even: is a dyadic number). This
idea can be made precise in diversely encompassing ways; here we only consider
the case of L(exp). Call blunt exponentiation the axiom E :=

(∀p, q > 0)(∃a, b > 0) 2p = (a/b)q;

note that if (A, xy) satisfies E then the fraction a/b can be taken as the value of
2p/q and this yields a function 2x on Q(A)+, such that (Q(A), 2x) is interpretable in
(A, xy). Thus for every formula φ ∈ L(2x) there is an “f -translation” ϕf ∈ L(xy)
which expresses in (A, xy) that (Q(A), 2x) satisfies φ; this is much better than the
fc-translation. And for every system T ⊂ L(2x) extending EXP, the “blunt form”
T of T (or “blunt arithmetization of T ”) is axiomatized by E together with

T f . This axiomatization T f is clearly ad hoc, but often better axiomatizations
of the same theory may be found to replace it. To begin with: E + EXPf

axiomatizes EXP ; it reduces to E + A0 which is no longer ad hoc.
Blunt axiom systems are not true except in the simplest case OF = OF ≡

DUCR + ED; but they can be conservative for ∀∆0(xy , ...) sentences over true
systems of Arithmetic. Then in order to deal with many questions they are usable
in place of more complicated true systems. In particular we will prove

Theorem 6. Texp is a conservative extension of Texp for ∀∆0(xy) sentences.

Lemma 7. For every model Z of Texp there is a model Z of Texp such that
Z+ is initial segment of Z+.

Proof of Lemma 7 −→ Theorem 6. Assume that φ is a ∀∆0(xy) consequence of
Texp in L and Z is a model of Texp ; we have to prove that Z satisfies φ (rel-

ativized to Z+). Indeed, by the above lemma (a) we have a model Z of Texp

hence of its consequence φ; more precisely it is Z+ which satisfies φ. And since φ
is a ∀∆0(xy) formula it remains true under restriction to the initial segment Z+.
Conservativity is proved. �

The proof of the lemma rests on the use of transfinite series called transseries.
This requires the development of a whole technology which is exposed in Section 3.
Therefore the proof of Lemma 7 and Theorem 6 is to be finished in that section.
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2. Polytime witnessing – Existence of Integral parts

2.1. A) Provable polytime witnessing

In this subsection |x| stands for log(x) – so 2|x| ≤ x < 2|x|+1; Buss calls
sharply bounded the quantifications that are bounded by |t| for some t ∈ L(x|y|),
and uses ∀b, ∃b to denote them. Then ∆b

0 denotes the class of sharply bounded
formulas of L( x/2 , |x|, x|y|), Σb

1 denotes the closure of ∆b
0 under bounded ex-

istential quantification and sharply bounded universal quantification. It has the
effect that the class NP consists of the Σb

1 definable sets. Provable polytime wit-
nessing for an Arithmetics T is the property: if T proves for all (positive) x that
(∃y : |y| < |x|k)φ(x, y) where φ ∈ Σb

1, then there is a polytime function f such
that ∀xφ(x, f(x)) is provable in T.

Theorem 8. Provable polytime witnessing holds for T = Texp + IP (xy) (hence
for Texp and Texp ).

As a corollary of this theorem, every set which is NP inter co-NP provably in
Texp + IP (xy) reduces to P in the same provable manner; and if it turned out
(surprisingly!) that Texp + IP (xy) proves the set of primes to be NP, then
factorisation would be in polytime. Thus it is interesting to know whether or not
Texp + IP (xy) proves the set of primes to be NP; in this context [1] proved that
primes are not provably NP in Texp + IP (2x). But the proof is hard and we do
not know whether its method can be extended to the case of IP (xy).

Provable polytime witnessing has been proved by Buss for S1
2 – where S1

2 is the
Arithmetics consisting of the basic ∀-axioms for L( x/2 , |x|, x|y|), together with
Σb

1-induction on the interval [0, |x|] for every x. In two different (even “orthog-
onal”) ways, both Texp and S1

2 are quite weak: on the one hand S1
2 does not

prove 2x to be total (because by Parikh’s theorem every provable function of S1
2

is bounded by a term in x|y|); and on the other hand Texp does not imply any
significant amount of induction for quantified formulas. Thus one could fear that
provable polytime witnessing holds for these two theories only because they are not
rich enough: because the results of the form ∀x(∃y : |y| < |x|k)φ(x, y) with φ ∈ Σb

1

which they manage to prove all are trivial. Things are not negative to that point.
To begin with, T-provable witnessing is significant even if T is weak: of course,
the weaker T is, the weaker also is the witnessing property; but the stronger
is the fact that T suffices to prove this property. Moreover for S1

2 , witnessing is
remarkable because S1

2 captures the whole class polytime: a function is polytime
iff its graph has a Σb

1 definition Φ(x, y) for which S1
2 proves ∀x∃yΦ(x, y). For

Texp , witnessing is remarkable because Texp captures – in a sense appropriate
to functions over the reals – the class of all 0-definable functions of Rexp.

Our proof of polytime witnessing for Texp comes along with a more pre-
cise result; denote J the closure under composition of J0 where J0 is made of
x/y , X. log(x) , x|y| and X.ft(x1/y1, ..., xk/yk) for each t(x̄, Y ) ∈ J . Clearly

every f ∈ J is provably total (on the integers) in Texp + IP (xy).
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Theorem 9.
(a) For every function f ∈ J there is n < ω and a polytime algorithm which

computes a set F (x̄) of cardinal < n such that f(x̄) ∈ F (x̄).
(b) (J-witnessing) If Texp + IP (xy) proves ∀x(∃y : |y| < |x|k)ϕ(x, y) where

k < ω, ϕ ∈ Σb
1 then Texp + IP (xy) proves ∀x∨t∈F ϕ(x, t(x)) for some finite subset

F of J .

Proof of Theorem 9(a). Note that (a) is true even with n = 1 for each polytime
f hence it is true for each f ∈ J0 which are not of the form f = X.ft(x1/y1, ...,
xk/yk) . In view of the latter case we observe that (i) whenever a real y is computed
in polytime then in this time too it is easy to compute a < ω such that y ∈ [a, a+1]
hence y equals a or a+1; (ii) however the exact value of y may be undecidable
because of the possibility y = a + 1. Because the real functions ft are polytime
computable, point (i) applied to y = f(x̄) yields that if f = X.ft(x1/y1, ..., xk/yk)
then (a) still holds true (but this time with n > 1); and thus (a) finally holds for
each f ∈ J0 hence for each f ∈ J . (Point (ii) explains why we do not strengthen
(a) by claiming that J0 and J are polytime; it is also the reason why the proof of
Lem 11 below is not more straightforward). �

As a corollary of Theorem 9 every function which provably in Texp + IP (xy)
is Σb

1 definable and polynomially bounded in size belongs piecewise to J . And
provable polytime witnessing for Texp + IP (xy) is another corollary. Thus in order
to conclude Theorems 8 and 9 there remains to prove J-witnessing.

Lemma 10. Assume that (R,Z, 2x) is a model of Texp+IP (xy) and A is a subring
of Z which is closed under the interpretation in (R,Z, 2x) of each f ∈ J . Let xy

A

denote xy
Z restricted to x ∈ A and to y ∈ A such that (∃b ∈ A)2y

Z < b; there exists
a model (R, Z, 2x) of Texp + IP (xy) such that A+ is an initial segment of Z+ and
xy

A ⊂ xy
Z .

Proof of Lemma 10 −→ J-witnessing. Similar to the proof in S. I.E that Lemma 7
implies Theorem 6. �

The next result keeps the assumptions of the preceding lemma and begins the
construction of its promised field R. We denote Aexp the expansion of A by
the above partial function expA; inside Aexp we can define a function e(x)A on
Q(A)c∩]0, 1[ – by the method used for 2x in Section 1.2.

Lemma 11. There exists a model Ke of Te such that A = K and the function
e(x)A agrees with e(x)K .

Proof of Lemma 11. Set D = Q(A)+ oA; A = Q(A) = D since A satisfies ED.
Note that inside Q(A)c, for each x the limit for X ∈ A+ of X.x /X converges to
x. With few additional remarks this allows to prove that

i) D is closed under J− – where J − is defined as J except that 1/X is taken
away;

ii) in addition D\oA is closed under 1/X .
Set K0 := Def(0) where Def means definable closure inside Rexp.
Claim. K0 ⊂ D.
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Proof of Claim. We have A0 ⊂ D where A0 := {0}; then by (i) A1 ⊂ D where
A1 := J − closure of A0. Next because K0 is archimedean and closed under 1/X
we have that (ii) implies A2 ⊂ D where A2 := closure of A1 under 1/X . Repeating
this ω times we finally obtain K0 ⊂ D since K0 is by T 5.b the closure of {0}
under J− and 1/X . �

Let K1 be maximal among the definably closed subfields of Rexp which are
included in D; K1 is non empty: by the claim it includes K0. Assume that
c ∈ D\K1 + oA; then by (ii) K1(c) is included in D. By a general theorem of
o-minimality due to vd Dries, the fact that Re is polynomially bounded and K1

is definably closed in Re implies that K1(c) remains cofinal in Def K1(c). Then
from K1(c) ⊂ D follows Def K1(c) ⊂ D by a proof similar to that of the Claim.
By contradiction we just proved that K1 + oA = D; thus every element a ∈ A
is A-infinitely close to a unique element a∗ of K1. The map : a �−→ a∗ is a
ring isomorphism up to oA from A into K∗, and oA ∩ K∗ reduces to 0 hence the
map is an embedding. Denote A1 the image of this map; A1 satisfies the desired
conclusion of Lemma 11 (with K1 in place of K). And since A is isomorphic to
A1, Lemma 11 is proved. �

The next step is to extend the pair (K, A) of L 11 to (R, Z) satisfying: Texp +
IP (xy) and A+ initial segment of Z+; to that end R will be constructed from
“transseries” – and this will be exposed in Section 3.

2.2. Integral parts

We recall prior work relevant to the present one:

Theorem 12.
(a) Every rcl field has an integral part.
(b) Every rcl exponential field has a 2x-integral part.
(c) Every model of Texp has an xy-integral part.
(d) In the case of countable structures we can require that the integral parts con-
structed in (a)–(c) be blunt.

Again the proof of this theorem is based on transseries. Most of it appeared
in [6] but one last part was only stated there; it will appear in the full version of
the present paper.

To every model A of RCF ≡ IV is canonically associated a rcl field, namely
rcl Q(A). For this correspondence to resemble a duality between models of RCF
and RCF one wants to associate to every rcl field R an integer part R . This is
indeed what (a) of the theorem does; only the “duality” is a weak one since the
R associated to R in this way is by no means unique. Thus we have a one-many

correspondence: R �−→ R where a true duality would have a canonical map;
but this problem depends for its solution on ideas that are outside the scope of
this paper. Meanwhile, part (a) of the above theorem is a welcome complement
to Shepherdson’s criterion; and part (c) is the perfect analog of (a) when exp is
added to the language.
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3. Transseries and the final proofs

Definition.
• We call group of monomials every ordered commutative group Γ denoted

multiplicatively.
• We denote K((Γ)) the set of formal series of the form Σi<αaiγi where α

is any ordinal, ai ∈ K and γi strictly decreases in Γ; Hahn proved that
on K((Γ)) there is a natural definition of =, +,×, < which turns it to an
ordered field also denoted K((Γ)).

• We call “transseries” the elements of K((Γ)) (this goes beyond the strict
extension of the word. But as a shorthand for “generalized power series”,
the word coined by Ecalle is too convenient; and the actual fields K((Γ))
that we consider below do consist of transseries).

• We call support of an element of K((Γ)) the set of “transmonomials”
γ ∈ Γ which occur in the terms of the element.

• The order < is such that the K-finite transseries are those with support
≤ 1, the K-infinitesimals with support < 1. K[[Γ > 1]] denotes the
transseries with support > 1 – in other words those having only K-infinite
terms.

Transseries help to define natural though non standard models of Te, Texp, Texp ,
Texp which are useful in particular to prove Theorems 4, 5, 7, 9. To begin with,
via the next two results they provide models of Te with natural integral parts.

Proposition 13. A = K −→ A+K[[Γ > 1]] = K[[Γ > 1]] and A+ is an initial
segment of (A + K[[Γ > 1]])+.

Proof of Proposition 13. Easy, see [3]. �

Theorem 14. For every model KE of Te and every group of monomials Γ which
is closed under pth root, p < ω there is a canonical expansion KE((Γ)) of K((Γ))
such that KE ≺ KE((Γ)).

Proof of Theorem 14. The model has been defined by Neumann – see [2, 4]; the
fact that KE ≺ KE((Γ)) is a theorem of [DMM ]. �

We are ready to provide the proofs that were omitted in the preceding sections
because they depended on transseries.

Proof of Lemma 7. We are given a pair (Kexp, A) such that Kexp satisfies Texp

hence the induced model Ke satisfies Te, and A = K ; we construct a blunt
model (Rexp, Z) of Texp + IP (xy) such that A+ is initial segment of Z+. Fix a
non trivial group of exponents Γ closed under pth root, p < ω. By induction
on n < ω define (Kn

e , Zn): K1
e := Ke((Γ)) and Z1 := A + K[[Γ > 1]]; next we

let Γ2 denote the set of formal objects 2g, g ∈ K[[Γ > 1]] turned to a group of
monomials in the natural way: 2g2g′

:= 2g+g′
and 2g < 2g′

iff g < g′. Then
(K2

e , Z2) := (K1
e ((Γ2)), Z1 + K1[[Γ2 > 1]]); and (Kn

e , Zn) is defined by iterat-
ing n times this construction. By Theorem 14 and Proposition 13 we have that
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Kn
e ≺ Kn+1

e , Z+
n is initial segment of Z+

n+1 and Zn = Kn . Hence Ke satisfies
Te, A+ is initial segment of B+ and B = R if we set K = ∪n<ωKn,B = ∪n<ωZn.
We inductively define a function 2x on R: if x ∈ Kn+1 we can uniquely write
x = a + ε where a ∈ Zn, 0 ≤ ε < 1, ε ∈ Kn+1; then 2x := 2a2ε where 2a exists
by inductive assumption and 2ε is defined in Kn+1

e . It is not difficult to check
that Kexp := (K, 2x) satisfies the axioms of EXP – except for the existence of the
inverse log of the function 2x: for instance inside K it is undefined for 1 �= x ∈ Γ.

The next step makes up for this defect; we define a proper embedding ϕ from
Kexp into itself: if σ = Σiai2δi ∈ K set ϕ(σ) = Σiai22δi. It is easy to check that
the domain of log inside Kexp includes the image of ϕ. Let (K−1

exp,B−1) denote
the extension of (Kexp,B) such that ϕ has an extension to an isomorphism of
(K−1

exp,B−1) onto (Kexp,B) ( (K−1
exp,B−1) is unique up to isomorphism over ϕ).

By iterating ω times this construction one obtains a chain of models (R−n
exp,B−n),

n < ω. Set (Rexp,Z) = ∪n(R−n
exp,B−n); it is easy to check that Rexp satisfies Texp

and Z is an integral part of Rexp. In addition (but this is delicate and skipped
here) Z+ is closed under xy

R. This concludes the proof. �

We skip the proof of Lemma 10 hence Theorems 8 and 9: it is quite similar.

Proof of Theorem. We call truncations of a transseries Σi<αaisi all shorter se-
ries Σi<βaisi with β ≤ α. In [3] it is proved that for every rcl field R there
is an archimedean subfield K of R, a group of monomials S and an embed-
ding ϕ over K(S) from R into K((S)), with truncation closed image. Thus
R ϕ := Z + ϕ−1(K[[S > 1]]) is an integral part of R and Theorem 12(a) is

proved. In [R93] it is proved in addition: (i) if R is the underlying field of a model
Rexp of EXP then ϕ can be chosen so that R +

ϕ is closed under 2x – hence Theo-
rem 12(b) is proved; (ii) if Rexp satisfies Texp then the latter embedding ϕ can be
required to preserve e(x) from Re to Ke((S)). Finally:

Lemma 15. R ϕ is closed under xy
R.

The proof of this delicate point duly appears in the full version. And the proof
of Theorem 12(c) then is easy. . . �

4. Conclusion

1. It is interesting to look for the generalization of our polytime witnessing
theorem; one specific sharp extension should be when the Gamma function is
added to L(2x) and the factorial added to L(xy). But the natural framework for
the generalization is no less than all o-minimal expansions of the reals.

2. We expect that the polytime witnessing result which so far only concerns the
NP class has a good extension to the whole polynomial time hierarchy. This should
be of interest for applications. Another application to look for is the asymptotic
analysis of every polynomially bounded o-minimal expansion RE of the reals. Here
is the reason for: polynomial boundedness implies for every formula Φ(a, x) ∈ L(E)
that RE satisfies ∃xΦ(a, x) iff (RE , 2x) satisfies ∃x < alog(a)Φ(a, x); and this may
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be sharpened and generalized. Now the witnessing result which we proved for Texp

can be extended to the complete theory of (RE , 2x) for many E’s; and even with
E = 0 (i.e. in the real algebraic case) it has good chances to lead to an interesting
approach to asymptotic studies since it provides a polytime computable witness
for ∃x < alog(a)Φ(a, x), hence for the initial question ∃xΦ(a, x).

3. Of course the question of finding an effective proof of our witnessing theorem
is of interest; note that the theorem contains, for an infinity of questions Q, a
result of the form: “there exists a polytime algorithm to answer Q”. But it does so
without ever providing the algorithm! (Generally speaking this is the weakness of
our method of proof; but at the same time it makes the efficiency of the approach:
it tells in advance which effective questions it will be profitable to investigate
by effective means. It may also tell in advance which questions of this type are
hopeless by proving an undecidability result; in these two ways it offers a speed
up to the research on algorithms of many kinds.)

4. We expect that the appropriate framework for the generalization of Shep-
herdson’s criterion is again: all (or nearly all) o-minimal expansions of the reals.
A result such as the correspondence between IV R(2x) and LE0(2x) opens a way to-
wards interesting effective investigations: it suggests to replace computations over
the reals – when they are expressible and provable within IV R(2x) – by recursive
computations over the integers (since the latter computations exist provably in
LE0(2x) which is a system for which a whole programming machinery already
exists). Here we mention IV R(2x), LE0(2x) rather than Texp, Texp because the
latter systems are too obscure at present. By the way, the obscurity of Texp

makes it all the more interesting that (i) we are able to show provable polytime
witnessing for such a system (ii) and the weaker, clearer systems which also have
polytime witnessing (as a trivial consequence of (i)) do not guarantee provable
witnessing.

5. We expect that the problem of the relations between LE0(2x), LE0(xy) and
IV R(2x), Texp will offer a new way to investigate the well known and hard problems
of decidability of Texp and Shanuel’s conjecture for reals.

6. The conservation result of blunt axiom systems can be generalized, and again
the natural framework for this extension is no less than all o-minimal expansions
of the reals. The potential research discussed in 3, 4, 5 may be tied up to the
use of blunt systems because of the simplying effect of bluntness. In addition our
conservation result shows that in principle if we base an algorithm on a resource
bound axiom system for Arithmetics we can allow ourselves blunt systems for that
purpose; and this should be heuristically useful. Réveillès and Richard, and Daurat
published papers on a method which turns the effective solution of differential
equations to recursive programs on the integers; their method is heuristically based
on non standard models and computations. The integer part of these non standard
models can be taken to be blunt; but the mentioned work does not use this fact
at all. The more so since it is by no means obvious how to take advantage of
this possibility; but a whole new perspective is opened if one decides to take
up seriously the question: “what algorithms – probably not entirely included in
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the Réveillès and Richard ones – are heuristically suggested by bluntness and its
conservativeness?”.

7. As briefly hinted in the body of the paper, our results also have some interest
in the perspective of achieving a true duality between systems similar to RCF ,
Texp and systems similar to RCF , Texp . But conceptually new work will have
to be done as a prequisite for this matter.
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