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DECIDING WHETHER A RELATION
DEFINED IN PRESBURGER LOGIC

CAN BE DEFINED IN WEAKER LOGICS

Christian Choffrut
1

Abstract. We consider logics on Z and N which are weaker than
Presburger arithmetic and we settle the following decision problem:
given a k-ary relation on Z and N which are first order definable in
Presburger arithmetic, are they definable in these weaker logics? These
logics, intuitively, are obtained by considering modulo and threshold
counting predicates for differences of two variables.

Mathematics Subject Classification. 03B10, 68Q70.

1. Introduction

Cast in general terms, the problem we consider is as follows. Consider two
structures M1 and M2 with the same domain such that each basic predicate of
M2 is definable in M1. Is it decidable whether or not a given a relation which
is first order definable in M1 is first order definable in M2? A striking example
considering structures close to those investigated here is Muchnik’s well-celebrated
result [8], stating that given a relation defined in the structure 〈Z;<,+, Vk〉 where
Vk(x) denotes the highest power of k dividing the integer x, it is decidable whether
or not it is definable in the structure 〈Z;<,+〉. In that case we say that M2 is
decidable in M1.

The purpose of this short note is to investigate logics on Z and N for which we
solve the above general question. Concerning N, these logics have been used in
different contexts in the field of theoretical computer science, e.g., model checking
with timed automata in [2] and varieties of recognizable languages in [9]. Indepen-
dently of these bibliographic references, they seem to be natural enough as to de-
serve some investigation. The first order theory of the structure Zp = 〈Z, <,+, 0, 1〉
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(resp. Np = 〈N, <,+, 0, 1〉) is the famous Presburger arithmetic of the integers
(resp. of the nonnegative integers ) with addition. The validity of a sentence was
proved to be decidable by using quantifier elimination in the extension including
all predicates x = b mod a with a ∈ N and 0 ≤ b < a, see e.g., [13] Chap. III.4.
Here we restrict the predicates of Zp (resp. Np) in the following way. Based
on the characterization of relations definable in Presburger arithmetic and re-
called at the beginning of the next section, it is easily seen that the structure
〈Z; (x ≥ c)c∈Z, (x ≥ y + c)c∈Z, x = y + z〉 which has no functions, is equivalent to
Presburger arithmetic. One structure studied here is obtained by substituting the
predicates x = b mod a, 0 ≤ b < a, for the predicate x = y + z.

The next table shows the different structures studied in this paper. The integers
a, b, c satisfy the conditions 0 ≤ b < a and c ∈ Z (resp. c ∈ N). The subscripts used
should suggest the general idea of modulo and threshold counting. The subscript
“s” stands for simple as the predicates involve a unique variable.

structure domain signature
Zthresh,mod Z (x ≥ c)c∈Z, (x− y ≥ c)c∈Z, (x = b mod a)0≤b<a

Nthresh,mod N (x ≥ c)c∈N, (x− y ≥ c)c∈N, (x = b mod a)0≤b<a

Zmod Z x− y ≥ 0, (x = b mod a)0≤b<a

Nmod N x− y ≥ 0, (x = b mod a)0≤b<a

Zthresh Z (x ≥ c)c∈Z, (x− y ≥ c)c∈Z

Nthresh N (x ≥ c)c∈N, (x− y ≥ c)c∈N

Zs Z (x ≥ c)c∈Z, (x = b mod a)0≤b<a

Ns N (x ≥ c)c∈N, (x = b mod a)0≤b<a

Our main contribution is the following result:

Theorem. Given a relation which is first order definable in Presburger arith-
metic of Z (resp. N) it is recursively decidable whether or not it is first order
definable in the structure Zthresh,mod (resp. Nthresh,mod). The same result holds
when Zthresh,mod is replaced by Zmod or Zthresh (Nthresh,mod is replaced by Nmod

or Nthresh).

Observe that if a theory T1 is undecidable, then any strict subtheory T2 is unde-
cidable in T1. Indeed, let ψ be a closed formula in T1 and let θ(x1, . . . , xk) be a
formula in T1\T2. If ψ holds then ψ∧θ is equivalent to θ which is not T2-definable.
If ψ does not hold, then ψ ∧ θ defines the empty set which is T2-definable. E.g.,
Presburger arithmetic is not decidable in ordinary arithmetic with the sum and
the product.

We now discuss the relationships of our result with previous works in the lit-
erature. Decidability of Ns in Presburger arithmetic is implicitly solved in [5],
p. 1048. Indeed, it is an easy exercise, using Elgot and Mezei’s characterization
recalled in paragraph 3.2, to see that the relations defined on Ns are the so-called
recognizable relations of direct products of free commutative monoids. Ginsburg
and Spanier proved in the early sixties, that given a relation definable in Pres-
burger arithmetic, it is recursively decidable whether or not it is recognizable.
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Decidability of Zs in Presburger arithmetic is also relatively straightforward: for
the sake of completeness we prove it in paragraph 2.2. It is interesting to note
that Ginsburg and Spanier proof consists of expressing in Presburger arithmetic
the property of a relation to be recognizable. Though resorting to more elaborate
techniques, we proceed in a similar way concerning the first six structures of the
above table.

The structure Nthresh,mod is a particular case of structures studied by Läuchli
and Savioz. Indeed, they introduced the so-called “special relations” on free
monoids of which they gave different logical and algebraic characterizations [7].
The relations definable in the structure Nthresh,mod correspond to the case where
the free monoid has a unique generator.

A last reference is the paper of Koubarakis tackling the complexity problem of
quantifier’s elimination in the structures 〈K; (x ≥ c)c∈K, (x − y ≥ c)c∈K〉 where
K = Z or Q [6].

2. Preliminaries

We assume the reader familiar with the basic notions of rational and recogniz-
able families of subsets in an arbitrary monoid. In particular, we recall that these
families coincide when the monoid is free which covers the case of the additive
monoid N (but not the case of the additive group Z).

2.1. Semilinear sets

The main result on first order definable subsets in Presburger arithmetic is
captured in the next theorem, see [4, 5, 11], which, in passing, defines the notion
of semilinear sets.

Theorem 2.1. Given a subset X ⊆ Zk (resp. X ⊆ Nk) the following conditions
are equivalent:

(1) X is a semilinear set which is a finite union of linear subsets, i.e, of subsets
of the form

v0 + Nv1 + · · · + Nvn

for some n ≥ 0 and some v0, v1, . . . vn ∈ Zk(resp. Nk).
(2) X is first order definable in the structure 〈Z,=, <,+, 0, 1〉 (resp. 〈N,=, <,

+, 0, 1〉 ).

Furthermore, there exists a procedure which converts one form into another.

Example 2.2. The following relations are definable in Presburger arithmetic with
domain N or Z accordingly, and their representation as semilinear subsets will
serve as illustration throughout this paper.
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X1 : N(1, 2) = {(x, y) ∈ N2 | y = 2x},
X2 : (1, 2) + N(2, 2) + N(0, 2)

= {(x, y) ∈ N2 | x ≤ y, x = 1 mod 2, y = 0 mod 2},
X3 : (1, 1) + N(2, 0) + N(0, 2) = {(x, y) ∈ N2 | x, y = 1 mod 2},
X4 : N(1,−1) ∪ N(−1, 1) = {(x, y) ∈ Z2 | x+ y = 0}.

2.2. The logics with unary predicates only

We observed in the introduction that Ginsburg and Spanier proved a result
which can be interpreted as asserting that the structure Ns is decidable in
Presburger arithmetic. Here we show that a similar result also holds for the
structure Zs. This is achieved by reducing the latter case to the former case.

Indeed, we leave it to the reader to verify that a relation R ⊆ Zk is definable in
〈Z; (x ≥ c)c∈Z, (x = b mod a)0≤b<a〉 if and only if it is a finite union of the form
X1×· · ·×Xk where Xi is a rational subset of Z. We claim that this is equivalent to
asserting that each intersectionR∩D1×· · ·×Dk with Di = N or −N, is recognizable
in the monoid D1 × · · · × Dk. Indeed, the condition is clearly sufficient. In order
to verify that it is necessary, observe that an intersection R ∩ D1 × · · · × Dk is
a finite union of direct products X1 × · · · × Xk where each Xi is rational in Di,
thus recognizable in Di by Kleene theorem on the equality of the two families of
rational and recognizable sets in free monoids. Now it should be clear how we
proceed. Given a Presburger formula ϕ(x1, . . . , xk), for all subsets I ⊂ {1, . . . , k},
define the predicate σi(xi) which is equivalent to x ≥ 0 if i ∈ I and to x ≤ 0
otherwise. Then we use Ginsburg and Spanier’s algorithm to verify whether or
not the following formula defines a recognizable subset

σ1(x1) ∧ · · · ∧ σk(xk) ∧ ϕ(x1, . . . , xk).

2.3. Quantifier elimination

We sketch a proof that the theories considered in the table of the introduction
admit quantifier elimination. Actually, without the modulo predicates, this result
is known as Fourier-Motzkin elimination, see e.g., [12], p. 155. It suffices to verify
that a formula of the form φ(x1, . . . , xn) ∧ ∃yψ(x1, . . . , xn, y) admits quantifier
elimination where ψ is as follows:

∧
i∈I

(xi − y ≥ ai) ∧
∧
j∈J

(xj − y ≤ aj) ∧ (c ≤ y ≤ d) ∧ (y ≡ b mod a). (1)

Set m = max{max{xj − aj | j ∈ J}, c} and M = min{min{xi − ai | i ∈ I}, d}.
Then the expression is equivalent to a disjunction of the form

(M −m ≥ a) ∨ ((0 ≤M −m < a) ∧ χ(x1, . . . , xn)



RESTRICTING PRESBURGER LOGIC TO DIFFERENCES 125

where χ(x1, . . . , xn) asserts that for some 0 ≤ α ≤ b ≤ β ≤ a, m is equal to α and
M is equal to β modulo a or m is equal to β and M is equal to α modulo a.

3. Recognizable relations

We recall in this section the definition and some elementary properties of a
proper subfamily of the semilinear subsets. A relation X ⊆ Nk is recognizable
if there exists a morphism h : Nk → M where M is a finite monoid, such that
X = h−1h(X) holds. It is group recognizable if M is a group and aperiodic recog-
nizable if M does not contain a subset which is isomorphic to some group.

3.1. Folklore on N

Let us linger on the very simple case where k = 1. The next lines are folklore
and may be skipped by most readers. A finite monoid M generated by one element
z consists of the set 1 = z0, z, z2, . . . , zn along with the operation defined by the
following equalities for some m ≤ n

z · zi =
{
zi+1 if i < n,
z · zn = zm otherwise.

The monoid M is a group if m = 0 and it does not contain a nontrivial group
if m = n. Consequently, a subset X ⊆ N is recognizable if and only if for some
integer a and for some finite sets A and B we have X = B ∪ (A+ Na). It is group
recognizable if there exists an integer a and a subset A of integers less than a such
that X = A + Na and it is aperiodic recognizable if it is finite or if there there
exists an integer a and a subset A of integers less than a such that X = A∪(a+N).
It is clear that a recognizable, resp. group recognizable, resp. aperiodic recogniz-
able subset of N is definable in Nthresh,mod, resp. Nmod, resp. Nthresh.

Given two nonnegative integers x and y, consider the partial operation x−· y = z
on N defined by x − y = z if such a nonnegative integer z exists. Extend this
notation to subsets X,Y ⊆ N: X−· Y = {z ∈ N | ∃x ∈ X, ∃y ∈ Y : x = y + z}.
It is well-known, actually a very special case in the theory of semivarieties of finite
monoids, cf. [10] (but easy to verify directly) that if X and Y are recognizable,
resp. group recognizable, resp. aperiodic recognizable, then so is X −· Y . All these
claims will be used in numerous places without explicit references. The following
elementary result will also be used.

Lemma 3.1. Consider two recognizable subsets X,Y ⊆ N. Then there exists a
finite disjoint decomposition X = X1 ∪ · · · ∪ Xr such that for i = 1, . . . , r and
x, x′ ∈ Xi, the equality Y−· x = Y−· x′ holds.

Proof. Let f : N → F and h : N → H be two morphisms into finite commutative
monoids such that X = f−1f(X) and Y = h−1h(Y ) holds. Consider two elements
x, x′ ∈ N satisfying f(x), f(x′) ∈ f(X) and h(x) = h(x′). Then for all z ∈ N
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we have
x+ z ∈ Y ⇔ h(x+ z) = h(x′ + z) ∈ h(Y ) ⇔ x′ + z ∈ Y.

The claimed decomposition of X is thus X =
⋃

a∈h(Y )X ∩ h−1(a). �

3.2. Elgot and Mezei characterization

Turning to the case where k is an arbitrary integer, there exists a very useful
characterization of the recognizable relations of a direct product in terms of the
direct product of recognizable sets of each component. Eilenberg attributes this
result to Elgot and Mezei [3] p. 265. We state it in the particular case of a direct
product of copies of N but it holds under more general conditions.

Proposition 3.2. A subset X ⊆ Nk is recognizable (resp. group recognizable,
resp. aperiodic recognizable) if it is a finite union of direct products such as

Z1 × · · · × Zk

where for i = 1, . . . , k, Zi is recognizable, resp. group recognizable, resp. aperiodic
recognizable in N.

With this charaterization, one sees that in example 2.2, X3 is recognizable
but that X1 and X2 are not. Standard constructions show that the family of
recognizable, resp. group recognizable, resp. aperiodic recognizable subsets is
closed under the Boolean operations, projection onto an arbitrary collection of
components and direct product. It should not require much effort to the interested
reader to directly work these constructions out by himself.

4. Subfamilies of semilinear sets

The purpose of this section is to introduce three new families of subsets of Zk

which are contained in the family of semilinear sets. Their definition is based on the
following notion on vectors of the Zk. The support of u ∈ Zk is the set of integers
1 ≤ i ≤ k such that its i-th component is nonzero: Supp(u) = {1 ≤ i ≤ k | ui �= 0}.

We set
P = {e �= 0 | ei = 0, 1, for all 1 ≤ i ≤ k}
N = {e �= 0 | ei = 0,−1, for all 1 ≤ i ≤ k} (2)

and we define a partial order on the set P ∪N via the following rules.
• If e ∈ N and f ∈ P have disjoint support, then e < f .
• If the support of e ∈ P is strictly included in the support of f ∈ P then
f < e.

• If the support of e ∈ N is strictly included in the support of f ∈ N then
e < f .

E.g., here is a strictly increasing sequence of vectors in P ∪N

(−1, 0, 0, 0, 0) < (−1, 0, 0,−1, 0) < (0, 0, 1, 0, 1) < (0, 0, 0, 0, 1).
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We define E as the collection of all strictly increasing sequences of vectors in N ∪P
and by convention we assume the empty sequence belongs to E . We now design
an algorithm which expresses each vector of u ∈ Zk as a linear combination of
these vectors all of whose scalars are positive nonzero integers, in a unique way.
Assume first all components of u �= 0 are non negative. Then there exists a unique
vector e ∈ P such that by subtraction, all zero components of u remain unchanged
and the absolute value of all nonzero components decreases by one. Repeating this
process until obtaining the nullvector yields u = λ1e1+ · · ·+λrer for some integers
r, λ1, · · ·λr ∈ N and some increasing sequence e1 < · · · < er of vectors in P . E.g.,
(0, 3, 1, 6) = (0, 1, 1, 1) + 2(0, 1, 0, 1) + 3(0, 0, 0, 1). Similarly, if all components of
u �= 0 are non positive, a direct adaptation of the above procedure leads to an
expression of the form u = µ1f1 + · · · + µsfs for some integers s, µ1, . . . µr ∈ N

and some decreasing sequence f1 > · · · > fs of vectors in N . Consider now an
arbitrary vector u �= 0 with positive and negative components. It can be written
as u = v + w where v and w have all nonpositive and nonnegative components
respectively. Apply the previous procedure to v and to w

v = µ1f1 + · · · + µsfs

w = λ1e1 + · · · + λrer.

Then we get
u = µsfs + · · · + µ1f1 + λ1e1 + · · · + λrer

where fs < · · · < f1 < e1 < · · · < er is in E and µs, . . . , µ1, λ1, . . . , λr ∈ N. E.g.,
we have (−4, 2,−1, 3) = 3(−1, 0, 0, 0) + (−1, 0,−1, 0) + 2(0, 1, 0, 1) + (0, 0, 0, 1).
Consequently we have the disjoint union

Zk =
⋃

E∈E

(∑
e∈E

(N − 0)e

)
. (3)

We adopt the convention that
∑

e∈E(N − 0)e represents the zero vector when E
is the empty sequence.

We are now in condition to define the new families of subsets of Zk. We denote
by Frec (resp. Fmod, resp. Fap) the family of subsets X ⊆ Zk such that for each
strictly increasing sequence of vectors e1 < · · · < ep, the subset

{(x1, . . . , xp) ∈ Np | x1e1 + . . .+ xpep ∈ X} (4)

is recognizable (resp. group recognizable, resp. aperiodic recognizable) in Np. The
family Frec (resp. Fmod, resp. Fap) is the union of the families when k takes on
arbitrary integer values.

Example 4.1. (Example 2.2 cont’d). With the sequence (1, 1) < (0, 1) we have for
the first three subsets, respectively {n(1, 1)+n(0, 1) | n ∈ N}, (1 + 2N)(1, 1)+ (1 +
2N)(0, 1) and (1+2N)(1, 1)+2N(0, 1) and with the sequence (1, 1) < (1, 0) we have
{(0, 0)}, ∅ and (1 + 2N)(1, 1) + 2N(1, 0). More generally, we have X1 /∈ Frec and
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X2, X3 ∈ Fmod. Concerning the relation X4, with the sequence (0,−1) < (1, 0)
we have {n(0,−1) + n(1, 0) | n ∈ N which is not recognizable in N2, consequently,
X4 /∈ Frec.

4.1. Closure properties

Before proving some nice closure properties of the subfamilies introduced in
the previous paragraph, we wish to give different equivalent definitions of these
families. We extend to strictly increasing subsequences the standard notations for
subsets. E.g., if E and F are two strictly increasing sequences of vectors, E ∩ F
denotes their maximal common increasing subsequence. Also, given a vector e, we
write e ∈ E to express the fact that it belongs to the sequence E.

The following technical lemma is a consequence of the fact that each vector
of Zk has a unique decomposition as a linear combination of strictly increasing
vectors. The proof is rather straightforward and we omit it.

Lemma 4.2. Let E and F be strictly increasing sequences of vectors. Consider∑
e∈E

Xee and
∑
f∈F

Yff where Xe, Yf ⊆ N for e ∈ E and f ∈ F . The intersection

(∑
e∈E

Xee

)
∩
⎛
⎝∑

f∈F

Yff

⎞
⎠

is nonempty if and only if the following conditions hold:

1) for all e ∈ E \ F we have 0 ∈ Xe and for all f ∈ F \ E we have 0 ∈ Yf ,

2) for all g ∈ E ∩ F we have Xg ∩ Yg �= ∅.

Furthermore, when the intersection is nonempty then it is equal to

∑
g∈E∩F

(Xg ∩ Yg)g.

The following gives an alternative definition of the subfamilies of semilinear subsets.

Proposition 4.3. Given a subset X ⊆ Zk, the following conditions are equivalent.

1) For each strictly increasing sequence of vectors, the subset

{(x1, . . . , xp) ∈ Np | x1e1 + . . .+ xpep ∈ X} (5)

is recognizable (resp. group recognizable, resp. aperiodic recognizable) in Np.

2) X is a finite union of subsets of the form

X1e1 + · · · +Xpep (6)
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where for some 0 < p ≤ k, the sequence e1, . . . , ep is strictly increasing and where
the Xi’s are recognizable (resp. group recognizable, resp. aperiodic recognizable) in
N.

Proof. The previous lemma shows that 1 implies 2. Let us verify the other impli-
cation. It suffices to treat the particular case where X is of the form

∑
e∈E Xee.

Consider the intersection (
∑

e∈E Xee) ∩ (
∑

f∈F Nf) where F is a strictly increas-
ing sequence of vectors. Because of Lemma 4.2, this intersection is of the form∑

g∈E∩F Xgg. Conversely, condition 1 implies condition 2. Indeed, from equal-

ity 3 we get Zk =
⋃
E

(∑
e∈E

Ne

)
. Consequently, X is the union of all intersections

X ∩ (
∑
e∈E

Ne) where E ranges over all strictly increasing sequences of vectors.

Since, by hypothesis, each of these subsets is of the form
∑

e∈E Xee where the
Xe’s are recognizable (resp. group recognizable, resp. aperiodic recognizable) the
implication follows. �

The previous result clears the way to the closure properties of these families
relative to the main elementary set operations.

Theorem 4.4. Let F be any one of the three families Frec, Fmod or Fap. Then
F is closed under the Boolean operations, the projection over an arbitrary subset
of components and direct product, i.e.,

(i) X,Y ∈ F (k) ⇒ X ∪ Y ∈ F (k),

(ii) X ∈ F (k) ⇒ X ∈ F (k),

(iii)X ∈ F (k) ⇒ π(X) ∈ F (k−1) where (x1, . . . , xk) �→ π(x1, . . . , xk) = (x2, . . . , xk)
maps Nk onto its k − 1 last components Nk−1,

(iv)X ∈ F (k) ∧ Y ∈ F (�) ⇒ X × Y ∈ F (k+�).

Proof. In order to avoid cumbersome repetitions, we prove the result for Frec, but
the arguments can be easily adapted to the other two families. We shall further-
more drop the subscript and write F . In the proof we use whatever equivalent
definition of F given by Proposition 4.3 is more convenient.

Concerning the Boolean operations, the claims are consequences of the closure
properties of the family of recognizable relations and of the following elementary
equalities, where E is an arbitrary strictly increasing sequence of vectors

(X ∪ Y ) ∩
∑
e∈E

Ne =

(
X ∩

∑
e∈E

Ne

)
∪
(
Y ∩

∑
e∈E

Ne

)

X ∩
∑
e∈E

Ne =
∑
e∈E

Ne \
(
X ∩

∑
e∈E

Ne

)
.
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Indeed, the vectors in E are linearly independent and therefore the sum
∑

e∈E Ne

is isomorphic to the direct product N|E| allowing us to apply Proposition 3.2.

We now proceed to the claim on the direct product. Consider X ∈ F (k) and
Y ∈ F (�) for some k, � ∈ N. By Proposition 4.3, item 2, it suffices to investigate
the case where X and Y are of the form

X =
∑

−q≤i≤p,i�=0

Xiei, Y =
∑

−s≤j≤r,j �=0

Yjfj ,

where the sequence of the vectors ei’s (resp. fj ’s) is strictly increasing in Zk

(resp. Z�) and where the Xi’s (resp. Yj ’s) are recognizable, resp. group recogniz-
able, resp. aperiodic in N.

We first observe that without loss of generality, by possibly renumbering the
indices, there exists an integer 1 ≤ k′ ≤ k such that Supp(e1) (resp. Supp(e−1)) is
included in the first k′ (resp. last k − k′) components. Denote by e′1, . . . , e

′
p the

restrictions of the vectors e1, . . . , ep to their first k′ components and by e′−1, . . . , e
′
−q

the restrictions of the vectors e−1, . . . , e−q to their last k − k′ components. Then
X is equal to the direct product

(X1e
′
1 + · · · +Xpe

′
p) × (X−qe

′−q + · · · +X−1e
′−1).

Similarly, assuming that there exists an integer 1 ≤ �′ ≤ �, such that Supp(f1)
(resp. Supp(f−1)) is included in the first �′ (resp. last �− �′) components, without
loss of generality Y is the direct product

(Y1f
′
1 + · · · + Yrf

′
r) × (Y−sf

′−s + · · · + Y−1f
′−1)

and therefore X × Y , up to a renumbering of the indices, is equal to A×B where

A =
∑

1≤i≤p

Xie
′
i ×

∑
1≤j≤r

Yjf
′
j

B =
∑

1≤i≤q

X−ie
′
−i ×

∑
1≤j≤s

Y−jf
′
−j .

(7)

We claim that A is a finite union of sets of the form
∑

1≤h≤u

Zhgh where g1 < · · · < gu

is a strictly increasing sequence of vectors in Zk′+�′ with nonnegative components
and the Zh’s are recognizable, resp. group recognizable, resp. aperiodic. Indeed,
by Lemma 3.1 the recognizable subsets X1 and Y1 have finite decompositions
X1 =

⋃
α

X
(α)
1 and Y1 =

⋃
β

Y
(β)
1 where the X(α)

1 and the Y (β)
1 are recognizable,

resp. group recognizable, resp. aperiodic, such that for all α and all x, x′ ∈ X
(α)
1 we

have Y1−· x = Y1−· x′ and for all β and all y, y′ ∈ Y
(β)
1 we have X1−· y = X1−· y′.
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Then we obtain

A =
⋃
α

[Xα
1 (e′1, f

′
1) + U ] ∪

⋃
β

[
Y β

1 (e′1, f
′
1) + V

]

where
U = (X2e

′
2 + · · · +Xpe

′
p) × ((Y1−· Xα

1 )f ′
1 + · · · + Yrf

′
r)

V =
(
(X1−· Y β

1 )e′1 + · · · +Xpe
′
p

)
× (Y2f

′
2 + · · · + Yrf

′
r).

The claim follows by induction on p+ r applied to the subsets U and V , i.e., A is
a finite union of subsets of the form

Z1g1 + · · · + Zugu

where g1 < · · · < gu is a strictly increasing sequence of vectors with nonnegative
components. Similarly, B is a finite union of subsets of the form

Z−vg−v + · · · + Z−1g−1

where g−v < · · · < g−1 is a strictly increasing sequence of vectors with nonpositive
components. Observe that the common support of the vectors g1, . . . , gu is disjoint
of the common support of the vectors g−v, . . . , g−1 and the union of these two
supports is the set {1, . . . , k + �}. The conclusion follows from the equality

(Z1g1 + · · · + Zugu) × (Z−vg−v + · · · + Z−1g−1) =
Z−v(0, g−v) + · · · + Z−1(0, g−1) + Z1(g1, 0) + · · · + Zu(gu, 0)

where e.g., (0, g−v) is the k + �-vector with k′ + �′ leading zeros.

Finally, let π be the projection onto the k − 1 last components

π(x1, x2, . . . , xk) = (x2, . . . , xk)

and let F be a strictly increasing sequence of vectors in Nk−1. Then π(X) ∩∑
f∈F Nf is equal to the union over all strictly increasing sequences E of Nk

which map onto F by π, of the sets π(X ∩∑e∈E Ne). �

5. The decision procedure

The decision procedure is based on the following characterization which shows
that definable relations are precisely the relations belonging to the subfamilies of
semilinear sets.

Theorem 5.1. A subset X ⊆ Zk is first order definable in Zthresh,mod (resp. Zmod,
resp. Zthresh) if and only if it belongs to the family Frec, (resp. Fmod, resp. Fap).
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Proof. The following notation is standard. Given a formula φ(x1, . . . , xk) with free
variables x1, . . . , xk, [[φ ]] denotes the interpretation of φ, i.e., the set of k-tuples
satisfying the formula.

We now prove that the condition is necessary. We first show that the relations
defined by the atomic predicates belong to Frec, (resp. Fmod, resp. Fap). We start
with the predicates involving a unique variable:

[[x ≥ a ]] = a+ N · 1,
[[x = b mod a ]] = (b + Na)1 ∪ (Na−· b)(−1).

We now consider the predicate x− y ≥ a and we proceed by case study.

Case 1: x, y ≥ 0. If a ≥ 0, the relation is N(1, 1) + (a + N)(1, 0) otherwise it is
[N(1, 1) + {0 ≤ b ≤ −a}(0, 1)] ∪ [N(1, 1) + N(1, 0)].

Case 2: x ≥ 0, y ≤ 0. If a ≥ 0, the relation is equal to

(a+ N)(0,−1) + N(1, 0) ∪
⋃

0≤b≤a

b(0,−1) + ((a− b) + N)(1, 0)

otherwise the relation is N × (−N) = N(0,−1) + N(1, 0).

Case 3: x ≤ 0, y ≥ 0. The is equivalent to y − x ≤ −a, i.e., it is the negation of
the condition y − x ≥ −a + 1. Using the previous case, the interpretation is the
complement of the relation

(−a+ 1 + N)(−1, 0) + N(0, 1) ∪
⋃

0≤b≤−a+1

b(−1, 0) + ((−a+ 1 − b) + N)(0, 1)

if −a+ 1 ≥ 0 and of −N × N otherwise and we may conclude by Theorem 4.4.

Case 4: x, y ≤ 0. In this last case, the condition is equivalent to (−y)− (−x) ≥ a.
Case 1 yields the relation N(−1,−1) + (a + N)(0,−1) if a ≥ 0 otherwise it is
[N(−1,−1) + {0 ≤ b ≤ −a}(−1, 0)] ∪ [N(−1,−1) + N(0,−1)].

We now proceed by structural induction on the formula. Assume [[φ(x1, . . . , xk) ]]
is in Frec, resp. Fmod, resp. Fap. Then the equalities [[¬φ(x1, . . . , xk) ]] = Nk \
[[φ(x1, . . . , xk) ]] and [[ ∃x1 : φ(x1, . . . , xk) ]] = π([[φ(x1, . . . , xk) ]]) show that [[¬φ ]] and
[[ ∃x1 : φ ]] are in Frec, resp. Fap, resp. Fmod. Concerning the conjunction, assume
without loss of generality that by renaming the variables, we are given two formulas
of the form φ1(x1, x2, . . . , xk) and φ2(x�, x�+1, . . . , xr) where 1 ≤ � ≤ k + 1. Then
the relation

[[φ1(x1, x2, . . . , xk) ∧ φ2(x�, x�+1, . . . , xr) ]]
is equal to

(
[[φ1(x1, x2, . . . , xk) ]] × Zr−k

) ∩ (Z�−1 × [[φ2(x�, x�+1, . . . , xr) ]]
)
.

Observing that Zr−k and Z�−1 are in Frec, resp. Fap, resp. Fmod and using the
closure properties of Theorem 4.4, completes the verification of this direction.
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Let us now prove that the condition is sufficient. A relation in F is a finite
union of subsets of the form

X−re−r + · · · +X−1e−1 +X1e1 · · · +Xses,

where e−r, · · · , e−1, e1, · · · , es is a strictly increasing sequence of vectors and the
Xi’s are recognizable, group recognizable, aperiodic recognizable. The vectors
e−i for i = 1, . . . , r have only negative or null components and the vectors ei for
i = 1, . . . , s have only positive components. We adopt the convention that the
expression reduces to X1e1 · · · + Xses (resp. X−re−r + · · · + X−1e−1) if r = 0
(resp. s = 0). Let φi be the formula defining Xi (see the paragraph 3.1). Set
Ii = Supp(ei) and define I−r−1 = Is+1 = ∅. Set J−i = I−i \ I−i−1 if 1 ≤ i ≤ r
and Ji = Ii \ Ii+1 if 1 ≤ i ≤ s. We choose an arbitrary element αi in Ji for
i = −r · · · − 1, 1 · · · s. Then this relation is defined by the formula⎛
⎝yα−1 ≤ 0 ∧

∧
2≤i≤r

yα−i − yα−i+1 ≤ 0

⎞
⎠∧

⎛
⎝yα1 ≥ 0 ∧

∧
2≤i≤s

yαi − yαi−1 ≥ 0

⎞
⎠

∧
⎛
⎝φ−1(−yα−1) ∧

∧
j∈J−1

(yj − yα−1 = 0)

⎞
⎠ ∧

r∧
i=2

(
φ−i(−(yα−i − yα−i+1))

∧
∧

j∈J−i

(yj − yαi = 0)

⎞
⎠ ∧

⎛
⎝φ1(yα1) ∧

∧
j∈J1

(yj − yα1 = 0)

⎞
⎠

∧
s∧

i=2

⎛
⎝φi(yαi − yαi−1) ∧

∧
j∈Ji

(yj − yαi = 0)

⎞
⎠ . �

In [1] Corollary 4.5, it is proved to be recursively decidable, given a semilinear
subset of Nk whether or not it is belongs to Frec (where the family is called the
family of synchronous relations). Here we go one step further.

Theorem 5.2. Given a relation in Zk (resp. in Nk) which is first order definable
in the structure Zp (resp. Np), it is recursively decidable whether or not it is first
order definable in the structure Zthresh,mod (resp. Nthresh,mod). The same result
holds when Zthresh,mod is replaced by Zmod or Zthresh (Nthresh,mod is replaced by
Nmod or Nthresh.

Proof. Let φ(x1, . . . , xk) be a formula of the Presburger arithmetic on the in-
tegers with addition, defining a relation X ⊆ Zk. It is definable in the struc-
ture Zthresh,mod resp. Zmod, Zthresh if and only if for all strictly increasing se-
quences e−r, · · · , e−1, e1, · · · , es of vectors in E where the e−i for i = 1, . . . , r have
only negative or null components and the ei’s for i = 1, . . . , s have only posi-
tive components, the intersection X ∩ Ne−r + · · · + Nes, considered as embedded
in Nr+s, is a recognizable, resp. group recognizable, aperiodic recognizable sub-
set of Nr+s. However, this intersection can be defined in Presburger arithmetic.
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Indeed, let Ii be the support of ei and define J−r−1 = Js+1 = ∅ and more generally
J−i = I−i \ I−i−1 if 1 ≤ i ≤ r and Ji = Ii \ Ii+1 if 1 ≤ i ≤ s. For all 1 ≤ j ≤ k
let σ(xj) be the predicate equal to xj < 0 if j ∈ I−1, to xj > 0 if j ∈ I1 and to
xj = 0 otherwise. Then the relation X ∩ (Ne−r + · · · + Ne−1 + Ne1 + · · · + Nes)
is defined by the formula

ψ(y−r, . . . , y−1, y1, . . . , ys) ≡ y−r > 0, · · · y−1 > 0, y1 > 0, · · · , ys > 0
∃x1 · · · ∃xk : σ(x1) ∧ · · · ∧ σ(xk) ∧ φ(x1, . . . , xk)∧∧
j∈J−1

(y−1 = −xj) ∧
∧

1<i≤r

⎛
⎝ ∧

j∈J−i,�∈J−i+1

(y−i = x� − xj)

⎞
⎠

∧
∧

j∈J1

(y1 = xj) ∧
∧

1<i≤s

⎛
⎝ ∧

�∈Ji,j∈Ji−1

(yi = x� − xj)

⎞
⎠.

We now proceed as follows. Assume that for some increasing sequence of vectors
the previous formula does not define a recognizable set, which can be decided by [5]
page 1048, then φ is not definable in the structure Zthresh,mod. Otherwise, it is
definable in Zthresh,mod and it remains to check whether or not it is definable in
one of the two substructures Zmod and Zthresh. At this point we know that there
exists a morphism f of Np onto a finite commutative monoid M and a subset
F ⊆ M such that : [[ψ(y1, . . . , yp) ]] = f−1(F ) holds. We may assume further that
M is minimal in the sense that for all u, v ∈M the following holds:

(∀x ∈M : u+ x ∈ F ⇔ v + x ∈ F ) ⇒ u = v. (8)

Then M is a group, resp. an aperiodic monoid if and only if φ is definable in the
structure Zmod, resp. Zthresh. It thus suffices to list all possible triples (f,M,F )
satisfying (8). Consider a triple for which equality [[ψ(y1, . . . , yp) ]] = f−1(F ) holds.
If M is a group then φ is definable in Zmod, if it is an aperiodic monoid then φ is
definable in Zthresh, otherwise φ is definable in Zthresh,mod but neither in Zthresh

nor in Zmod.
Turning now to the domain N, assume φ(x1, . . . , xk) is a first order formula in

the structure Np. It can be viewed as a formula in Zp by transforming it into
(x1 ≥ 0) ∧ · · · ∧ (xk ≥ 0) ∧ φ′(x1, . . . , xk) where φ′ is obtained by substituting
∃y ≥ 0 (resp. ∀y ≥ 0) for each occurrence of ∃y (resp. ∀y) in φ. If φ(x1, . . . , xk) is
first order definable in Np, then the transformed formula is first order definable in
Zp. Furthermore if it is definable in Nthresh,mod (resp. Nmod, resp. Nthresh) it is
also definable in Zthresh,mod (resp. Zmod, resp. Zthresh). Conversely, if the relation
is definable in Zthresh,mod (resp. Zmod, resp. Zthresh), under the hypothesis that
the variables x and y are nonnegative the predicate x − y ≥ a is equivalent to a
predicate in Nthresh. Indeed, the predicate x − y ≥ a with a ≤ 0 is equivalent to
y − x ≥ −a which completes the proof. �
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