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EDIT DISTANCE BETWEEN UNLABELED ORDERED
TREES

Anne Micheli1 and Dominique Rossin1

Abstract. There exists a bijection between one-stack sortable permu-
tations (permutations which avoid the pattern (231)) and rooted plane
trees. We define an edit distance between permutations which is con-
sistent with the standard edit distance between trees. This one-to-one
correspondence yields a polynomial algorithm for the subpermutation
problem for (231) pattern-avoiding permutations.

Moreover, we obtain the generating function of the edit distance
between ordered unlabeled trees and some special ones. For the general
case we show that the mean edit distance between a rooted plane tree
and all other rooted plane trees is at least n/ln(n).

Some results can be extended to labeled trees considering colored
Dyck paths or, equivalently, colored one-stack sortable permutations.

Mathematics Subject Classification. 05C12, 05C05, 05A05,
05A15.

1. Introduction

The edit distance between two labeled trees is the minimal number of edit
operations necessary to transform one tree into the other. The edit operations are
deletion (edge contraction), insertion of an edge and relabeling of a vertex.

The main problem is to find efficient algorithms to compute this distance be-
tween ordered labeled trees. Many algorithms have been proposed [6, 14]. The
basic idea of all these dynamic algorithms arises from the paper of Zhang and
Shasha [14]. Further improvements have been made [6].

Comparing the structure of molecules and finding the preserved ones during
a genetic mutation can be seen as an edit distance problem. The application

Keywords and phrases. Edit distance, trees.
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field of this problem is not restricted to biology: in computer vision, objects are
represented by their skeletons, which are trees, and in computer science, edit
distance is used to compare structural similarities between XML documents [5].

But no combinatorial interpretation has yet been found. In this article, we
introduce one-stack sortable permutations [2, 13]. These one-stack sortable per-
mutations are (231) pattern-avoiding permutations and we show that they are in
one-to-one correspondence with ordered trees.

Moreover the edit operations on unlabeled trees can be easily described in terms
of one-stack sortable permutations. This leads to a purely combinatorial expla-
nation of the edit distance between unlabeled trees. For labeled ones, a similar
correspondence can be given and is briefly discussed in the conclusion.

Some polynomial algorithms are known to compute the edit distance between
trees [14]. By our correspondence, we show that computing the greatest common
pattern between two (231)-avoiding permutations is also polynomial whereas it is
NP-complete for general permutations [1].

In Section 2, we recall basic definitions on trees and permutations. In the main
Section 3, we first transpose the edit operations on one-stack sortable permutations
and then characterize the edit distance on permutations in terms of permutation
patterns. The Section 4 gives a lower bound on the average edit distance between
random trees. The last section is devoted to the study of the distribution of the
edit distance between the path (resp. the star) and a random tree.

2. Definitions

2.1. One-stack sortable permutations

We describe in this section an encoding for rooted plane trees. A rooted plane
tree is en embedding of a tree in the plane with a distinguished vertex called the
root. A rooted plane tree is also called an ordered tree because the children of
each vertex are linearly ordered from left to right by the embedding. We number
the edges of the tree by a postfix traversal and then read the permutation by
a prefix traversal. The permutations so obtained are called one-stack sortable
permutations [2, 13]. An alternate definition is the following:

Definition 2.1. For any n ∈ N, a one-stack sortable permutation on {1 . . . n}
is a permutation σ such that σ = InJ where I and J are one-stack sortable
permutations on {1 . . . p} and {p+1 . . . n−1} respectively. Note that I or J could
be empty.

Note that in the sequel, permutations are seen as words.

Theorem 2.2 (see Fig. 3). One-stack sortable permutations are in one-to-one
correspondence with ordered trees.

Proof. Given a tree T with n edges, number the edges by a postfix Depth First
Search Traversal (DFS). Read it again by a prefix DFS. Note that the DFS,
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Figure 1. Coding a tree with a one-stack sortable permutation.

whether prefix or postfix, respects the order on the edges hanging on each ver-
tex. It is clear that the permutation so obtained is of the form InJ . Moreover I
corresponds to the encoding by a postfix DFS of the left subtree TI as shown in
Figure 1. The same goes for J but its numbers are shifted by |I|.

Conversely, take a one-stack sortable permutation σ = InJ .
• If σ = k then the corresponding tree is a single edge.
• If σ = InJ then the corresponding tree T (σ) is the tree obtained by taking

an edge e = (xy) (corresponding to n) where x is the root of T (σ). Since
I and J are also one-stack sortable permutations, we can recursively build
the corresponding trees TI and TJ . Put them at each end of the edge e,
i.e. TI is hung on x such that e is the rightmost edge of x, and TJ on y.

This construction is unique. �
If σ is a one-stack sortable permutation, let T (σ) denote the tree associated

to σ. Conversely, if T is a tree, its associated one-stack sortable permutation is
denoted by Θ(T ). Moreover, in the sequel, σk will either denote the k-th letter of
the word σ or the corresponding edge in T (σ).

Definition 2.3. A subsequence of a permutation σ = σ1 . . . σn is a word σ′ =
σi1 . . . σik

where i1, . . . , ik is an increasing sequence of elements of {1, . . . , n}.
Let Φ be the bijective mapping of {σi1 , σi2 , . . . , σik

} onto {1, . . . , k} preserving
the order on σil

.
Φ(σ′) is defined to be the normalized subsequence (pattern) σ̂′.

Remark 2.4. The one-stack sortable permutations are the permutations avoiding
the normalized subsequence (pattern) 231 [7].

2.2. Edit distance

We briefly recall the definition of the edit distance between unlabeled trees.
Given two unlabeled trees, the edit distance is the minimal number of operations
necessary to transform one into the other. The operations are (see Fig. 2):

• Deletion: this is the contraction of an edge; two vertices are merged.
• Insertion: this is the converse operation of deletion.
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Figure 2. Insertion and Deletion operations on a tree.
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Figure 3. Tree associated with σ = (1524376).

A cost can be given to each operation. In this article we define the cost of each
operation to be 1.

3. Distance on one-stack sortable permutations

Since one-stack sortable permutations are in one-to-one correspondence with
rooted plane trees, we define similar edit operations between one-stack sortable
permutations and show that these definitions are consistent with the edit distance
between trees. Moreover, we give a combinatorial interpretation of the distance.

A factor of a permutation σ = σ1σ2 . . . σn is a factor of the word σ1σ2 . . . σn

i.e. a word of the form σkσk+1 . . . σk+l.
A factor f is compact if it is a permutation of an interval of N.
A compact factor f of σ is complete if no non-empty factor g of σ verifies both:

(1) fg is compact where fg is the concatenation of the words f and g;
(2) the greatest element of fg is equal to the greatest element of f .

Take for example the one-stack sortable permutation σ = (1524376) (see Fig. 3).
The complete factors of σ are {1}, {15243}, {1524376}, {5243}, {524376}, {2},
{243}, {43}, {3}, {76}, {6}. The compact factors of σ that are not complete are
{4}, {5} and {7}.

Let T = (V (T ), E(T )) be a rooted plane tree, where V (T ) denotes its set of
vertices and E(T ) its set of edges. A subtree T ′ = (V (T ′), E(T ′)) of T rooted
at v ∈ V (T ′) is a tree such that E(T ′) ⊆ E(T ), V (T ′) ⊆ V (T ) and the graph
G = (V (T ) \ V (T ′)

⋃
{v}, E(T ) \ E(T ′)) is connected.
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Figure 4. Compact factors are connected components.
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Figure 5. Subtree of T induced by Eσ′ .

Lemma 3.1. The set of compact factors of σ is in one-to-one correspondance with
the union of two sets: the set of subtrees of T = T (σ) and the set of the internal
paths P in T such that each internal vertex of P is of degree 2 in T and P does
not end at a leaf (P can be reduced to an internal edge).

Proof. First let us prove that the subset of edges corresponding to a compact
factor is connected.

Let σ′ be a compact factor of σ = Θ(T ). Let Eσ′ be the set of edges cor-
responding to σ′ in T . Suppose that Eσ′ is not connected. Let E1 and E2 be
two connected components and v be the nearest common ancestor of E1 and E2.
Let P1 (resp. P2) be the path starting from v and ending at the first vertex of E1

(resp. E2). Note that we can choose E1 and E2 such that the edges of P1 and
P2 are not in Eσ′ . Suppose that P1 is at the left of P2 (see Fig. 4). In the prefix
DFS of T , the edges of P2 are visited between those of E1 and E2. Thus they
should appear in σ′, hence P2 = ∅. Thus v ∈ E2 so that P1 links E2 and E1.
In the postfix DFS, the edges of P1 have labels greater than those of E1 and less
than E2. If P1 �= ∅, it implies that σ′ is not compact. Thus Eσ′ is connected.

Consider the subtree T ′ of T induced by Eσ′ . It consists of Eσ′ plus all the
edges of T whose endpoints have an ancestor in Eσ′ as shown in Figure 5.

Eσ′ can be decomposed into k ≥ 1 edge-disjoint paths P ′
i thanks to the prefix

DFS (see Fig. 5). Fi is the subtree hanging on P ′
i which can be empty.
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The prefix DFS of T ′, which is a factor of σ, gives the associated permutation
Θ(P ′

1) Θ(F1) Θ(P ′
2) Θ(F2) . . . Θ(P ′

k) Θ(Fk). So σ′ = Θ(P ′
1) Θ(F1) Θ(P ′

2) Θ(F2)
. . . Θ(P ′

k), hence Fi = ∅, ∀i < k.
• Suppose that Fk �= ∅. If k > 1, then the edges of Fk are visited after at

least one edge of P ′
1, and before the edges of P ′

k in the postfix DFS. Since
σ′ is compact, it implies that k = 1.

• If Fk = ∅, then Eσ′ is a subtree.
The converse is straightforward. �
Proposition 3.2. The set of complete factors of σ corresponds to the set of sub-
trees of the associated tree.

Proof. Let T ′ be a subtree of T and σ = Θ(T ). The edges of T ′ are visited
consecutively by the postfix (resp. prefix) DFS of T . Thus the sequence of edges
of T ′ is a compact factor σkσk+1 . . . σk+l of σ. σk+l+1 is an edge which is visited
after all edges of T ′ by the prefix DFS. Thus it is the first time this edge is visited
by the traversal. Hence, its label is greater than those of T ′. Thus σkσk+1 . . . σk+l

is complete.
Conversely, let σ′ be a complete factor. As σ′ is compact, by Lemma 3.1, it

corresponds either to a subtree or to an internal path P with a subtree F hanging
on P . In addition, Θ(P )Θ(F ) = σ′Θ(F ) is also a compact factor of σ and it has
the same maximum as σ′ which contradicts the completeness of σ′. �
Remark 3.3. Let σ be a one-stack sortable permutation and σk = (p(vk)vk)
an edge, where p(vk) denote the parent of vk. Let σ′ be the shortest complete
factor of σ such that σ′ = σkσk+1 . . . σk+l, where σi = (p(vi)vi). By the previous
proposition T (σ′) is a subtree of T (σ). The children of vk are the vertices vk+i

such that i ≤ l and σk > σk+i > σk+j , 1 ≤ j ≤ i − 1.

Let σ = σ1 . . . σk be a word of {1 . . . n} and a be a letter of {1 . . . n}. We denotes
by [σ]a the word σ′

1 . . . σ′
k where

σ′
i =

{
σi if σi < a

σi + 1 otherwise.

Definition 3.4. We define two operations on permutations which correspond to
the standard definition on trees [14]:

(1) Deletion: let 1 ≤ k ≤ n. The deletion (σk → Λ) is the removal of σk in
a permutation σ and the renormalization on Sn−1 of the result. We will
either talk about the deletion of the edge σk or the deletion of the vertex v
such that σk is the edge (p(v)v).

(2) Insertion (see Fig. 6): (Λ → ∅) corresponds to the transformation of the
permutation σ = ∅ into σ′ = (1). If σ �= ∅, let f be a complete factor
of σ. Then, σ = ufv with u, v factors of σ.
(a) (Λ → f): the resulting permutation is σ′ = [u]aaf [v]a, a = max{f}+

1. This corresponds to the insertion of an inner vertex with T (f) as
subtree.
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Figure 6. Insertion operations for f = (43).

(b) (Λ r→ f): the resulting permutation is σ′ = [u]afa[v]a, a = max{f}
+ 1. This corresponds to the insertion of a leaf as the right sibling of
T (f).

(c) (Λ l→ f): the resulting permutation is σ′ = [u]aa[f ]a[v]a, a = min{f}.
This corresponds to the insertion of a leaf as the left sibling of T (f).

The array of Figure 7 gives all the permutations that can be obtained with a single
insertion in σ = (1524376).

We now prove that the operations (deletion and insertion) defined on one-stack
sortable permutations are in fact internal operators for one-stack sortable permu-
tations. Moreover, these operators define an edit distance between permutations
consistent with the usual edit distance between trees.

Lemma 3.5. The Deletion/Insertion algorithm yields a one-stack sortable per-
mutation.

Proof. In the case of deletion, the proof is straightforward given the one-to-one
correspondence with trees and one-stack sortable permutations. Consider a tree
labeled by a depth first traversal. Deleting the edge i from this tree changes all
labels greater than i by subtracting 1.

For the insertion operation, let σ be a one-stack sortable permutation and f
be a complete factor of σ = ufv. By Proposition 3.2, f corresponds to a subtree
of T (σ).

(1) (Λ → f): Let T = T (σ) and (e1, e2, . . . , en) be the edges of T ordered by
a prefix DFS of the tree. Note that σ = αT (e1)αT (e2) . . . αT (en), where
α(i) is the label of the edge i in T .

Let T ′ be the tree obtained by the insertion of an internal vertex v
(a = (p(v)v)) at the root-vertex of the subtree T (f), which is a subtree
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f (Λ → f) (Λ r→ f) (Λ l→ f)
1 5

2 4
3

7
6

(1)

2
1
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3 5

4

8
7

(21635487)

1 2 6
3 5

4

8
7

(12635487)

1 2 6
3 5

4

8
7
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3

7
6
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3
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7
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7
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3

7
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3

2
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4

8
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3
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Figure 7. Insertion in permutation σ = 1524376.
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hanging on v. Let σ′′ = Θ(T ′). A prefix traversal of T ′ orders the edges
of T ′ as follows: (e1, e2, . . . , el, a, el+1, . . . , en).

Since σ′′ is obtained by a prefix traversal, σ′′ = u′af ′v′. Since the edges
of f appear before a in the postfix DFS, f ′ = f . The edge a in a postfix
DFS appears just after f . Thus its label is max{f} + 1. All the edges
visited after f in T (and thus after a in T ′) by the postfix DFS have their
labels increased by 1. Thus σ′′ = [u]aaf [v]a = σ′.

(2) (Λ l→ f), (Λ r→ f): The same argument used as for (Λ → f) hold. �
Proposition 3.6. Insertion and deletion are inverse operations.

Proof. There are two different kinds of deletion in a tree T .
(1) Deletion of an inner vertex v. Consider the subtree T ′ of T hanging on

v. It corresponds to a complete factor f in σ = Θ(T ). This contraction
corresponds to the inverse operation of (Λ → f).

(2) Deletion of a leaf. There are three different cases:
• Deletion of a vertex with no sibling. This is the same as deleting the

parent of this vertex which is an inner vertex except if the tree is
reduced to a single edge.

• Otherwise, this vertex has either:
– A left sibling v′. Consider the subtree hanging at v′ (including

(p(v′)v′)). It corresponds to the factor f . The inverse operation
is (Λ r→ f).

– A right sibling v′. Consider the subtree hanging at v′ (including
(p(v′)v′)). It corresponds to the factor f . The inverse operation
is (Λ l→ f). �

Definition 3.7. The distance between two one-stack sortable permutations σ1

and σ2 is the minimal number of operations – deletion or insertion – to transform σ1

into σ2.

For example, let σ1 = 31264587 and σ2 = 1524376. We want to transform σ1

into σ2.

• 31264587
(1→Λ)−−−−→

2153476
• 2153476

(1→Λ)−−−−→
142365

• 142365
(Λ→3)−−−−→

1524376

3

1 2

6

4 5

8

7

(31264587)
1 4

2 3

6

5

(142365)

2

1

5

3 4

7

6

(2153476)
1 5

2 4

3

7

6

(1524376)

Theorem 3.8. The edit distance between ordered trees is the distance between the
associated one-stack sortable permutations.

Proof. This is a consequence of Proposition 3.6. �
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Theorem 3.9. The edit distance between one-stack sortable permutations σ1 and
σ2 is equal to

|σ1| + |σ2| − 2|u|
where u is a largest normalized subsequence (pattern) of σ1 and σ2.

Proof. The edit distance d(σ1, σ2) between σ1 and σ2 is given by the minimal
number of insertions and deletions. If t1 is an insertion and t2 is a deletion, then
there exist a deletion t′1 and an insertion t′2 such that t1t2(σ) = t′1t

′
2(σ). Note

that t′1 and t′2 depend on the one-stack sortable permutation σ.
Considering the sequence of edit operations, there exists a sequence composed

of deletions and consequent insertions that transforms σ1 into σ2. We denote this
sequence by D1 . . . DlO1 . . .Ok, l + k = d(σ1, σ2).

Consider the one-stack sortable permutation σ′ = D1 . . . Dl(σ1). Let u = σ′.
Then u is a normalized subsequence of σ1 because deleting an edge from a one-
stack sortable permutation yields a normalized subsequence of the original one-
stack sortable permutation. In addition u is also a normalized subsequence of σ2

because inserting an edge in a one-stack sortable permutation s yields a one-stack
sortable permutation s′ and s is a normalized subsequence of s′.

Conversely, let u be a maximal normalized subsequence of σ1 and σ2. It is
straightforward to find |σ1| − |u| operations of deletions such that those deletions
transform σ1 into u. The same goes for σ2 and u. �
Corollary 3.10. Finding the greatest common pattern between two one-stack sort-
able permutations is polynomial.

In [1], the authors proved that finding the greatest common pattern between
two permutations is NP-complete. We prove here that the problem becomes poly-
nomial when restricted to one-stack sortable permutations, i.e. (132) or (231)
pattern-avoiding permutations. In fact, the algorithm of Zhang and Shasha [14]
on trees solves the problem on one-stack sortable permutations because the algo-
rithm outputs not only the distance but also the greatest common subtree.

4. Lower bounds on average edit distance

In this section we study the average edit distance between a given rooted plane
tree T with n vertices and all other rooted plane trees with n vertices. We show
that this average distance is bounded below by n

ln(n) .

Lemma 4.1. Let T be a rooted plane tree with n vertices. There are at most n−1
different deletions and 3n3 insertions allowed in T .

Proof. The number of deletions is bounded above by the number of edges i.e.
(n − 1).

The number of insertions is bounded by 3 times the number of subtrees (or
complete factors of the corresponding permutation). The number of subtrees of T
rooted at vertex v is bounded by d(v)2 where d(v) denotes the degree of vertex v.
Thus the total number of subtrees is bounded by

∑
v d(v)2. �
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Figure 8. Some canonical trees.

Theorem 4.2. Let T0 be a tree with n vertices. The proportion of rooted plane
trees with n vertices at distance at most O(n/ln(n)) tends to 0.

The average distance between T0 and the set of rooted plane trees is bounded
below by n/ln(n).

Proof. Let T0 be a rooted plane tree. Let Ak = {T ∈ Tn, dist(T0, T ) ≤ 2k}. Note
that A0 = {T0}. A tree Tk ∈ Ak is obtained from T0 by l ≤ k deletions and l
insertions. Thus |Ak| < (n − 1)k(n3)k < n4k. But the number of rooted plane
trees is Cn ∼ 4n

n
√

πn
, then the proportion of rooted plane trees at distance at most

O(n/ln(n)) tends to 0.
Hence the average distance is bounded below by n/ln(n). �

5. Generating functions

By using the combinatorial interpretation of the distance, we compute the gen-
erating functions of the edit distance between rooted plane trees with n edges and
some special ones as shown in Figure 8. Moreover, we deduce the average distances
from the generating functions.

5.1. Generating function of the edit distance between
one-stack sortable permutations and Id = 1 2 . . . n

We denote by S1(t, q) the generating function of one-stack sortable permuta-
tions, where t counts the size of the permutation and q the edit distance between
one-stack sortable permutations and Id. This is the distance between a tree and
the trivial one which is made of n edges and of height 1.

5.1.1. Tree interpretation of the largest increasing subsequence

Proposition 5.1. The length of a largest increasing subsequence of a one-stack
sortable permutation is the number of leaves of the associated tree.
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Proof. Let T be a rooted plane rooted tree and σ the associated one-stack sortable
permutation. We call leaf-edge an edge incident to a leaf; any other edge will be
called an internal edge.

(1) The subsequence of σ made of the leaf-edges is increasing because the
order in which the leaf-edges are visited by a prefix traversal is the same
as by a postfix traversal.

(2) Suppose that we take an increasing subsequence σ′ of σ. This subsequence
is in one-to-one correspondence with some of the edges in the tree. Suppose
that there is an internal edge γ = (p(ν)ν). Then, by the postordering
of the edges, each edge (p(v)v) such that ν = p(v) has a smaller label
and appears in σ after the edge γ. Thus, none of these edges are in
σ′. Moreover, there is at least one leaf-edge belonging to the subtree Tγ

hanging on ν. Replace the edge γ by a leaf of Tγ . The prefix traversal
ensures that the subsequence so obtained is an increasing one. �

Proposition 5.2. The number of rooted plane trees with n edges and k leaves is
equal to the number of rooted plane trees with n edges and n + 1 − k leaves.

Proof. This is a direct consequence of the symmetry of the Narayana numbers
1
n

(
n
k

)(
n

k−1

)
(see [8], Article 495, [9]) which count the number of rooted plane trees

with n edges and k leaves [10]. �

5.1.2. Generating function

We now compute the generating function I(t, p) of one-stack sortable permu-
tations of size t and largest increasing subsequence of size p. The first terms of
I(t, p) are [I(t, p)]0 = 1, [I(t, p)]1 = p and [I(t, p)]2 = (p + p2). The general term
follows the recursive formula:

[I(t, p)]n = p[I(t, p)]n−1 +
n−2∑
i=0

[I(t, p)]i[I(t, p)]n−1−i. (1)

This formula comes from the decomposition of a one-stack sortable permutation σ
into InJ with n ≥ 1. The largest increasing subsequence of σ is the union of the
largest one of I and the largest one of J unless J is empty; in this case, the largest
subsequence is the largest one for In.

From this formula we deduce:

I(t, p) = 1 + (p − 1)tI(t, p) + tI2(t, p) (2)

• 1 comes from the case where n = 0 in the equation (1);
• ptI(t, p) comes from p[I(t, p)]n−1.

It follows from equation (2) that:

I(t, p) =
1 + (1 − p)t −

√
(p − 1)2t2 − 2(p + 1)t + 1

2t
· (3)
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Let S̃1(t, q) be the generating function of the difference between the lengths of the
one-stack sortable permutation and the largest increasing subsequence in it. The
first terms are [S̃1(t, q)]0 = −1, [S̃1(t, q)]1 = 1 and [S̃1(t, q)]2 = q + 1. Then

Lemma 5.3. I(t, p) and S̃1(t, p) are related by:

I(t, p) = 1 + p + pS̃1(t, p). (4)

Proof.

I(t, p) =
∑
τ≥1

τ∑
α=1

[I(t, p)]τ,αtτpα + 1 =
∑
τ≥1

τ∑
β=1

[I(t, p)]τ,τ+1−βtτpτ+1−β + 1

=
∑
τ≥1

τ∑
β=0

[I(t, p)]τ,τ+1−βtτpτ+1−β + 1 = 1 + p(S̃1(t, p) + 1).

The end of the proof is straightforward using Proposition 5.2. �

Lemma 5.3 and Formula 3 yield:

Theorem 5.4.

S1(t, q) = S̃1(t, q2)

=
1 − (1 + 3q2)t −

√
(q2 − 1)2t2 − 2(q2 + 1)t + 1

2tq2
·

5.1.3. Average distance

Theorem 5.5. The average edit distance between rooted plane trees with n edges
and Id is n − 1.

Proof. We provide two different proofs of this theorem. The first one is analytic
and the second one combinatorial.
No. 1: the average distance δ can be obtained from the generating function S1(t, q)
in the following way:

• F (t) = ∂S1(t,q)
∂q

∣∣∣
q=1

;

• δ = [F (t)]n
C(n) , where C(n) is the n-th Catalan number.

This easy computation yields δ = n − 1 but a direct combinatorial interpretation
proves this result in a more comprehensive way.
No. 2: this is a direct consequence of Propositions 5.1 and 5.2. Another proof can
be found in [4, 11]. In [11] a more general result is presented. We provide here a
simpler proof for this special case. �
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5.2. Generating function of the edit distance between
one-stack sortable permutations and n(n − 1) . . . 1

This is the distance between a tree and the trivial one which is a chain with n
edges. It is equivalent to finding the largest decreasing subsequence in the one-
stack sortable permutation.

5.2.1. Generating function

We compute the generating function D(x, y, z) of trees, where x counts the
number of edges, y the height of the tree and z the number of leaves at maximal
depth.

Proposition 5.6.

D(x, y, z) = yD

(
x, y,

1
1 − xz

)
− yD(x, y, 1) +

xyz

1 − xz
· (5)

Proof.

[D(x, y, z)]i,j,k =
i−j+1∑

l=1

(
l + k − 1

k

)
[D(x, y, z)]i−k,j−1,l if j > 1

[D(x, y, z)]i,1,k = δi,k.

The coefficient [D(x, y, z)]i,j,k is equal to the number of ways to add k leaves at
depth j to any tree with i − k edges, depth j − 1 and l leaves at depth j − 1.(
l+k−1

k

)
is the number of ways to add k leaves to l leaves at depth j.

D(x, y, z) =
∑
i≥1

∑
j≥1

∑
k≥1

di,j,kxiyjzk

=
∑
i≥1

∑
j≥2

∑
k≥1

∑
l≥1

(
k + l − 1

k

)
di−k,j−1,lx

iyjzk + y
∑
i≥1

(xz)i

=
∑
i≥1

∑
j≥2

∑
k≥1

∑
l≥1

(−1)k

(
−l

k

)
di−k,j−1,lx

iyjzk + y
∑
i≥1

(xz)i

=
∑
i≥1

∑
j≥2

∑
k≥1

∑
l≥1

(−1)k

(
−l

k

)
di,j−1,lx

iyj(xz)k + y
∑
i≥1

(xz)i.

Using

(x + a)−n =
∞∑

k=0

(
−n

k

)
xka−n−k,
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Figure 9. The first terms of S2.

we have:

D(x, y, z) =
∑
i≥1

∑
j≥2

∑
l≥1

((1 − zx)−l − 1)di,j−1,lx
iyj + y

∑
i≥1

(xz)i

= yD

(
x, y,

1
1 − xz

)
− yD(x, y, 1) +

xyz

1 − xz
· �

Let S2(x, y) be the generating function with respect to the length n of the one-
stack sortable permutation and the edit distance between this one-stack sortable
permutation and n(n − 1)(n − 2) . . . 1. Then, S2(x, y) = D(xy2, 1

y2 , 1).
In [3, 12], the authors give a solution for D(x, y, 1) in terms of a continued

fraction:

D(x, y, 1) =
∑
k≥1

Dk(y)xk, Dk(y) =
1

k


1 −

y

1 −
y

1 − . . .

·

This yields the following solution for S2:

S2(x, y) =
∑
k≥1

y2kDk

(
1
y2

)
xk.

The first terms of S2 (see Fig. 9) are given by:

S2(x, y) = x + x2y2 + x2 + x3y4 + 3 x3y2 + x3 + x4y6 + 7 x4y4 + 5 x4y2 + x4.

5.2.2. Average edit distance

In [3], the average height of a rooted plane tree with n edges, which is
√

πn− 1
2

is analytically determined. Thus, the average edit distance is 2(n−
√

πn+ 1
2 ) ∼ 2n.
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b
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ba

d

e

Figure 10. Example of labeled tree.

6. Conclusion

The general case where the trees are labeled (see Fig. 10) and the different
edit operations have different costs can be obtained in a similar way. Define
a decorated one-stack sortable permutation as a one-stack sortable permutation
where each number is indexed by a letter; 1e5a2a4b3d7b6c represents the tree in
Figure 10. Note that the root is unlabeled.

The operations on decorated one-stack sortable permutations are almost the
same as before and the relabeling operation consists of changing one letter. Let
ci, cd, cr be, respectively, the insert, delete and relabeling unitary costs. The only
difference is for the insertion of a new free edge. In the unlabeled case, we did not
take into account the insertion of a leaf with no sibling. Thus we define a fourth
insertion operation as:

• (Λ 1→ i), where i is a complete factor of size 1 of the permutation σ = uiv
and σ′ = [u]a[i]aa[v]a, where a = i.

Let σ1 and σ2 be two decorated one-stack sortable permutations with the same
underlying permutation. The label distance d(σ1, σ2) is equal to the string distance
between the two labeled words.

Let T1 and T2 be two decorated one-stack sortable permutations. We denote
by a subpermutation σ of T1 and T2 a normalized subpermutation without labels.
Then ΣT1 is the set of all sub-decorated one-stack sortable permutations of T1

whose underlying permutation is σ.
The relabeling distance between T1 and T2 with respect to σ is:

dσ(T1, T2) = min{crd(α, β), ∀α ∈ ΣT1 , β ∈ ΣT2}.

The distance between these two decorated one-stack sortable permutations T1

and T2 is given by min{ci(|T1| − |σ|) + cd(|T2| − |σ|) + dσ(T1, T2), σ normalized
subpermutation of T1, T2}.
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