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THE ACCESSIBILITY OF AN ACCESS STRUCTURE
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Abstract. In secret sharing, different access structures have different
difficulty degrees for acceding to the secret. We give a numerical mea-
sure of how easy or how difficult is to recover the secret, depending
only on the structure itself and not on the particular scheme used for
realizing it. We derive some consequences.
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1. Introduction

Secret sharing schemes are methods of distributing a secret among a set of
participants. Each of these participants receives a piece of the secret, known as the
share, in such a way that only specified coalitions of participants can reconstruct
the secret by pooling the shares of their members. Applications of secret sharing
schemes include key management and visual cryptography (see [1,3]). For a general
reference on secret sharing, see [4].

A very important part in the theory of secret sharing concerns to security ques-
tions. In this way, problems like the determination of the best possible ratio size
of the secret/size of the shares, the protection against cheating, etc., have received
considerable attention. This paper is devoted to introduce another security aspect
of secret sharing. In order to motivate our study, let us begin by describing a real
example. The formula of a famous refreshing drink is an industrial secret. It is
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shared to three people (three high-level directors of the company) in such a way
that it is necessary the cooperation of any two of them to recover the secret. Here,
the key point for us is the number (two out of three) of participants necessary
for acceding to the secret. The reason of this choice is clear: if this number were
one then the secret would became too accessible. Conversely, if this number were
three then the secret would be too unaccessible (perhaps impossible to recover).

It appears that the concept of accessibility can be useful to consider when shar-
ing a secret. It measures how many ways there exist for acceding to the secret
and hence how easy or how difficult is to recover it. So it depends on the access
structure itself and not on the particular scheme used for realizing it: the more is
the number of authorized coalitions, the more are the ways of getting the secret.
The fact that different structures give different difficulty levels for acceding to the
secret is not unsuitable in practice. On the contrary, as seen in the example, it can
be used to obtain different security levels according to the nature of the secret.

We shall give a numerical measure of chance for acceding to the secret and we
shall study some of its properties (Sects. 2–4). Our main result is an axiomatic
characterization of the proposed formula (Sect. 4), which also provides us a ret-
rospective justification of it. Finally, in Section 5 we observe that also different
participants in the same structure have different chance for acceding to the secret.
By using the obtained formula for the accessibility of the structure we can derive
a measure of the accessibility of the participants. This measure can be used to
estimate the relative importance of each participant in the structure.

2. Definition and first properties

For the convenience of the reader we first recall the basic definitions about secret
sharing. A complete treatment can be found in [4].

Let P = {P1, . . . , Pn} be a set of n participants. An access structure on P is
a set Γ of subsets of P (Γ ⊆ 2P). The subsets in Γ are those subsets of P that
should be able to compute the shared secrets, and are called authorized coalitions.
For practical applications the access structure Γ must be monotone, that is, if
A ⊆ B ⊆ P and A ∈ Γ, then B ∈ Γ. For a monotone structure Γ, the set of
minimal authorized coalitions, denoted by Γ0, determines the whole structure Γ
and it is called the basis of Γ. All structures in this paper are assumed to be
monotone.

Given a set of secrets K, a (perfect) secret sharing scheme for K realizing the
access structure Γ is a method of sharing each secret k ∈ K among the participants
in P , in such a way that

• if an authorized coalition of participants A ∈ Γ pool their shares, then
they can determine k;

• if an unauthorized coalition of participants B ⊂ P pool their shares, then
they can determine nothing about k.

The best known examples of secret sharing schemes are the so-called thresh-
old schemes. A (t, n)-threshold access structure consists of all subsets of P =



THE ACCESSIBILITY OF AN ACCESS STRUCTURE 561

{P1, . . . , Pn} having at least t out of n participants. For example, in the case of
the famous refreshing drink mentioned in the introduction the secret is shared
following a (2, 3)-threshold access structure.

There are different schemes realizing the same structure. Indeed, schemes realiz-
ing a (t, n)-threshold access structure were proposed by Blakley [2] and Shamir [3].
In the Shamir scheme, the set of secrets is a finite field Zp (p prime). Firstly, a
dealer chooses n distinct nonzero elements, x1, . . . , xn ∈ Zp and gives the value
xi to Pi. When sharing a secret k ∈ Zp, the dealer secretly chooses a random
polynomial of degree t− 1, f(x) = k + a1x + · · ·+ at−1x

t−1, computes yi = f(xi)
for i = 1, . . . , n, and gives the share yi to Pi. It is clear that any authorized coali-
tion can recover f(x) (hence k = f(0)) by polynomial interpolation, whereas an
unauthorized coalition has no information about k.

Let us already proceed to study the accessibility of an access structure. As
above, let P = {P1, . . . , Pn} be a set of n participants and let AP be the set of all
access structures on P .

Definition 2.1. The accessibility index on P is the map δP : AP −→ R given by

δP(Γ) =
|Γ|
2n

for Γ ∈ AP ,

where n = |P|. The number δP(Γ) will be called the accessibility degree of struc-
ture Γ.

δP(Γ) may be interpreted as the probability of a random coalition in P to be
authorized when each participant has a probability 1/2 to belong to it. As it is
obvious, δP(Γ) = 0 iff Γ = ∅. Otherwise, 0 < δP(Γ) < 1, and |Γ| < |Γ′| implies
δP(Γ) < δP(Γ′).

Example 2.2. The accessibility degree of a (t, n)-threshold access structure Γ is

δP(Γ) =
1
2n

n∑
s=t

(
n

s

)
.

Fixing P , the accessibility is a strictly decreasing function of t in the interval
1 ≤ t ≤ n. The extreme cases arise for t = n, that gives the unanimity structure
UP of degree 1/2n, and for t = 1 that gives the individualistic structure of degree
1 − 1/2n. For unanimity structures the degree decreases with the number of
participants.

Let us recall that the dual of an access structure Γ on P is Γ∗ = {S ⊆ P :
P \ S /∈ Γ}.
Proposition 2.3. Let Γ be a nonempty structure on P and let Γ∗ be its dual.
Then
1. δP(Γ∗) + δP(Γ) = 1.

2. δP(Γ∗)− δP(Γ) =
|Q| − |C|

2n
, where we define Q = {S ⊆ P : S /∈ Γ and P \ S /∈

Γ} and C = {S ⊆ P : S ∈ Γ and P \ S ∈ Γ}.
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Table 1. Accessibility characteristics of structures with four participants.

Total Participant
Number Γ0 Dual degree degrees

1 {1; 2; 3; 4} 20 0.9375 1 : 1 : 1 : 1
2 {1; 2; 34} 19 0.8125 3 : 3 : 1 : 1
3 {1; 23; 24; 34} 18 0.7500 4 : 2 : 2 : 2
4 {12; 13; 14; 23; 24; 34} 17 0.6875 3 : 3 : 3 : 3
5 {1; 23; 24} 16 0.6875 5 : 3 : 1 : 1
6 {12; 13; 14; 23; 24} 15 0.6250 4 : 4 : 2 : 2
7 {12; 13; 14; 23} 14 0.5625 5 : 3 : 3 : 1
8 {12; 13; 24; 34} 13 0.5625 3 : 3 : 3 : 3
9 {1; 234} 12 0.5625 7 : 1 : 1 : 1
10 {12; 13; 24} 10 0.5000 4 : 4 : 2 : 2
11 {12; 13; 14; 234} 11 0.5000 6 : 2 : 2 : 2
12 {12; 13; 14} 9 0.4375 7 : 1 : 1 : 1
13 {12; 34} 8 0.4375 3 : 3 : 3 : 3
14 {12; 13; 234} 7 0.4375 5 : 3 : 3 : 1
15 {12; 134; 234} 6 0.3750 4 : 4 : 2 : 2
16 {12; 134} 5 0.3125 5 : 3 : 1 : 1
17 {123; 124; 134; 234} 4 0.3125 3 : 3 : 3 : 3
18 {123; 124; 134} 3 0.2500 4 : 2 : 2 : 2
19 {123; 124} 2 0.1875 3 : 3 : 1 : 1
20 {1234} 1 0.0625 1 : 1 : 1 : 1

Proof. (1) Let us consider the sets D and T given by D = {S ⊆ P : S ∈ Γ and P \
S /∈ Γ} and T = {S ⊆ P : S /∈ Γ and P \ S ∈ Γ}. Then 2P = D ∪ C ∪ Q ∪ T
and |D| = |T |, hence 2|D| + |C| + |Q| = 2n and |Γ| + |Γ∗| = 2n. (2) Here we use
|Γ∗| − |Γ| = |Q| − |C| and the identities D∗ = D, C∗ = Q, Q∗ = C, P ∗ = P . �

Example 2.4. Table 1 above shows all structures with 4 participants (up to
isomorphism) and their main characteristics. They are ranked by decreasing ac-
cessibility degree. The second column describes the basis of the structure (for
simplicity, here we write i instead of Pi). The third column gives the dual struc-
ture. The fourth column gives the accessibility of each structure in decimal form.
Finally, the fifth column gives 24 = 16 times the accessibility of the participants
(see Sect. 5).

3. Composed structures

As it is well known, many structures can be obtained from other simpler ones
by composing them following some rules. In this section we show how to obtain
the accessibility degree of some composed structures in terms of the degrees of the
structures we are composing.
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Definition 3.1. Let P be a set of participants.
(1) Given two access structures Γ and Γ′ on P , we define the structures union

and intersection as Γ∪Γ′ = {S ⊆ P : S ∈ Γ or S ∈ Γ′} and Γ∩Γ′ = {S ⊆
P : S ∈ Γ and S ∈ Γ′}.

(2) Let P = P1 ∪ P2 ∪ · · · ∪ Pr be a partition of P , and let Γi be an access
structure on Pi for i = 1, . . . , r. The product of Γ1, . . . , Γr is the structure
on P given by Γ1 × · · · ×Γr = {S ⊆ P : S ∩Pi ∈ Γi for all i = 1, 2, . . . , r}.

Definition 3.2. Let P ,Q,R be sets of participants such that Q ⊂ P ⊂ R and let
Γ be an access structure on P .

(1) A participant Pi ∈ P such that Pi /∈ S for all S ∈ Γ0 will be called a null
participant.

(2) The structure on R given by ΓR = {T ⊆ R : T ∩P ∈ Γ} is called the null
extension of Γ to R.

(3) The structure on Q given by ΓQ = {S ⊆ Q : S ∈ Γ} is the restriction
of Γ to Q (or, simply, a substructure of Γ). When it is Q that leaves the
structure, then ΓP\Q is denoted Γ−Q and called residual structure. In this
case, if Q = {Pi} we simply write Γ−i.

Theorem 3.3. Let P be a set of participants and let Γ be an access structure on
P. With the notations as above we have the following.

1. If P ⊂ R then δR(ΓR) = δP(Γ).
2. If Q ⊂ P then δP\Q(Γ−Q) ≤ δP(Γ), with equality iff all participants in Q

are null in Γ.
3. If Γ = Γ1 × · · · × Γr then δP(Γ) =

∏r
i=1 δPi(Γi).

4. δP(Γ ∪ Γ′) = δP(Γ) + δP(Γ′) − δP(Γ ∩ Γ′). Moreover, if the sets E and
E ′ of non-null participants of Γ and Γ′ (respectively) are disjoint, then
δP(Γ ∩ Γ′) = δP(Γ)δP (Γ′).

Proof. (1) It suffices to consider the case where R = P∪{Pi}. Then every coalition
S ∈ Γ gives rise to exactly two coalitions in ΓR, namely S and S ∪ {Pi}. Thus
δR(ΓR) = 2|Γ|/2n+1 = δP(Γ). (2) It suffices again to deal with the case Q = {Pi}.
Then each coalition T ∈ Γ−i gives rise to at least two coalitions in Γ: T and
T ∪ {Pi}. Then |Γ| ≥ 2|Γ−i| and

δP\{Pi}(Γ−i) =
|Γ−i|
2n−1

≤ |Γ|
2n

= δP(Γ).

If Pi is null in Γ then Γ = (Γ−i)P so, according to item (1), we have δP\{Pi}(Γ−i) =
δP(Γ). Conversely, if the degrees coincide then |Γ| = 2|Γ−i|. This means that Pi is
null in Γ. (3) We need only to work out the case r = 2. Thus S ∈ Γ iff S = S1∪S2,
with S1 ∈ Γ1 and S2 ∈ Γ2. Then |Γ| = |Γ1||Γ2| and

δP(Γ) =
|Γ|
2n

=
|Γ1|
2n1

|Γ2|
2n2

= δP1(Γ1)δP2(Γ2).

(4) The first property follows at once from the relation |Γ∪Γ′| = |Γ|+|Γ′|−|Γ∩Γ′|.
To see the second one note that, under the hypotheses made, Γ∩ Γ′ is isomorphic
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to the null extension to P of the product structure ΓE × ΓE′ . Then, by applying
(1) and (3) we obtain δP(Γ ∩ Γ′) = δE(ΓE)δE′(ΓE′) = δP(Γ)δP(Γ′). �

Remark 3.4. When an access structure Γ is defined by its basis Γ0, we have also to
specify the set of participants P , because we can add as many null participants as
we want. However, in view of properties (1) and (2) of the preceding theorem, these
possible variations in the set of participants do not affect the accessibility degree.
Thus, we can consider the accessibility index as a map δ : A = ∪PAP −→ R given
by δ(Γ) = δP(Γ) if ∪S∈Γ0S ⊆ P .

4. Axiomatic characterization

We shall provide an axiomatic characterization of the accessibility index we
have introduced. We begin by setting a set of independent properties that we
want the index satisfies.

(A0) The Empty Structure property: δP(∅) = 0.
(A1) The Transfer property: δP(Γ ∪ Γ′) = δP(Γ) + δP(Γ′) − δP(Γ ∩ Γ′). The

aggregate accessibility arising from Γ and Γ′ is exactly shared among Γ∪Γ′

and Γ ∩ Γ′.
(A2) The Null Participant property: If P /∈ P and R = P ∪ {P}, then δP(Γ) =

δR(ΓR). Neither the adjunction nor the suppression of null participants
will affect the accessibility.

(A3) The Unanimity property: δP(UP) = 1/2n, where n = |P| and UP stands
for the unanimity structure (that is, the (n, n)-threshold access structure).

Theorem 4.1. A function ϑ : A −→ R satisfies the properties A0, A1, A2 and
A3 if and only if it is the accessibility index.

Proof. As shown in Theorem 3.3 and Example 2.2, the accessibility index satisfies
A0, A1, A2 and A3. Conversely, let ϑ be a function satisfying A0, A1, A2 and
A3. Let us see that ϑ = δ. Given structures Γ1, . . . , Γr on P , from A1 it follows
by recurrence that

ϑP(∪r
i=1Γi) =

r∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤r

ϑP(Γi1 ∩ Γi2 ∩ · · · ∩ Γij ).

If Γ is an access structure on P and Γ0 = {S1, S2, . . . , Sr}, then Γ can be written
as the union of the unanimity structures: Γ = UP

S1
∪ UP

S2
∪ · · · ∪ UP

Sr
. Moreover,

UP
Si1

∩UP
Si2

∩· · ·∩UP
Sik

= UP
Si1∪Si2∪···∪Sik

. By A3, ϑ coincides with δ on unanimity
structures UP : δP(UP) = ϑP(UP). By A2, they also coincide on extensions of
unanimity structures, that is, if Q ⊂ P then δP(UP

Q ) = ϑP(UP
Q ). From the

formula derived before we conclude that ϑ = δ on A. �
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5. The accessibility of the participants

In the former sections we have studied the accessibility to the secret of the
whole structure. However, if we look at the participants, it is clear that each of
them have also a different opportunity for acceding to the secret: some of them
belong to many authorized subsets, and some others do not; some of them are
with small authorized subsets, etc. Look for instance at the structure having basis
Γ0 = {P1, P2P3P4}. It is clear that the chance of P1 for acceding to the secret is
much bigger than the chance of the others. Then, we can say that, when we are
sharing a secret among a set of participants P following an access structure, we
are also sharing some amount of power to them. This is not unsuitable in practice;
on the contrary, it can be often useful when the participants are, in a natural way,
in a hierarchy and hence they are not on equal terms. In this situation, it should
be even convenient that different participants have different chance for acceding
to the secret, relating the power shared with the access structure and their real
power in the corporation of participants.

The accessibility index we have introduced (to which we may call total accessi-
bility index) provide a natural tool to measure the accessibility of the participants.

Definition 5.1. Let P be a set of n participants and let Γ be an access structure
on P . For i = 1, . . . , n, the accessibility degree of participant Pi in Γ is δP(Pi, Γ) =
δP(Γ) − δP\{Pi}(Γ−i).

That is, δP(Pi, Γ) is the fall in the accessibility degree of the structure when
participant Pi leaves it. The following proposition collects some of its properties.
Before that, let us state a new concept. Given two participants, Pi, Pj , we say
that Pi is over Pj if for every S ⊂ P such that Pi, Pj 
∈ S, we have S ∪ {Pi} ∈ Γ
whenever S ∪ {Pj} ∈ Γ. Given two participants Pi, Pj , it can happen that none
of them is over the other, or conversely that both Pi, Pj are simultaneously over
the other. In this last case we say that Pi and Pj are equivalent participants. For
weighted structures (see Ex. 5.5) it is clear that wi ≥ wj implies that Pi is over
Pj and wi = wj implies that they are equivalent.

Proposition 5.2. Let P = {P1, . . . , Pn} be a set of n participants and let Γ be an
access structure on P. For i = 1, . . . , n, we have

1. 0 ≤ δP(Pi, Γ) ≤ δP(Γ).
2. δP(Pi, Γ) = 0 if and only if Pi is a null participant.
3. δP(Pi, Γ) = δP(Γ) if and only if Pi ∈ ∩S∈ΓS.
4. If Pi is over Pj, then δP(Pi, Γ) ≥ δP(Pj , Γ). If Pi, Pj are equivalent then

equality holds.
5. δP(Pi, Γ) = δP(Pi, Γ∗).

Proof. (1) and (2) follow from Theorem 3.3. (3) follows from the fact that δP\{Pi}
(Γ−i) = 0 iff Γ−i = ∅, hence iff Pi ∈ ∩S∈ΓS. (4) If Pi is over Pj , let us consider the
map f : Γ−i −→ Γ−j given by f(S) = S if Pj 
∈ S and f(S) = S \ {Pj} ∪ {Pi} if
Pj ∈ S. f is injective, hence |Γ−i| ≤ |Γ−j |. (5) Write Γi = {S ∈ Γ : S \ {Pi} /∈ Γ}
and Γi = {S ∈ Γ : Pi ∈ S, S \{Pi} ∈ Γ}. We have a decomposition of Γ in pairwise
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disjoint sets, Γ = Γi ∪ Γ−i ∪ Γi. Therefore

δP(Γ) =
|Γi| + |Γ−i| + |Γi|

2n
·

The map f : Γ−i −→ Γi given by f(S) = S ∪ {Pi} is bijective. Thus |Γ−i| = |Γi|
and

δP(Pi, Γ) = δP(Γ) − δP\{Pi}(Γ−i) =
|Γi| + 2|Γ−i|

2n
− |Γ−i|

2n−1
=

|Γi|
2n

·

As Γ∗
i = {S ∈ Γ∗ : S \ {Pi} /∈ Γ∗} = {P \ S /∈ Γ : P \ S ∪ {Pi} ∈ Γ}, we have

δP(Pi, Γ∗) = |Γ∗
i |

2n . Hence, it is clear that S ∈ Γ∗
i iff P \ S ∪ {Pi} ∈ Γi. Once again

it is possible to define a bijective map between Γi and Γ∗
i and then |Γi| = |Γ∗

i |. �

Example 5.3. Table 1 (the fifth column) contains the accessibility of the partic-
ipants on all structures with four participants. For simplicity these numbers are
multiplied by 24 = 16.

In the proof of the above Proposition (item (5)), we have found an alterna-
tive formula for computing δP(Pi, Γ): δP(Pi, Γ) = |Γi|

2n . Furthermore, once these
numbers δP(Pi, Γ) are known we can use them for computing the total accessibil-
ity degree δP(Γ) in a more efficient way than just its definition, as the following
Proposition shows.

Proposition 5.4. Let P be a set of n participants and let Γ be an access struc-
ture on P. For i = 1, . . . , n − 1, let us consider the residual structures obtained
by successive elimination of participants, Γ−i = Γ−{1,2,··· ,i}, defined on P−i =
{Pi+1, . . . , Pn}. Let δ(i) = δP−(i−1)(Pi, Γ−(i−1)). Then δP(Γ) = δ(1) + · · · + δ(n).

Proof. For i = 1, . . . , n, we have δ(i) = δP−(i−1)(Pi, Γ−(i−1)) = δP−(i−1)(Γ−(i−1))−
δP−i(Γ−i). Adding up these equalities from i = 1 to n, it follows that δP(Γ) =
δ(1) + · · · + δ(n). �

In practice, by using this method, it is convenient to eliminate participants
according to a ranking of decreasing importance. When a first empty residual
structure Γ−i arises, then δP(Γ) = δ(1) + · · · + δ(i).

Example 5.5. Let P be a set of n participants. Let w = (w1, . . . , wn) be a
n-tuple of nonnegative integers, called weights (wi is the weight of participant
Pi), and let t be a positive integer, called the threshold. The weighted threshold
access structure [t; w1, · · · , wn] is the structure [t; w1, · · · , wn] = {{Pi1 , · · · , Pih

} ⊆
P : wi1 + · · · + wih

≥ t}. These structures were introduced by Shamir [3] and
generalize the usual threshold structures: a (t, n)-threshold access structure is just
[t; 1, · · · , 1].

We will apply the above procedure to compute the accessibility degree of the
weighted structure Γ = [62; 10, 10, 10, 10, 8, 5, 5, 5, 5, 4, 4, 3, 3, 3, 2], defined on 15 par-
ticipants. If we denote w =

∑
i∈P wi, as w − (w1 + w2 + w3) = 57 < t = 62,
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it follows that Γ−3 is the empty structure. Thus, after computing δ(1) = 0.05645,
δ(2) = 0.01965 and δ(3) = 0.0017, we have δP(Γ) = δ(1) + δ(2) + δ(3) = 0.0778.

This example clearly illustrates the convenience of suppressing the most im-
portant participants at first. The accessibility degree also gives us a way to
estimate |Γ|, |C| and |Q|. In our example |Γ| = 2nδP(Γ) = 2549. And since
δ(Γ∗) = 1 − δ(Γ) = 0.9222, from Proposition 2.3 it follows that |C| = 0 and
|Q| = 2n[δ(Γ∗) − δP(Γ)] = 27669.
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