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Abstract. The arithmetical complexity of infinite words, defined by
Avgustinovich, Fon-Der-Flaass and the author in 2000, is the number
of words of length n which occur in the arithmetical subsequences of the
infinite word. This is one of the modifications of the classical function of
subword complexity, which is equal to the number of factors of the infi-
nite word of length n. In this paper, we show that the orders of growth
of the arithmetical complexity can behave as many sub-polynomial
functions. More precisely, for each sequence u of subword complexity
fu(n) and for each prime p ≥ 3 we build a Toeplitz word on the same
alphabet whose arithmetical complexity is a(n) = Θ(nfu(�logp n�)).
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Introduction

Arithmetical complexity of an infinite word is a function relative to its subword
complexity. It is larger than or equal to the subword complexity since it counts
not only factors of the word but all words occurring in its arithmetic progressions.
By the definitions, if the infinite word is u = u1u2 · · ·uk · · · , where ui are symbols,
then for all n its subword complexity fu(n) is the number of distinct words of the
form uiui+1 · · ·ui+n−1 for arbitrary i, and its arithmetical complexity au(n) is the
number of all words of the form ukuk+d · · ·uk+(n−1)d for arbitrary initial symbols
k and differences d. Note that by the classical Van der Waerden theorem [23,25],
there are arbitrarily large powers of some symbol among these words.
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Arithmetical complexity was introduced in 2000 by Avgustinovich, Fon-Der-
Flaass and Frid [5]; its idea belongs to S.V. Avgustinovich. It has become one of
the most well-explored modified complexity functions relative to the subword com-
plexity. Other definitions include d-complexity introduced in 1987 by Iványi [11];
palindrome complexity (see Allouche et al. [1] for a survey); modified complexity
by Nakashima, Tamura, and Yasutomi [21, 22]; pattern complexity introduced in
2002 by Restivo and Salemi [24]; and maximal pattern complexity by Kamae and
Zamboni [16] which is also dated 2002 and well-explored [16–19]. For a survey on
subword complexity, see Ferenczi [12].

All published results on arithmetical complexity concern words of linear sub-
word complexity. Arithmetical complexity of such words can behave variously: it
can be exponential, as for the Thue-Morse word, or linear, as for the paperfolding
word [5]. In subsequent papers, uniformly recurrent words of linear arithmetical
complexity were characterized [15], and a family of words having lowest complex-
ity was found among them [4]. On the other hand, the arithmetical complexity
of Sturmian words has been estimated as Θ(n3) and found for Sturmian words of
many slopes [8, 13].

Here we find a variety of rates of growth of arithmetical complexity and show
that it is not less than the variety of possible subword complexity rates of growth:
each function of the subword complexity of a word can be included to a formula
for the arithmetical complexity of another word. More precisely, recall that the
notation f(n) = Θ(g(n)) for functions f and g of positive integers means that
C1g(n) ≤ f(n) ≤ C2g(n) for all sufficiently large n and some positive constants
C1 and C2. We prove the following

Theorem 0.1. For each infinite word u on a finite alphabet Σ, of subword com-
plexity fu(n), and for each prime p ≥ 3 there exists an infinite word on Σ whose
arithmetical complexity is Θ(nfu(�logp n�)).

In the next section, we describe the (well-known) technique of bispecial words
which is used below for estimates of arithmetical complexity. Then in Section 2
the construction of the required word is introduced; this word is a Toeplitz word
of a special kind, it depends on u, and its subword complexity is always linear. In
the next four sections, we analyse the set of arithmetical factors of the constructed
word, find its bispecial words and relate them to factors of u; compute their pa-
rameters and at last obtain estimates for the arithmetical complexity, thus proving
Theorem 0.1. After that in Section 7 we discuss particular cases of Theorem 0.1.

1. Complexities and bispecial words

Let us define notions of complexity of words and languages used in this paper
and discuss ways to compute them.

Let Σ be a finite alphabet of cardinality q; as usual, the set of all finite words
on Σ including the empty word λ will be denoted by Σ∗, and the set of all (right)
infinite words on Σ will be denoted by Σω. A finite word v is called a factor,
or subword, of a finite or infinite word u if u = s1vs2 for some (possibly empty)
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Figure 1. A bispeciality graph.

words s1 and s2. A language F ⊆ Σ∗ is called factorial if it is closed under taking
factors. Clearly, the language F(u) of factors of a finite or infinite word u is always
factorial.

A word v is called an arithmetical subword of a word u = u1u2 · · ·um · · · , where
ui ∈ Σ for all i, if v = ukuk+d · · ·uk+(n−1)d for some k and d. The set of all
arithmetical subwords of u (or of words from a language F) is called arithmetical
closure of u (or F) and denoted by A(u) (A(F)). The term “closure” is chosen
since A(A(F)) = A(F) for all F ; clearly, for any word u we have A(u) ⊇ F(u)
since the difference d = 1 in the definition of an arithmetical subword gives all
factors of u.

The subword complexity of a factorial language F , or of a word u, is the function
equal to the number of distinct elements of F (factors of u) of length n and
denoted by fF(n) (fu(n)). The arithmetical complexity of u is defined as au(n) =
fA(u)(n). Clearly, au(n) ≥ fu(n) for any word u and length n. We see that
both complexities count factors of some factorial language, so, it is not surprising
that some techniques useful for computing subword complexity can be used for
computing the arithmetical one. In this paper, we shall use one of them which
involves bispecial words. For proofs and details of this method, see Cassaigne [6].

Let F be a factorial language. The set of all elements of F of length n will
be denoted by F(n). For a word v ∈ F , let us define the set of symbols R(v)
as R(v) = {a ∈ Σ|va ∈ F}. Its cardinality r(v) = #R(v) is called the (right)
speciality degree of v.

Analogously, let us define L(v) = {a ∈ Σ|av ∈ F} and l(v) = #L(v). A word
v is bispecial in F if l(v) �= 1 and r(v) �= 1. Its bilateral order b(v) is defined as
b(v) = #{(a, b)|a, b ∈ Σ, avb ∈ F}− l(v)− r(v)+1. It is not difficult to check that
b(v) can be not equal to zero only if v is bispecial in F ; so, if b(v) �= 0, we say
that v is an essential bispecial word in F . The set of all essential bispecial words
of length n in F is denoted by BF(n).

It is convenient to depict words of the form avb ∈ F , where v ∈ F , a, b ∈ Σ,
as edges of the bipartite bispeciality graph of the word v whose parts are L(v) and
R(v) (see Fig. 1). The bilateral order of v is thus the number of edges of this
graph, minus number of its vertices, plus 1.

Let us denote by f ′(n) (f ′′(n)) the first (second) difference of a function f(n):
f ′(n) = f(n + 1) − f(n), f ′′(n) = f(n + 2) − 2f(n + 1) − f(n). We know [6] the
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following relations for complexity of a factorial language F :

f ′
F(n) =

∑
v∈F(n)

(r(v) − 1), (1)

f ′′
F (n) =

∑
v∈F(n)

b(v).

By the definition of the set of essential bispecial words, in the latter formula we
can ignore all words but them:

f ′′
F(n) =

∑
v∈BF (n)

b(v). (2)

At last, we mention another pair of easy relations valid for any infinite word u and
any n > 0 (recall that q = #Σ):

fu(n)
q

≤ fu(n − 1) ≤ fu(n). (3)

2. Patterns and Toeplitz words

Let ? /∈ Σ be a new symbol called gap. A pattern is a finite word on Σ∪{?}. For a
pattern T and an infinite word u = u1u2 · · ·un · · · , ui ∈ Σ∪{?}, we shall denote by
T ·u the result of substituting symbols of u to successive gaps of T ω(= TT · · ·T · · · ).
If all patterns T1, T2, . . . , Tn, . . . start with a symbol of Σ, then there exists a limit
t = T1 ·T2 · · · · ·Tn · · · · ∈ Σω of the sequence T1 ·(T2 · · · · ·(Tn·?ω) · · · ). The sequence
t is called the Toeplitz word generated by the sequence of patterns {Ti}∞i=1. For
studies of Toeplitz words of specific forms, see [9, 20].

Note that each of the words T1 · (T2 · · · · · (Tn·?ω) · · · ) is periodic, and if we
naturally denote the pattern corresponding to its minimal period by T1 ·T2 · · · · ·Tn,
we obtain an associative operation (·) on patterns.

Example 2.1. Let T = a?b?, then T ·?ω = a?b?a?b?a?b?a?b? · · · , T · (T ·?ω) =
aab?abb?aab?abb? · · · , and thus T · T = aab?abb?. Continuing the process, we get
the famous paperfolding word t = T · T · T · · · · = aabaabbaaabbabba · · · . Both its
subword [2] and arithmetical [5] complexities are linear.

Let us fix a prime p and a letter a ∈ Σ and define the pattern Tp(a) = a · · · a︸ ︷︷ ︸
p−1

?.

The pattern Tp(a1) ·Tp(a2) · · · · ·Tp(an) will be denoted by Tp(a1a2 · · ·an) for short;
its length is pn and the only gap in it is the last symbol. The word on Σ obtained
from Tp(a1a2 · · · an) by erasing the last gap will be denoted by tp(a1a2 · · · an). It
is natural to define Tp(λ) = ? and tp(λ) = λ.

Example 2.2. Since T2(a) = a? and T2(b) = b? (and thus t2(a) = a and t2(b) =
b), we have T2(aa) = aaa? and t2(aa) = aaa, then T2(aab) = aaabaaa? and
t2(aab) = aaabaaa, etc.
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Now let us fix an infinite word u = u1u2 · · ·un · · · , where ui ∈ Σ, and define
the Toeplitz word

tp(u) = Tp(u1) · Tp(u2) · · · · · Tp(un) · · · :

each symbol of this infinite word is well-defined since the first pn − 1 symbols are
determined already in tp(u1 · · ·un). Equivalently, tp(u) can be defined as the limit
of the sequence {tp(u1 · · ·un)}n; it always exists.

Example 2.3. The famous period doubling word (see, for example, [10]) is de-
fined as

t2(ababab · · · ) = abaaabababaaabaaabaaabab · · · .

The subword complexity of tp(u) is linear for all u [20]. As for the arithmetical
one, the word tp(u) is what we need to prove Theorem 0.1: in what follows, we
show that atp(u)(n) = Θ(nfu(�logp(n)�)).

3. Arithmetical closure of tp(u)

Consider u = u0u1u2 · · ·un · · · , where ui ∈ Σ. Without loss of generality, we
assume that each symbol of Σ occurs in u at least once. In what follows, we denote
by Su the shift Su = u1u2u3 · · ·un · · · ; correspondingly, Sku = ukuk+1uk+2 · · ·
for all k.

Let us count symbols of tp(u), unlike those of u, starting with 1 not 0, i.e.,
tp(u) = w1w2 · · ·wm · · · for wi ∈ Σ. We say that a position in a Toeplitz word
tp(u), and the symbol occupying it, are of nth order if the index of this position
in tp(u) is divisible by pn, or, equivalently, if in Tp(u0u1 · · ·un−1)·?ω there is still
a gap at this position. In particular, all symbols of tp(u) are of order 0. We shall
say that the exact order of a position, or a symbol occupying it, is equal to n if it
is of order n but not of order n + 1. By the definition of tp(u), for all n ≥ 0 all
symbols of exact order n in it are equal to un.

Lemma 3.1. For any u ∈ Σω and prime p the arithmetical closure of tp(u) is

A(tp(u)) =
∞⋃

n=0

F(tp(Snu))
⋃(⋃

x∈Σ

x∗
)

.

Example 3.2. If u = abaaab · · · , then the arithmetical closure of t2(u) is the
union of sets of factors of t2(u) = t2(abaaab · · · ) = (abaa)7abab · · · , t2(Su) =
t2(baaab · · · ) = (ba)7bb · · · , t2(S2u) = t2(aaab) = a7ba7 · · · , etc., plus arbitrarily
large powers of a and b.

Proof. Let us use the notation tp(u) = w1w2 · · ·wn · · · , where wi ∈ Σ, and denote
by w(d, k) the arithmetical subsequence of tp(u) of difference d starting with wk:
w(d, k) = wkwk+d · · ·wk+nd · · · .

First suppose that (d, p) = 1. Then for each m, exactly one of the first pm sym-
bols of w(d, k) (say, wk+nmd for some nm ∈ {1, . . . , pm}) is of mth order in tp(u).
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It is not difficult to see that the factor of w(d, k) of length pm − 1 starting from
its next symbol, i.e., wk+(nm+1)dwk+(nm+2)d · · ·wk+(nm+pm−1)d, coincides with a
prefix of tp(u). Since m is arbitrary, tp(u) and w(d, k) thus have arbitrarily long
common factors. But tp(u) is by construction uniformly recurrent [9], that is, each
of its factors occurs an infinite number of times with bounded gaps. By a (folk-
lore) lemma from [5], its arithmetical subsequence w(d, k) is thus also uniformly
recurrent.

It is well-known also that if languages of factors of two uniformly recurrent
words have an infinite intersection, then they coincide. Indeed, let Rx(n) denote
the recurrence function of an infinite word x, that is the maximal distance between
successive occurrences of the same word of length n in x. If x and y are uniformly
recurrent and contain a common factor of length max(Rx(n), Ry(n)) + n, then
the sets of their factors of length n coincide. So, if they contain arbitrarily long
common factors, then the sets of its factors coincide.

We can conclude that F(w(d, k)) = F(tp(u)).
Now suppose that (d, p) �= 1; since p is prime, this implies that pm|d for some

m > 0. Suppose that m is maximal (i.e., pm+1 � | d) and define m′ ≥ 0 as the
maximal exponent of p dividing k: pm′ |k, pm′+1 � | k. If m′ ≥ m, then all symbols
of w(d, k) are of order (at least) m in tp(u), and w(d, k) is a subsequence of
w(pm, pm) = tp(Smu) of difference d/pm coprime with p. Analogously to the
previous paragraph, F(w(d, k)) = F(tp(Smu)). If m′ < m, then all symbols of
w(d, k) are of exact order m′ in tp(u), and clearly w(d, k) = uω

m′ . For different m′

we obtain all symbols of Σ which occur in u.
We listed all possible cases for d and k, and the observation that A(tp(u)) =

∪k,d>0Fw(d, k) completes the proof of the lemma. �
In what follows, we are going to characterize essential bispecial words of the

language A = A(tp(u)). It will help us to estimate its subword complexity, which
is the arithmetical complexity of tp(u): fA(n) = atp(u)(n). In what follows, the
notations fA(n) and atp(u)(n) are used equivalently.

4. Bispecial words of A
Let us define the Toeplitz product of a pattern of the form T = t?, t ∈ Σ∗,

and a word v = v1 · · · vn, vi ∈ Σ, as the word T · v = tv1tv2t · · · tvnt. Clearly, the
length of T · v is |T · v| = (|t| + 1)(|v| + 1) − 1.

Example 4.1. For each word v = v1 · · · vn with vi ∈ Σ we have ? · v = v and
Tp(v1 · · · vn−1) · vn = tp(v). For each pattern T = t? and for all x, y ∈ Σ we have
T · λ = t, T · x = txt, T · xy = txtyt.

Now consider a word v ∈ F(u) and denote by av its last symbol. We shall write
v = v′aσ(v)

v , where v′ is the longest prefix of v which does not end with av. Thus,
σ(v) is defined as the length of the longest suffix of v in which only one letter
occurs. We shall call the word v saturated in F(u) if v ∈ F(u) but vav /∈ F(u),
i.e., if v cannot be extended to an element of F(u) by repeating its last symbol.
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For technical reasons, we for a while assert that

all symbols of Σ occur in u infinitely many times. (4)

Later, in the end of Section 6, we will turn this condition down, but at the moment
it is convenient to use it.

Lemma 4.2. Let p ≥ 3 be a prime integer, and u ∈ Σω be an infinite word
satisfying Condition (4). Then each essential bispecial word of the arithmetical
closure A of the Toeplitz word tp(u) is of one of the following four forms:

(1) tp(v), where v ∈ F(u);
(2) Tp(v′)·a2pσ(v)−2

v , where v = v′aσ(v)
v is a saturated word in F(u) with v′ �= λ;

(3) Tp(v) · x = tp(v)xtp(v), where x ∈ Σ, v ∈ F(u);
(4) Tp(v) · xy = tp(v)xtp(v)ytp(v), where x, y ∈ Σ, x �= y, v ∈ F(u).

Proof. Let us consider a bispecial word w ∈ A. Due to Lemma 3.1, it must belong
to some F(tp(Snu)): indeed, even if w is a power of a symbol x, we must be able
to extend it not only by x, so it must occur somewhere else than in x∗.

First of all, let us prove that

w = Tp(v1 · · · vk) · z (5)

for some k ≥ 0 and z which is either of length not greater than 2 or is a power
of a letter x; and each word Snu such that w ∈ F(tp(Snu)) starts with v1 · · · vk.
Indeed, if |w| ≤ 2 or w = xm for some letter x and integer m, then it is true with
k = 0 (since Tp(λ) · w =? · w = w). So, suppose that |w| ≥ 3. Since w is a factor
of some tp(Snu), where Snu starts with a letter v1, and since w contains other
symbols than v1, it looks like

w = vα
1 x1v

p−1
1 x2 · · ·xmvβ

1 ,

where 0 ≤ α, β ≤ p− 1, x1 · · ·xm ∈ F(tp(Sn+1u)), and at least one of the symbols
xi is not equal to v1. We shall denote this symbol by x. Since |w| ≥ 3, w contains
at least one of the factors v1v1x, v1xv1, or xv1v1. Hence w cannot be a factor of any
tp(Sn′

u) where Sn′
u starts with a symbol y �= v1 because in such Sn′

u occurrences
of any symbol but y are separated by p− 1 symbols y. (Note that here we use the
condition p > 2: if p = 2, arbitrarily long words of the form v1yv1yv1y · · · occur
both in t2(v1yy · · · ) and in t2(yv1v1 · · · ), complicating the situation.)

Thus, w occurs in A only as a factor of some words of the form tp(v1 · · · ). A
symbol not equal to v1 may occur in it, or in its extension, only at a distance
divisible by p from x. In particular, if α �= p − 1 (β �= p − 1), then w can be
extended to the left (to the right) in A only by v1. But w is by assertion bispecial,
so, α = β = p − 1 and thus w = Tp(v1) · (x1 · · ·xm). Here x1 · · ·xm is a factor of
tp(Sn+1u · · · ) for all n such that w is a factor of tp(Snu). If the length m ≤ 2 or
x1 = x2 = · · · = xm, then (5) is proved with k = 1, otherwise we can continue the
process with x1 · · ·xm instead of w: it is also bispecial in A since it can be extended
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at least by the same letters than w. After several steps we shall necessarily come
to (5).

If |z| = 2 and z = xy, x �= y, we get exactly Case 4. In all other cases z is a
power of some symbol: z = am, a ∈ Σ, m ≥ 0.

If k = 0 and m = 0, we have w = λ = tp(λ), so that w falls into Case 1. If
k > 0, then m > 0: we cannot have z = λ since Tp(v) ·λ = tp(v) = Tp(v′) ·apσ(v)−1

v ,
and if w = tp(v) we would stop the process earlier, at the representation w =
Tp(v′) · apσ(v)−1

v (with a = av, m = pσ(v) − 1). So, from now on we consider that
m > 0.

Also, vk �= a: otherwise we also would stop the process earlier, at most at the
representation w = Tp(v1 · · · vk−1) · ap(m+1)−1.

Let us mention that the greatest power of a occurring in F(tp(aib · · · )), where
b �= a, is a2pi−1: indeed, a2pi−1 = Tp(ai) · a; the letter a will somewhere occur
between two tp(ai) because of Condition (4).

So, suppose first that m = pi − 1 (or m = 2pi − 1) with i > 0; then,
due to the previous paragraph, w occurs in A if and only if v = v1 · · · vkai ∈
F(u); here v1 · · · vk = v′, a = av and i = σ(v). In the first situation, w =
Tp(v1 · · · vk) · am = tp(v1 · · · vkai), and this gives us exactly Case 1; in the second
one, w = Tp(v1 · · · vk) · am = Tp(v1 · · · vkai) · a = tp(v1 · · · vkai) a tp(v1 · · · vkai).
This situation falls into Case 3; to describe this case completely, we add the pos-
sibility of i = 0, that is, of m = 1 and z = a.

It remains to consider the case z = am, where m �= pi − 1, m �= 2pi − 1 for any
i, and m ≥ 2. As we have mentioned, w = Tp(v1 · · · vk) · am occurs in A only as a
factor of some tp(vai · · · ), where 2pi−1 − 1 < m ≤ 2pi − 1.

Suppose that bw ∈ A for some b �= a. Then bw occurs as a factor in words of
the form tp(v1 · · · vkai · · · ) and only in them, moreover, the first b of bw always
occurs in such a word at a position of order k + i, i.e., is always followed by the
word tp(v1 · · · vkai) of length pk+i − 1, then by a symbol (of order k + i again),
then by tp(v1 · · · vkai) again etc. But we assumed that m �= pi−1 and m �= 2pi−1
for any i, and thus |bw| = 1 + |Tp(v1 · · · vk) · am| = pk(m + 1) is not divisible by
pk+i. So, the word bw can be extended to the right by only one of the letters; its
exact order in tp(v1 · · · vkai · · · ) lies between k and k + i − 1, so it is equal to a.
The symbol b �= a can be chosen arbitrarily by Condition (4), so, for all b �= a we
have bwa ∈ A, bwc /∈ A for any c �= a.

Analogously, awb ∈ A for all b �= a (and cwb /∈ A for all b, c �= a, but we already
know this because of the symmetry of b and c). So, to find the bilateral order of
w it remains to find out if awa ∈ A: this word must be considered individually
since we cannot determine the position of its first (or last) symbol modulo pk+i,
we know only that it is of order k in tp(v1 · · · vkai · · · ) and thus that awa may
occur in A only as a factor of Tp(v1 · · · vk) · am+2 = tp(v1 · · · vk)awatp(v1 · · · vk).

If awa ∈ A, then the bispeciality graph of w looks as it is depicted in Figure 2;
it has 2q − 1 edges and 2q vertices, so, b(w) = 0 and w is not essential bispecial.
If awa /∈ A, then the bispeciality graph of w looks as it is depicted in Figure 3,
and b(w) = −1, so, w is essential bispecial. But this is the case only if, first, i is
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Figure 2. b(w) = 0. Figure 3. b(w) = −1
(Case 2).

the maximal power of a which can follow v1 · · · vk in u (i.e., if the word v1 · · · vkai

is saturated), and second, if m = 2pi − 2, that is, if the maximal number of
consequtive a’s in all tp(Snu) of the form tp(Skv1 · · · vkai · · · ) is exactly m + 1, so
that Tp(v1 · · · vk) · am+2 /∈ A. Moreover, the case k = 0 (i.e., of v1 · · · vk = λ and
w = a2pi−2) is excluded since any power of a including a2pi

always belongs to A
due to Lemma 3.1. We have obtained exactly Case 2 of Lemma 4.2 and completed
its proof. �

5. Bilateral orders and diagram of first differences

As announced at the end of the introduction, we continue the proof of Theo-
rem 0.1 finding bilateral orders of all essential bispecial words listed in Lemma 4.2.
We shall consider all the four cases and will find second differences of the subword
complexity function. Let us start from
Case 1. Consider a word of the form w = tp(v), where v ∈ F(u), |v| = m. Note
that w occurs in A only as a factor of words of the form tp(v · · · ). Suppose that
av = a, that is, w = Tp(v′) · apk−1 for some k > 0, where v′ does not end with
a. By the construction, all symbols of this apk−1 are always of order |v′| in any
infinite word tp(v · · · ). Let us consider possible extensions bwc of w in A.

If we choose an arbitrary b �= a, we see that the first b of bwc must be of order
|v| = m (in any occurrence of bw in tp(v · · · )). If vb ∈ F(u), then the order of
b can be equal exactly to m, and thus the order of the last c of bwc ∈ A can be
arbitrarily large. Due to (4), c can be arbitrary, so, bwc ∈ A for all b ∈ R(v)\{a},
c ∈ Σ (and, symmetrically, for all b ∈ Σ, c ∈ R(v)\{a}). On the other hand, if
b /∈ R(v), then the order of the first b of bwc must be greater than m, the order
of the last c must be equal exactly to m, and thus vc must belong to F(u). So, if
b �= a (or, symmetrically, c �= a), and b, c /∈ R(v), then bwc /∈ A.

It remains to find out if awa ∈ A. If a ∈ R(v), this is the case by the same
arguments as above: the exact order of the first and the last a can be equal to m.
But this is the case even if a /∈ R(v), i.e., if v is a saturated word in F(u). Indeed,
in this case all pk + 1 symbols of order |v′| in awa are equal to a. Any of them
except the first and the last one may have order |v| (and arbitrarily large exact
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Figure 4. Case 1, v is
not saturated.
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Figure 5. Case 1, v is saturated.

order, so, it can be equal to a due to (4)). All other symbols are of exact order
less than |v|. So, awa ∈ A anyway.

We see that the form of the bispeciality graph of tp(v) depends whether v is
saturated in F(u) or not (see Figs. 4, 5). The number of edges in the graph is
respectively qr(v) + (q − r(v))r(v) = r(v)(2q − r(v)) and r(v)(2q − r(v)) + 1, the
number of vertices is always 2q, and thus

b(w) =

{
(r(v) − 1)(2q − r(v) − 1) + 1, if v is saturated,

(r(v) − 1)(2q − r(v) − 1) otherwise.

As it follows from Lemma 4.2, all essential bispecial words of A of length pm − 1
correspond to words of F(u) of length m. If we denote the set of factors of u of
length m by Fu(m) and the number of saturated words in Fu(m) by su(m), we
have, due to (2),

f ′′
A(pm − 1) = su(m) +

∑
v∈Fu(m)

(r(v) − 1)(2q − r(v) − 1).

Case 2. As we have shown in the proof of Lemma 4.2, each saturated word v of
length m with v′ �= λ in u gives an essential bispecial word Tp(v′) · a2pσ(v)−2

v in A.
Its length is (2pσ(v) − 1)p|v

′| − 1 = 2pm − p|v
′| − 1 and its bilateral order is −1.

So, lengths of all such words lie between 2pm − pm−1 − 1 and 2pm − 2 (in fact, the
latter value can be specified to 2pm − p− 1 since v′ �= λ, but we neglect it). Their
combined number is su(m) minus the number of saturated words with v′ = λ, that
is, of symbols whose maximal power in u is m. If we denote the latter number by
q′u(m), we get

f ′
A(2pm − 1) − f ′

A(2pm − pm−1 − 1) =
2pm−2∑

n=2pm−pm−1−1

f ′′
A(n) = −su(m) + q′u(m).
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Figure 6. Case 3,
x �∈ L(v).
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Figure 7. Case 3,
x ∈ L(v).

Case 3. Consider w = tp(v)xtp(v), where v ∈ F(u), |v| = m (and thus |w| =
2pm − 1), x ∈ Σ. We have to consider two cases, av �= x and av = x.

Suppose first that v does not end with x: av �= x. Then the order of the central
symbol x of w in any of its occurrences in tp(v · · · ) is (at least) m.

If we assume in addition that vx /∈ F(u), then the exact order of the central
x of w must always be greater than m. So, the symbols situated at the distance
pm from it must be of exact order m, which means that they both must be equal
and must belong to L(v) in F(u). But these two symbols are exactly symbols by
which w can be extended to the left and to the right in A: the word w occurs in
each tp(va · · · ), where a ∈ L(v), and can be extended in it only as awa. So, the
bispeciality graph of w looks as it is depicted in Figure 6; it has r(v) edges and
2r(v) vertices, and the bilateral order of w is b(w) = −r(v) + 1.

All these r(v) edges by the same reasons occur also when vx ∈ F(u), but in this
case, the central x of w may have exact order m in some tp(vx · · · ). So, if bwc ∈ A
for some b, c ∈ Σ, then the exact order of b can be arbitrarily large, and due to
(4), b can be arbitrary; but if b �= x, this implies that the exact order of c is m and
thus c = x. Similarly, c can be arbitrary with b = x. So, the bispeciality graph of
w looks as it is shown in Figure 7; it has 2q + r(v) − 2 edges and 2q vertices, and
b(w) = r(v) − 1.

Now let us consider x = av. In this case, w = Tp(v′) · x2pσ(v)−1, and each of
these 2pσ(v) − 1 letters x is of order (at least) |v′| = m − σ(v).

Suppose that vx /∈ F(u); then, as it was mentioned earlier, 2pσ(v) − 1 is the
maximal number of successive letters x of order |v′| in a word of the form tp(v · · · )
whose factors belong to A. So, the central one of them, that is the central x of
w, always is of order m (and even greater), and we can continue the arguments as
in the case of x �= av and obtain the bispeciality graph from Figure 6 again. The
only difference occurs if v = xm and thus w = x2pm−1: as a factor of xω, it can
be extended also as xwx. Its bispeciality graph is depicted in Figure 8, and its
bilateral order is −r(v).

Now let vx ∈ F(u); then each of the 2pσ(v) − 1 letters x of order |v′| in w may
be of order m. However, if this is not the central one, i.e., if the central x in w is
of order less than m, then this occurrence of w can be extended only as xwx. On
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Figure 8. Case 3,
v = xm, xm+1 �∈ F(v).
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Figure 9. Case 4.

the other hand, if the central x is of order m, all arguments applied for x �= av are
valid. We see that the bispeciality graph of w looks again as in Figure 7.

So, for each v ∈ Fu(m) there are r(v) words of length 2pm − 1 in A having
bilateral order r(v) − 1 (namely, words Tp(v) · x, x ∈ L(v)), and q − r(v) words
of the same length of bilateral order −r(v) + 1 or −r(v), where each word of
b(w) = −r(v) corresponds to a saturated word of the form v = xm; the number of
such words is q′u(m). Since due to Lemma 4.2 there are no other bispecial words
of length 2pm − 1, we have

f ′′
A(2pm − 1) = −q′u(m) +

∑
v∈Fu(m)

(2r(v) − q)(r(v) − 1).

Note that this value can be positive, negative, or equal to zero.
Case 4. Consider w = tp(v)xtp(v)ytp(v), where |v| = m; then |w| = 3pm − 1.
Since x �= y, x and y are always of order m in tp(v · · · ), and the exact order of one
of them is even larger. The other symbol must be of exact order m. Let this symbol
be x (so, vx ∈ F(u)); then w can be extended only as xwx since p− 1 symbols of
order m surrounding y of order greater than m are of exact order m (here we once
again use the condition p ≥ 3). If vy /∈ F(u), then w is not bispecial at all, but
otherwise symmetrically ywy ∈ A. So, for each pair of distinct letters x, y ∈ L(v)
the respective word w has the bispeciality graph depicted in Figure 9; its bilateral
order is −1. The number of such pairs x, y for a given v is r(v)(r(v) − 1), so,

f ′′
A(3pm − 1) = −

∑
v∈Fu(m)

r(v)(r(v) − 1).

We have found all values of f ′′
A(n) for n ∈ {pm−1, . . . , pm+1−1}. Figure 10 shows

the behaviour of f ′
A(n) at this interval.

The rectangle shows the interval from 2pm − pm−1 − 1 to 2pm where f ′
A(n)

somehow like stairs decreases by su(m). (Recall that su(m) is the number of
saturated words of length m in u; the notation is introduced in the end of the
consideration of Case 1.) All other non-zero values of f ′′

A(n) are explicitly found
above.
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Figure 10. The behaviour of f ′
A(n).

6. Estimates for arithmetical complexity

In this section, we end the proof of Theorem 0.1 estimating the arithmetical
complexity. First, still under Condition (4), we shall sum up the second differences.
According to the results of the previous section,

f ′
A(pm+1 − 1) − f ′

A(pm − 1) =
pm+1−2∑
n=pm−1

f ′′
A(n)

= f ′′
A(pm − 1) − su(m) + q′u(m) + f ′′

A(2pm − 1) + f ′′
A(3pm − 1)

= (q − 1)
∑

v∈Fu(m)

(r(v) − 1) = (q − 1)f ′
u(m).

This is valid starting from m = 0: indeed, there is one word λ in Fu(0), it is
not saturated since it can be extended to the right by any symbol, and can be
considered as well as any other word of F(u). Clearly, f ′

A(0) = q − 1, so,

f ′
A(pm+1 − 1) =

m∑
n=0

(q − 1)f ′
u(n) + f ′

A(0) = (q − 1)(fu(m + 1) − fu(0) + 1)

= (q − 1)fu(m + 1).

This value is valid also for all n ∈ {3pm, . . . , pm+1−1}; for n ∈ {2pm, . . . , 3pm−1}
we have f ′

A(n) := B2 = (q − 1)fu(m + 1) +
∑

v∈Fu(m) r(v)(r(v) − 1), and for
n ∈ {pm, . . . , 2pm − 1}, the value of f ′

A(n) lies between B1 := (q − 1)fu(m) +∑
v∈Fu(m)(r(v) − 1)(2q − r(v) − 1) and B1 + fu(m) (since 0 ≤ su(m) ≤ fu(m)).

So,

fA(pm+1)−fA(pm) =
pm+1−1∑
n=pm

f ′
A(n) ≥ pmB1+pmB2+(pm+1−3pm)(q−1)fu(m+1)

= pm[(pq − p + 1)fu(m + 1) − qfu(m)] ≥ pm(p − 1)(q − 1)fu(m + 1).
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Similarly,

fA(pm+1) − fA(pm) ≤ pm(B1 + fu(m)) + pmB2 + (pm+1 − 3pm)(q − 1)fu(m + 1)

≤ pm

(
pq − p + 1 − q − 1

q

)
fu(m + 1).

Summing up, we see that

fA(pm+1) =
m∑

n=0

[fA(pn+1) − fA(pn)] + q,

and using the inequalities above and again (3), we obtain that
(p − 1)(q − 1)q

pq − 1
fu(m+1)(pm+1−1) < fA(pm+1) ≤ pq2 − pq + 1

q(p − 1)
fu(m+1)(pm+1−1)+q.

Note that for all n ∈ {pm, . . . , pm+1 − 1} the inequality f ′
A(n) ≥ (q− 1)fu(m + 1)

holds. So, since pm ≤ n, we see that

fA(n+1) ≥ fA(pm)+(n−pm)(q−1)fu(m+1) > fu(m+1)
[
(q − 1)(p − 1)

pq − 1
n − 1

]

and

fA(n + 1) ≤ fA(pm+1) − (pm+1 − n − 1)(q − 1)fu(m + 1)

≤ fu(m + 1)
[
q(q − 1)(2p − 1) + p

q(p − 1)
n − q2 − q + 1

q(p − 1)

]
+ q.

Since m + 1 = �logp(n + 1)�, the latter two inequalities give us the statement of
Theorem 0.1 under Condition (4):

(C1n − 1)fu(�logp(n + 1)�) < fA(n + 1) ≤ (C2n − C3)fu(�logp(n + 1)�) + q, (6)

where C1 = (q−1)(p−1)
pq−1 , C2 = q(q−1)(2p−1)+p

q(p−1) , C3 = q2−q+1
q(p−1) · �

It remains to turn down Condition (4). Let us consider an infinite word u not
satisfying it and denote by Σ′ the set of letters which occur in it an infinite number
of times. Let the last occurrence of a letter from Σ\Σ′ be the Mth letter of u;
then u′ = SMu satisfies (4) and thus Theorem 0.1 is valid for it: atp(u′)(n) =
Θ(nfu′(�logp n�)). But for all n ≥ M , we clearly have fu(n) = fu′(n) + M ,
so, Θ(nfu(�logp n�)) = Θ(n(fu′(�logp n�) + M)) = Θ(nfu′(�logp n�)) since fu′

is a positive non-decreasing function. Then, due to Lemma 3.1, A(tp(u)) =
∪M−1

n=0 F(tp(Snu)) ∪ A(tp(u′)) ∪x∈Σ\Σ′ x∗, and thus atp(u′)(n) ≤ atp(u)(n) ≤
atp(u′)(n) +

∑M−1
n=0 fSnu(n) + #(Σ\Σ′). Since each of fSnu(n) grows linearly [20],

we have atp(u)(n) ≤ atp(u′)(n) + Dn + q′ for some D and q′. Since atp(u′) grows at
least as Θ(n), this implies atp(u) = Θ(atp(u′)). So, since the theorem holds for u′,
it holds also for u. The proof of Theorem 0.1 is complete. �
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7. Discussion

Let us look what Theorem 0.1 implies for specific cases.
First of all, note that (6) is valid for all u satisfying (4), and constants C1, C2

and C3 depend only on the cardinality q of the alphabet and the prime length p
of the Toeplitz patterns. In particular, if the alphabet is binary, then C1 = p−1

2p−1

and C2 = 5p−2
2p−2 . If q is arbitrary and p → ∞, then C2/C1 → (2q2 + 1)/(q − 1).

As we have mentioned, for all u, the Toeplitz word tp(u) is uniformly recurrent.
Its subword complexity is Θ(n) due to one of the results of [20].

If u is ultimately periodic, i.e., if fu(n) = P for some P and for all sufficiently
large n, then atp(u)(n) = Θ(n), in agreement with the results of [5,15]. In this case
tp(n) is also p-automatic (see [3] for the definition and discussion of automatic
words). Moreover, if u is k-periodic, then tp(u) is a fixed point of a pk-uniform
morphism.

Example 7.1. If u = 01010 · · · , then tp(u) is the fixed point of the morphism
which maps 0 → (0p−11)p−10p, 1 → (0p−11)p. The lower and upper bounds for
limn→∞ atp(u)/n due to (6) converge to 1 and 5 with p → ∞. The precise upper
and lower limits are 2 and 3, and they are minimal among all uniformly recurrent
words [4].

If fu(n) = Θ(n) (for example, if u is a Sturmian word, or the Thue-Morse
word, or 01001104140818 · · · ), then atp(u)(n) = Θ(n log n), regardless of p. If
fu(n) = Θ(n log n), then atp(u)(n) = Θ(n logn log log n). If fu(n) = Θ(nα) for
some α, then atp(u)(n) = Θ(n(log n)α).

If fu(n) = Θ(αn) for some α, then atp(u)(n) = Θ(n1+logp α). For example, if
q = p and u is a sequence of maximal subword complexity fu(n) = pn on the
alphabet of cardinality p, then atp(u)(n) = Θ(n2). The maximal arithmetical
complexity of a binary sequence in this family of examples is Θ(n1+log3 2), but by
increasing q, we can obtain arbitrarily large powers of n.

At last, if the subword complexity of u grows intermediately between polynomi-
als and exponentials, for instance, if u is one of Cassaigne’s examples [7], then the
arithmetical complexity of tp(u) also grows intermediately. For example, if 2�

√
n� ≤

fu(n) ≤ n22�
√

n�, then D1n2�
√

logp n� ≤ atp(u)(n) ≤ D2n(logp n)22�
√

logp n� for
some positive D1 and D2.
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