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WELL QUASI-ORDERS, UNAVOIDABLE SETS,
AND DERIVATION SYSTEMS ∗

Flavio D’Alessandro1 and Stefano Varricchio2

Abstract. Let I be a finite set of words and ⇒∗
I be the derivation

relation generated by the set of productions {ε → u | u ∈ I}. Let
Lε

I be the set of words u such that ε ⇒∗
I u. We prove that the set I

is unavoidable if and only if the relation ⇒∗
I is a well quasi-order on

the set Lε
I . This result generalizes a theorem of [Ehrenfeucht et al.,

Theor. Comput. Sci. 27 (1983) 311–332]. Further generalizations are
investigated.

Mathematics Subject Classification. 68Q45, 68R15.

1. Introduction

A quasi-order on a set S is called a well quasi-order (wqo) if every non-empty
subset X of S has at least one minimal element in X but no more than a finite
number of (non-equivalent) minimal elements.

A set of words I is called unavoidable if there exists an integer k > 0 such that
any word w ∈ A+, with A = alph(I) and |w| ≥ k, contains as a factor a word of I.
A finite set I is called avoidable if it is not unavoidable.

Well quasi-orders have been widely investigated in the past. We recall the cele-
brated Higman and Kruskal results [10,15]. Higman gives a very general theorem
on division orders in abstract algebras from which one derives that the subsequence
ordering in free monoids is a wqo. Kruskal extends Higman’s result, proving that
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certain embeddings on finite trees are well quasi-orders. Some remarkable exten-
sions of the Kruskal theorem are given in [12, 16].

In the last years many papers have been devoted to the applications of wqo’s
to formal language theory [1–8,11].

In [7], a remarkable class of grammars, called unitary grammars, has been
introduced in order to study the relationships between the classes of context-free
and regular languages. If I is a finite set of words then we can consider the set of
productions

{ε → u, u ∈ I}
and the derivation relation ⇒∗

I of the semi-Thue system associated with I. More-
over, the language generated by the unitary grammar associated with I is Lε

I =
{w ∈ A∗ | ε ⇒∗

I w}. Unavoidable sets of words are characterized in terms of the
wqo property of the unitary grammars. Precisely it is proved that I is unavoidable
if and only if the derivation relation ⇒∗

I is a wqo.
In this paper we give the following improvement of the previous result of [7]: A

finite set of words I is unavoidable if and only if the relation ⇒∗
I is a well quasi-

order on the language Lε
I . The crucial step of our main result is the construction

of a bad sequence of elements of Lε
I , when I is avoidable. As a consequence of our

theorem and of some results of [7], one obtains the equivalence of the following
conditions:

• I is unavoidable;
• Lε

I is regular;
• ⇒∗

I is a well quasi-order on Lε
I .

It is worth noticing that the problems we have discussed above, may be considered
with respect to other quasi-orders. In [9], Haussler investigated the relation �∗

I

defined as the transitive and reflexive closure of �I where v �I w if

v = v1v2 · · · vn+1,

w = v1a1v2a2 · · · vnanvn+1,

where the ai’s are letters, and a1a2 · · ·an ∈ I. In particular, a characterization
of the wqo property of �∗

I in terms of subsequence unavoidable sets of words was
given in [9]. In the last part of the paper, we focus our attention on a possible
extension of our main result with respect to �∗

I .

2. Preliminaries

The main notions and results concerning quasi-orders and languages are shortly
recalled in this section.

Let A be a finite alphabet and let A∗ be the free monoid generated by A. The
elements of A are usually called letters and those of A∗ words. The identity of A∗

is denoted ε and called the empty word.
A non-empty word w ∈ A∗ can be written uniquely as a sequence of letters as

w = a1a2 · · · an, with ai ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length
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of w and denoted |w|. For all a ∈ A, |w|a denotes the number of occurrences of
the letter a in w. If w is the empty word, then we set |w| = 0 and, for any a ∈ A,
|w|a = 0. Let w ∈ A∗. The word u ∈ A∗ is a factor of w if there exist p, q ∈ A∗

such that w = puq. If w = uq, for some q ∈ A∗ (resp. w = pu, for some p ∈ A∗),
then u is called a prefix (resp. a suffix ) of w.

The set of all prefixes (resp. suffixes, factors) of w is denoted Pref(w) (resp.
Suff(w), Fact(w)). A word u is a subsequence of a word v if u = a1a2 · · · an,
v = v1a1v2a2 · · · vnanvn+1 with ai ∈ A, vi ∈ A∗. A subset L of A∗ is called a
language. If L is a language of A∗, then alph(L) is the smallest subset B of A
such that L ⊆ B∗. Moreover, Pref(L) denotes the set of the prefixes of all words
of L. A language of A∗ is called recognizable if it is accepted by a finite automaton
or, equivalently, via the well known characterization of Myhill and Nerode, if it is
saturated by a finite index congruence of A∗. The family of recognizable languages
of A∗ is denoted Rec(A∗). A binary relation ≤ on a set S is a quasi-order (qo) if ≤
is reflexive and transitive. Moreover, if ≤ is symmetric, then ≤ is an equivalence
relation. The meet ≤ ∩≤−1 is an equivalence relation ∼ and the quotient of S by
∼ is a poset (partially ordered set). A quasi-order ≤ in a semigroup S is monotone
on the right (resp. on the left) if for all x1, x2, y ∈ S

x1 ≤ x2 implies x1y ≤ x2y (resp. yx1 ≤ yx2).

A quasi-order is monotone if it is monotone on the right and on the left.
An element s ∈ X ⊆ S is minimal in X with respect to ≤ if, for every x ∈ X ,

x ≤ s implies x ∼ s. For s, t ∈ S if s ≤ t and s is not equivalent to t mod ∼, then
we set s < t.

A quasi-order in S is called a well quasi-order (wqo) if every non-empty subset
X of S has at least one minimal element but no more than a finite number of (non-
equivalent) minimal elements. We say that a set S is well quasi-ordered (wqo) by
≤, if ≤ is a well quasi-order on S.

There exist several conditions which characterize the concept of well quasi-order
and that can be assumed as equivalent definitions (cf. [6]).

Theorem 2.1. Let S be a set quasi-ordered by ≤. The following conditions are
equivalent:

i. ≤ is a well quasi-order;
ii. every infinite sequence of elements of S has an infinite ascending subse-

quence;
iii. if s1, s2, . . . , sn, . . . is an infinite sequence of elements of S, then there

exist integers i, j such that i < j and si ≤ sj;
iv. there exists neither an infinite strictly descending sequence in S (i.e., ≤ is

well founded), nor an infinity of mutually incomparable elements of S.

A partial order satisfying the wqo property is also called a well partial order.
The quasi-orders considered in this paper are actually partial orders. However,
according to the current terminology, we refer to them as quasi-orders.
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Let σ = {si}i≥1 be an infinite sequence of elements of S. Then σ is called good
if it satisfies condition (iii) of Theorem 2.1 and it is called bad otherwise, that is,
for all integers i, j such that i < j, si 
≤ sj.

It is worth noting that, by condition (iii) above, a useful technique to prove
that ≤ is a wqo on S is to prove that no bad sequence exists in S.

If ρ and σ are two relations on sets S and T respectively, then the direct product
ρ ⊗ σ is the relation on S × T defined as

(a, b) ρ ⊗ σ (c, d) ⇐⇒ a ρ c and b σ d.

The following lemma is well known (see [6], Chap. 6).

Lemma 2.2. The following conditions hold:
i. every subset of a wqo set is wqo;
ii. if S and T are wqo by ≤S and ≤T respectively, then S × T is wqo by

≤S ⊗ ≤T .

Following [6], we recall that a rewriting system, or semi-Thue system on an al-
phabet A is a pair (A, π) where π is a binary relation on A∗. Any pair of words
(p, q) ∈ π is called a production and denoted by p → q. Let us denote by ⇒π the
derivation relation of π, that is, for u, v ∈ A∗, u ⇒π v if

∃ (p, q) ∈ π and ∃ h, k ∈ A∗ such that u = hpk, v = hqk.

The derivation relation ⇒∗
π is the transitive and reflexive closure of ⇒π . One

easily verifies that ⇒∗
π is a monotone quasi-order on A∗.

A semi-Thue system is called unitary if π is a finite set of productions of the
kind

ε → u, u ∈ I, I ⊆ A+.

Such a system, also called unitary grammar, is then determined by the finite
set I ⊆ A+. Its derivation relation and its transitive and reflexive closure are
denoted by ⇒I (or, simply, ⇒) and ⇒∗

I (or, simply, ⇒∗), respectively. We set
Lε

I = {u ∈ A∗ | ε ⇒∗ u}.
Unitary grammars have been introduced in [7], where the following theorem is

proved.

Theorem 2.3. Let I be a finite set of A+ and assume that A = alph(I). The
following conditions are equivalent:

i. the derivation relation ⇒∗
I is a wqo on A∗;

ii. the set I is unavoidable;
iii. the language Lε

I is regular.

3. Main result

The main result of this section will be stated in Corollary 3.23 which is an im-
provement of Theorem 2.3 where condition (i) is replaced by the weaker condition
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that Lε
I is well quasi-ordered by the relation ⇒∗

I . In order to achieve this result
we have first to prove the following non-trivial theorem.

Theorem 3.1. Let I be a finite set of words. If I is avoidable then ⇒∗
I is not a

wqo on the language Lε
I .

The proof of Theorem 3.1 is divided into the following four cases.

3.1. First case

We suppose that Card(I) = 1 so that I = {w}. Set A = alph(I). Let us first
observe that Card(A) ≥ 2. Indeed, if A = {a}, then w = ak, k ≥ 1 so that I is
an unavoidable set of A∗ which contradicts the assumption on the set I. Hence,
w may be factorized as w = w′abk, where a, b ∈ A, a 
= b, w′ ∈ A∗ and k > 0.

Now we construct the bad sequence of Lε
I . For any n > 0, let xn be the word

defined as
xn = (w′a)n−1w(w′a)bkn.

The following lemma states some useful properties of the words of the sequence {xn}.
Lemma 3.2. The following conditions hold:

i. for any n > 0, xn ∈ Lε
I;

ii. for any n > 0, |xn| = (n + 1)|w|.
Proof. Condition (i) is easily proved. Indeed, for any n > 0, one has

ε ⇒n
I (w′a)nbkn = (w′a)n−1(w′a)bkn ⇒I (w′a)n−1w(w′a)bkn = xn.

By condition (i), for any n > 0, ε ⇒n+1
I xn which yields condition (ii). �

Corollary 3.3. Let n, m be positive integers. If xn ⇒�
I xn+m then � = m.

Proof. By condition (ii) of the previous lemma, |xn+m| = (n + m + 1)|w| = |xn|+
m|w|, which implies that the length of the derivation xn ⇒�

I xn+m is � = m. �

Lemma 3.4. Let y be a word and let n, � be positive integers. If xn ⇒�
I y then

i. y = y′bh where y′ /∈ A∗b and 1 ≤ h ≤ k(n + �);
ii. if h = k(n + �) then y = (w′a)n−1w(w′a)�+1bh.

Proof. The claim of the lemma is easily proved by induction on the integer � ≥ 1
such that xn ⇒�

I y. �

Proposition 3.5. Let I be a set of words satisfying the hypotheses of the first
case. The derivation relation ⇒∗

I is not a wqo on Lε
I.

Proof. We prove that the sequence {xn}n>0 is bad. Suppose, by contradiction,
that it is good. Hence, there exist positive integers n, � such that xn ⇒∗

I xn+�. By
Corollary 3.3, the previous derivation has length �, hence

xn ⇒�
I xn+�.
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Since bk(n+�) is a suffix of xn+�, Lemma 3.4 gives

xn+� = (w′a)n−1w(w′a)�+1bk(n+�).

On the other hand
xn+� = (w′a)n+�−1w(w′a)bk(n+�),

and the two factorizations above give

(w′a)�w = (w′a)�w′abk = w(w′a)�.

This implies that a = b which is a contradiction. Hence, ⇒∗
I is not a wqo on Lε

I . �

3.2. Second case

We suppose that Card(I) ≥ 2 and, for every letter a of alph(I), there exists a
word of I which begins with a. Set alph(I) = A.

Lemma 3.6. Let I be a finite avoidable set of A+. Then there exists a word
w ∈ A+ such that, for any n ≥ 0, Fact(wn) ∩ I = ∅.
Proof. Let X = A∗ \ A∗IA∗. Since I is finite, X ∈ Rec(A∗). Moreover, since I
is avoidable in A∗, X is infinite. By the latter two conditions and by using the
well known Pumping Lemma for recognizable languages, one has that there exists
a word v = fwg ∈ X with f, g, w ∈ A∗ such that w 
= ε and, for any n ≥ 0,
fwng ∈ X . Since X is closed by factors, we have that, for any n ≥ 0, wn ∈ X
and, thus, Fact(wn) ∩ I = ∅. �

From now on, w denotes the word defined in the statement of Lemma 3.6.

Lemma 3.7. For any a ∈ A there exist words ax, ay ∈ Lε
I such that x /∈ Suff(y)

and |x| < |y|.
Proof. First suppose that there exists a word u of I of minimal period at least two.
Hence, u = u′cdk with u′ ∈ A∗, c, d ∈ A, c 
= d and k > 0. Then ε ⇒2

I (u′c)2d2k.
Let ax = avu and ay = av(u′c)2d2k with av ∈ I. Thus, ax and ay satisfy the
claim.

If every word of I has period 1, then there exist words ai, bj ∈ I, a 
= b. Hence,
take ax = ai and ay = aibj . �

Now it is convenient to recall that, by hypothesis, for every a ∈ A, I ∩aA∗ 
= ∅.
Hence, there exists a word z ∈ A+ such that ε ⇒∗

I wz. Therefore, the sequence of
words {zn} is such that

∀ n ≥ 1, ε ⇒∗
I wnzn. (1)

Let us denote {zn} a sequence of words of A+ such that, for any n > 0, equation (1)
holds if one replaces zn with zn and such that zn is of minimal length.

Lemma 3.8. The sequence {|zn|} is not upper bounded.
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Proof. By contradiction, suppose that our sequence is upper bounded. Thus there
exists a positive integer M such that, for any n > 0, |zn| < M . For any n > 0, let ln
be the length of the derivation ε ⇒ln

I wnzn. Since, for any n > 0, Fact(wn)∩I = ∅,
then ln < M and, hence, |wn| < MN , where N is the maximal length of a word
of I. The latter inequality is not possible if n > MN . Hence, the sequence {|zn|}
is not upper bounded. �

Now let a be a letter such that w /∈ aA∗. Consider the words ax, ay satisfying
the statement of Lemma 3.7 and the sequence {zn} previously defined.

By possibly replacing the sequence {wnzn} with one of its subsequence, Lemma 3.8
yields the following corollary.

Corollary 3.9. The sequence of words {zn} is such that, for any n, m > 0,
|zn| + |y| < |zn+m|.

We consider the following two sequences {xn}, {yn} of words: for any n > 0,

xn = wnaxzn, yn = wnayzn.

The condition that, for any n > 0, xn, yn ∈ Lε
I immediately follows from the

definition of the sequences {xn} and {yn}. The following Lemma is used in the
sequel. Its proof is an easy consequence of the definition of the relation ⇒∗

I .

Lemma 3.10. Let f, g, v ∈ A∗ and let a ∈ A. If fag ⇒∗
I v then v = f ′ag′ where

f ′, g′ are words of A∗ such that: f ⇒∗
I f ′ and g ⇒∗

I g′.

Lemma 3.11. Let n, k be positive integers. If xn ⇒∗
I xn+k then zn+k = z′xzn,

z′ ∈ A∗. Similarly, if yn ⇒∗
I yn+k then zn+k = z′′yzn, z′′ ∈ A∗.

Proof. We deal with the first case, that is, xn ⇒∗
I xn+k, the other case being

completely analogous. By applying Lemma 3.10 to f = wn and g = xzn one
obtains words f ′, g′ ∈ A∗ such that
1. f ′ag′ = xn+k;
2. wn ⇒∗

I f ′;
3. xzn ⇒∗

I g′.
First we remark that if f ′ = wn, then by (1) w ∈ aA∗, which is not possible
since w does not begin with the letter a. Hence, by (2), wn ⇒+

I f ′. This implies
that there exists at least one word u ∈ I such that u ∈ Fact(f ′). If |f ′| ≤
|wn+k| then, by condition (1), f ′ ∈ Pref(wn+k) so that u ∈ Fact(wn+k). By
Lemma 3.6 the latter condition is not possible. Hence, |f ′| > |wn+k| so that, by
condition (1), f ′ = wn+kζ, where ζ ∈ A+. Since ε ⇒∗

I wnzn, condition (2) yields
ε ⇒∗

I wnzn ⇒∗
I f ′zn = wn+kζzn. Hence, by the definition of zn+k, |ζzn| ≥ |zn+k|,

so that |wn+kζaxzn| ≥ |wn+kaxzn+k|. On the other hand, we have

xn = wnaxzn ⇒∗
I wn+kζaxzn ⇒∗

I wn+kaxzn+k = xn+k,

which gives wn+kζaxzn = wn+kaxzn+k. Hence, by Corollary 3.9, zn+k = z′xzn,
with z′ ∈ A∗. �
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Proposition 3.12. Let I be a set of words satisfying the hypotheses of the second
case. The relation ⇒∗

I is not a wqo on Lε
I .

Proof. The proof is by contradiction. Set L = Lε
I and denote ≤ the relation ⇒∗

I .
Suppose that L is well quasi-ordered by ≤. Then, by Lemma 2.2, the set L × L
is well quasi-ordered by the canonical relation defined by ≤ on L × L. Hence,
every sequence of elements of L×L is good with respect to that quasi-order. Now
consider the sequence {(xn, yn)}. Hence there exist integers n, k > 0 such that
xn ≤ xn+k and yn ≤ yn+k. By Lemma 3.11, zn+k = z′xzn = z′′yzn with z′,
z′′ ∈ A∗. On the other hand, by Lemma 3.7, |x| < |y| and therefore, x is a suffix
of y. Again, by Lemma 3.7, this is a contradiction. Hence, ⇒∗

I is not a wqo
on Lε

I . �

Remark 3.13. The same result of Proposition 3.12 may be obtained under the
assumption that, for every letter a ∈ A, there exists a word of the set I that ends
with a. In this case, the proof is completely analogous.

3.3. Third case

Now we suppose that the set I has at least two words and it does not satisfy the
hypothesis of Case 2. Set alph(I) = A. Therefore, according to Remark 3.13, we
assume that there exists a letter c of the set A such that, for every f ∈ I, f /∈ A∗c.
In this case we also suppose that at least one word of I begins with a letter a 
= c.
In order to study this case, it is useful to introduce some preliminary definitions
and results. For any f ∈ A+, we set

νc(f) =
|f |c
|f | ·

If f is the empty word we set νc(f) = 0. We adopt the following conventions. The
word u denotes a prefix of a word of the set I such that νc(u) is maximal. Moreover,
w denotes a word of the set I with u ∈ Pref(w) and we set w = uv, v ∈ A∗.

Lemma 3.14. The following conditions hold.
i. The word u ends with the letter c and v 
= ε.
ii. Let f be a word of I such that, for any h ∈ I, νc(h) ≤ νc(f). Then, for

any g ∈ Lε
I , νc(g) ≤ νc(f). Moreover, νc(f) < νc(u).

iii. Let n > 0 and let f be a word of A∗ such that un ⇒∗
I f . Then νc(f) ≤

νc(u).
iv. Let v0, . . . , vi be words of the set Pref(Lε

I). Then νc(v0 · · · vi) ≤ νc(u).

Proof. i) If u does not end with c then u = u′a, with a 
= c and thus νc(u) < νc(u′)
which contradicts the choice of u. Since w /∈ A∗c and u ∈ A∗c, one has v 
= ε.
ii) The first part of the claim may be easily proved by induction on the length of
the derivation which yields g starting from the empty word. For the second part
of (ii), by hypothesis, f /∈ A∗c and thus f = f ′a with f ′ ∈ A∗, a 
= c, whence
νc(f) < νc(f ′). Since f ′ is a prefix of a word of I, by the choice of u, we have
νc(f ′) ≤ νc(u) and thus νc(f) < νc(u).
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iii) The claim may be easily proved by induction on the length of the derivation
that yields f starting from un.
iv) It is enough to prove that, for any f ∈ Pref(Lε

I), νc(f) ≤ νc(u). Under this
assumption, there exists a word t ∈ Lε

I such that f ∈ Pref(t). Suppose that
ε ⇒n

I t, with n ≥ 0. We prove the claim by induction on n. The claim is trivial if
n = 0. If n = 1 then the claim follows from the choice of u. Hence, the basis of
the induction is proved. Let us prove the inductive step. Then we have

ε ⇒n−1
I t′ ⇒I t

with n > 1. We have to examine the following cases:
1. t′ = ft1t2, t = ft1gt2, with g ∈ I. Hence f ∈ Pref(t′) and the claim

follows by the induction step;
2. t′ = f ′t1, t = f ′ht1, where f = f ′g, h = gg′ ∈ I and g, t1 ∈ A+. Since f ′ is

a prefix of t′, by induction hypothesis, νc(f ′) ≤ νc(u) and since g is a prefix
of a word of I, νc(g) ≤ νc(u). Therefore, we have νc(f) = νc(f ′g) ≤ νc(u);

3. t = f1gf2t1, t′ = f1f2t1, f = f1gf2, with f1, f2, t1 ∈ A∗ and g ∈ I.
Since f1f2 is a prefix of t′, by induction hypothesis, νc(f1f2) ≤ νc(u).
Since g ∈ I, by (ii), one has that νc(g) < νc(u). Hence, the latter two
conditions give νc(f) = νc(f1gf2) < νc(u).

�
Now it is convenient to notice that, by hypothesis, ε ⇒I w = uv and therefore,

ε ⇒∗
I unvn. (2)

Let us denote {zn} a sequence of words of A+ such that, for any n > 0, equation (2)
holds if one replaces vn with zn and such that zn is of minimal length.

Lemma 3.15. The sequence {|zn|} is not upper bounded.

Proof. The proof is by contradiction. Suppose that our sequence is upper bounded
and thus there exists a positive integer M such that, for any n > 0, |zn| < M .
Hence, we have

lim
n→∞ νc(unzn) = νc(u). (3)

Let f be a word of I such that νc(f) is maximal in I. Set δ = νc(u) − νc(f). By
Lemma 3.14 – (ii), δ > 0 and, for any g ∈ Lε

I ,

δ ≤ νc(u) − νc(g). (4)

On the other hand, for any n > 0, unzn ∈ Lε
I and, for any sufficiently large n,

Equation (3) gives

|νc(u) − νc(unzn)| = νc(u) − νc(unzn) <
δ

2
,

which contradicts equation (4). Hence, the sequence {|zn|} is not upper bounded.
�
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The following result is useful. Its proof is similar to that of Lemma 3.7.

Lemma 3.16. Let a ∈ A, with a 
= c and I ∩aA∗ = ∅, and let H = |w|+1. Then
there exist words aHx, aHy ∈ Lε

I such that x /∈ Suff(y) and |x| < |y|.
By possibly replacing the sequence {unzn} with one of its subsequence,

Lemma 3.15 yields the following corollary.

Corollary 3.17. The sequence of words {zn} is such that, for any n, m > 0,
|zn| + |y| < |zn+m| where y is the word defined in Lemma 3.16.

Now, starting from the words aHx, aHy, w = uv and those of the sequence {zn},
we consider the following two sequences {xn}, {yn} of words: for any n > 0,

xn = unaHxzn, yn = unaHyzn.

The condition that, for any n > 0, xn, yn ∈ Lε
I immediately follows from the

definition of the sequences {xn} and {yn}.
Lemma 3.18. Let n, k be positive integers. If xn ⇒∗

I xn+k then zn+k = z′xzn,
z′ ∈ A+. Similarly, if yn ⇒∗

I yn+k then zn+k = z′′yzn, z′′ ∈ A+.

Proof. We deal with the first case, that is, xn ⇒∗
I xn+k, the other being completely

analogous. By applying Lemma 3.10 to f = un and g = aH−1xzn one obtains
words f ′, g′ ∈ A∗ such that

1. f ′ag′ = un+kaHxzn+k;
2. un ⇒∗

I f ′;
3. aH−1xzn ⇒∗

I g′.

Let us prove that un+k ∈ Pref(f ′). By (1), it suffices to show that |f ′| ≥ |un+k|.
By contradiction, suppose that |f ′| < |un+k|. First we notice that in the derivation
process

g = aH−1xzn ⇒∗
I g′

at least one word of I must be inserted in the prefix aH−1 of g. Indeed, otherwise,
we have g′ = aH−1g′′, g′′ ∈ A∗ and therefore

f ′ag′ = f ′aHg′′ = un+kaHxzn+k.

Since |f ′| < |un+k| and |u| < H we obtain u ∈ A∗a, with a 
= c which contradicts
condition (i) of Lemma 3.14. Therefore, the prefix of ag′ of length H − 1 is of the
form

p = av1 · · ·avi,

where 1 ≤ i ≤ H − 1, v1, . . . , vi ∈ Pref(Lε
I). Again, the equality f ′ag′ =

un+kaHxzn+k and the condition |f ′| < |un+k|, |u| < H yield the existence of
a power uj of u such that j ≤ n + k and

uj = f ′q,



WELL QUASI-ORDERS, UNAVOIDABLE SETS, AND DERIVATION SYSTEMS 417

where q is a proper prefix of p. Set q = av1 · · · av′k, v′k ∈ Pref(vk). Then, by
Lemma 3.14 – (iv), we have νc(q) = νc(av1 · · · av′k) < νc(v1 · · · v′k) ≤ νc(u) and by
Lemma 3.14 – (iii) νc(f ′) ≤ νc(u) whence

νc(u) = νc(uj) = νc(f ′q) < νc(u),

which is a contradiction. Hence, |f ′| ≥ |un+k| and thus by (1), f ′ = un+kζ,
ζ ∈ A∗. Therefore, we have f = un ⇒+

I f ′ = un+kζ. On the other hand, we have
ε ⇒∗

I unzn which thus gives
ε ⇒∗

I un+kζzn.

By the definition of zn+k, we have |ζzn| ≥ |zn+k| and thus

|un+kζaHxzn| ≥ |un+kaHxzn+k|.

Now, by Lemma 3.10,

fag = unaHxzn ⇒+
I f ′ag = un+kζaHxzn ⇒∗

I un+kaHxzn+k = f ′ag′,

which gives un+kζaHxzn = un+kaHxzn+k. By Corollary 3.17, |xzn| < |zn+k| which
gives zn+k = z′xzn, with z′ ∈ A+. �

The proof of the following proposition follows verbatim the argument of that of
Proposition 3.12.

Proposition 3.19. Let I be a set of words satisfying the hypotheses of the third
case. The relation ⇒∗

I is not a wqo on Lε
I .

3.4. Fourth case

Finally we suppose that the set I has at least two words, its alphabet is A =
{a, b} and I ⊆ aA∗b. One can easily show that this case must necessarily occur if
all the previous cases (and the symmetric ones) are excluded. In order to study
this case, we need some preliminary results. For any f ∈ aA∗b, we can write
f = akf ′, with k ≥ 1 and f ′ ∈ bA∗. We set

µ(f) = k.

From now on, the word w = akv, v ∈ bA∗ denotes a word of I such that the ratio
µ(w)/|w| is maximal. Since w = akv ∈ I, for any n > 0, one has

ε ⇒n
I aknvn = ak(n−1)ak−1 · avn ⇒I ak(n−1)ak−1 · akv · avn = aknak−1vavn. (5)

For every n > 0, we set
xn = aknak−1vavn.

By (5), all words xn belong to the language Lε
I .
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Lemma 3.20. Let f = apf ′ with p > 0, f ′ ∈ bA∗ and let g be a word such that
f ⇒∗

I g. If
µ(g) = p + k� and |g| = |f | + |w|�,

then
g = ap+k�xf ′,

with x ∈ A∗.

Proof. By hypothesis we have that

f ⇒m
I g, with m ≥ 1. (6)

Let u1, . . . , um be the m words of I used in the derivation process above and, for
every i = 1, . . .m, set pi = µ(ui) and qi = |ui|. By hypothesis

∑

i=1,...,m

qi = |w|�. (7)

By the choice of w, since µ(w)/|w| = k/|w| is maximal, for every i = 1, . . . , m, we
have

pi ≤ qik

|w| ,
and thus ∑

i=1,...,m

pi ≤ k

|w|
∑

i=1,...,m

qi.

Hence, by (7), ∑

i=1,...,m

pi ≤ �k. (8)

Let α ⇒I β be the i-th production of the derivation process (6), so that β is
obtained from α by the insertion in α of the word ui. The insertion is called useful
if it is done immediately after the prefix aµ(α) of α, that is β ∈ aµ(α)+pibA∗. It is
clear that if the insertion is not useful, then µ(β) < µ(α) + pi.

Now suppose that there exists at least one production in (6) such that the
corresponding insertion is not useful. By the previous argument and by (8), we
have

µ(g) < µ(f) +
∑

i=1,...,m

pi ≤ µ(f) + k�,

and this contradicts the assumption on g. Therefore all the insertions in (6) are
useful and this implies that the prefix f ′ is preserved in the whole derivation
process. �

Corollary 3.21. Let n, � be two positive integers. If xn ⇒∗
I xn+� then

xn+� = ak(n+�)ak−1xavn,

with x ∈ A∗.
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Proof. By the hypothesis and the fact that

µ(xn+�) = µ(xn) + k�, |xn+�| = |xn| + �|w|,
the claim follows by applying Lemma 3.20 to f = xn and g = xn+�. �
Proposition 3.22. Let I be a set of words satisfying the hypothesis of the fourth
case. Then the relation ⇒∗

I is not a wqo on Lε
I.

Proof. We prove that the sequence {xn}n>0 is bad. Suppose, by contradiction,
that it is good. Then there exist integers n, � > 0 such that xn ⇒∗

I xn+�. By
Corollary 3.21,

xn+� = ak(n+�)ak−1xavn,

whereas, by definition of xn+�, one has

xn+� = ak(n+�)ak−1vavn+�.

By the latter two factorizations of xn+� one has that the word v ends with the
letter a 
= b which is a contradiction. Therefore, {xn} is a bad sequence in Lε

I and
⇒∗

I is not a well quasi order on Lε
I . �

By Theorems 2.3 and 3.1 and Lemma 2.2, we have that ⇒∗
I is a well quasi-order

on A∗ if and only if ⇒∗
I is a well quasi-order on Lε

I . Hence, we obtain the following
corollary.

Corollary 3.23. Let I be a finite set of words. Then the following conditions are
equivalent:

i. ⇒∗
I is a well quasi-order on Lε

I ;
ii. I is unavoidable;
iii. Lε

I is regular.

4. Well quasi-orders and shuffle

As announced in the introduction of this paper, one can consider a possible
extension of the previous results with respect to other significant quasi-orders
and, in particular, in the case of the relation �∗

I whose definition is recalled below.
Let I be a finite subset of A+. Then we denote by �I the binary relation of A∗

defined as: for every u, v ∈ A∗, u �I v if

u = u1u2 · · ·un+1,

v = u1a1u2a2 · · ·unanun+1,

with ui ∈ A∗, ai ∈ A, and a1 · · · an ∈ I.
The relation �∗

I is the transitive and reflexive closure of �I . One easily verifies
that �∗

I is a monotone quasi-order on A∗. Moreover Lε
�I

denotes the set of all
words derived from the empty word by applying �∗

I , that is,

Lε
�I

= {u ∈ A∗ | ε �∗
I u}.
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The relation �∗
I has been considered in [9] where the following theorem has been

proved.

Theorem 4.1. Let I ⊆ A+ and assume that A = alph(I). The following condi-
tions are equivalent:

i. the derivation relation �∗
I is a wqo on A∗;

ii. the set I is subsequence unavoidable in A∗, that is, there exists a posi-
tive integer k such that any word u ∈ A∗, with |u| ≥ k, contains as a
subsequence a word of I;

iii. the language Lε
�I

is regular.

In [9] it is also proved that I is subsequence unavoidable if and only if, for every
a ∈ A, I ∩ {a}+ 
= ∅. It is also worth noticing that the relationships between
the quasi-orders �∗

I and ⇒∗
I have been deeply investigated in [2], [3] where, as a

consequence of a more general result, the following theorem is proved:

Theorem 4.2. For any finite set I, �∗
I is a wqo on Lε

I.

In this theoretical setting, it is natural to ask whether Theorem 4.1 may be
extended by replacing condition (i) with the weaker condition that the derivation
relation �∗

I is a wqo on Lε
�I

. Unfortunately this is not true as shown by the
following example. Consider the set I = {ab}. It is easily verified that Lε

�I
= Lε

I

and therefore, by a well-known construction, Lε
�I

is generated by a context-free
grammar with only one variable. Precisely, Lε

�I
is the language of all semi-Dyck

words over the alphabet {a, b}. By Theorem 4.2, �∗
I is a well quasi-order on

Lε
�I

= Lε
I while this language is not regular. This example leads us to further

investigate the relationships between the wqo property of �∗
I and the context-

freeness of the language Lε
�I

.
We conjecture that �∗

I is a wqo on Lε
�I

if Lε
�I

is context-free. It seems that
a significant step of a possible solution of our problem is the combinatorial char-
acterization of finite sets I such that Lε

�I
is context-free. In the literature, the

language Lε
�I

is also called the iterated shuffle of I or the shuffle closure of I [13].
Many papers have been devoted to the studying of the shuffle closure of finite
languages (see for instance [13, 14]) but, as far as we know, no characterization
has been given for the context-freeness property of them. Now we give such a
characterization when I is a singleton. In order to prove this result, we need the
following lemma.

Lemma 4.3. Let I = {w} with w = ai1
1 ai2

2 · · ·aik

k where k ≥ 3, i1, . . . , ik ≥ 1 and
the a′

is are letters such that, for every i = 1, . . . , k − 1, ai 
= ai+1.
If X = {ai1n

1 ai2n
2 · · ·aikn

k | n ≥ 1} and R = (ai1
1 )∗(ai2

2 )∗ · · · (aik

k )∗, then

X = Lε
�I

∩ R.

Proof. The inclusion X ⊆ Lε
�I

∩ R is easily proved. Let x = ani1
1 ani2

2 · · · anik

k ,
with n ≥ 1. Obviously, x ∈ R. On the other hand, one easily verifies that ε �n

I x
and hence, x ∈ Lε

�I
. This proves that x ∈ Lε

�I
∩ R.
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Let us now prove that X ⊇ Lε
�I

∩ R. Let x ∈ Lε
�I

, x 
= ε, and let n(x) be
the number of distinct powers of letters of alph(w) which factorize x. It is useful
to remark that n(w) = k.

Let ε �I x1 = w �I x2 �I · · · �I xn = x be the sequence of derivations which
yields x. The following properties may be easily proved by induction on n:
– for every � = 1, . . . , n, n(x�) ≥ k and, if n(x�) > k, then x /∈ R;
– the sequence of integers {n(x�)}�=1,...n is monotone non decreasing.

By using the two properties above, one may easily prove that, if x ∈ Lε
�I

∩ R,
then n(x) = k and x = ani1

1 ani2
2 · · · anik

k , where n is the length of the sequence of
derivations of x. This proves that x ∈ X . �
Theorem 4.4. Let I = {w}. Then Lε

�I
is context-free if and only if w = akbh

where a and b are distinct letters and h, k are non negative integers.

Proof. Let us prove the necessary condition. Let

I = {w} = {ai1
1 ai2

2 · · · aik

k },

where k ≥ 3, i1, . . . , ik ≥ 1 and the a′
is are letters such that, for every i =

1, . . . , k − 1, ai 
= ai+1. By contradiction, suppose that Lε
�I

is context-free. Let

X = {ai1n
1 ai2n

2 · · · aikn
k | n ≥ 1}.

It is well-known that X is not context-free and this result may be proved by
applying the Pumping Lemma for context-free languages to X . On the other
hand, Lemma 4.3 gives

X = Lε
�I

∩ (ai1
1 )∗(ai2

2 )∗ · · · (aik

k )∗.

Since the family of context-free languages is closed under intersection with regular
languages, one has that X is context-free which is a contradiction. This proves
the necessary condition.

Let us now prove the sufficient condition. Let I = {ahbk}, where a and b are
distinct letters and h, k are non negative integers. If k = 0 (resp. h = 0), then
Lε
�I

= (ah)∗ (resp. = (bk)∗) and, hence, it is regular. Suppose that h, k > 0.
For any word u over the alphabet {a, b}, one can consider the following integer
parameters

qu
a = |u|a/h, qu

b = |u|b/k, and
ru
a = |u|a mod h, ru

b = |u|b mod k.

Now we prove that for any word w,

w ∈ Lε
�I

if and only if the following condition holds:
(A) qw

a = qw
b , rw

a = rw
b = 0 and for any prefix u of w, either

qu
a > qu

b or qu
a = qu

b and ru
b = 0.
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In order to prove the above characterization let us denote by L the language of
all the words satisfying condition (A). We have to prove that Lε

�I
= L. Obviously

the empty word belongs to L. Moreover, one can easily check that if u ∈ L and
u �I v, then v ∈ L. This shows that Lε

�I
⊆ L.

To gain the inverse inclusion we prove that for any non empty word w ∈ L
there exists a word w′ ∈ L such that w′ �I w. By proceeding on induction on
the length of any word w, this fact gives w ∈ L whenever w ∈ Lε

�I
. Then let w

be a non empty word in L. Since w satisfies condition (A), w must contain as a
prefix the word ah and at least k occurrences of the letter b. Consider the first k
occurrences of b and write w as

w = ahaj1baj2b . . . ajkbv.

Let w′ = aj1aj2 . . . ajkv. Obviously w′ �I w. Moreover, since |w′|a = |w|a − h and
|w′|b = |w|b − k, one has qw′

a = qw
a − 1, qw′

b = qw
b − 1, rw′

a = rw
a , and rw′

b = rw
b .

Therefore, qw′
a = qw′

b , and rw′
a = rw′

b = 0, i.e., w′ satisfies the first part of condition
(A). Now let u′ be a prefix of w′. If u′ is a prefix of aj1aj2 . . . ajk , then it trivially
satisfies the second part of condition (A). If u′ is not a prefix of aj1aj2 . . . ajk , then
it can be written as u′ = aj1aj2 . . . ajkλ, where λ is a prefix of v. Then, consider the
word u = ahaj1baj2b . . . ajkbλ. Observe that u is a prefix of w and, by hypothesis
it satisfies the second part of (A). Since |u′|a = |u|a − h and |u′|b = |u|a − k, one
has qu′

a = qu
a − 1, qu′

b = qu
b − 1, ru′

a = ru
a , and ru′

b = ru
b . The above equalities imply

that u′ must satisfy the second part of condition (A).
By using the characterization above, one may construct a push-down automaton

(PDA) M that accepts Lε
�I

. We give a short description of M . The PDA M uses
the stack as a counter. The stack alphabet contains only two letters A and Z0.
The letter Z0 is the start symbol of M and, in any computation, it will appear only
in the bottom of the stack. The letter A is used to give a unary representation of
an integer, as explained below. During the computation, any time the number of
a increases of h then the counter increases of 1 by adding a letter A to the top of
the stack. When the number of b increases of k, then the counter decreases of 1 by
erasing the letter A from the top of the stack. The finite states are used to count
the a’s modulo h and the b’s modulo k. In such a way the PDA M , after reading
a prefix u, can compute in its stack the (non negative) integer qu

a − qu
b , and, in

its finite states, the integers ru
a and ru

b . We remark that M may decide whether
qu
a > qu

b or qu
a = qu

b , by checking whether the symbol on top of the stack is A or
Z0. The details on the construction of M and how it accepts the words satisfying
condition (A), are left to the reader. �

The most simple case where I = {w} is not context-free happens when w = abc.
In this case we are able to prove that �∗

I is not a wqo on Lε
�I

. In order to achieve
this result, we need to recall some definitions and results stated in [2].

Definition 4.5. Let u = a1 · · ·an and v = b1 · · · bm be two words over A with
n ≤ m. An embedding of u in v is a map f : {1, . . . , n} −→ {1, . . . , m} such that
f is increasing and, for every i = 1, . . . , n, ai = bf(i).
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It is useful to remark that a word u is a subsequence of v if and only if there
exists an embedding of u in v.

Definition 4.6. Let u, v ∈ A∗ and let f be an embedding of u in v. Let v =
b1 · · · bm. Then 〈v − u〉f is the subsequence of v defined as

〈v − u〉f = bi1 · · · bi�

where {i1, i2, . . . , i�} is the increasing sequence of all the integers of {1, . . . , m} not
belonging to Im(f). The word 〈v − u〉f is called the difference of v and u with
respect to f .

It is useful to remark that 〈v − u〉f is obtained from v by deleting, one by one,
all the letters of u according to f .

Moreover, an embedding f of u in v is uniquely determined by two factorizations
of u and v of the form

u = a1a2 · · · an, v = v1a1v2a2 · · · vnanvn+1

with ai ∈ A, vi ∈ A∗.

Lemma 4.7. Let u, v ∈ Lε
�I

such that u �∗
I v. Then there exists an embedding f

of u in v such that
〈v − u〉f ∈ Lε

�I
.

Proof. The proof is by induction. By hypothesis there exists k ≥ 0 such that
u �k

I v. If k = 0, then u = v so 〈v − u〉f = ε ∈ Lε
�I

. Suppose k = 1. Thus
u = u1u2 · · ·um+1 and v = u1b1u2b2 · · · bmum+1 with b1b2 · · · bm ∈ I. The previous
factorizations of u and v yield an embedding f of u in v such that 〈v − u〉f =
b1b2 · · · bm ∈ Lε

�I
. The basis of the induction is proved.

Let us prove the induction step. Suppose u �k+1
I v with k ≥ 1. Then there exists

w ∈ Lε
�I

such that u �k
I w and w �I v. By the induction hypothesis, there exists

an embedding f of u in w such that 〈w−u〉f ∈ Lε
�I

. Suppose that the embedding f
generates the factorizations u = a1 · · · an and w = u1a1u2a2 · · ·uiai · · ·unanun+1

with ai ∈ A, ui ∈ A∗. Hence, 〈w − u〉f = u1u2 · · ·un+1 ∈ Lε
�I

.
Since w �I v, there exists a word b1b2 · · · bm ∈ I such that v is obtained from

w inserting the sequence of letters b1, b2 · · · , bm. Since the word w is fac-
torized as w = u1a1u2a2 · · ·uiai · · ·unanun+1, the word v can be factorized as
v = u′

1a1u
′
2a2 · · ·u′

iai · · ·u′
nanu′

n+1 where each u′
i is obtained from ui inserting

some of the letters of b1b2 · · · bm. The above factorization of v gives an embedding
g of u in v such that

〈v − u〉g = u′
1u

′
2 · · ·u′

n+1.

Moreover, as u1u2 · · ·un+1 �I u′
1u

′
2 · · ·u′

n+1, one has 〈v − u〉g ∈ Lε
�I

. �
The following lemma is useful and its proof is left to the reader.

Lemma 4.8. Let I = {w} with w = abc and let u ∈ {a, b, c}∗. Then u ∈ Lε
�I

if
and only if |u|a = |u|b = |u|c and, for every p ∈ Pref(u), |p|a ≥ |p|b ≥ |p|c.
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Let A = {a, b, c} and consider the sequence {Sn}n≥1 of words of A∗ defined as:
for every n ≥ 1,

Sn = a(a2b2c2)(bac)nb(a2b2c2)c.

The following result holds.

Proposition 4.9. The sequence {Sn}n≥1 is bad with respect to �∗
I and its elements

are in Lε
�I

. Therefore, �∗
I is not a wqo on Lε

�I
.

Proof. One can easily check that, for any n ≥ 1, Sn ∈ Lε
�I

. Let us prove that the
sequence {Sn} is bad. By contradiction, assume that {Sn} is good so that there
exist positive integers n, � such that Sn �∗

I Sn+�. Thus, by Lemma 4.7, there exists
an embedding f of Sn into Sn+� such that 〈Sn+� − Sn〉f ∈ Lε

�I
.

Remark that

Sn = P (a2b2c2)c, Sn+� = P (acb)�(a2b2c2)c

with P = a(a2b2c2)(bac)nb. Now we prove the following two steps.

Step 1. The embedding f is the identity on the prefix a(a2b2c2) of P .
First remark that f(2) ≥ 2. Let us prove that f(2) = 2. Indeed, otherwise,
supposing f(2) = k > 2 implies f(3) ≥ k + 3 and f(1) < k. Then one can
easily check that 〈Sn+� − Sn〉f admits a prefix q such that |q|b > |q|a. Hence, by
Lemma 4.8, 〈Sn+� − Sn〉f /∈ Lε

�I
and this contradicts the choice of f . Therefore,

f(2) = 2 and f(1) = 1. Again, by Lemma 4.8, the previous two equalities and the
fact that 〈Sn+� − Sn〉f ∈ Lε

�I
imply that f is the identity on a(a2b2c2).

Step 2. The embedding f is the identity on P .
By contradiction, suppose that the statement of the step is false and let pσ, σ ∈ A,
be the shortest prefix of P such that f is not the identity on pσ. By Step 1,
|a(a2b2c2)| ≤ |p| < |P |. Let i = |p| − |a(a2b2c2)| mod. 3. If i = 0 (resp. i = 1,
i = 2), then σ = b (resp. σ = a, σ = c). Since f is the identity on p and
f(|p|+ 1) > |p|+ 1, 〈Sn+� − Sn〉f is a word of the set bA∗ (resp. acA∗, cbA∗). By
Lemma 4.8, 〈Sn+� − Sn〉f /∈ Lε

�I
and this contradicts the choice of f . Hence, f is

the identity on P .

Since Paa ∈ Pref(Sn), Step 2 gives f(|P |+2) > |P |+2 and, thus, 〈Sn+�−Sn〉f ∈
{ac, c}A+. Hence, by Lemma 4.8, 〈Sn+� − Sn〉f /∈ Lε

�I
and this contradicts the

choice of f . Therefore, the condition Sn �∗
I Sn+� does not hold and the sequence

{Sn}n≥1 is bad. �

Let us now consider the case when I = {ahb} (or symmetrically I = {abh}),
with h ≥ 1. Note that, by Theorem 4.4, the set Lε

�I
is context-free. The following

proposition holds:

Proposition 4.10. Let I = {ahb}, then Lε
�I

= Lε
I .

Proof. We have to prove that Lε
�I

⊆ Lε
I , since the inverse inclusion trivially follows

from the definition of Lε
�I

and Lε
I .
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For any word u define

qu
a = |u|a/h, ru

a = |u|a mod h.

Using the characterization of the set Lε
�I

given in the proof of Theorem 4.4, we
can state that a word w is in Lε

�I
if and only if

(A) qw
a = |w|b, rw

a = 0 and for any prefix u of w one has qu
a ≥ |u|b.

Let w be a word of Lε
�I

and proceed by induction on its length. If w is empty,
then w ∈ Lε

I . Suppose now that w is non empty. Since, by construction, w starts
with a block ah, then it can be written as w = akahbλ, with k ≥ 0 and λ ∈ {a, b}∗.
Let v = akλ. Since w satisfies the above condition (A), an easy computation
shows that also the word v satisfies (A) and, thus, v ∈ Lε

�I
. By induction v ∈ Lε

I .
Moreover, v ⇒I w and, thus, w ∈ Lε

I . �

From the latter proposition and Theorem 4.2, one derives:

Corollary 4.11. If I = {ahb} or I = {abh}, with h ≥ 1, then �∗
I is a wqo on Lε

�I
.

Concluding remark. There are two other simple cases: I = {aabb}, I = {aba}.
By Theorem 4.4, in the first case Lε

�I
is context-free while in the second one it

is not. In both cases we were not able to decide the wqo property of �∗
I on Lε

�I
.

Thus another interesting problem seems to be the following one: given a finite set
I decide whether �∗

I is a wqo on Lε
�I

.
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