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ON A COMPLETE SET OF OPERATIONS
FOR FACTORIZING CODES ∗

Clelia De Felice
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Abstract. It is known that the class of factorizing codes, i.e., codes
satisfying the factorization conjecture formulated by Schützenberger,
is closed under two operations: the classical composition of codes and
substitution of codes. A natural question which arises is whether a
finite set O of operations exists such that each factorizing code can be
obtained by using the operations in O and starting with prefix or suffix
codes. O is named here a complete set of operations (for factorizing
codes). We show that composition and substitution are not enough in
order to obtain a complete set. Indeed, we exhibit a factorizing code
over a two-letter alphabet A = {a, b}, precisely a 3−code, which cannot
be obtained by decomposition or substitution.
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1. Introduction

In this paper we follow the algebraic approach initiated by Schützenberger
in [40], and codes are defined as the bases of the free submonoids of A∗. Thus,
a subset C of A∗ is a code if each word in A∗ has at most one factorization into
words of C [3,29,40]. In spite of their simple definition, the structure of the codes
is still unknown and no systematic method for constructing them exists. Conjec-
tures have been given in order to make this structure clearer. In this direction,
Schützenberger formulated the conjecture known as the factorization conjecture,
that given a finite maximal code C, there would be finite subsets P , S of A∗

such that C − 1 = P (A − 1)S, with X denoting the characteristic polynomial
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of X [3, 5, 10]. A finite maximal code is a maximal object in the class of finite
codes for the order of set inclusion. Any code C which satisfies the above equality
is finite, maximal and is called a factorizing code. For example, finite biprefix
maximal codes are factorizing [3]. The factorization conjecture is one of the most
difficult problems which is still open in the theory of codes and the partial results
which are known about this conjecture are all reported in Section 2.2. The most
impressive result is given by Reutenauer which proves that the above-mentioned
equality holds for a finite maximal code C with P, S polynomials with integer
coefficients [37, 38].

Another early Schützenberger conjecture questioned whether each finite maxi-
mal code could be obtained by means of a simple operation, called composition of
codes, starting with prefix or suffix codes. This conjecture was proved to be false
by Césari in [13].

Inspired by the above-mentioned problems, we investigate the existence of a
finite set O of operations such that each factorizing code can be obtained by us-
ing operations in O and starting with prefix or suffix codes. Here, O is named
a complete set of operations (for factorizing codes). Obviously, the class of fac-
torizing codes must be closed under each operation τ in O (i.e., the result of the
application of τ to a pair of factorizing codes must again be a factorizing code).
The class of factorizing codes was showed to be closed under composition and un-
der substitution, another operation which was initially considered for finite prefix
maximal codes in [3] and subsequently defined for factorizing codes in [2]. This
operation is based on the idea which frequently recurs in the literature on codes,
of changing a word w with a set of words constructed starting from w [6,12,30,41].
Precisely, given factorizing codes C′ = P ′(A− 1)S + 1, C′′ = P ′′(A− 1)S + 1 and
w ∈ C′, C = (P ′ + wP ′′)(A − 1)S + 1 is again a factorizing code which is called
a substitution of C′ and C′′ by means of w [1, 2]. We can also consider a dual
version of this operation working on C′ = P (A − 1)S′ + 1, C′′ = P (A − 1)S′′ + 1
and w ∈ C′. By analogy with the operation of composition, the result of a finite
number of applications of substitution or of its dual version can once again be
called “substitution”.

The question whether composition and substitution are a complete set of op-
erations for factorizing codes was asked in [17, 18]. In spite of results proved in
the same papers, here we show how composition and substitution are not power-
ful enough to generate all factorizing codes by giving an example of a factorizing
code which cannot be obtained by means of these two operations starting with
simpler codes (Props. 3.5 and 3.6). The above-mentioned example is a 3−code,
an m−code being a finite maximal code such that each word in it has at most m
occurrences of b’s, m ∈ N . Nevertheless, we strongly conjecture that factorizing
codes C such that a ∈ C can be recursively constructed by using only composition
and substitution and starting with prefix/suffix codes. In order to find a complete
set, we end this paper with examples which can be used to rule out some new
operations as possible candidates.

This paper is organized as follows. Section 2 contains all the basic definitions
and known results on codes and factorizations of cyclic groups. Precisely, after
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the basics on codes and polynomials given in Section 2.1, we report the factor-
ization conjecture and its partial known results in Section 2.2. Factorizations of
cyclic groups are considered in Sections 2.3, 2.4 and the two operations of com-
position and substitution, including all the necessary known results, are defined
in Section 2.5. Section 3.1 collects a technical lemma and known results regard-
ing 3−codes which are subsequently used in Section 3.2 to exhibit a factorizing
code which cannot be constructed by means of substitution and composition and
starting with prefix/suffix codes (Props. 3.5 and 3.6). In Section 4 we gathered a
collection of examples showing how some natural attempts of defining new opera-
tions are unsuccessful.

2. Basics

Basics on codes and polynomials are gathered in Section 2.1 whereas Section 2.2
is devoted to the factorization conjecture. Furthermore, since the construction
of the factorizing codes is related to special factorizations of cyclic groups and
to the solutions of some equations, we will also report all the basic notions on
factorizations which we will need later on (Sects. 2.3 and 2.4). We end this section
with a discussion on the two special operations on codes mentioned in Section 1
(Sect. 2.5).

2.1. Codes and polynomials

Let A∗ be the free monoid generated by a finite alphabet A and let A+ = A∗ \1
where 1 is the empty word. For a word w ∈ A∗ and a letter a ∈ A, we denote by
|w| the length of w and by |w|a the number of the occurrences of a’s in w. When
|w|a = r, we will say that w has r a’s. The same notation |X |, when referred to
X ⊆ A∗, means the cardinality of X . The reversal of a word w = a1 . . . an, ai ∈ A,
is the word w∼ = an . . . a1 and we set X∼ = {w∼ | w ∈ X}. A word x ∈ A∗ is a
factor of w ∈ A∗ if u1, u2 ∈ A∗ exist such that w = u1xu2 and x is a proper factor
of w if u1u2 �= 1. Furthermore, x is a prefix (resp. suffix) of w ∈ A∗ if u1 = 1
(resp. u2 = 1); x is a proper prefix (resp. proper suffix) of w ∈ A∗ if u2 �= 1 = u1

(resp. u1 �= 1 = u2).
A code C is a subset of A∗ such that, for all c1, . . . , ch, c′1, . . . , c′k ∈ C, we have:

c1 · · · ch = c′1 · · · c′k ⇒ h = k; ∀i ∈ {1, . . . , h} ci = c′i.

A set C ⊆ A+ such that C ∩CA+ = ∅ is a prefix code. C is a suffix code if C∼ is
a prefix code and C is a biprefix code when C is both a suffix and a prefix code. A
code C is a maximal code over A if for each code C′ over A such that C ⊆ C′ we
have C = C′. As one of Schützenberger’s basic theorems shows, a finite code C is
maximal if and only if C is complete, that is C∗ ∩ A∗wA∗ �= ∅, for all w ∈ A∗ [3].
If C′, C are codes with C being maximal and C′ ⊆ C then C is called a completion
of C′. If, in addition, C is finite, then C is a finite completion of C′.
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Denote Z〈A〉 (respectively N〈A〉) the semiring of the polynomials with non-
commutative variables in A and integer (respectively nonnegative integer) coeffi-
cients. A finite subset X of A∗ will be identified with its characteristic polynomial:
X =

∑
x∈X x. Henceforth we will use a capital letter to refer to a set and to its

characteristic polynomial. For a polynomial P and a word w ∈ A∗, (P, w) denotes
the coefficient of w in P and we set supp(P ) = {w ∈ A∗ | (P, w) �= 0}. When we
write P ≥ 0, we mean P ∈ N 〈A〉.

2.2. Factorizing codes and the factorization conjecture

Conjecture 2.1, given in a weaker form in [32], is among the most difficult and
still open problems in the theory of codes. This conjecture was formulated by
Schützenberger and, as far as we know, it does not appear explicitly in any of his
papers. It was been quoted as the factorization conjecture in [31] for the first time
and then also reported in [3, 5, 10].

Conjecture 2.1 (Schützenberger). Given a finite maximal code C, there are finite
subsets P , S of A∗ such that:

C − 1 = P (A − 1)S. (1)

Each pair (P, S), with P, S finite subsets of A∗ and such that equation (1) holds,
will be called a factorizing pair for C, and their number, for a given code C,
is also referred to as the number of factorizations of C. Each code C verifying
the previous conjecture is finite, maximal and is called a factorizing code. Finite
maximal prefix codes are the simplest examples of factorizing codes. Indeed, C is
a finite maximal prefix code if and only if C = P (A − 1) + 1 for a finite subset
P of A∗ [3]. In the previous relation, P is the set of the proper prefixes of the
words in C. More interesting constructions of factorizing codes can be found in [7]
and the result which is closest to a solution of the conjecture, partially reported in
Theorem 2.1, was obtained by Reutenauer [5, 37, 38]. He proved that if we allow
that P, S ∈ Z〈A〉, then (1) holds for each finite maximal code C.

Theorem 2.1 [38]. Let C be such that C ∈ N〈A〉, (C, 1) = 0 and let P, S be
such that P, S ∈ Z〈A〉, C = P (A − 1)S + 1. Then, C is a finite maximal code.
Furthermore, if P, S ∈ N〈A〉, then P, S have coefficients 0, 1. Conversely, let C be
a finite maximal code. Then, there exist P, S ∈ Z〈A〉 such that C = P (A−1)S+1.

Other results concern the proof of the conjecture for special classes of finite
maximal codes. More precisely, given m ∈ N , an m−code C is a finite maximal
code over {a, b} such that each word in C has at most m occurrences of the letter
b. If m is less than or equal to three then C is factorizing [15,21,33]. Furthermore,
C is also factorizing if bm ∈ C and m is a prime number or m = 4 [42].
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If C′, C are codes with C being factorizing and C′ ⊆ C then C is called a
factorizing completion of C′.

2.3. Factorizations of cyclic groups

A relationship exists between factorizing codes and factorizations of cyclic
groups that has not yet been thoroughly investigated. We discussed factorizing
codes in Section 2.2 and we now consider factorizations of cyclic groups. One of
the main references for this argument is [23].

As usual, we realize the cyclic group of order n, n ≥ 2, as the factor group Zn

of the integers modulo n. Furthermore, for all positive integers h, n the notation
h|n means that h is a divisor of n, whereas, for H ⊆ N , we denote min H (resp.
max H) the smallest (resp. greatest) element in H .

Definition 2.1. A pair (R, T ) of subsets of N is a factorization of Zn if R⊕T =
Zn, that is, for each z ∈ {0, . . . , n−1} there exists a unique pair (r, t), with r ∈ R
and t ∈ T , such that r + t = z (mod n).

We explicitly observe that the classical hypotheses R, T ⊆ {0, . . . , n−1} and 0 ∈
R∩T are not taken into account in this paper, as we are considering factorizations
of Zn in relation to codes.

The particular class of factorizations involved in this paper was constructed by
Hajós. In [24], Hajós gave a method for the construction of a class of factorizations
of an abelian group (G, +). This method was slightly corrected later by Sands
in [39] and we call these factorizations Hajós factorizations. In the definition given
by Hajós the operation ◦ is also introduced: for subsets S = {s1, . . . , sq}, T of Zn,
S ◦T denotes the family of subsets of Zn having the form {si + ti | i ∈ {1, . . . , q}},
where T

′
= {t1, . . . , tq} is any multiset of elements of T having the same cardinality

as S.
We often translate the definitions in a polynomial form. Therefore, for a poly-

nomial in N〈a〉, the notation aH =
∑

n∈N (H, n)an will be used with H ∈ N 〈1〉,
i.e., with H being a finite multiset of nonnegative integers. Computation rules
are also defined: aM+L = aMaL, aM∪L = aM + aL, aM◦L = aM ◦ aL, a∅ = 0,
a0 = 1. Thus, if H1, H2, . . .Hk ∈ N 〈1〉, the expression aH1baH2 . . . aHk is a nota-
tion for the product of the formal power series aH1 , b, aH2 , . . . , aHk . For instance,
a{2,3}ba{1,5} = a2ba + a2ba5 + a3ba + a3ba5.

As in [16], we have reported below the original definition given by Hajós in the
case G = Zn.

Definition 2.2. Let R, T be subsets of N . (R, T ) is a Hajós factorization of Zn

if and only if there exists a chain of divisors of n:

k0 = 1 | k1 | k2 | . . . | ks = n, (2)
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such that:

aR ∈
(((

a − 1
a − 1

◦ ak1 − 1
a − 1

)

· ak2 − 1
ak1 − 1

)

◦ . . . · . . . an − 1
aks−1 − 1

)

, (3)

aT ∈
(((

a − 1
a − 1

· ak1 − 1
a − 1

)

◦ ak2 − 1
ak1 − 1

)

· . . . ◦ . . .
an − 1

aks−1 − 1

)

. (4)

Furthermore, we have R, T ⊆ {0, . . . , n − 1}.
The simplest examples of Hajós factorizations are given by Krasner factoriza-

tions (I, J), which were discovered in a completely different context and defined
in [25] as follows. Let us consider again the chain k0 = 1 | k1 | k2 | . . . | ks = n
of divisors of n given in equation (2) and the subsets I, J of N defined by equa-
tions (5) below:

aI =
∏

j even ,1≤j≤s

(akj − 1)
(akj−1 − 1)

, aJ =
∏

j odd ,1≤j≤s

(akj − 1)
(akj−1 − 1)

· (5)

In [25], Krasner and Ranulac proved that a pair (I, J) of subsets of N satisfies
equations (5) if and only if for any z ∈ {0, . . . , n − 1} there exists a unique (i, j),
with i ∈ I, j ∈ J and i + j = z, i.e., aIaJ = (an − 1)/(a − 1). (I, J) is called a
Krasner factorization.

2.4. Recursive constructions of Hajós factorizations

There are at least two recursive constructions of the Hajós factorizations, de-
pending on whether we look at the first term k1 �= 1 or at the last term ks = n
in the chain of divisors in equation (2). The first was obtained thanks to a char-
acterization of the Hajós factorizations given in Theorem 2.2 which makes some
equations between polynomials in N 〈a〉 intervene, the second is reported in Propo-
sition 2.1.

Theorem 2.2 [16]. Let (R, T ) be subsets of {0, . . . , n − 1}. The following condi-
tions are equivalent:

1) (R, T ) is a Hajós factorization of Zn.
2) There exists a Krasner factorization (I, J) of Zn such that (I, T ), (R, J)

are (Hajós) factorizations of Zn.
3) There exist L, M ⊆ N and a Krasner factorization (I, J) of Zn such that:

aR = aI(1 + aM (a − 1)), aT = aJ(1 + aL(a − 1)). (6)

Furthermore, 2) ⇔ 3) also holds for R, T ⊆ N .

Two observations related to this result are worthy of mention. First, Theo-
rem 2.2 points out that for each Hajós factorization (R, T ), we can associate a
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Krasner factorization (I, J) with (R, T ), called a Krasner companion factoriza-
tion of (R, T ) in [27]. Given a Hajós factorization (R, T ) of Zn, defined starting
with the chain of divisors of n in equation (2), a Krasner companion factoriza-
tion (I, J) is naturally associated with (R, T ): in order to get (I, J) we have to
erase from equation (3) polynomials Pj = (akj − 1)/(akj−1 − 1) with j odd, and
from equation (4) polynomials Pj with j even [16]. (I, J) will be called the Krasner
companion factorization of (R, T ) with respect to the chain of divisors of n given in
equation (2). It is easy to prove that all the Krasner companion factorizations of a
given Hajós factorization (R, T ) are exactly the Krasner companion factorizations
of (R, T ) obtained in this way (i.e., (I, J) is a Krasner companion factorization of
(R, T ) if and only if there exists a chain C of divisors of n defining (R, T ) such that
(I, J) is the Krasner companion factorizations of (R, T ) with respect to C) [19].

Secondly, looking at Definition 2.2, we see that for a Hajós factorization (R, T )
of Zn, we have R, T ⊆ {0, . . . , n−1}. On the other hand, the equivalence between
conditions 2) and 3) in Theorem 2.2 has been stated under the more general
hypothesis that R, T are arbitrary subsets of N (not necessarily with max R < n,
max T < n). In order to maintain this general framework in the next part of
this paper, for R, T ⊆ N , we will say that (R, T ) is a Hajós factorization of Zn if
(R(n), T(n)) satisfies the conditions contained in Definition 2.2 where, for a subset
X of N and n ∈ N , we denote X(n) = {x′ | 0 ≤ x′ ≤ n − 1, ∃x ∈ X, x = x′

(mod n)}. This is equivalent, as Lemma 2.1 shows, to defining Hajós factorizations
of Zn as those pairs satisfying equations (6).

Lemma 2.1 [18]. Let (I, J) be a Krasner factorization of Zn. Let R, R′, M be
subsets of N such that aR = aI(1 + aM (a − 1)) and aR′

= aR(n) . Then, M ′ ⊆ N

exists such that aR′
= aI(1 + aM ′

(a − 1)) and I + max M ′ + 1 ⊆ {0, . . . , n −
1}. Furthermore, if we set R′ = {r1, . . . , rq}, R = {r1 + λ1n, . . . , rq + λqn}, for
λ1, . . . λq ≥ 0, and if we set aH = ar1+{0,n,...,(λ1−1)n} + . . . + arq+{0,n,...,(λq−1)n}

then we have a disjoint union M = M ′ ∪ M
′′

with M
′′ ⊆ N , aM ′′

= aJaH and
aR = aR′

+ aI(a − 1)aM
′′
.

The recursive construction of the solutions of equations (6), given in [14] and
partially illustrated in Proposition 3.2, allowed us to obtain the recursive construc-
tion of the Hajós factorizations given in [16]. Furthermore, equations (6) are also
related to the structure of factorizing codes, as Proposition 3.1 shows.

Observing the definition of the Hajós factorizations we can obtain another recur-
sive construction of them with ease. Proposition 2.1, given in [27] as a direct result
and proved here for the sake of completeness, illustrates this recursive construction.

Proposition 2.1 [27]. Let R, T ⊆ {0, . . . , n − 1} and suppose that (R, T ) is a
Hajós factorization of Zn with respect to the chain k0 = 1 | k1 | k2 | . . . | ks = n of
divisors of n. Then either (R, T ) = (R1, T1) or (R, T ) = (T1, R1), where (R1, T1)
satisfies one of the two conditions that follow.

1) There exists t ∈ {0, . . . , n−1} such that R1 = {0, . . . , n−1} and T1 = {t}.
Furthermore, s = 1.
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2) R1 = R(1)+{0, 1, . . . , g−1}h, T1 = T (1)◦{0, 1, . . . , g−1}h, (R(1), T (1)) be-
ing a Hajós factorization of Zh, g, h ∈ N , n = gh, R(1), T (1) ⊆ {0, . . . , h−
1}. The chain of divisors defining (R(1), T (1)) is k0 = 1 | k1 | k2 | . . . |
ks−1 = h.

Proof. Let R, T ⊆ {0, . . . , n− 1} and suppose that (R, T ) is a Hajós factorization
of Zn with respect to the chain k0 = 1 | k1 | k2 | . . . | ks = n of divisors of
n. Thus, looking at Definition 2.2, we see that if s = 1 then obviously either
(R, T ) = (R1, T1) or (R, T ) = (T1, R1), where (R1, T1) satisfies condition 1) in the
statement. Otherwise, (R, T ) is given by equations (3), (4) with s > 1. Now, if we
eliminate the last term in the expressions given in equations (3) and (4), we get a
Hajós factorization (R(1), T (1)) of Zks−1 with respect to the chain k0 = 1 | k1 | k2 |
. . . | ks−1 of divisors of ks−1 = h. Furthermore, from Definition 2.2, we have that
R(1), T (1) ⊆ {0, . . . , h− 1}. Thus, it is easy to see that either (R, T ) = (R1, T1) or
(R, T ) = (T1, R1), where (R1, T1) satisfies condition 2) in the statement. �

2.5. Composition and substitution

As we have already said, a central problem in the theory of codes is the de-
scription of their structure. We can do so by using operations which allow us to
construct codes starting with “simpler” ones, thus reducing the above-mentioned
problem to the description of the structure of the “simplest” elements in the fam-
ily. Two of these operations will be discussed in this section: composition and
substitution.

Let C′ ⊆ B∗, D ⊆ A∗ be two codes such that each letter b ∈ B is a factor of at
least one word in C′ and with |B| = |D|. Let ϕ : B∗ → D∗ be an isomorphism that
extends a bijection from B onto D. Then, the set C = ϕ(C′) = C′ � D is a code
over A and we say that C is obtained by composition of C′ and D [3]. Furthermore,
if C is a maximal code over A then C′, D are also maximal codes (respectively
over B and A) [3]. A code C ⊆ A+ is indecomposable if, whenever C = C′ �D then
either D = A or C′ = B, otherwise C decomposes or is decomposable (over D).
We have that a code C ⊆ A∗ decomposes over a code D if and only if C ⊆ D∗

and each word in D is a factor of at least one word in C [3].
Composition is an interesting operation which can lighten the structure of codes.

For instance, in [35], the authors proved that each two-word code has a finite
completion since this code can be obtained by composition of prefix/suffix codes,
an n-word code being a code with exactly n elements. The same result cannot be
extended to three-word codes, as showed in [22], and we still do not know whether
each three-word code has a finite completion. More specialized statements have
been obtained by taking into account the close notion of a maximal free submonoid.
Indeed, it is known that, if C is a maximal code, then C is indecomposable if and
only if C∗ is a maximal submonoid of A∗ (i.e., C∗ ⊆ D∗ ⊆ A∗, with D being a code,
implies either C = D or D = A). This partial order between free submonoids can
be related to division of finite trees and primeness properties when C is a maximal
prefix code [11, 36]. Following this approach, in [36] the authors proved that we
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can decide whether a free submonoid C∗ is maximal when C is a rational maximal
prefix code. Furthermore, a polynomial time algorithm has been given for deciding
the maximality of C∗ when C is a finite maximal prefix code in [11] and when C
is a finite maximal code in [28]. The latter algorithm is a consequence of results
given in the same paper [28] on locally complete sets. Informally, the notion of
a locally complete set arises in connection with the attempt to define maximality
and completeness of a code with respect to a set which has more constraints than
the free monoid (as also done in [20,34] with different viewpoints). Regarding the
problem examined in this paper, it is known that the class of factorizing codes is
closed under composition and specific relations exist between factorizing pairs for
C′ and D and a factorizing pair for C [7].

The same class of factorizing codes is also closed under another operation which
was first considered for finite prefix maximal codes in [3] and subsequently defined
for factorizing codes in [1,2]. Let us briefly recall this with some additional remarks
and results given in [17, 18] which will also be used later on.

In [1, 2], the author proved that, given factorizing codes C′ = P ′(A − 1)S + 1,
C′′ = P ′′(A − 1)S + 1 and w ∈ C′, C = (P ′ + wP ′′)(A − 1)S + 1 is again a
factorizing code which is called a substitution of C′ and C′′ by means of w. C
is the characteristic polynomial of (C′ \ w) ∪ wC′′. Furthermore, the result C∼

of the obvious dual operation working on C
′∼, C

′′∼ and w∼ will be once again a
factorizing code since the class of factorizing codes is closed under the operation ∼.
More generally, the result of a finite number of applications of such an operation,
or of the dual version of it will once again be called “substitution”. No specific
relationships apparently exist between composition and substitution. However,
notice that if C′ is a factorizing code, then the substitution C of C′ and C′′ = C′

by means of w ∈ C′ also decomposes over C′.
As we already said in Section 1, an early Schützenberger question asked whether

each finite maximal code could be obtained by means of composition of codes,
starting from prefix or suffix codes. The first negative answer to this question
was given by Césari in [13] and subsequently simpler codes were constructed by
Boë and Vincent in [6] and [41] respectively.

A natural question which arises is to ask whether each factorizing code (or finite
maximal code) can be obtained by substitution of prefix and suffix codes. This
question was explicitly posed in [17,18] with results that led us to believe that we
would obtain a positive answer.

In [17], for instance, the author showed that for all w ∈ A∗ and for all factorizing
codes C = P (A − 1)(1 + w) + 1, C can be obtained by substitution starting from
prefix or suffix codes and, as a consequence stated in the same paper, all the coun-
terexamples to the above-mentioned first Schützenberger conjecture can also be
obtained in this way. It has also been proved that each finite maximal code C such
that C = P (a + b − 1)S + 1 with P, S ∈ Z〈{a, b}〉 and P ∈ Z〈a〉 or S ∈ Z〈a〉 can
be obtained by substitution of prefix and suffix codes [17, 18]. As a consequence,
all 1− and 2−codes can be obtained by substitution of prefix and suffix codes. Fi-
nally, another result in this direction is recalled in Proposition 2.2. Despite these
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encouraging results, a negative answer to the above-mentioned question will be
given in Section 3.2.

Remark 2.1. In order to make the statement of Proposition 2.2 clear, we observe
that for each factorizing code C such that C ∩ a∗ = an, if (P, S) is a factorizing
pair for C, then the pair (I, J) defined by P ∩ a∗ = aI , S ∩ a∗ = aJ is a Krasner
factorization of Zn. As a result, (I, J) satisfies the conditions reported in the
statement of Proposition 2.1.

Proposition 2.2 [18]. Let C be a factorizing code with an ∈ C, n > 1. Suppose
that for each aiwaj ∈ C, with w ∈ (A \ a)A∗(A \ a) ∪ (A \ a), we have i, j < n.
Then, for each factorizing pair (P, S) for C = P (A − 1)S + 1, there exist h with
h ∈ N , h|n, h < n and there exist factorizing codes C(k) with ah ∈ C(k), k ∈
{0, . . . , (n/h) − 1}, such that we have:

• either C(k) = P (k)(A − 1)S + 1, P =
∑(n/h)−1

k=0 akhP (k) and
C =

∑( n
h −1)

k=0 akh(C(k) − 1) + 1;
• or C(k) = P (A − 1)S(k) + 1, S =

∑(n/h)−1
k=0 S(k)akh and

C =
∑( n

h −1)

k=0 (C(k) − 1)akh + 1;
the first or the second condition being satisfied depending on whether P ∩ a∗ =
aI1+{0,...,(n/h)−1}h or S ∩ a∗ = aJ1+{0,...,(n/h)−1}h.

Remark 2.2 [18]. Let n, h be positive integers with h|n, n/h ≥ 2, let C(k) =
P (k)(A − 1)S + 1 (resp. C(k) = P (A − 1)S(k) + 1) be a factorizing code with
P (k), S ∈ N〈A〉 (resp. P, S(k) ∈ N〈A〉) and ah ∈ C(k), for k ∈ {0, . . . , (n/h)− 1}.
Thus, C =

∑(n/h)−1
k=0 akh(C(k) − 1) + 1 (resp. C =

∑(n/h)−1
k=0 (C(k) − 1)akh + 1) is

obtained by substitution of codes C(k) and so C is a factorizing code.

Finally, as observed in [17, 18], substitution could also be defined starting with
two finite maximal codes C′ = P ′(A− 1)S + 1, C′′ = P ′′(A− 1)S + 1 and w ∈ C′,
where P ′, P ′′, S ∈ Z〈A〉, giving as a result the characteristic polynomial C =
P ′(A − 1)S + wP ′′(A − 1)S + 1 = C′ + wC′′ − w of the finite maximal code
(C′ \ w) ∪ wC′′.

In the next part of this paper we will consider a two-letter alphabet A = {a, b}.
We will also use the following notation: for P ∈ Z〈A〉 and g ∈ N , we denote Pg

polynomials such that for all w ∈ supp(Pg) we have |w|b = g and P = P0+. . .+Ph.

3. The power of composition and substitution

In this section we exhibit a 3−code C which is indecomposable and cannot be
obtained by substitution with other codes (Props. 3.5 and 3.6). This result shows
that composition and substitution do not suffice to obtain each factorizing code.

Let us briefly outline the contents of this section. Section 3.1 is devoted to
results on 3−codes which are subsequently referred to. Most of these results are
already known. We begin with the description of the structure of the above-
mentioned class of codes. Subsequently, we point out that the investigation of
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the behaviour of a 3−code C with respect to the operations of composition and
substitution can be made by looking at the structure of the factorizing pairs of
C. This is clearly evident for the substitution operation and shown in [8, 9] for
the composition operation (see Prop. 3.3). In Section 3.2, we present the above-
mentioned example of a 3−code C.

As a preliminary step in the proof of Proposition 3.6, we show that C is a
factorizing code having only one factorization (Lem. 3.3). This result allows us
to conclude that C has degree 1. We recall that the degree d ≥ 1 of a code C
can be defined in terms of interpretations of words [3]: the triple (r, w, l) is an
interpretation of u ∈ A∗ (with respect to C) if u = rwl, with w ∈ C∗, r (respec-
tively l) a proper suffix (respectively prefix) of a word in C. Two interpretations
(r, w, l), (r′, w′, l′) of u are adjacent if there exist w1, w2, w

′
1, w

′
2 ∈ C∗ such that

w = w1w2, w′ = w′
1w

′
2, rw1 = r′w′

1, w2l = w′
2l

′ otherwise (r, w, l), (r′, w′, l′) are
disjoint. If δC(u) denotes the maximal number of pairwise disjoint interpretations
of u, then the degree of C is d = min {δC(u) | u ∈ C∗ and A∗uA∗ ∩ C = ∅}. A
code C is synchronous if C has degree 1, otherwise C is called asynchronous.

In this framework, an important result was proved in [38]: let C be a finite
maximal code with degree d. Then, there exist X, Y, Z ∈ Z〈A〉 such that C − 1 =
X(d(A−1)+(A−1)Z(A−1))Y . Using the same argument as in [4], we prove that
this result has the following byproduct: for each n ∈ N , a ∈ A, such that an ∈ C,
n is a multiple of d. Indeed, if we substitute the value 0 to all letters b �= a in
the above equation, we get 1 + a + . . . + an−1 = x(a)(d + (a − 1)z(a))y(a). Then,
when we set a = 1 we get n = dx(1)y(1). The following open problem restricts a
question posed in [17,18] to factorizing (synchronous) codes C such that a ∈ A∩C.

Problem 3.1. Let C be a factorizing code such that a ∈ C. Can C be obtained
by a finite number of applications of composition and substitution, starting with a
prefix or suffix code?

3.1. Structure and properties of 3−codes

Proposition 3.1 describes the structure of 3−codes.

Proposition 3.1 [14, 15]. Let (P, S) be a factorizing pair for a 3−code C =
P (A − 1)S + 1. Then, there exists a Krasner factorization (I, J) of Zn such
that (P, S) satisfies one of the four conditions which follows.

a) P = aI +
∑

i∈I aibaLi , S = aJ +
∑

j∈J′ aMj baj, with J ′, Li, Mj ⊆ N
satisfying the conditions reported below.

– For all i ∈ I, aTi = aLi(a − 1)aJ + aJ ≥ 0;
– J ′ ⊆ ∪i∈ITi;
– for all j ∈ J ′, aMj (a − 1)aI + aIj = aR′

j ≥ 0, where Ij = {i ∈ I | j ∈
Ti} (thus, we also have aMj (a − 1)aI + aI = aRj ≥ 0);

– for all j ∈ J ′ \ J , for all i ∈ I, aMj (a − 1)aLi + aMj ≥ 0.
a′) P = aI +

∑
i∈I′ aibaLi , S = aJ +

∑
j∈J aMj baj, with I ′, Li, Mj ⊆ N

satisfying the conditions reported below.
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– for all j ∈ J , aRj = aMj (a − 1)aI + aI ≥ 0;
– I ′ ⊆ ∪j∈JRj;
– for all i ∈ I ′, aLi(a − 1)aJ + aJi = aT ′

i ≥ 0, where Ji = {j ∈ J | i ∈
Rj} (thus, we also have aLi(a − 1)aJ + aJ = aTi ≥ 0);

– for all i ∈ I ′ \ I, for all j ∈ J , aMj (a − 1)aLi + aMj ≥ 0.
b) P = aI +

∑
i∈I aibaLi +

∑
i∈I,li∈Li

aibalibaLi,li , S = aJ , with Li, Li,li ⊆
N , aTi = aLi(a − 1)aJ + aJ ≥ 0, aTi,li = aLi,li (a − 1)aJ + aJ ≥ 0, for all
i ∈ I, li ∈ Li.

b′) P = aI , S = aJ +
∑

j∈J aMj baj +
∑

j∈J,mj∈Mj
aMj,mj bamj baj, with Mj,

Mj,mj ⊆ N , aRj = aMj (a−1)aI +aI ≥ 0, aRj,mj = aMj,mj (a−1)aI +aI ≥
0, for all j ∈ J , mj ∈ Mj.

Remark 3.1. Let C be an n−code with n ≤ 2. Proposition 3.1 also describes
the structure of the factorizing pairs (P, S) of C: (P, S) satisfies condition a) with
J ′ = ∅ or a′) with I ′ = ∅, whereas, for 1−codes, we have both I ′ = J ′ = ∅.
Remark 3.2. In [27], the author gave a construction of an infinite family of
pairs (R, T ) of Hajós factorizations of Zn such that, for the corresponding pair
(M, L) satisfying aR = aM (a − 1)aI + aI ≥ 0, aT = aL(a − 1)aJ + aJ ≥ 0, we
have aM (a − 1)aL + aL < 0, aM (a − 1)aL + aM < 0. The Hajós factorization
(R, T ) = ({0, 4, 8, 12, 16, 20}, {0, 3, 6, 21}) of Z24 is an element of this family and
the corresponding pair (M, L) is ({1, 9, 11, 13}, {2, 3}). This example will be taken
into account at the time we consider the modulo operation for factorizing codes.

As we have already said in Section 2.4, a recursive construction of all the sets
mentioned in Proposition 3.1 can be found in [14]. Below we report a part of this
recursive construction since this statement will be used in the proof of Lemma 3.6.

Proposition 3.2 [14]. Let (I, J) be a Krasner factorization of Zn and suppose
that k exists with k ∈ N , k|n, k = min I \ 0 and I = kJ1. Thus, for each M
such that M ⊆ N and aM (a− 1)aI + aI ≥ 0, there exists t ≥ 0, L ⊆ N such that
M = {0, . . . , t−1}∪(t+kL+{0, . . . , k−1}), min L > 0 and aL(a−1)aJ1 +aJ1 ≥ 0.

Obviously, in the statement of the proposition above, for t = 0 we set {0, . . . , t−
1} = ∅. As we have already said, n−codes with n ≤ 3 have been investigated with
respect to the degree and the operation of composition in [8, 9]. Decomposable
codes in this family have been classified thanks to Proposition 3.3.

Proposition 3.3 [8, 9]. Let C, C′ be two finite maximal codes such that C′ �= A.
If C−1 = P (C′−1)S with P, S ⊆ A∗ and P or S �= 1 then C decomposes over C′.
Conversely, if C is an n−code, 1 ≤ n ≤ 3, decomposable over the code C′ ⊆ A+,
then C − 1 = P (C′ − 1)S with P, S ⊆ A∗ and P or S �= 1.

Remark 3.3. If C is a 3−code which is decomposable over the code C′ ⊆ A+,
then C′ is maximal and obviously C′ is an n−code, 1 ≤ n ≤ 3. So, C′ is factorizing.

In [8], the authors stated a characterization of factorizing codes having more
than one factorizing pair. Thanks to this result, in [8,9], they showed that n−codes
C with n ≤ 3 have at most two factorizations and they gave a characterization of
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the number of the factorizations of C in terms of the degree of C. In particular,
for 3−codes the following result holds.

Proposition 3.4 [9]. Any 3−code C has one or two factorizations. C has degree
1 if and only if C has one factorization.

Finally, we prove a result concerning the substitution operation.

Lemma 3.1. Let C be a 3−code having only one factorization P, S with P ∩
a∗ba∗ �= ∅, S∩a∗ba∗ �= ∅. Suppose that C can be obtained by substitution with two
factorizing codes C′ and C′′ by means of w ∈ C′, i.e. C−1 = (C′−1)+(C′′−1)w
or C − 1 = (C′ − 1) + w(C′′ − 1). Thus, we have w ∈ a∗ ∪ a∗ba∗.

Proof. Let C be a 3−code which satisfies the hypotheses contained in the state-
ment. Looking at the definition of the substitution operation we know that P or
S is a member of a factorizing pair for C′′ (and for C′). Then C′′ is a p−code with
p ≥ 2. On the other hand, we know that w C′′ ⊆ C or C′′w ⊆ C. Thus, C being
a 3−code, we have w ∈ a∗ ∪ a∗ba∗. �

3.2. A counterexample

In this section we will show that the expression below:

C =
(
a{0,2,4} + a{0,2,4}ba{0,7,9,11}

)
(a + b − 1)

(
a{0,1,6,7}

+a{0,1,2,3,4,5,6,7,8,9,10,11,12}ba19
)

+ 1

defines a 3−code C which is indecomposable and which cannot be obtained by
using the substitution operation (Props. 3.5 and 3.6). Let us briefly outline the
proof of this result.
An easy computation in Lemma 3.2 shows that C is a polynomial with nonnegative
coefficients and (C, 1) = 0. So, C is a 3−code, thanks to Theorem 2.1. Then we
prove that C has only one factorization (Lem. 3.3). C is showed to be indecom-
posable in Prop. 3.5. Therefore, we prove that we cannot find w ∈ a∗ such that
C can be obtained by substitution by using w (Lem. 3.4). Finally, we prove that
we cannot find w ∈ a∗ba∗ such that C can be obtained by substitution by using
w (Lemmata 3.5 and 3.6). Thus, in view of Lemma 3.1, C cannot be obtained by
using the substitution operation (Prop. 3.6).

Lemma 3.2. C is a 3−code.

Proof. In view of Theorem 2.1, in order to prove that C is a 3−code it suffices to
show that C is a polynomial with nonnegative coefficients and (C, 1) = 0. This
is equivalent to proving that Ci is a polynomial with nonnegative coefficients, for
i ∈ {0, 1, 2, 3}, and 1 �∈ C0.
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Set M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, it is easy to see that we have:

C0 = a{0,2,4}(a − 1)a{0,1,6,7} + 1 = a12,

C1 = a{0,2,4}ba{0,1,6,7} + a{0,2,4}ba{0,7,9,11}(a − 1)a{0,1,6,7}

+a{0,2,4}(a − 1)aMba19

= a{0,2,4}ba{1,2,8} + a{13,15,17}ba19,

C2 = a{0,2,4}ba{0,7,9,11}ba{0,1,6,7} + a{0,2,4}baMba19

+a{0,2,4}ba{0,7,9,11}(a − 1)aMba19

= a{0,2,4}ba{0,7,9,11}ba{0,1,6,7} + a{0,2,4}ba{0,7,9,11}a13ba19

+a{0,2,4}ba{1,2,3,4,5,6,8,10,12}ba19,

C3 = a{0,2,4}ba{0,7,9,11}baMba19,

i.e., C is a polynomial with nonnegative coefficients and (C, 1) = 0. �

Remark 3.4. C is a factorizing completion for C1 + a12 = a{0,2,4}ba{1,2,8} +
a{13,15,17}ba19 + a12 and we will prove that C is indecomposable and cannot be
obtained by using the substitution operation (Props. 3.5 and 3.6). Nevertheless
C1 + a12 has a factorizing completion obtained by composition and substitution,
starting with prefix/suffix codes. Indeed, C1 + a12 decomposes over a suffix code
and over C′

1 + a12, where C′
1 = a{0,2,4}ba{1,2,8} + a{1,3,5}ba7 (see also [26]). Now,

it is sufficient to find a factorizing completion C′ (obtained by composition and
substitution, starting with prefix/suffix codes) for C′

1 +a12: an easy generalization
of a result from [35] guarantees that C1 + a12 would have a factorizing completion
D which decomposes over C′ (and over a maximal suffix code). Now, C′ given
below is a factorizing completion for C′

1 + a12:

C′ =
(
a{0,2,4} + a{0,2,4}b

)
(a + b − 1)

(
a{0,1,6,7} + ba7

)
+ 1.

Furthermore, we can see that C′ is a substitution of C(0) = (a{0,2,4}+a{0,2,4}b)(a+
b−1)a{0,1}+1 = a{0,2,4}(1+b)(a+b−1)a{0,1}+1 and C(1) = (a{0,2,4}+a{0,2,4}b)(a+
b − 1)(a{0,1} + ba) + 1 = a{0,2,4}(1 + b)(a + b − 1)(a{0,1} + ba) + 1 by means of a6

(Prop. 2.2). Finally, C(0) and C(1) can be obtained by composition starting with
a suffix code. (Indeed, in view of Prop. 3.3, C(0) (resp. C(1)) decomposes over
D1 = (1 + b)(a + b − 1)a{0,1} + 1 (resp. D′

1 = (1 + b)(a + b − 1)(a{0,1} + ba) + 1)
and, in turn, by using once again Prop. 3.3, D1 (resp. D′

1) decomposes over the
suffix code D0 = (a + b − 1)a{0,1} + 1 (resp. D′

0 = (a + b − 1)(a{0,1} + ba) + 1).)

Lemma 3.3 and Proposition 3.5 give additional information on C.

Lemma 3.3. C has only one factorization.
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Proof. By contradiction, suppose that C has two factorizations C − 1 = P (A −
1)S = P ′(A− 1)S′ with P = a{0,2,4} + a{0,2,4}ba{0,7,9,11}, S = a{0,1,6,7} + aM ba19,
M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and P ′ �= P or S′ �= S.
Thus (proof of Lem. 3.2): C0 = a12, C1 = a{0,2,4}ba{1,2,8} + a{13,15,17}ba19, C2 =
a{0,2,4}ba{0,7,9,11} ba{0,1,6,7}+a{0,2,4}ba{0,7,9,11}a13ba19+a{0,2,4}ba{1,2,3,4,5,6,8,10,12}

ba19, C3 = a{0,2,4} ba{0,7,9,11}baMba19.
Hence, (P ′, S′) satisfies one of the four cases reported in Proposition 3.1. There-

fore, if case b) occurs for (P ′, S′) there exists J such that (I, J) is a Krasner factor-
ization of Z12, C1 = aIbaJ +

∑
i∈I aibaLi(a− 1)aJ and so I = {i | aibaj ∈ C1}, if

case b′) occurs for (P ′, S′) there exists J such that (I, J) is a Krasner factorization
of Z12, C1 = aIbaJ +

∑
j∈J aMj (a − 1)aIbaj and so J = {j | aibaj ∈ C1}. This

is a contradiction since in the first case we have 17 ∈ I and in the second case we
have 19 ∈ J , so (I, J) cannot be a Krasner factorization of Z12.

Thus, case a) or case a′) occurs for (P ′, S′). The relation C3 = a{0,2,4}ba{0,7,9,11}

baMba19 yields P ′ = aI + a{0,2,4}ba{0,7,9,11}, S′ = aJ + aMba19, (I, J) being a
Krasner factorization of Z12. We have that case a′) cannot occur for (P ′, S′) since
otherwise, 19 ∈ J contradicts that (I, J) is a Krasner factorization of Z12. We also
have {0, 2, 4} ⊆ I. Now, looking at the chains of divisors of 12 and at the corre-
sponding Krasner pairs given by equation (5), we observe that under the hypothesis
{0, 2, 4} ⊆ I, only the four cases that follow can occur: (I, J) = ({0, . . . , 11}, {0}),
(I, J)=({0, 1, 2, 3, 4, 5}, {0, 6}), (I, J)=({0, 2, 4, 6, 8, 10}, {0, 1}), (I, J)=({0, 2, 4},
{0, 1, 6, 7}). On the other hand, looking at condition a) in Proposition 3.1, we must
have a{0,7,9,11}(a − 1)aJ + aJ ≥ 0. A direct computation shows that this relation
is not satisfied for J = {0}, J = {0, 6} and J = {0, 1}. So, J = {0, 1, 6, 7},
I = {0, 2, 4} and consequently P ′ = P , S′ = S. �

Proposition 3.5. C is indecomposable.

Proof. By contradiction, suppose that C is decomposable over the code C′ ⊆ A+,
C′ �= A. Then, in view of Proposition 3.3, we have C − 1 = P (C′ − 1)S with
P, S ⊆ A∗ and P or S �= 1. Furthermore, as we have observed in Remark 3.3, C′ is
an n−code, 1 ≤ n ≤ 3 and C′ is factorizing. Thus we have C−1 = PP ′(A−1)S′S,
where (P ′, S′) is a factorizing pair for C′. In addition, since C′ �= A, P ′ or S′ �= 1.
Then, thanks to Lemma 3.3, we have:

PP ′ = a{0,2,4} + a{0,2,4}ba{0,7,9,11}, (7)

S′S = a{0,1,6,7} + aM ba19, (8)

where M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. As a preliminary observation, we
notice that, since 1 ∈ S′S, 1 ∈ PP ′, then 1 ∈ S′ ∩ S ∩ P ∩ P ′. We also know
that for m, I, J such that am ∈ C′, aI = P ′ ∩ a∗, aJ = S′ ∩ a∗, (I, J) is a Krasner
factorization of Zm (see Rem. 2.1). Furthermore, since C ⊆ (C′)∗, we have m|12.
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Now, one of the cases reported below occurs for S′:

1) either S′ ⊆ a∗ ∪ a∗ba∗, S′ �⊆ a∗;
2) or S′ ⊆ a∗.

Suppose that case 1) holds. Since S′, S′S ⊆ a∗ ∪ a∗ba∗ and S′ �⊆ a∗, we must have
S ⊆ a∗. Furthermore, if ah, ak ∈ S with h < k, looking at equation (8), we have
S′S∩a∗ba∗ = aMba19 and so, for each aibaj ∈ S′, we have 19 = j+h < j+k = 19,
which is a contradiction. Consequently, we have |S| = 1 which, together with
1 ∈ S, yields S = 1.

So, P �= 1 and S′ = a{0,1,6,7} + aM ba19. As we have already said, for m, I, J
such that am ∈ C′, aI = P ′ ∩ a∗, aJ = a{0,1,6,7} = S′ ∩ a∗, (I, J) is a Krasner
factorization of Zm. Furthermore, as we have already observed, m|12 and since
7 ≤ m, we have m = 12, i.e., I = {0, 2, 4}. Therefore, P ′ = a{0,2,4}+P ′′ with P ′′ ⊆
a∗ba∗ and equation (7) can be written as PP ′ = a{0,2,4} + a{0,2,4}ba{0,7,9,11} =
Pa{0,2,4} + PP ′′. Now either P ′′ �= 0, so P ⊆ a∗ which implies P = 1, a
contradiction, or P ′′ = 0 which is also a contradiction since we should have
Pa{0,2,4} = a{0,2,4} + a{0,2,4}ba{0,7,9,11}.

Now, suppose that case 2) holds, i.e., S′ = aJ . Looking at equation (8), we
have aJS = a{0,1,6,7} + aMba19. Then, S = aJ′

+ aM ′
ba19 with J ′, M ′ such that

J + M ′ = M and J + J ′ = {0, 1, 6, 7}. We get |J ||M ′| = 13, |J ||J ′| = 4 which
yield |J | = 1. Thus, since 1 ∈ S′, we have S′ = 1. This means that C′ is a prefix
code and P ′ is prefix-closed, i.e., for each z in P ′, all the prefixes of z are in P ′

(see Sect. 2.2). Therefore, P ′ ∩ a∗ = {a0, a, . . . ak} for a nonnegative integer k.
Looking at equation (7), we have that PP ′ ∩ a∗ = {0, 2, 4} which implies k ≤ 4.
Furthermore, k = 0 since, otherwise, a ∈ P ′, 1 ∈ P imply a ∈ PP ′ which is a
contradiction. In conclusion, P ′ ∩ a∗ = 1 = S′. Thus, since C′ �= A, we have
P ′ = 1 + P ′′, P ′′ ⊆ a∗ba∗, P ′′ �= 1. Once again, since P ′ is prefix-closed, we
have P ′′ = ba{0,1,...k}. As a consequence, PP ′ = P + PP ′′ = P + Pba{0,1,...k} =
a{0,2,4} + a{0,2,4}ba{0,7,9,11}. The last relation implies P ⊆ a∗ and so P = a{0,2,4}.
This is a contradiction since for no k could we have a{0,2,4} + a{0,2,4}ba{0,1,...k} =
a{0,2,4} + a{0,2,4}ba{0,7,9,11}. �

In the next three lemmata, we will prove that for the unique factorization
P, S of C we cannot write P = P ′ + wP ′′ with C′ = P ′(A − 1)S + 1 ≥ 0,
C′′ = P ′′(A−1)S +1 ≥ 0, w ∈ C′, w ∈ a∗∪a∗ba∗; nor can we write S = S′ +S′′w
with C′ = P (A−1)S′+1 ≥ 0, C′′ = P (A−1)S′′+1 ≥ 0, w ∈ C′, w ∈ a∗∪a∗ba∗. We
will also use the following notations: I = {0, 2, 4}, J = {0, 1, 6, 7}, P ′ ∩ a∗ = aI′

,
P ′′ ∩ a∗ = aI′′

, S′ ∩ a∗ = aJ′
, S′′ ∩ a∗ = aJ′′

.

Lemma 3.4. Let:

M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
P = a{0,2,4} + a{0,2,4}ba{0,7,9,11},

S = a{0,1,6,7} + aM ba19.
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For no word w ∈ a∗ can we have P = P ′ + wP ′′ with C′ = P ′(A − 1)S + 1 ≥ 0,
C′′ = P ′′(A− 1)S +1 ≥ 0, w ∈ C′. Furthermore, for no word w ∈ a∗ can we have
S = S′ + S′′w with C′ = P (A − 1)S′ + 1 ≥ 0, C′′ = P (A − 1)S′′ + 1 ≥ 0, w ∈ C′.

Proof. By contradiction, let w = am be such that we have either P = P ′ + wP ′′

with C′ = P ′(A − 1)S + 1 ≥ 0, C′′ = P ′′(A − 1)S + 1 ≥ 0, w = am ∈ C′,
or S = S′ + S′′w with C′ = P (A − 1)S′ + 1 ≥ 0, C′′ = P (A − 1)S′′ + 1 ≥ 0,
w = am ∈ C′. Then, C′ and C′′ are n−codes with n ≤ 3. In addition, since
P, S ⊆ a∗ ∪ a∗ba∗ and P, S �⊆ a∗, condition a) or condition a′) in Proposition 3.1
describes (P ′, S), (P ′′, S) or (P, S′), (P, S′′) (see Prop. 3.1 and Rem. 3.1).

Suppose that P = P ′ + wP ′′. Then, (I ′, J) is a Krasner factorization of Zm,
(I ′′, J) is also a Krasner factorization and J = {0, 1, 6, 7}, aI = a{0,2,4} = aI′

+
amaI′′

. This yields a contradiction since on the one hand |I ′| < |I|, |I ′′| < |I|, on
the other hand for each Krasner factorization (K, J) we must have I ⊆ K.

Thus, we have S = S′ + S′′w. Analogously, (I, J ′) is a Krasner factorization
of Zm, I = {0, 2, 4} and |J ′| < |J |, J = {0, 1, 6, 7}. Now, a unique subset J ′ of
N exists such that ({0, 2, 4}, J ′) is a Krasner factorization with |J ′| < |J |, namely
J ′ = {0, 1}. On the other hand, we have a{0,1} + a{0,1}(a− 1)a{0,7,9,11} = a+ a2 +
a13 − a7. Then, in virtue of Proposition 3.1 and Remark 3.1, no S′ ⊆ a∗ ∪ a∗ba∗

exists such that S′ ∩ a∗ = a{0,1} and P (A − 1)S′ + 1 ≥ 0. �

Lemma 3.5. Let:

M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
P = a{0,2,4} + a{0,2,4}ba{0,7,9,11},

S = a{0,1,6,7} + aM ba19.

For no word w ∈ a∗ba∗ can we have P = P ′ +wP ′′ with C′ = P ′(A− 1)S +1 ≥ 0,
C′′ = P ′′(A − 1)S + 1 ≥ 0, w ∈ C′.

By contradiction, suppose that w ∈ a∗ba∗ exists such that P = P ′ + wP ′′ with
C′ = P ′(A − 1)S + 1 ≥ 0, C′′ = P ′′(A − 1)S + 1 ≥ 0, w ∈ C′. Then, C′ and C′′

are n−codes with n ≤ 3. In addition, since S ⊆ a∗ ∪ a∗ba∗ and S �⊆ a∗, condition
a) or condition a′) in Proposition 3.1 describes (P ′, S) and (P ′′, S) (see Prop. 3.1
and Rem. 3.1). We will see that only three cases can occur for P ′ and P ′′ and
each of these three cases leads to a contradiction.

Since P ∩a∗ = P ′∩a∗ we must have I = I ′. On the other hand, P = P ′ +wP ′′

and w ∈ a∗ba∗ imply P ′′ = aI′′
and waI′′ ⊆ a{0,2,4}ba{0,7,9,11}. So we must have

|I ′′| ≤ 4. In addition, since (I ′′, {0, 1, 6, 7}) is a Krasner pair, a positive integer
k exists such that k|i, for all i ∈ I ′′, k = min I ′′ \ {0}, k|6. Thus, k = 2,
I ′′ = {0, 2, 4} = I ′ = I and w ∈ a{0,2,4}ba7. If w = ba7 we have wP ′′ = waI′′

=
ba{7,9,11} and, consequently, P ′ = P − wP ′′ = a{0,2,4} + b + a{2,4}ba{0,7,9,11}. By
using a similar argument, we conclude that one of the following three cases holds
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with P ′′ = aI′′
= a{0,2,4} and w ∈ a{0,2,4}ba7:

P ′ = a{0,2,4} + b + a{2,4}ba{0,7,9,11}, w = ba7;

P ′ = a{0,2,4} + a2b + a{0,4}ba{0,7,9,11}, w = a2ba7;

P ′ = a{0,2,4} + a4b + a{0,2}ba{0,7,9,11}, w = a4ba7.

Let us prove that we cannot have P ′(A− 1)S + 1 ≥ 0 with P ′ given by one of the
relations above and S = a{0,1,6,7} + aM ba19. Indeed, since 19 �∈ J , (P ′, S) satisfies
condition a) in Proposition 3.1. Let us adopt the same notations used in this
proposition. We must have in each of the three cases above, aM (a−1)aI +aIM ≥ 0,
where IM = I19 = {i ∈ I | 19 ∈ Ti}. Now, in the first case we have L0 =
{0}, T0 = {1, 2, 7, 8} and L2 = L4 = {0, 7, 9, 11}, T2 = T4 = {1, 2, 8, 19} so,
IM = {2, 4}; in the second case we have IM = {0, 4} since T2 = {1, 2, 7, 8} and
T0 = T4 = {1, 2, 8, 19}, in the third case we have IM = {0, 2} since T4 = {1, 2, 7, 8}
and T0 = T2 = {1, 2, 8, 19}. Consequently, in each of the three cases above, IM is
a proper subset of I. This is a contradiction, since we have aM (a − 1)aI + aIM =
a13aI − aI + aIM = a13 + a15 + a17 − a0 − a2 − a4 + aIM ≥ 0 if and only if I ⊆ IM ,
i.e., I = IM . �

Lemma 3.6. Let:

M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
P = a{0,2,4} + a{0,2,4}ba{0,7,9,11},

S = a{0,1,6,7} + aM ba19.

For no word w ∈ a∗ba∗ can we have S = S′ + S′′w with C′ = P (A− 1)S′ + 1 ≥ 0,
C′′ = P (A − 1)S′′ + 1 ≥ 0, w ∈ C′.

Proof. By contradiction, suppose that w ∈ a∗ba∗ exists such that S = S′ + S′′w
with C′ = P (A−1)S′+1 ≥ 0, C′′ = P (A−1)S′′+1 ≥ 0, w ∈ C′. Then, C′ and C′′

are n−codes with n ≤ 3. In addition, since P ⊆ a∗ ∪ a∗ba∗ and P �⊆ a∗, condition
a) or condition a′) in Proposition 3.1 describes (P, S′) and (P, S′′) (see Prop. 3.1
and Rem. 3.1). As in the previous lemma we will see that only three cases can
occur for S′ and S′′ and each of these three cases leads to a contradiction.

Since S ∩ a∗ = S′ ∩ a∗ we must have J ′ = J = {0, 1, 6, 7}. On the other hand,
S = S′ + S′′w, w ∈ a∗ba∗, S ⊆ a∗ ∪ a∗ba∗ imply S′′ = aJ′′

and S′′w ⊆ aM ba19

implies max J ′′ ≤ max M = 12. Furthermore, since ({0, 2, 4}, J ′′) must be a
Krasner pair, we have {0, 1} ⊆ J ′′. In virtue of Proposition 3.1, no S′′ ⊆ a∗ exists
such that P (A−1)S′′+1 ≥ 0, aJ′′

= S′′ = a{0,1}, since, as we have already stated,
a{0,1} + a{0,1}(a− 1)a{0,7,9,11} = a + a2 + a13 − a7. Thus, {0, 1, 6, 7} ⊆ J ′′. So, we
must have J ′′ = {0, 1, 6, 7} = J = J ′ = S′′ since, otherwise {0, 1, 6, 7, 12, 13} ⊆ J ′′,
which is a contradiction with max J ′′ ≤ 12.
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Furthermore, since S′′w = aJ′′
w = a{0,1,6,7}w = a{0,1,6,7}ambaj ⊆ S =

a{0,1,6,7} + aMba19, we must have w = amba19 with m ≤ 5. In addition, we
have S′ = S − S′′w = a{0,1,6,7} + aM ′

ba19 with M ′ = M \ (m + {0, 1, 6, 7}) and
aM ′

(a−1)aI +aI ≥ 0, I = {0, 2, 4} (Prop. 3.1). Looking at the characterization of
the solutions of this equation given in Proposition 3.2, we see that M ′ = M ′

1 ∪M ′
2

with M ′
1 being a (possibly empty) set of consecutive integers and |M ′

2| being an
even number (k = 2). Since |m + {0, 1, 6, 7}| is an even number and |M | is an odd
number, we must have that |M ′| and so |M ′

1| are odd too (and M ′
1 �= ∅). Conse-

quently m ∈ {1, 3, 5} (we have 0 ∈ M ′
1 and m = 2 or m = 4 imply M ′

1 = {0, 1}
or M ′

1 = {0, 1, 2, 3} respectively, which is impossible since |M ′
1| would be an even

number).
If w = aba19, we get S′ = S − S′′w = S − a{0,1,6,7}aba19 = S − a{1,2,7,8}ba19.

Using an analogous argument when w ∈ a{3,5}ba19, we can conclude that, with
S′′ = a{0,1,6,7} and w ∈ a{1,3,5}ba19, one of the following three cases holds:

w = aba19, S′ = a{0,1,6,7} + a{0,3,4,5,6,9,10,11,12}ba19 = a{0,1,6,7} + aM ′
ba19;

w = a5ba19, S′ = a{0,1,6,7} + a{0,1,2,3,4,7,8,9,10}ba19 = a{0,1,6,7} + aM ′
ba19;

w = a3ba19, S′ = a{0,1,6,7} + a{0,1,2,5,6,7,8,11,12}ba19 = a{0,1,6,7} + aM ′
ba19.

Let us prove that we cannot have P (A − 1)S′ + 1 ≥ 0 with P = a{0,2,4} +
a{0,2,4}ba{0,7,9,11} and S′ given by one of the relations above. Indeed, since
19 �∈ J = J ′, (P, S′) satisfies condition a) in Proposition 3.1. Hence, thanks to
the fourth requirement in this condition and since, as already observed, 19 �∈ J ′,
in each of the three cases above, we must have a{0,7,9,11}(a − 1)aM ′

+ aM ′ ≥ 0.
On the other hand an easy computation shows that this condition is not satisfied,
since we have

(
a{0,7,9,11} (a − 1) a{0,3,4,5,6,9,10,11,12} + a{0,3,4,5,6,9,10,11,12}, a9

)
= −1,

(
a{0,7,9,11} (a − 1)a{0,1,2,3,4,7,8,9,10} + a{0,1,2,3,4,7,8,9,10}, a7

)
= −1,

(
a{0,7,9,11} (a − 1) a{0,1,2,5,6,7,8,11,12} + a{0,1,2,5,6,7,8,11,12}, a11

)
= −1.

�

Proposition 3.6. The relation:

C = (a{0,2,4} + a{0,2,4}ba{0,7,9,11})(a + b − 1)(a{0,1,6,7}

+ a{0,1,2,3,4,5,6,7,8,9,10,11,12}ba19) + 1

defines a 3−code C which cannot be obtained by substitution (with other codes).

Proof. By Lemmata 3.2, 3.3, C is a 3−code which has only one factorization, namely
P = a{0,2,4} + a{0,2,4}ba{0,7,9,11}, S = a{0,1,6,7} + a{0,1,2,3,4,5,6,7,8,9,10,11,12} ba19.
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Looking at Lemma 3.1, if C could be obtained by substitution then there should
exist w ∈ a∗ ∪ a∗ba∗ such that P = P ′ + wP ′′ with C′ = P ′(A − 1)S + 1 ≥ 0,
C′′ = P ′′(A−1)S +1 ≥ 0, w ∈ C′ or S = S′ +S′′w with C′ = P (A−1)S′ +1 ≥ 0,
C′′ = P (A − 1)S′′ + 1 ≥ 0, w ∈ C′. By using Lemmata 3.4, 3.5 and 3.6, neither
the first case nor the second case can occur. �

4. Final comments

As stated explicitly in [17,18], it is clear that we obtain a recursive construction
of the factorizing codes if we show the existence of an algorithm Pa which allows
us to construct each factorizing code C with an ∈ C starting with factorizing
codes C′ with an′ ∈ C′ and n′ < n. On the other hand, under the hypotheses of
Proposition 2.2, C is obtained by substitution of codes C(k) with ah ∈ C(k) and
h < n (Rem. 2.2). As a consequence, in order to state the existence of Pa what is
missing is a transformation MOD which allows us to go from a factorizing code C
with an ∈ C to a (factorizing) code, say C(mod n), which should satisfy the above-
mentioned hypotheses in Proposition 2.2. We already know that this objective
cannot be reached by using the composition operation only and in Section 3.2
we saw that it cannot be reached by substitution either. So, a new operation,
say MOD, should be defined so that each factorizing code can be obtained by
using composition, substitution and the MOD operation, starting with simpler
factorizing codes. More generally (and in a more precise way), a natural question
which arises is the investigation of the existence of a finite set O of operations
(complete set of operations) such that each factorizing code can be obtained by
using operations in O and starting with prefix or suffix codes. We do not know
whether O exists and we will outline how difficult it is to answer this question.
We will also point out that finding a procedure that allows us to construct each
m−code starting with m′−codes, with m′ < m is not easier.

Let us restrict ourselves to 3−codes. Let C be such a code and let (P, S) be
a factorizing pair for C. It is already known that if (P, S) satisfies condition b)
or b′) in Proposition 3.1 then C can be obtained by substitution and starting
with prefix/suffix codes [17, 18]. Then, we will always suppose that for (P, S) we
have P = aI +

∑
i∈I aibaLi , S = aJ +

∑
j∈J′ aMj baj , with I, J , J ′, Li, Mj ⊆ N

satisfying condition a) in Proposition 3.1 (the other case, i.e., when (P, S) satisfies
condition a′) is analogous).

A first natural attempt to define MOD is by looking for a transformation which
allows us to go from a factorizing code C with an ∈ C to a (factorizing) code, say
C(mod n) such that C1 = C ∩ a∗ is transformed in C(mod n) ∩ a∗ = C

(mod n)
1 =

{ai′baj′ | i′ < n, j′ < n, ∃aibaj ∈ C1, i′ = i (mod n), j′ = j (mod n)}. When n is
a prime number, this attempt already fails for 3−codes C. Indeed, let us consider
the code:

C =
(
a{0,1,2,3,4} + a{0,1,2,3,4}ba{0,1}

)
(A − 1)

(
1 + a{0,1,2,3,4}ba2

)
+ 1.
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Then, it is easy to see that a factorizing code C(mod 5) such that C(mod 5) ∩ a∗ =
C

(mod 5)
1 = {ai′baj′ | i′ < 5, j′ < 5, ∃aibaj ∈ C1, i′ = i (mod 5), j′ = j (mod 5)}

must be a 2−code.
However, suppose that we eliminate the particular case of prime numbers. We

could go from C1 = C ∩ a∗ to C
(mod n)
1 by using Lemma 2.1. Indeed, looking at

Proposition 3.1, we could consider the relation C(mod n) =P(mod n)(A−1)S(mod n)+
1, where P(mod n) =aI +

∑
i∈I aibaL′

i , S(mod n) =aJ +
∑

j∈J′
(n)

aM ′
j baj(n) , M ′

j (resp.

L′
i) is the subset of Mj (resp. Li) defined by Lemma 2.1 and, for each j ∈ J ′,

j(n) ∈ J ′
(n) is such that j(n) = j(mod n). We will illustrate this construction in Ex-

ample 4.1. Unfortunately this transformation yields a 3−code only in some special
cases, since as Remark 4.1 shows, C(mod n) is a polynomial with not necessarily
positive coefficients.

Example 4.1. Let C be the 3−code considered in Section 3.2 and reported below:

C =
(
a{0,2,4} + a{0,2,4}ba{0,7,9,11}

)
(a + b − 1)

(
a{0,1,6,7}

+a{0,1,2,3,4,5,6,7,8,9,10,11,12}ba19
)

+ 1.

It is easy to see that we have C(mod n) = C′, where C′ is the factorizing code
considered in Remark 3.4 and reported below:

C′ = (a{0,2,4} + a{0,2,4}b)(a + b − 1)(a{0,1,6,7} + ba7) + 1.

Indeed, by using the same notations as in Lemma 2.1, for L0 = L2 = L4 =
{0, 7, 9, 11} we have L′

0 = L′
2 = L′

4 = {0}. Analogously, for M19 = M =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} we get M ′

19 = {0}.
Remark 4.1. Note that 3−codes C exist with a factorizing pair (P, S) such
that we have P = aI +

∑
i∈I aibaLi, S = aJ +

∑
j∈J′ aMj baj , where I, J , J ′,

Li, Mj ⊆ N satisfy condition a) in Proposition 3.1 and with aM ′
j (a − 1)aL′

i +
aM ′

j < 0 for j ∈ J ′ \ J , i ∈ I. In this case, the result C(mod n) of the op-
eration defined above and applied to C, is a polynomial with negative coeffi-
cients. For instance, it is easy to see that the relation D = (a{0,2,4,12,14,16} +
a{0,2,4,12,14,16}ba{1,3,5,7,9,11,13,15,17,19})(A − 1)(a{0,1,6,7} + a{2,3}ba21) + 1 defines a
3−code. Set M ={1, 3, 5, 7, 9, 11, 13, 15, 17, 19}. Since aM =aM ′

+a3a{0,2,4,12,14,16},
where M ′ = {1, 9, 11, 13}, the result D(mod n) of the above-mentioned operation
applied to D is the polynomial defined by the relation D(mod n) = (a{0,2,4,12,14,16}+
a{0,2,4,12,14,16}ba{1,9,11,13})(A − 1)(a{0,1,6,7} + a{2,3}ba21) + 1. Note that the sets
{1, 9, 11, 13}, {2, 3} belong to a family of pairs (L, M) constructed in [27] and
quoted in Remark 3.2. As a consequence, D(mod n) is a polynomial with negative
coefficients.

The search for a complete set of operations for factorizing codes can be carried
out starting from a symmetric viewpoint to the one presented above. Namely, we
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can try to find a procedure that allows us to construct each m−code C starting with
m′−codes, with m′ < m. An algorithm doing so exists when C has a factorizing
pair (P, S) with P ⊆ a∗ or S ⊆ a∗ [14]. On the other hand, the argument below
should give evidence that in the general case this is not an easy task either.

Let C be a 4-code, let (P, S) be a factorizing pair for C with P �⊆ a∗, S �⊆ a∗.
Under particular additional hypotheses on (P, S), we can prove that (P ′, S) is a
factorizing pair for a 3−code, where P ′ = P0 + P1 = P ∩ (a∗ ∪ a∗ba∗). However,
this method does not costruct all 4−codes. Examples 4.2 and 4.3 illustrate the
first and the second case respectively.

Example 4.2. Let us consider the polynomials:

P = a{0,2,4,12,14,16} + a{0,2,4,12,14,16}ba{1,3,5,7,9,11,13,15,17,19}

+ a{0,2,4,12,14,16}ba{1,3,5,7,9,11,13,15,17,19}ba{1,3,5,7,9,11,13,15,17,19},

S = a{0,1,6,7} + a{2,3}ba21.

An easy computation shows that the relation C = P (A − 1)S + 1 defines a
4−code. In addition, the pair (P ′, S), with P ′ = P ∩ (a∗ ∪ a∗ba∗) defines a
3−code (Rem. 4.1).

Example 4.3. Let us consider the polynomials:

P = a{0,2,4,12,14,16} + a{0,2,4,12,14,16}ba{1,9,11,13}

+ a{0,2,4,12,14,16}ba{1,9,11,13}ba{1,3,5,7,9,11,13,15,17,19},

S = a{0,1,6,7} + a{2,3}ba21.

An easy computation shows that the relation C = P (A−1)S+1 defines a 4−code.
However, the pair (P ′, S), with P ′ = a{0,2,4,12,14,16} + a{0,2,4,12,14,16}ba{1,9,11,13}

does not define a 3−code (Rem. 4.1).
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221–225.
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Théorie de l’Information, Colloques Internat. CNRS, Cachan 276 (1977) 249–260.

[33] A. Restivo, On codes having no finite completions. Discrete Math. 17 (1977) 309–316.
[34] A. Restivo, Codes and local constraints. Theor. Comput. Sci. 72 (1990) 55–64.



52 C. DE FELICE

[35] A. Restivo, S. Salemi and T. Sportelli, Completing codes. RAIRO-Inf. Theor. Appl. 23
(1989) 135–147.

[36] A. Restivo and P.V. Silva, On the lattice of prefix codes. Theor. Comput. Sci. 289 (2002)
755–782.

[37] C. Reutenauer, Sulla fattorizzazione dei codici. Ricerche di Mat. XXXII (1983) 115–130.
[38] C. Reutenauer, Non commutative factorization of variable-length codes. J. Pure Appl.

Algebra 36 (1985) 167–186.
[39] A.D. Sands, On the factorisation of finite abelian groups. Acta Math. Acad. Sci. Hungaricae

8 (1957) 65–86.
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