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Abstract. We study the complexity of the infinite word uβ associated
with the Rényi expansion of 1 in an irrational base β > 1. When β is the
golden ratio, this is the well known Fibonacci word, which is Sturmian,
and of complexity C(n) = n + 1. For β such that dβ(1) = t1t2 · · · tm is
finite we provide a simple description of the structure of special factors
of the word uβ. When tm = 1 we show that C(n) = (m − 1)n + 1.
In the cases when t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1} we
show that the first difference of the complexity function C(n+1)−C(n)
takes value in {m − 1, m} for every n, and consequently we determine
the complexity of uβ . We show that uβ is an Arnoux-Rauzy sequence
if and only if dβ(1) = t t · · · t 1. On the example of β = 1+2 cos(2π/7),
solution of X3 = 2X2+X−1, we illustrate that the structure of special
factors is more complicated for dβ(1) infinite eventually periodic. The
complexity for this word is equal to 2n + 1.
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1. Introduction

In order to give a measure on the structure of an infinite sequence v = (vn)n≥0

on a finite alphabet A, it is often useful to use the complexity function of v, which
is defined as follows: C(n) is the number of factors of length n appearing in v.
It is not difficult to show that an infinite word v is eventually periodic if and
only if there exists some n ∈ N such that C(n) ≤ n. Thus the simplest aperiodic
words have complexity C(n) = n + 1 for all n ∈ N. Such words are binary (as
C(1) = 2) and are called Sturmian words. The Fibonacci word is well known to
be Sturmian, see for instance [10] Chapter 2. In the survey [1] there are many
examples of sequences the complexity of which is known.

To study the complexity function, it is useful to know how to find all factors of
length n+ 1 starting with the factors of length n. Special role is played by those
factors that have more than one extension, the so-called special factors [6]. If we
describe the occurrences of special factors and determine the number of possible
extensions for each of them, we can determine the complexity. For example, Stur-
mian words have for every n exactly one right and one left special factor of length
n with two extensions, which implies C(n + 1) − C(n) = 1, thus C(n) = n + 1.
As a generalisation of Sturmian words one defines infinite words with complexity
(m−1)n+1, which have exactly one right and one left special factor of each length
with m extensions, the so-called Arnoux-Rauzy sequences of order m, see [2,3,7].

It turns out that for the description of special factors it is useful to distinguish
two types, according to whether they can be extended to an arbitrarily long special
factor, or not. The study of the complexity function is facilitated by the notions
of infinite and maximal special factors, and total bispecial factors (Defs. 3.5, 4.1
and 5.1). A very useful tool for creating and verifying hypotheses about the
complexity and other combinatorial properties of substitution invariant sequences
is the computer program available online at [12].

In this paper we consider infinite words uβ that are fixed points of substitutions
canonically associated with the Rényi expansion of 1 in base β, where β > 1 is
a Parry number, that is to say a number such that the Rényi expansion of 1 is
eventually periodic or finite. This substitution generates a tiling of the nonnegative
real line with a finite number of tiles [8, 15]. The vertices are labelled by the
set of nonnegative β-integers, which are real numbers having a polynomial beta-
expansion. The most simple example of a Parry number is a quadratic Pisot unit
(that is to say, β is the root > 1 of the polynomial X2 − aX − 1, with a ≥ 1, or
X2 − aX + 1, with a ≥ 3). The infinite word associated with such a number β is
Sturmian [9].

In our paper we provide results for infinite words associated with simple Parry
numbers, i.e., those for which the Rényi expansion of 1 is finite, dβ(1) = t1 · · · tm,
see Section 2 for precise definitions. We completely describe the structure of special
factors of uβ. When tm = 1, we show that C(n) = (m−1)n+1. In the cases when
t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1} we show that the first difference
of the complexity function C(n+ 1)− C(n) takes value in {m− 1,m} for every n,



COMPLEXITY OF BETA-EXPANSIONS 165

and consequently we determine the complexity of uβ. This computation uses the
linear recurrent sequence G canonically associated with β, see [5].

As a consequence of our result, every word associated with a number β such
that dβ(1) = t1 · · · tm−11 has complexity (m − 1)n + 1. We show that such uβ
is a characteristic Arnoux-Rauzy sequence (of order m) if and only if t1 = t2 =
· · · = tm−1 (Th. 7.2). Note that if m = 3 and t1 = t2 = 1, then β is the so-called
Tribonacci number, and the associated sequence has been particularly studied
from the point of view of coding of a rotation on the two-dimensional torus [2].
As a byproduct, we give the necessary and sufficient condition on a simple Parry
number β, so that the set of factors of uβ is closed under reversal.

In Section 8 we consider an example of a number β for which dβ(1) is eventually
periodic, namely the cubic Pisot unit β = 1 + 2 cos(2π/7), solution of X3 =
2X2 + X − 1. This number is well known in mathematical quasicrystal theory,
because its associated cyclotomic ring presents a seven-fold symmetry [9]. We show
that the complexity for this word is equal to 2n+1, but it is not an Arnoux-Rauzy
sequence. This example illustrates the fact that the structure of special factors is
more complicated for numbers with infinite eventually periodic dβ(1).

2. Definitions

In the following N will denote the set of nonnegative integers, and N+ the set
of positive integers.

Words and substitutions

Let A be a finite alphabet. A concatenation of letters of A is called a word. The
set A∗ of all finite words (including the empty word ε) equipped with the operation
of concatenation is a free monoid. The length of a word w = w0w1 · · ·wn−1 is
denoted by |w| = n. One considers also infinite words v = v0v1v2 · · · , the set of
infinite words on A is denoted by AN. A word w is called a factor of v ∈ A∗,
resp. AN, if there exist words w(1) in A∗, w(2) in A∗, resp. in AN, such that
v = w(1)ww(2). The word w is called a prefix of v if w(1) = ε. It is a suffix of v if
w(2) = ε. We denote by ak the word obtained by concatenating k letters a, with
the convention that if k = 0, ak = ε. An infinite word v is said to be eventually
periodic if it is of the form v = wzω, where w and z are in A∗ and zω = zzz · · ·

A factor w of v is called a left special factor of v if there exist distinct letters a
and b of A such that aw and bw are factors of v. We say that a and b are possible
left extensions of w. Similarly, w is a right special factor of v, if wa and wb are
factors of v. A word w is a bispecial factor of v if it is in the same time right
special and left special. We say that a factor w of v has a unique left, resp. right,
extension if there exists a unique letter a ∈ A such that aw, resp. wa, is a factor
of v.
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The complexity of an infinite word v is the function C : N → N given by

C(n) := #{vivi+1 · · · vi+n−1 | i ∈ N}·

It is not difficult to show that an infinite word v is eventually periodic if and only
if there exists some n ∈ N such that C(n) ≤ n. Thus the simplest aperiodic words
have complexity C(n) = n+ 1 for all n ∈ N. Such words are binary (as C(1) = 2)
and are called Sturmian words.

An infinite word v over a m letter alphabet is said to be an Arnoux-Rauzy
sequence of order m if there is exactly one right special and one left special factor
of each length and if moreover these factors have m right, resp. left, extensions.
Its complexity is equal to (m− 1)n+ 1.

In order to determine the complexity of an infinite word, we will use the follow-
ing proposition.

Proposition 2.1. Let v be in AN. For every left special factor w of v we denote
by µ(w) the number of possible left extensions, and denote by Mn the set of all left
special factors of v of length n. Then

C(n+ 1) − C(n) =
∑
w∈Mn

(
µ(w) − 1

)
.

A morphism of the free monoid A∗ is a map ϕ : A∗ → A∗ satisfying ϕ(wz) =
ϕ(w)ϕ(z) for all w and z in A∗. Clearly, the morphism ϕ is determined by ϕ(a)
for all a in A.

A morphism ϕ is called a substitution1 if ϕ(a) �= ε for all a in A and if there
exists at least one letter a in A such that |ϕ(a)| > 1. An infinite word v is said to
be a fixed point of the substitution ϕ, or invariant under the substitution ϕ, if

ϕ(v0)ϕ(v1)ϕ(v2) · · · = v0v1v2 · · · (1)

or ϕ(v) = v, after having naturally extended the action of ϕ to infinite words.
Relation (1) implies that ϕ(v0) is of the form ϕ(v0) = v0v

′ and ϕn(v) = v for
every n ∈ N. The length of the word ϕn(v0) grows to infinity with n, therefore for
every n ∈ N the word ϕn(v0) is a prefix of the fixed point v, formally

v = lim
n→∞ϕn(v0).

Beta-expansions

Let β > 1 be a real number. The Rényi expansion in base β (also called the
β-expansion) of a number x of the interval [0, 1] is obtained by the following greedy
algorithm [13]:
denote by �.� and by {.} the integral part and the fractional part of a number.

1Note that there are other definitions of substitution in the literature.
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Let x1 = �βx� and r1 = {βx}. Then for i ≥ 2, let xi = �βri−1� and ri = {βri−1}.
Then x =

∑
i≥1 xiβ

−i.
The digits xi are nonnegative integers less than β, so they are elements of the

canonical alphabet Bβ = {0, . . . , �β�} if β /∈ N, which will be the case here. The
β-expansion of x is denoted by dβ(x) = (xi)i≥1, which is an infinite word on the
alphabet Bβ. When dβ(x) ends with infinitely many zeroes, it is said to be finite,
and the 0’s are omitted.

Every number β > 1 is characterized by its Rényi expansion of 1, which we
denote in this paper by dβ(1) = (ti)i≥1. Note that t1 = �β�. Not every sequence
of nonnegative integers is equal to dβ(1) for some β. Parry in his paper [11] gives
a necessary and sufficient condition: the sequence (ti)i≥1, ti ∈ N, is the Rényi
expansion of 1 for some number β if and only if the sequence satisfies

tjtj+1tj+2 · · · ≺ t1t2t3 · · · for every j > 1,

where 	 is the lexicographical ordering.
A number β such that dβ(1) is eventually periodic is called by Parry [11] a

beta-number, we propose to call it a Parry number. When dβ(1) is finite, β is said
to be a simple Parry number. A strict subclass of Parry numbers is formed by
Pisot numbers [4,14]. Recall that a Pisot number is an algebraic integer such that
all the other roots of its minimal polynomial have modulus less than 1.

Substitution, infinite word and numeration system associated with a Parry number

Let β be a Parry number. One associates with β in a canonical way a substi-
tution [8] and a linear numeration system [5]. There are two cases to consider.

Definition 2.2. Let β be a simple Parry number, i.e. dβ(1) = t1t2 · · · tm, for
m ∈ N+. The substitution ϕ = ϕβ associated with β is defined on the alphabet
{0, 1, . . . ,m− 1} by

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m− 2) = 0tm−1(m− 1)
ϕ(m− 1) = 0tm .

(2)

The infinite word uβ associated with β is the fixed point uβ = limn→∞ ϕn(0) of ϕ.

The characteristic polynomial of β is P (X) = Xm − t1X
m−1 − · · · − tm. One

associates with P a linear recurrent sequence of integers G = (Gn)n≥1, defined by

G0 = 1, Gi = t1Gi−1 + · · · + tiG0 + 1, 1 ≤ i ≤ m− 1,

Gn+m= t1Gn+m−1 + · · · + tmGn, n ≥ 0.

It is known that the set of β-expansions of numbers of [0, 1) and the G-numeration
system for the integers define the same symbolic dynamical system [5], see also [9],
and [10], Chapter 7 for a survey on numeration systems.
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Note that coding given by substitution ϕ = ϕβ described in Definition 2.2 is
uniquely decodable. Indeed, ϕ({0, . . . ,m− 1}) is a suffix code.

Definition 2.3. Let dβ(1) be infinite eventually periodic, in particular letm ∈ N+,
p ∈ N+ be minimal such that dβ(1) = t1t2 · · · tm(tm+1 · · · tm+p)ω. The substitution
ϕ = ϕβ associated with β is defined on the alphabet {0, 1, . . . ,m+ p− 1} by

ϕ(0) = 0t11
ϕ(1) = 0t22

...
ϕ(m+ p− 2) = 0tm+p−1(m+ p− 1)
ϕ(m+ p− 1) = 0tm+pm.

(3)

The infinite word uβ associated with β is the fixed point uβ = limn→∞ ϕn(0) of ϕ.

Now P (X) = Xm+p− t1X
m+p−1 − · · ·− tm+p−Xm+ t1X

m−1 + · · ·+ tm is the
characteristic polynomial of β. One associates with P a linear recurrent sequence
of integers G = (Gn)n≥1, defined by

G0 = 1, Gi = t1Gi−1 + · · · + tiG0 + 1, 1 ≤ i ≤ m+ p− 1,

Gn+m+p = t1Gn+m+p−1 + · · · + tm+pGn +Gn+m − t1Gn+m−1 − · · · − tmGn.

As in the finite case, the set of β-expansions of numbers of [0, 1) and the G-
numeration system for the integers define the same symbolic dynamical system.
Also, similarly as in the case of a simple Parry number, ϕ({0, . . . ,m+ p − 1}) is
a suffix code and thus coding given by substitution ϕ of Definition 2.3 is uniquely
decodable.

Example: the golden ratio

Take β = 1+
√

5
2 . Then dβ(1) = 11. The substitution ϕ associated with 1+

√
5

2 is
the Fibonacci substitution defined by

0 
→ 01 , 1 
→ 0.

The infinite word uβ is the Fibonacci word

uβ = 0100101001 · · ·

and the associated numeration system is the Fibonacci numeration system de-
fined by

Fn+2 = Fn+1 + Fn

F0 = 1, F1 = 2.
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3. Infinite left special factors

In the next sections we consider a simple Parry number with dβ(1) = t1 · · · tm.
We first state some properties of the infinite word uβ that follow from the form of
the substitution (2). Using this, we study the structure of left special factors of
uβ, see [6] for more details on this subject.

Lemma 3.1. The word ϕn(0) ends with the letter n (mod m) for every n ∈ N.

Proof. Follows directly from the definition of the substitution ϕ. �

Lemma 3.2.
(i) For every n < m, we have

ϕn(0) =
(
ϕn−1(0)

)t1 (
ϕn−2(0)

)t2 · · · (ϕ1(0)
)tn−1 0tnn. (4)

(ii) For every n ≥ m, we have

ϕn(0) =
(
ϕn−1(0)

)t1 (
ϕn−2(0)

)t2 · · · (ϕn−m(0)
)tm

. (5)

Proof. Using the definition of ϕ and the fact that ϕn+1(0) = ϕ(ϕn(0)), the equa-
tion (4) follows. Equation (5) can be derived easily by induction on n. �

Corollary 3.3. For every n ∈ N, the word ϕn(0) is a left special factor of uβ with
m distinct left extensions.

Proof. The statement follows using (5) and Lemma 3.1. �

Corollary 3.4. The length of the word ϕn(0) is |ϕn(0)| = Gn, n ∈ N.

Proof. According to (5), |ϕn(0)| and the sequence (Gn)n≥0 satisfy the same recur-
rence relation with the same initial values. �

Definition 3.5. An infinite word v = v0v1v2 · · · on the alphabet A is called an
infinite left special factor of u, if for every n ∈ N, the prefix v0 · · · vn is a left special
factor of u.

Remark 3.6. Corollary 3.3 implies that uβ is an infinite left special factor of
itself.

Lemma 3.7.
(i) The image under ϕ of a left special factor with p left extensions is again

a left special factor with p left extensions.
(ii) A left special factor with q left extensions ending in a letter X �= 0 is the

image of a uniquely determined left special factor with q left extensions.

Proof.
(i) Let v be a left special factor of uβ with p left extensions, and let Y1, Y2,

. . . , Yp be pairwise distinct letters of the alphabet {0, 1, . . . ,m− 1} such that the
word uβ contains factors Y1v, Y2v, . . . , Ypv. Then ϕ(Y1)ϕ(v), . . . , ϕ(Yp)ϕ(v) are
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factors of uβ . Since under the substitution ϕ the images of distinct letters end
with distinct letters, the word ϕ(v) is a left special factor of uβ with p̃ extensions,
where p̃ ≥ p. Equality p̃ = p follows from the second statement.

(ii) Let v = v0v1 · · · vkX , X �= 0 be a left special factor of uβ with q left exten-
sions, and let X1v, X2v, . . . , Xqv be factors of uβ for pairwise distinct letters X1,
X2, . . . , Xq. Find n ∈ N such that all the above factors appear in the word ϕn(0).
Therefore we can find factors f1, f2, . . . , fq in the word ϕn−1(0) such that Xiv is
a factor of ϕ(fi). We choose the factors fi of ϕn−1(0) so that they have minimal
length. At least one of the letter Xi, say X1, is distinct from 0. Since ϕ(f1) con-
tains X1v0v1 · · · vkX , using the minimality of f1 and the form of the substitution
ϕ, it follows that f1 = Y1w0w1 · · ·wi where ϕ(w0w1 · · ·wi) = v0v1 · · · vkX . Hence
also f2, . . . , fq, have the form Y2w0w1 · · ·wi, . . . , Yqw0w1 · · ·wi, where Y1, Y2, . . . ,
Yq are pairwise distinct letters. This means that the preimage w0w1 · · ·wi of the
word v0v1 · · · vkX is a left special factor of uβ with q̃ left extensions where q̃ ≥ q.
Combining the proofs of (i) and (ii) we obtain p̃ = p and q̃ = q. �

Proposition 3.8. Let v = v0v1v2 · · · be an infinite left special factor of uβ. Then
there exists an infinite left special factor w of uβ satisfying ϕ(w) = v.

Proof. The form of the substitution ϕ ensures that v contains infinitely many
letters different from 0. According to Lemma 3.7 every finite prefix v0v1 · · · vkX
of v, X �= 0, is the image of a uniquely determined left special factor w0w1 · · ·w�
of uβ. This proves the proposition. �

Theorem 3.9. The infinite word uβ has a unique infinite left special factor,
namely uβ itself, each prefix of which is a left special factor with m left exten-
sions.

Proof. Assume that there are at least two distinct infinite left special factors of
uβ. Among all the pairs of infinite left special factors of uβ we choose v(1), v(2)

such that d(v(1), v(2)) := min{k | v(1)
k �= v

(2)
k } is minimal. According to the

above proposition, there exist infinite left special factors w(1), w(2) of uβ satisfying
ϕ(w(1)) = v(1) and ϕ(w(2)) = v(2). But necessarily d(w(1), w(2)) < d(v(1), v(2))
which contradicts the minimality of d(v(1), v(2)). Moreover, Corollary 3.3 implies
that every prefix of uβ is a left special factor with m left extensions. �

4. Maximal left special factors

The aim of this section is to study those left special factors that are not prefixes
of any infinite left special factor.

Definition 4.1. A left special factor v = v0v1 · · · vk of the infinite word uβ is
called a maximal left special factor of uβ if v0v1 · · · vkX is not a left special factor
of uβ for any X ∈ {0, 1, . . . ,m− 1}.
Observation 4.2. A left special factor of uβ which has a uniquely determined
right extension is not a maximal left special factor.
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The following notation will be used in the sequel.

Definition 4.3. Let dβ(1) = t1t2 · · · tm. We denote

jk := min{i ∈ N+ | i ≤ k − 1, tk−i �= 0} , for 2 ≤ k ≤ m.

Such a jk exists because t1 > 0.

Lemma 4.4.
(i) If ϕn(0) ends with the letter k ≥ 2, then it has the suffix jk0tkk.
(ii) If ϕn(0) ends with the letter 0, then it has the suffix jm0tm .

Proof.
(i) If ϕn(0) ends with the letter k ≥ 2, then Lemma 3.1 implies that ϕn−jk−1(0)

ends with the letter k − jk − 1 and ϕn−jk(0) = ϕ(ϕn−jk−1(0)) ends with
0tk−jk (k − jk), where tk−jk �= 0. From the definition of jk, the following
tk−jk+1, . . . , tk−1 are equal to 0. Therefore
ϕn−jk+1(0) ends with 1(k − jk + 1),
ϕn−jk+2(0) ends with 2(k − jk + 2),
. . .
ϕn−1(0) ends with (jk − 1)(k − 1),
ϕn(0) ends with jk0tkk.

(ii) The proof for ϕn(0) ending with 0 is similar. Lemma 3.1 implies that
ϕn−jm−1(0) ends with the letterm−jm−1 and ϕn−jm(0) = ϕ(ϕn−jm−1(0))
ends with 0tm−jm (m−jm), where tm−jm �= 0. The following tm−jm+1, . . . ,
tm−1 are equal to 0. Therefore
ϕn−jm+1(0) ends with 1(m− jm + 1),
ϕn−jm+2(0) ends with 2(m− jm + 2),
. . .
ϕn−1(0) ends with (jm − 1)(m− 1),
ϕn(0) ends with jm0tm . �

Lemma 4.5. All factors of uβ of the form X0rY , where X and Y are letters �= 0,
and r ∈ N, are the following

jk0tkk, for k = 2, 3, . . . ,m− 1,

k 0t11, for k = 1, 2, . . . ,m− 1,

jm0t1+tm1.

Proof. It is necessary to show that the factors of the form X0rY , where X,Y �= 0
and r ∈ N, contained in the word ϕn(0) are of the form given above. For n < m
it can be verified directly from (4). For n ≥ m, the statement can be proven by
induction on n using (5) and Lemma 4.4. �
Corollary 4.6. Let v be a left special factor of uβ of the form v = ṽ0s, ṽ not
ending with a 0. If s /∈ {t1, . . . , tm−1}, then v has a unique right extension.



172 C. FROUGNY, Z. MASÁKOVÁ AND E. PELANTOVÁ

Lemma 4.7.
(i) The word 0r, for 1 ≤ r ≤ t1, is a left special factor of uβ with m left

extensions.
(ii) The word 0r, for t1 < r ≤ t1 + tm − 1, is a left special factor of uβ with 2

left extensions, namely 0 and jm.
(iii) The word 0t1+tm−1 is a maximal left special factor of uβ if tm ≥ 2.
(iv) If tm = 1 then uβ does not have a maximal left special factor of the form

0r, r ∈ N+.

Proof. Note that, as a consequence of Parry’s relations, t1 ≥ tk for 2 ≤ k ≤ m.
The statement (i) follows from the fact that 0r, r ≤ t1 is a prefix of uβ, i.e., the
infinite left special factor with m left extensions. The statements (ii)–(iv) follow
from Lemma 4.5. �

Lemma 4.8. Every left special factor of uβ, which is not a prefix of uβ, has two
left extensions.

Proof. The proof follows from Lemmas 3.7 and 4.7. �
From now on we shall not study the number of possible left extensions of maxi-

mal left special factors.

Lemma 4.9. Let v be a factor of uβ with the suffix (m− 1)Y . Then Y = 0.

Proof. If Y �= 0, then (m − 1)Y is a factor of uβ of the form X0rY , where X =
m − 1 and r = 0. Since t1 > 0 and r = 0, Lemma 4.5 implies that X = jk for
2 ≤ k ≤ m − 1. However, by definition jk satisfies jk ≤ k − 1 ≤ m − 2. This
contradiction completes the proof. �
Proposition 4.10. For every maximal left special factor v = v0v1 · · · vk con-
taining a letter vj �= 0 there exists a maximal left special factor w and an s ∈
{t1, t2, . . . , tm−1} such that v = ϕ(w)0s.

Proof. Let j = max{i | vi �= 0}. According to Lemma 3.7 there exists a left special
factor w = w0w1 · · ·w� such that v0v1 · · · vj = ϕ(w0)ϕ(w1) · · ·ϕ(w�) and thus

v = v0v1 · · · vj0s = ϕ(w0)ϕ(w1) · · ·ϕ(w�)0s , where s = k − j .

Since v is maximal, we can use Observation 4.2 and Corollary 4.6 to derive that
s ∈ {t1, t2, . . . , tm−1}.

It remains to show that w is a maximal left special factor of uβ . Assume that
w is not maximal, then according to Lemma 4.9 there exists a left special factor
wX , where X �= m − 1 or a left special factor w(m − 1)0. However, then (ii) of
Lemma 3.7 implies that ϕ(wX), resp. ϕ(w(m − 1)0), is also a left special factor.
Note that v is a proper prefix of both of them, which is a contradiction with the
maximality of v. �

Corollary 4.11. If tm = 1 then uβ does not have any maximal left special factor.

Proof. This follows by combination of Proposition 4.10 and (iv) of Lemma 4.7. �
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Proposition 4.10 and (iii) of Lemma 4.7 allow us to define the following sequence
of factors of the infinite word uβ.

Theorem 4.12. If tm > 1, for any n ≥ 1 there exists an integer sequence (sn)n≥2

such that
U (1) = 0t1+tm−1

U (n) = ϕ(U (n−1))0sn for n ∈ N, n ≥ 2,

are maximal left special factors of uβ. Conversely, for every maximal left special
factor v of uβ there exists n ∈ N+ such that v = U (n).

To describe explicitly the sequence
(
U (n)

)
n≥1

means to describe explicitly
the sequence (sn)∞n=2. This depends on the form of the Rényi expansion of 1,
dβ(1) = t1t2 · · · tm. Determination of sn in general seems to be complicated. We
provide the description for two classes of numbers β in the following remark and
in Proposition 4.14.

Remark 4.13. If t1 = t2 = · · · = tm−1 =: t, then (sn)∞n=2 is the constant sequence
sn = t, n ≥ 2. Note that such a β is a Pisot number.

The greedy algorithm implies t1 ≥ max{t2, t3, . . . , tn}. In case the inequality is
strict, the sequence (sn)∞n=1 and thus also

(
U (n)

)∞
n=1

is determined by the following
proposition.

Proposition 4.14. Let t1 > max{t2, . . . , tm−1}. Then for every n ≥ 2 we have

U (n) = ϕ(U (n−1))0ti , where i ∈ {1, 2, . . . ,m− 1}, i = n (mod (m− 1)) . (6)

Proof. We show by induction on n a stronger statement: for every n ∈ N+, U (n)

has the form (6) and the right extensions of U (n) in uβ are 0 or i, more precisely,
if U (n)X is a factor of uβ , then X ∈ {0, i}.

For n = 1 we have U (1) = 0t1+tm−1 and by Lemma 4.5 only U (1)0 and U (1)1
are factors of uβ of length |U (1)| + 1 with prefix U (1). Assume that U (n) =
ϕ(U (n−1))0ti , for i ∈ {1, 2, . . . ,m − 1}, i = n (mod (m − 1)), and that U (n)0,
U (n)i are the only factors of uβ of length |U (n)| + 1 with the prefix U (n). Let us
distinguish two cases:

(a) suppose that i < m − 1. Then ϕ(U (n))0t11 and ϕ(U (n))0ti+1(i + 1) are
factors of uβ . Therefore U (n+1) = ϕ(U (n))0ti+1 , where i ∈ {1, 2, . . . ,m − 1} and
i+1 = n+1 (mod (m− 1)). Moreover, the possible right extensions of U (n+1) are
0 and (i+ 1);

(b) suppose now i = m − 1. Lemma 4.9 says that the right extension of the
letter m− 1 is always the letter 0. Thus U (n)(m− 1)0 and U (n)1 are factors of uβ
and hence also their images under ϕ, namely ϕ(U (n))0t1+tm1 and ϕ(U (n))0t11 are
factors of uβ. Therefore U (n+1) = ϕ(U (n))0t1 . Since i = m−1 = n (mod (m−1)),
we have 1 = n+1 (mod (m−1)). Moreover, the possible right extensions of U (n+1)

are 1 and 0. �
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Example 4.15. We shall now illustrate the notion of infinite left special factors
and maximal left special factors on the example of uβ, where β = 1 +

√
3 is the

positive solution of X2 = 2X + 2, i.e., dβ(1) = 22. The word

uβ = 0010010000100100001001001001001 · · ·

is the fixed point of the substitution

0 
→ 001, 1 
→ 00.

The structure of left special factors in the word uβ can be illustrated on a tree. On
the following figure every left special factor is represented as a sequence of letters
along a path in the tree starting at the root ε.

ε-0-0
〈1-0-0-1-0-0

〈
0

0-0-1-0-0-1-0-0-0-0-1-0-0-1-0-0
〈

1-0-0

1-0-0-1-0-0-0-0-1-0-0-1-0-0-· · ·
0-0-1-0-0-1-0-0

Figure 1. Tree representation of the structure of left
special factors in uβ for dβ(1) = 22.

The sequence of letters in the upper infinite path forms the infinite word uβ,
i.e., the infinite left special factor. The sequence of letters along the path from the
root ε to every leaf of the tree is a maximal left special factor of uβ. For example,
the figure shows the three shortest maximal left special factors

U (1) = 000,
U (2) = 00100100100 = ϕ(U (1))00,
U (3) = 00100100001001000010010000100100 = ϕ(U (2))00.

Note that here we have U (n) = ϕ(U (n−1))00 for every n ≥ 2 since by Remark 4.13
there is sn = t1 = 2.

From the above figure we can see that the number of left special factors of
length n either is 1 or is 2. The dependence of this value on n will be studied in
the next section for general β.

5. Total bispecial factors

Every left special factor of uβ is either a prefix of the infinite left special word
uβ, or is a prefix of some maximal left special word U (n). In order to determine
the complexity of uβ, we need to study the common prefixes of uβ and U (n). For a
fixed n let V (n) be the maximal common prefix of uβ and U (n). Since V (n) has two
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right extensions and U (n) is a maximal left special factor, we have V (n) �= U (n).
Therefore both V (n)X and V (n)Y , X �= Y are left special factors of uβ, i.e., V (n)

is a bispecial factor of uβ.

Definition 5.1. A factor w is called a total bispecial factor of uβ, if there exist
distinct letters X,Y ∈ {0, 1, . . . ,m−1} such that both wX and wY are left special
factors of uβ.

Proposition 5.2. Let v0v1 · · · vk be a total bispecial factor of uβ such that vi �= 0
for some i, 0 ≤ i ≤ k. Then there exists a total bispecial factor w0w1 · · ·w� and
an s ∈ {t1, . . . , tm−1} such that

v0v1 · · · vk = ϕ(w0)ϕ(w1) · · ·ϕ(w�)0s.

Proof. Let j = max{i | vi �= 0}. According to Lemma 3.7 there exists a left special
factor w = w0w1 · · ·w� such that v0v1 · · · vj = ϕ(w0)ϕ(w1) · · ·ϕ(w�) and thus

v = v0v1 · · · vj0s = ϕ(w0)ϕ(w1) · · ·ϕ(w�)0s, where s = k − j.

If s /∈ {t1, t2, . . . , tm−1}, then according to Corollary 4.6, the word v has a unique
right extension, which contradicts the fact that v is a bispecial factor.

It remains to show that w is a total bispecial factor. Since v is a total bispecial
factor, there exist letters X , X1, X2 and Y , Y1, Y2 such that X �= Y , X1 �= X2

and Y1 �= Y2 and that

X1ϕ(w0)ϕ(w1) · · ·ϕ(w�)0sX
X2ϕ(w0)ϕ(w1) · · ·ϕ(w�)0sX
Y1ϕ(w0)ϕ(w1) · · ·ϕ(w�)0sY
Y2ϕ(w0)ϕ(w1) · · ·ϕ(w�)0sY

are factors of uβ. The properties of the substitution ϕ imply that uβ contains
factors X̃1wX̃ , X̃2wX̃ , Ỹ1wỸ , and Ỹ2wỸ , for some X̃ �= Ỹ , X̃1 �= X̃2, and Ỹ1 �= Ỹ2.
Hence w is also a total bispecial factor of uβ. �

Let us recall that we have denoted by V (n) the maximal common prefix of uβ
and U (n). Clearly V (1) = 0t1 . As a consequence of the above proposition we have
the following statement.

Corollary 5.3. There exists a sequence (sn)n≥2 such that

V (1) = 0t1
V (n) = ϕ(V (n−1))0sn for n ∈ N, n ≥ 2.

Remark 5.4. If t1 = t2 = · · · tm−1 = t, then (sn)n≥2 is the constant sequence
sn = t for n ≥ 2.

Determination of the sequence (sn)n≥2 for the sequence of words
(
V (n)

)
n≥1

is
not simple in general. However, if the assumption of Proposition 4.14 is satisfied,
sequences (sn)n≥2 for generating

(
U (n)

)
n≥1

and
(
V (n)

)
n≥1

coincide.
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Proposition 5.5. Let t1 > max{t2, . . . , tm−1}. Then for every n ≥ 2 we have

V (n) = ϕ(V (n−1))0ti , where i ∈ {1, 2, . . . ,m− 1}, i = n (mod (m− 1)) . (7)

Proof. We show by induction on n the following statement: the word V (n) has the
form (7) and if V (n)X is a factor of uβ , then X ∈ {0, i}, where i ∈ {1, 2, . . . ,m−1}
and i = n (mod (m− 1)).

For n = 1 we have V1 = 0t1 and the only V (1)0 and V (1)1 are factors of uβ of
length |V (1)|+ 1 with prefix V (1). The induction step is analogous to the proof of
Proposition 4.14. �
Proposition 5.6. Let t1 > max{t2, . . . , tm−1} or t1 = t2 = · · · = tm−1. Then
for n ≥ 1

(1)
∣∣U (n)

∣∣ = (tm − 1)Gn−1 +
∣∣V (n)

∣∣;
(2)

∣∣V (n)
∣∣ =

∑n
i=1 ciGn−i, where ci = tk, where k ∈ {1, 2, . . . ,m − 1} such

that i = k (mod (m− 1));
(3)

∣∣U (n−1)
∣∣ < ∣∣V (n)

∣∣.
Proof. 1. From the construction of

∣∣U (n)
∣∣ and

∣∣V (n)
∣∣ and from the fact that

U (1) = 0tm−1V (1) it follows that U (n) =
(
ϕn−1(0)

)tm−1
V (n). Since |ϕn(0)| = Gn

for every n ∈ N, we obtain the assertion.
2. Using the relation V (n) = ϕ(V (n−1))0ti we can easily prove by induction on

n that
V (n) =

(
ϕn−1(0)

)c1(
ϕn−2(0)

)c2 · · · (ϕ(0)
)cn−10cn ,

where the ci’s are defined in the statement of the proposition. Therefore |V (n)| =∑n
i=1 ciGn−i.
3. We have to verify

(tm − 1)Gn−2 +
n−1∑
i=1

ciGn−1−i <
n∑
i=1

ciGn−i. (8)

This is equivalent to verifying

(tm − 1)Gn−2 <

n−1∑
i=1

ci(Gn−i −Gn−1−i) + cn.

Note that (tm−1)Gn−2 is smaller than the first term of the sum on the right hand
side of the inequality above, i.e., (tm − 1)Gn−2 < t1(Gn−1 − Gn−2). This comes
from the recurrence relation defining the sequence (Gn)n≥0 and from the fact that
t1 ≥ tm. Since also Gn−i > Gn−i−1 the validity of the considered inequality is
obvious. �
Example 5.7. Let us illustrate the notion of total bispecial factors on the case
of β with dβ(1) = 22. In this case sn = t1 = 2 for n ≥ 2 and therefore V (n) =
ϕ(V (n−1))00 for n ≥ 2. In the tree of left special factors, a total bispecial factor
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is represented by a path from the root ε, ending at a vertex with two sons. In
Figure 1 we can observe

V (1) = 00 ,
V (2) = 00100100 = ϕ(V (1))00 ,
V (3) = 001001000010010000100100 = ϕ(V (2))00 .

6. Complexity for a simple Parry number

Every left special factor w of uβ is a prefix either of the infinite left special
factor uβ or of a maximal left special factor U (k). Moreover, if the length of w
satisfies

∣∣U (k−1)
∣∣ < |w| ≤ ∣∣V (k)

∣∣ for some k, then necessarily w is a prefix of uβ.
Therefore for n such that

∣∣V (k)
∣∣ < n ≤ ∣∣U (k)

∣∣ there exist two left special factors
of length n, one being a prefix of uβ and thus having m left extensions, the other
being a prefix of U (k), and thus having 2 left extensions. It is clear that the values∣∣V (k)

∣∣, ∣∣U (k)
∣∣ play an important role in determining the complexity of the infinite

word uβ.

Definition 6.1. For β such that dβ(1) = t1t2 · · · tm we denote

�0 := 0, �r := |V (r)| =
r∑
i=1

ciGr−i, r > 0

where ci = tk for k ∈ {1, 2, . . . ,m− 1} such that i = k (mod (m− 1)).

We are now in position to state the main theorem of the paper. For technical
reasons we have to set G−1 = 0.

Theorem 6.2. Let β > 1 have finite Rényi expansion of 1, dβ(1) = t1t2 · · · tm.
(1) Suppose that tm = 1. Then for every n ∈ N+ we have

C(n+ 1) − C(n) = m− 1.

(2) Suppose now that t1 > max{t2, . . . , tm−1} or t1 = t2 = · · · = tm−1. Then
for every n ∈ N+ there exists a k ∈ N such that

�k < n ≤ �k+1

and

C(n+ 1) − C(n) =

{
m if �k < n ≤ �k + (tm − 1)Gk−1,

m− 1 if �k + (tm − 1)Gk−1 < n ≤ �k+1.

Proof. Statement 1 follows directly from Theorem 3.9 and Corollary 4.11. State-
ment 2 is a consequence of Theorem 3.9, Propositions 4.14, 5.5 and 5.6.
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For Statement 2 realize that the increase of complexity is of two types, one is
due to infinite left special factors, the other to left special factors that cannot be
extended to infinite left special factors. Theorem 3.9 says that there is exactly one
infinite left special factor with m left extensions for every n, therefore

C(n+ 1) − C(n) = m− 1 + Bn, (9)

where Bn ≥ 0 for n ∈ N. The sequence Bn determines the number of left special
factors of length n that are not prefixes of any infinite left special factor. According
to Theorem 4.12 and Proposition 5.6 such left special factors exist only for |V (k)| <
n ≤ |U (k)| for some k. Moreover, for every n in the above interval, there is exactly
one such left special factor. Therefore

Bn =

{
1 if �k < n ≤ �k + (tm − 1)Gk−1,

0 if �k + (tm − 1)Gk−1 < n ≤ �k+1,
(10)

where we use the formulas for |V (k)|, |U (k)| from Proposition 5.6. The assertion
of the theorem follows easily. �

We can now find an explicit formula for the complexity C(n) of the infinite word
uβ for two classes of simple Parry numbers β.

Corollary 6.3. If tm = 1, we have

C(n) = (m− 1)n+ 1.

Corollary 6.4. If tm > 1 and t1 > max{t2, . . . , tm−1} or t1 = t2 = · · · = tm−1.
Then the complexity of the infinite word uβ satisfies

(m− 1)n+ 1 ≤ C(n) ≤ mn.

More precisely,

C(n) = (m− 1)n+ 1 + (tm − 1)


k−2∑
j=0

Gj


 + min

{
n− �k − 1, (tm − 1)Gk−1

}

where �k < n− 1 ≤ �k+1.

Proof. According to (9) in the proof of Theorem 6.2

C(n) = C(1) + (m− 1)(n− 1) +
n−1∑
i=1

Bi

= m + (m− 1)(n− 1) +
n−1∑
i=1

Bi = (m− 1)n+ 1 +
n−1∑
i=1

Bi.
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Now it is enough to calculate
∑n−1

i=1 Bi. Let k ∈ N, such that �k < n − 1 ≤ �k+1.
Then

n−1∑
i=1

Bi =
∑

1 ≤ i ≤ n− 1
Bi = 1

1 =
k−1∑
j=0

(tm − 1)Gj−1 + min{n− 1 − �k, (tm − 1)Gk−1}·

For calculating the above sum we have used (10). �

Example 6.5. Again consider dβ(1) = 22. The sequence G associated with β is
defined by

Gn+2 = 2Gn+1 + 2Gn

G0 = 1, G1 = 3.

Since m = 2 and t1 = 2, for r ≥ 1 we have �r = 2
∑r
i=1Gr−i = 2

∑r−1
i=0 Gi.

Corollary 6.4 gives

C(n) = n+ 1 +
k−2∑
j=0

Gj + min


n− 1 − 2

k−1∑
j=0

Gj , Gk−1


 ,

for k such that

2
k−1∑
i=0

Gi < n− 1 ≤ 2
k∑
i=0

Gi.

Let us calculate the complexity C(n) of uβ for several small values of n,

C(1) = 2, C(2) = 3, C(3) = 4, C(4) = 6, C(5) = 7, C(6) = 8, C(7) = 9, C(8) = 10,

C(9) = 11, C(10) = 13, C(11) = 15, C(12) = 17, C(13) = 18, C(14) = 19, . . .

Note that the first difference C(n+ 1)−C(n) = 2 for n = 3, 9, 10, 11. These values
correspond to those levels of the tree from Figure 1 which have two vertices. In
general, the first difference of the complexity C(n+1)−C(n) is equal to the number
of vertices on the n-th level in the tree of left special factors.

In order to illustrate the behaviour of the complexity function let us cite the
results of [16]. The author determines lim sup C(n)

n and lim inf C(n)
n for the case

dβ(1) = 22,

lim sup
n→∞

C(n)
n

= 1 +
β + 2

9
� 1.38,

lim inf
n→∞

C(n)
n

= 1 +
β − 2

4
� 1.18.
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7. Arnoux-Rauzy sequences

In this section we describe all simple Parry numbers β, for which the associated
word uβ is an Arnoux-Rauzy sequence. For it we use an auxiliary result, which
is however of independent interest. In the following proposition we provide neces-
sary and sufficient conditions under which the set of factors of uβ is closed under
reversal.

Proposition 7.1. Let dβ(1) = t1 · · · tm−1tm. Then the set of factors of uβ is
closed under reversal if and only if t1 = t2 = · · · = tm−1.

Proof. First we show that t1 = t2 = · · · = tm−1 = t is a necessary condition.
Assume that it is not true. Let k be the smallest integer in {2, 3, . . . ,m− 1}, such
that tk < t1. Then jk = 1 (see Def. 4.3) and according to Lemma 4.5, uβ has the
factor v = 10tkk. All factors of uβ which start with k have the prefix k 0t1 . Thus
v does not have its reversal in uβ.

Suppose now that t1 = t2 = · · · = tm−1 = t. We show that in this case uβ is
a limit of palindromes, which implies that the set of factors of uβ is closed under
reversal. Substitution ϕ is given by

0 
→ 0t1 1 
→ 0t2 . . . m− 2 
→ 0t(m− 1) m− 1 
→ 0tm .

As a simple consequence, if w = w0w1 · · ·w� is a palindrome with w� = 0, then
ϕ(w)0t is also a palindrome. Moreover, if w is a factor of uβ , then ϕ(w) is also a
factor of uβ , which ends with 1. Since every non-zero letter in uβ is followed by
0t, also ϕ(w)0t is a factor of uβ. We can thus define a sequence of palindromes in
uβ by

W (0) = 0t, W (n) = ϕ(W (n−1))0t.
Since W (0) is a prefix of uβ , also W (n) is a prefix of uβ for every n. Thus

uβ = lim
n→∞W (n),

which completes the proof. �
Let us now determine which simple Parry numbers give Arnoux-Rauzy se-

quences. If uβ is an Arnoux-Rauzy sequence of order m, then dβ(1) = t1t2 · · · tm.
From the definition, an Arnoux-Rauzy sequence does not have maximal special
factors. Therefore as a consequence of Theorem 4.12, tm = 1. In that case uβ has
the desired complexity C(n) = (m− 1)n+ 1.

Theorem 7.2. Let dβ(1) = t1 · · · tm−1tm. The infinite word uβ is an Arnoux-
Rauzy sequence (of order m) if and only if t1 = · · · = tm−1 and tm = 1.

Proof. First, let i be the smallest index, 2 ≤ i ≤ m − 1, such that t1 > ti. Then
the factor 0ti+1 is right special, because it has two right extensions, namely 0ti+10
and 0ti+11. On the other hand the factor 10ti has two right extensions, which are
10tii and 10ti0, so it is right special. Thus there are two right special factors of
length ti + 1, hence the sequence is not Arnoux-Rauzy.
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Suppose now that t1 = t2 = · · · = tm−1 = t and tm = 1. By Theorem 3.9 and
Corollary 4.11 for each n ≥ 1 there is a unique left special factor of length n and
this factor has m left extensions. Since the set of factors of uβ is closed under
reversal, for every n there exists a unique right special factor of length n with m
right extensions. Thus uβ is Arnoux-Rauzy. �

Note that if dβ(1) = t t · · · t tm, then β is a Pisot number. It is also interesting to
mention that if tm = 1 then the unique left special factor of each length is a prefix
of uβ. An Arnoux-Rauzy sequence satisfying this property is called characteristic,
see [3].

8. Complexity for dβ(1) = 2(01)ω

According to (3) the infinite word uβ for β satisfying dβ(1) = 2(01)ω is the fixed
point of the substitution ψ defined by

0 
→ 001
1 
→ 2
2 
→ 01

so that uβ = limn→∞ ψn(0). This β is the root > 1 of the polynomial X3 −
2X2 − X + 1. It is a totally real cubic Pisot number and it is equal to 1 +
2 cos (2π/7). It can be shown that its associated cyclotomic ring presents a seven-
fold symmetry [9].

In this section we determine the complexity of uβ and in the same time we
illustrate the obstacles that may appear if we want to do the same for general β
with eventually periodic Rényi expansion of 1. For this we shall use the following
notation.

Definition 8.1. Let v = v0v1v2 · · · vk be a word on the alphabet A and let w =
v0v1 · · · vi, for i ≤ k. We write

w−1v := vi+1vi+2 · · · vk.
Lemma 8.2. For n ≥ 3 we have

ψn(0) = ψn−1(0) ψn−1(0)
(
ψn−3(0)

)−1
ψn−2(0).

Proof. Since for n ≥ 3, the word ψn−3(0) is always a prefix of ψn−2(0), the ex-
pression

(
ψn−3(0)

)−1
ψn−2(0) is well defined. Since ψ0(0) = 0, ψ1(0) = 001,

ψ2(0) = 0010012 and

ψ3(0) = 0010012︸ ︷︷ ︸
ψ2(0)

0010012︸ ︷︷ ︸
ψ2(0)

01︸︷︷︸
0−1ψ1(0)

(11)

the statement is true for n = 3. For n > 3 the statement follows easily by
induction, taking into account that ψ(w−1v) =

(
ψ(w)

)−1
ψ(v). �
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Lemma 8.3. For n ≥ 3 we have

ψn(0) = ψn−1(0) ψn−2(0) · · ·ψ4(0) ψ3(0) ψ2(0) ψ2(0) 0−1 ψn−2(0).

Proof. The relation (11) implies that the statement is true for n = 3. For n > 3
we obtain by induction

ψn+1(0) = ψn(0) ψn−1(0) · · ·ψ4(0) ψ3(0) ψ3(0)
(
ψ(0)

)−1
ψn−1(0)︸ ︷︷ ︸

w

.

The word w is according to (11) equal to

w = ψ3(0)
(
ψ(0)

)−1
ψn−1(0) = ψ2(0) ψ2(0) 0−1 ψ(0)

(
ψ(0)

)−1
ψn−1(0)

= ψ2(0) ψ2(0) 0−1 ψn−1(0) ,

which completes the proof. �

Lemma 8.4. The words ψn(0) and 0−1ψn(0) are left special factors of uβ for all
n ∈ N, n ≥ 3.

Proof. Let us denote ψn(0) = A. Since ψn(0) is a prefix of both ψ2n(0) and
ψ2n−1(0), we have ψ2n(0) = Aw1, ψ2n−1(0) = Aw2 for some words w1, w2. Using
Lemma 8.2 we have

ψ2n(0) = ψ2n−1(0)Aw2

(
ψ2n−3(0)

)−1
ψ2n−2(0),

ψ2n+1(0) = ψ2n(0) Aw1

(
ψ2n−2(0)

)−1
ψ2n−1(0).

Since ψ2n−1(0) ends with 1 and ψ2n(0) ends with 2, both 1A and 2A are factors
of uβ. Thus A = ψn(0) is a left special factor.

According to Lemma 8.3, ψ2(0)0−1ψn(0) is a factor of ψn+2(0) and thus a
factor of uβ. Since ψ2(0) ends with 2, also 20−1ψn(0) is a factor of uβ. But
ψn(0) = 00−1ψn(0) is a factor of uβ. Therefore 0−1ψn(0) is a left special factor of
uβ with left extensions 0 and 2. �

Let us now describe the possible left extensions of the above left special factors.

Lemma 8.5. Every left special factor of uβ of length ≥ 2 has either the prefix 00
or the prefix 01.

(i) The left special factor 00v has two left extensions, namely 1 or 2. We
denote this property by 1

2>.
(ii) The left special factor 01v has two left extensions, namely 0 or 2. We

denote this property by 0
2>.

Proof. First realize that the definition of ψ implies for a letter X that

if X1 is a factor of uβ then X1 = 01. (12)
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We further show that

if X2 is a factor of uβ then X2 = 12. (13)

From the definition of the substitution ψ it follows that every factor X2 of uβ is
a suffix of the image of a factor Y 1 under ψ. From (12) we have Y = 0. Since
ψ(01) = 0012, necessarily we have X = 1.

As a consequence of (12) and (13), every word with the prefix 1 or 2 has a
uniquely determined left extension. Thus a left special factor of uβ must start with
the letter 0. Due to (13), the right extension of 0 can only be 0 or 1. Therefore
every left special factor of uβ of length ≥ 2 has either the prefix 00 or the prefix 01.

The definition of the substitution ψ implies that 000 is not a factor of uβ . There-
fore the left special factor with the prefix 00 must have the two left extensions 1

2>.
If the word 101 were a factor of uβ, then it would be a suffix of the image of

the factor 02 or 22. But according to (13) these words are not factors of uβ. Thus
the prefix 01 of a left special factors admits only the left extensions 0

2>. �

Lemma 8.6.
(i) Every left special factor of length ≥ 3 with the prefix 00 not ending with 0

is the image under ψ of another left special factor of the same type.
(ii) For every left special factor v of length ≥ 3 with the prefix 01 not ending

with 0 it holds that (01)−1v is the image under ψ of another left special
factor of the same type as v.

Proof. (i) It is obvious that a factor v = 00v′ with prefix 00 not ending with 0 has
a uniquely determined preimage w under ψ, i.e., ψ(w) = v. The left extensions
of v, namely 1

2 > 00v′ could be the images under ψ of 0
1 > w or 2

1 > w but the
combination 0

1> w is not admissible.
(ii) The proof is analogous. �

Proposition 8.7. The infinite word uβ has a unique infinite left special factor
with left extensions 1

2>, namely uβ itself, and a unique infinite left special factor
with left extensions 0

2>, namely 0−1uβ.

Proof. According to Lemma 8.4, ψn(0) is a left special factor for every n ∈ N,
moreover it has the prefix 00. Therefore using Lemma 8.5 uβ = limn→∞ ψn(0)
is an infinite left special factor with left extensions 1

2 >. Similarly, 0−1ψn(0)
is a left special factor for all n ∈ N and it has the prefix 01. Thus 0−1uβ =
limn→∞ 0−1ψn(0) is an infinite left special factor of uβ with left extensions 0

2>.
We show the uniqueness of the infinite left special factors by contradiction.

Among all infinite left special factors with left extensions 1
2> find a pair

v(1) = v
(1)
0 v

(1)
1 v

(1)
2 · · · , v(2) = v

(2)
0 v

(2)
1 v

(2)
2 · · ·

such that d(v(1), v(2)) := min{i | v(1)
i �= v

(2)
i }. Then according to Lemma 8.6

there exist two left special factors w(1), w(2) with left extensions 1
2 > satisfying
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ψ(w(1)) = v(1), ψ(w(2)) = v(2), which implies d(w(1), w(2)) < d(v(1), v(2)), which is
a contradiction with the choice of v(1), v(2).

The uniqueness of the infinite left special factor with left extensions 0
2> is shown

in the same way. �

Proposition 8.8. The infinite word uβ has no maximal left special factor.

Proof. From the definition of the substitution ψ it follows that a maximal left
special factor v cannot end with 00. (Otherwise it has a unique right extension,
namely 1, and thus cannot be maximal.) The factor v has the form v = ṽ0s, where
ṽ does not end with 0 and s ∈ {0, 1}. If |ṽ| ≥ 3, due to Lemma 8.6, there exists
a left special factor w̃ such that v = ϕ(w)0s or v = 01ϕ(w)0s. Maximality of v
implies that w is a maximal left special factor.

The only left special factor of length < 3 are 00 and 01. However, these are
prefixes of the infinite left special factors uβ and 0−1uβ, respectively. Hence they
cannot be maximal. �

By combination of the above Propositions 8.7 and 8.8 we obtain the main result
of this section.

Theorem 8.9. Let β satisfy dβ(1) = 2(01)ω. The complexity of the infinite word
uβ is given by

C(n) = 2n+ 1 , n ∈ N.

Remark 8.10. The infinite word uβ in this case is not an Arnoux-Rauzy sequence,
because it has more than one left special factor of each length.

9. Conclusions

It is interesting to mention that the description of the structure of left special
factors given here is valid for fixed points of the substitution (2) even for parameters
t1, . . . , tm which do not correspond to the Rényi expansion dβ(1) of 1 for some
number β. However, in order to provide an explicit formula for the complexity
of the word uβ, it is essential to have |V (n)| < |U (n)|, which is established in our
paper if the parameters satisfy the conditions t1 > max{t2, . . . , tm−1} or t1 =
t2 = · · · = tm−1. We have chosen such requirements in order to avoid technical
complications, but we conjecture that |V (n)| < |U (n)| is satisfied for every sequence
of parameters t1, t2, . . . , tm corresponding to the Rényi expansion dβ(1) for some
simple Parry number β.

In the second part of our paper we focus on the cubic Pisot number 1 +
2 cos (2π/7) as an example of a Parry number with infinite Rényi expansion of
1, namely dβ(1) = 2(01)ω. In this case there are no maximal left special factors
(which is apparently connected with the fact that β is an algebraic unit), but there
are two infinite left special factors. We see that the structure of left special factors
for finite and infinite dβ(1) is essentially different. The question about complexity
of uβ for general β with eventually periodic Rényi expansion dβ(1) remains open.
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