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ASYMPTOTIC BEHAVIOUR OF BI-INFINITE WORDS*

Wit Forys$!

Abstract. We present a description of asymptotic behaviour of lan-
guages of bi-infinite words obtained by iterating morphisms defined on
free monoids.

Mathematics Subject Classification. 68Q).

1. INTRODUCTION

Having a morphism h : A* — A*, and a word w € AT one can consider an
infinite iteration A on w. Depending on the word and the morphism there are,
in general, several possible results of the iteration. We are interested in the case
when the result of the iteration process is an infinite word.

The aim of our paper is to describe an asymptotic behaviour of languages of
bi-infinite words obtained by iterating morphisms defined on free monoids. The
problem was investigated recently by Narbel in [8,9] but imposing on the consid-
ered morphisms the restriction that they are expansive. According to the sugges-
tions of Narbel in [9] we extend the considerations for morphisms not necessarily
expansive. The obtained results generalize those presented by Narbel in [9] and
give a description for both — expansive and non expansive cases. Our results are
in the close correspondence with those of Shallit and Wang [10]. However they
considered bi-infinite fixed points of morphisms.

Bi-infinite words are very essential in symbolic dynamics giving a description
of a motion in the past, future and at the present. Specified families of bi-infinite
words substitute subshifts — a symbolic counterparts of discrete dynamical sys-
tems. Among various types of subshifts there are subshifts generated by iterating
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a morphism — for example Thue-Morse subshift. This is the main motivation for
undertaking the research.

The investigations of asymptotic behaviour of bi-infinite words obtained by
iterating morphisms is strongly motivated also within the formal language theory.
We refere here to the papers [1-6,8-10].

The paper is organized as follows. In Section 2 some definitions and notions
are introduced. In particular we define a metric on bi-infinite words. Within this
framework asymptotic properties are studied. In Section 3 we recall some results
about iterations of morphisms. Section 4 contains particular results character-
izing asymptotic behaviour of bi-infinite words. The main result of the paper,
Theorem 5.1, is presented in Section 5.

2. NOTATIONS AND DEFINITIONS

Let A be any non-empty, finite set called an alphabet. We denote by A* the
free monoid generated by A and by AT = A* \ {1} the free semigroup where 1 —
the empty word stands for identity. For any X C A the set of all letters from X
that occur in a word w € A* is denoted by alphx w. A letter from X that occurs
in w as the first (counted from the left) is denoted by firstx w. We need also
sometimes the position of the first letter from X in w. Let firstx z w denote the
pair (a,i) where a = firstx w and is the i-th letter in the word w (counting starts
from 0). Dually we introduce lastxy w as a letter from X that occurs in w as the
last and last x z w as the counterpart of first x 7 w.

We extend both of these introduced notations for right-infinite and left-infinite
words respectively. A word w € AT is primitive if there is no word v # w such
that w € v*. Recall that two words v, w € AT are conjugates v =~ w, if there exist
uy, ug € A* such that v = uyue and w = uguy. The shift o : (AU 1% — (AUl)Z is
defined as a function by putting for any z € (AU 1)%, k € Z, o(x)(k) = z(k + 1).
In a similar way we define 0~! to fulfil the condition o~!(z)(k) = z(k — 1). We
use in the sequel iterates of o and 1 denoted by ¢™ and =" (n-fold composition
of o and o~ ! respectively).

Let Q denote the set of all functions w : Z — AU {1} such that if w(i) € A
and w(j) € A for i < j € Z then w(k) € Afori < k < j and 0 € suppw
where suppw = w1 (A). Any element of € is called a word. From the definition
it follows that suppw is a discrete interval for any word w. A restriction of a
word w to a discrete interval included in Z is called a factor of w and denoted by
wli, j], w(—o00, 1) etc. according to the form of the interval. Note that a factor is
not necessarily a word but is of course a partial function defined on Z. We say
that a word w € € is factorized in factors w1, v, us and denote it by w = ujvus if
there exist k,l € Z and k <[ such that

up = w(—o00,k], v=wlk,l], uz=w(,+00).

The case k£ = [ in the above definition means that the factorization is of the form
W = UujUs.
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Any factor x of a word w can be extended to a function defined on Z putting for
all integers outside the factor’s domain the value 1. Shifting the obtained function
by o* for a suitable k we obtain a word Z € 2. Hence we say that the factor
defines a word T (in fact an equivalence class). Again for simplicity we denote
a word defined by a factor = by the same symbol x. We will use in the sequel
properties of words defined by factors as properties of the factors.

In this framework one can consider any finite non-empty word w in A* as
a function such that suppw is a finite interval containing 0. In the case when
supp w = [0,] w | —1] we say that it is the normal form of a finite word w. In
a similar way right-infinite and left-infinite words w can be considered and their
normal forms introduced having supp w equal to [0, +00) or (—oo, 0] respectively.
Hence we can consider 2 as the set of words — finite, one-sided infinite and bi-
infinite. For a word w € Q the value w(0) is called the origin of w.

Finally, for any w in  we introduce the notation o*(w) for the set o*(w) =
{o*(w) € Q: k € Z} and extend it to any language L C A* as follows

weL

We interpret all sequences in o*(w) as a symbolic description of the same dynamics.
They differ only in the point of the observation has started (the origin). From this
point of view it is obvious to identify all words in o*(w). More formally one can
consider the quotient space Q/c* where two bi-infinite words u, w are equivalent
if and only if 0*(u) = o*(w). In this framework finite words and one-sided infinite
words are embedded into Q/c*.

To avoid notational complications and to make all our results more readable we
use a phrase “a word w” in all cases where the position of the origin is unessential.
Hence in all these cases one can consider w as an equivalence class in /0*. We
will use a phrase “equal modulo the origin” when we would like to stress the fact
that words are functions in €2 and they are in the same equivalence class. In all
cases when origins are essential (for example considering convergency) the origins
of words will be explicitly pointed out.

In the definitions of a metric that we introduce now the essential role is played
by the origin of considered words. Define the metric on £ by putting for any
w # v in Q, d(w,v) = 2~*+1) where k is the maximal nonnegative integer such
that w[—k, k] = v[—k, k] if k exists. In the opposite case put &k = —1. In case
w = v put d(w,v) = 0. Note that for words w, v which have only the same origin
that is w(0) = v(0) we have d(w,v) = 3

Let h : A* — A* be a morphism of a free monoid A*. We will extend h to 2
and then to 2/0*. We will use in the sequel so called pointed words, that is, words
in Q and unpointed words, that is, equivalence classes in 2/c*. It enforces us to
define an extension of a morphism on 2 which fulfils morphism conditions and
transforms in some way the origin of a word.

Let a finite nonempty word w be in the normal form. Hence supp w = [0, k]
for some k € N. For i = 0,....,k w is the only word in [w] € Q/c* such that
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w® = ¢ ow. Tt means that w(® fixes the origin on the i-th letter of the finite
word w. For a bi-infinite word w = ...a_jaa; ... for which w(0) = a let us fix i € N
such that 0 < i <| h(a) | —1. Define

R (w) = KD (..a_1aay...) = ...h(a_1)hD (a)h(ar)...

where () (a) = h(a)®. Hence h() fixes the origin on the i-th letter of the
word h(a) considered in the normal form.

Observe that the introduced definition of h(?) agrees with the definition of the
infinite iteration of h of Shallit and Wang [10]. Namely, let h(a) = w = vpavgr
for some vp,vp € A*, a € A and consider a word h(a) in the normal form. Let
| vra |= 4. In [10] an infinite iteration of h on the letter a, depending on ¢ is defined
as the bi-infinite word having the following factorization

h*'(a) = ...h*(vp)h(vr)vravrh(ver)h? (VR)...

and such that h*%(a)(—00,0] = ...h2(vy)h(vL)vLa.

The integer i fixes the origin in h*?(a) by pointing out the origin in the sub-
word vr,avg.

It is easy to observe that in the introduced framework the sequence of finite
iterations of h(¥)(a) denoted by h™(a) converges to h**(a) if n grows to infin-
ity. Hence the infinite iteration of h in the above sense is denoted in the sequel
by h*%(a) for a suitable i and a letter a.

A bi-infinite word w is a fixed point of a morphism A if the words w and h(w)
are equal modulo the origin. We denote this fact by h(w) = w.

Our research is focused on the set of all finite iterations of a morphism on letters
from the alphabet. We consider these iterations as pointed words because we are
interested in the asymptotic behaviour of iterations. This set is denoted by Ly, for
a fixed morphism h and is defined as

L= {J ")

neN,ac A

where [h"(a)] denotes the equivalence class of a finite word h™(a). Equivalently
Ly =0*{h"(a) € Q: a € A, n € N} where h"(a) denotes the finite word h"(a) in
the normal form.

Considering the asymptotic behaviour of the set L, we define the boundary set
of L; denoted by 0Ly as the set of all words w € L_h\ L;, where L, denotes the
closure of Ly, in the metric space (€2, d).
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In the sequel we use the following notations according to Head [5]:

M={a€A: Ire N\ {0}, h"(a) =1};

Mp={a€cA: Ire N\ {0}, h"(a) € M*aM™};

Ing ={a€ A\ Mg : Ir e N\ {0}, h"(a) € (MrpUM)"\ M*};
E={a€A: Ir e N\ {0}, h'(a) = wrawg, wrwr € (AT \ M*)};
Ig={a€ A\E: 3r e N\0}, h'(a) € A"EA"}

Letters in M are called mortal, in Mz monorecursive and in E expansive. Letters
in Ips, or Ig lead to a monorecursive or expansive letter, respectively.

Note that for any letter a € Mgr U E there exists the smallest positive inte-
ger N(a) such that hV(®)(a) € A*aA*.

We will illustrate the introduced notions, as well as the obtained in the sequel
results considering all along the paper a morphism h defined below.

Example 2.1. Let A = {a,b,c,d,e,a’,b’,c'} be an alphabet. Let h be defined as
follows

a—be ad —el
b—ae bV —ed
c—aead ¢ —adea
d — aea e —e.

We have: M =0, Mg ={e}, Iny, =0, E ={a,b,a',b'}, Ig = {c,c,d}. If for the
use of this example only we add to the alphabet A two letters f, g and extend the
morphism h putting h(f) = eg and h(g) =1 then M = {g} and I, = {f}

A word w € dLy, is said to be a pasted word (of left-infinite and right-infinite
words), if there exist

(i) vr € OLy, left-infinite, vy € OLj, right-infinite,
(i) a finite word m € (M U Mg)* such that w = vpmvgr modulo the origin.

Let dL;, denote the set of all words w € JLj which are the pasted words or left
or right infinite words. The set dL;, was characterized in [9] by Narbel assuming
that the considered morphisms are expansive. Just from the definition the set of
pasted words d Ly, is included into the boundary set 0Lj. Presented below example
shows that, in general, it is a strict inclusion. Words of dL;, that remain outside
the set dLj, are the subject of consideration in Matyja [7].

Example 2.2. Add a letter f to the alphabet A and extend again for the use of
this example only the morphism A putting h(f) = efe. Now we have “efe* € Ly,
and e* € JLj, as the limit of the sequence h?"(a’) = €?"a’ for n € N. Similarly
“e € Ly,. However “efe“ ¢ 6Ly as f € E.

The aim of the paper is to establish a description and properties of the words
in 0 Lj, by means of the iterations of the morphism h and fixed point property.



32 W. FORYS
3. PRELIMINARY RESULTS

In this section we recall some basic facts about morphism iteration and words
which are obtained during this operation. We start with two lemmas which sum-
marize some results within combinatorics on words obtained by Head [4], Head
and Lando [5] and Forys and Head [2]. The proofs are omitted and any inter-
ested reader is requested to consult the references. This part presents results of
finite words only. One can consider the words as equivalence classes or as finite
sequences of letters (normal forms). In the same manner morphism iterations can
be considered.

Lemma 3.1 [4,5]. The sets M, Mg, Iy, E, Ig, are pairwise disjoint and
effectively constructable.

Let us denote Mp = M U Mpr U Iy, for a fixed morphism h : A* — A*.
For any a € E there exists the smallest integer r, such that the condition (i)
hra(a) € (M{ \ M*)aA* is fulfiled.

Hence we obtain a partition of E. Any block in this partition, denoted by R},
consists of all letters a € E that have the same common minimal exponent r for
the condition (i). During the iteration of & if a letter a € R}, occurs as the first
letter from F on some stage of the iteration process then after every r iterations
the configuration repeats. We define in the same manner and for the same reasons
subsequent partitions of E changing the condition (i) respectively to:

(ii) h™(a) € M*a(A*T\ M*);

(iii) h"e(a) € A*a(Mj\ M*);

(iv) h™(a) € (AT \ M*)aM*.

The blocks of the defined partitions are denoted by R", L', and L" respectively.

Taking into account only non-empty of the introduced above sets we define

Ih, ={ac (BEUIEg)\ Ry :3s €N, h¥(a) € MpR) A"},
I ={a€e(EUIg)\R :3s€N, h°(a) € MR A"},
It,, ={ac€(EUIg)\ Ly :3Is €N, h'(a) € A"Ly My},
It ={ac (EUIg)\L":3s€N, h*(a) € A"L" M3}

Letters in I, —are exactly those which are outside R}, but lead to a letter in Ryy.
Iterating h on a letter from I, ~we obtain after s iterations a letter a € R}, — the
first letter from E that occurs in this iteration. And after every r iterations of h
the configuration repeats. The similar meaning is for Iy, I7 —and I7.

Example 3.2. Continuing considerations of the morphism h defined in Exam-
ple 2.1 we have My = {e}. For r = 2 we obtain L3, = R? = {a,b},R%, = L? =
{a/,0'} and finally I3 = {c}, 1} = {c,d}, 1} ={c,d}, I} = {c}:

Lemma 3.3 [5]. The defined sets Ry, Iy , R", Iy, Ly, I7 , L, I}, are
effectively constructable for any r € [1, $A]. If r > $A then all the sets are empty.
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For a word w € M} we have h#4(w) € (MUMEg)* and there are two possibilities:
L. alphar, (R¥4(w)) # 0. Thus alphar, (B4 (w)) = {a,...,a,} and for every
i € {1,...,p} there exists a least integer r; € [1, fA] such that A" (a;) €
M*a;M*. In this case we denote [.m.(w) = l.e.m.{ry,...,7p} and call this
number the least common multiple of the word w ;
2. alphr, (RF4(w)) = 0. In this case we put .m.(w) = 1.

For the sake of completeness we recall some properties of finite iterates of mor-
phisms.

Lemma 3.4 [5]. Letv e M\ M*, K =1.m.(v) and P = 2(§A)K. The following
statements are true:

(i) hP*i(v) = hWPTnE+i(v) for anyn € N and i € [0, K — 1];

(i) hP*i(v) # WP E+i(v) fori, j €0, K — 1] and i # j.
The above properties are true for S = $A + ($A)K in the place of P.

Lemma 3.5 [5]. Fora € R™, b€ L™ let us denote P, = §Ar,, P, = §Ary. The
following statements are true:

(i) hPatire(a) is a prefix of Kt Dra(a), for any i € N;

(ii) AP+ (b) is a suffiv of RPN (b)) for any i € N.
The above properties are true for Sq = {Mry, Sy = §Mry in the place of Py, Py,
respectively.

4. SOME RESULTS CHARACTERIZING 0L,

If a € I}, UR" then there exists the smallest integer s, € [0,#A] such that
h**(a) € weR"A*, w, € M. In the following lemma the symbol N, is used to
denote l.c.m.(r,l.m.(wg)).

Lemma 4.1. Let a € I, UR". For an arbitrary (but fized) n € N we denote
w = h"H3EANa (q) and (c,i) = firstp z(w). Let j € N point out the (first) position
of ¢ in hVa(c).
The following statements are true:
(1) (ANa)*3(wD) is in 6Ly and so [(WN*)*I (w®)] is in Ly, /o*;
(ii) among all the possible words w defined in the above manner for n € N
there exist exactly N, nonequivalent words and they are given by n €
[0, N, — 1]. Hence there exist exactly N, mutually different equivalence
classes in 0Ly /o™ generated by these words.

Proof. According to the assumptions h%:(a) € wya; A* where a1 € R". Hence
denoting t, = $AN, +n — s, we have w € htat284Na (3 ). ptaT284Na (g ) A* Now
from Lemma 3.4 we obtain the equality

hN” (htaJrQﬁANa (wa)) — htaJrQﬁANa (wa)~
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Lemma 3.5 implies that for any p € N the word hPNa (htat284Na(g,)) is a prefix of
h(P+1Na (ptat28ANa(q1)). Thus ¢, the origin of w and the first letter from E which
occurs in w, is also the first letter from E in hPNa(htat264Na(q,)) and also the
first letter from R" in w. This implies that w € hteT284Na (3, )ptat 284N (q1) A% is
also in Ly,.

Observe that for any p € N the word hPNe(htat26ANa () . plat284Na(q,))
is a prefix of h(PHNa(ptat28ANa(y, ). ptat284Na(g,)) and the word hPNe(w) €
htat28ANa (9 YhPNa (ptat264Na (q1)) A* is also in L. This implies that there exists
a limit word (hN+)*7(w") which is right-infinite and it is in §L;,. Directly from
the definition of N, it follows that it is the smallest positive integer such that
RNa((hNe)®i (w®)) = (hNa)*3(w). This means that among all the possible
words w defined in the above manner for n € N there exist exactly N, nonequiv-
alent words and they are given by n € [0, N, — 1]. O

Corollary 4.2. For a,b € I; UR", n € N we denote wy = R H3EAN (o) and
wh = A t3EAN () The counterpart of w, € My for b is denoted by wy.
The following three conditions are equivalent:
(i) there exists k € [0, Ny, — 1] such that h*T3EANa=5a (4, ) = pr+3EAN=sp+k
(wy) and first (R H3EANa (q)) = first g (A T3EANvHE (),
(ii) the intersection of the sets {(hN+)*(in)(w2))},cp0.n.—1) and {(RNN?)*Un)

(wg))}ne[O,Nb—l] is ”Qt empty; ‘
(iii) the sets {[(hNa)*,(zn)(wz))]}nemwru7 {[(hNb)*’(J”)(wfl))]}ne[o,qu]
coincide.

Proof. Assuming (i) observe that for a fixed n there exists k € [0, N, — 1] such
that hn+3ﬁANa—sa (wa) — hn+3ﬁANb—sb+k(wb) and

first (h”+3MN“ (a)) = firstp (h”+3MNb+k(b)) .
Analogously as in the proof of the above lemma we conclude that for any ¢ € N

first (h" T34V (a)) = first (RN (R7 5o 344N (¢1)))
= firstg (h”"'SﬁAN*""k(b)) .

Additionally

hn+3}iANa (a)7 hn+3?iANb+k(b) c hta+2ﬁANa (wa) . hta+2?iANa (al)A*.

Thus
(hNb)* (hn+3ﬁANb+k(b)) € {(hNa)*v(in) (wz))}

Finally according to the above lemma

nGN.

(hNb)* (hn+3uANb+k(b)) c {(hNb)*,(jn) (wz))}

nEN.
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The implication in the opposite direction is easy to prove. The equivalence of the
conditions (ii) and (iii) is obvious. O

Observation 4.3. The symmetric results for Lemma 4.1 and Corollary 4.2 are
true for a, b€ I} UL".

Notice that the symmetry mentioned above and in the sequel includes also the
exchange of firstg z(w) by lastg z(w).

Example 4.4. From Example 3.2 follows that a € I3 U R?. We have N, = 2 and
for n = 0, 1 there are two words w = h°T382(a) = ae®® and w = h1T382(a) = be?®
for which firstg z(w) = (a,0) and firstg z(wW) = (b,0) respectively and j = 0
points out the first position of a in h%(a) and the first position of b in h2(b).
Lemma 4.1 implies that (h?)*%(w(®) = ae* and (h?)*°(@) = be* are in 5L;,.
Observation 4.3 implies that also “ea’ and “eb’ are in dLy,.

If a € Iy U R}; then there exists the smallest integer s, € [0, §A] such that
hie(a) € wa R4 A*, where w, € Mj. Hence for some v, € M} \ M*we obtain
hsetTa(a) € h" (wq)va Ry A*. In the lemma presented now the following notation
is used: My =1l.m.(wava), Ng = lem.(rq, My), Ko = l.m.(vg).

Lemma 4.5. Leta € I U RY;. For an arbitrary (but fized) n € N we denote
w = h"T3EANa(a) and (c,i) = firstar, z(w). Let j € N point out the (first)
position of ¢ in h¥e(c).
1. The following statements are true
(i) (hNe)* (w®) ds in SLy;
(ii) among all the possible words w defined in the above manner for n €
N there exist exactly M, nonequivalent words and they are given by
n € [0,M, — 1]. Hence there exist exactly M, mutually different
equivalence classes in §Ly /o™ generated by these words.
2. Leta € Iy, URY;, be Ip URY, and w, v denote words obtained for a, b
respectively (in the manner as w for a in the above). It is decidable,
whether or not the words (hN+)*I (w®) and (hN0)*!(v*)) are equivalent.

Proof. The fact that a € I U R}; implies that there exists the smallest integer
sq € [0,#A] such that h*(a) € wea1A*, a1 € R}, w, € Mj.. Hence h%*"(a) €
R (wg )vaar A*, and v, € M\ M*. By the definition of R}% it follows that
Rt (@) € ™ (wq )vgar A* = h™ (wa)h™  (uo)h™ =% (u1)...h% (uy, —1)a; A*
and if ¢ € [0, 7, — 1] then
R (a) € B (ug)h ™ (uq) - .. - RO () Rha A¥,
where u; € M.

Observe that because v, € M;,f \ M* there exists u; such that u; € M;: \ M*.
Let K, = l.m.(v,). There exist numbers k,[ € N such that N, = kr, = [K,. From
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the above we derive that

héatkra(q) €

hNe (wg) - Bk Dratra=t gy pE=DratO(y Y. T (wug). B0 (w1 )ag AT,

hoatBa(q) € BNe (w, ) WI-DEH K= (y0) B0 (u,, 1) - ay A*.

Now denoting
y = hk=Dratra=l, 0y pE=Drat0(y Yo TN ug). A (U, 1)
we have for any p € N
heatPNa(g) € BPNa (1, )h P~ Na (1) nP=2Na (1)) B0 (y)ay A*.
Let us denote by t, = (|A)N, +n — s, (n fixed). Thus for p large enough we have

hn+PNu (a) — h5a+(p7(ﬁA))Na+(ﬁANa+n75a)(a)
= hsa""(p_(’iA))NaJ"ta (a) c h(p_’iA)NaJ"ta (wa)h(p_’iA_l)Na"‘ta (y)

P EATDINaa () ple(y) - bl (ug)... kO (ug) Ry A*

for some t € [0,7, — 1].
From the assumptions it follows that

h(SﬁA*ﬁA)Natha (wa)h(BﬁAfﬁAfl)Natha (y) c (MR U M)Jr \M*,

and the word (h(3#A—EANatta (o ) (38A—EA=1)Natta (1)) is a prefix of w. Hence
iterating h™Ve on w(? we obtain for ¢ = 1, 2...

(AN ™ (wu)) € hla+3IA—EA Nt (1) Yy (a+38A—EA=DNata ().
U TFSIATEATDNG e () ple (y) Rl (ug)...hO0 (ug) R)g A,
If ¢ > i, then Lemma 3.4 implies that

LIt SAZFAZO Nt o (y) — p2EANaHa (y) € ot

where u € A* is a primitive word. Moreover it follows again from Lemma 3.4 that

plat+3tA—§A) Na+ta (wa) = h2tANa+ta (W)
and there exists a word x € A* of minimal length such that h2#4)Natta (4} € 2u*.
Hence there exist the limit word (hA™e)*7(w?) € wzu...u... This word is right-
infinite and it is in §L;, and so its equivalence class is in 0Ly /o*.
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Observe that (Lem. 3.4) hMa(p2(EANatta(y) = p2(EA)Natta () which implies
that h™a(u) = u where M, is the smallest integer such that h™(zu) = wu.
Taking into account the fact that no letters from £ U Ig occur in xu we conclude
that M, is the smallest integer such that hMeJ((hNe)*J (w(®))) = (BNe)*J (w®)
which implies finally that among all the possible words w defined in the above
manner for n € N there exist exactly M, nonequivalent words and they are given
by n € [0, M, — 1].

Now let us consider two words:

(hN)™ (w(i)) = (hNa)™ (h”a+3(ﬁA)Na (a)(i)) — reu

and
(hNb)*,l (U(k)) _ (hNb)*’l (hnb-l,-?,(yiA)Nb(b)(k)) = zpud.
There are two possible cases:
(1) if u, and up are not conjugate words then (hVe)*7 (w®) and (hVe)*!(v(¥)
are not equivalent also;
(2) if u, = up then there exists a word ug such that ugu, is a prefix of upup.
There exists a word y, of minimal length and such that xpur €ypu. Thus
(RNe )53 (w) @) = (RNo)*L(v)®)) if and only if x4 =y .

Hence in the both cases the equivalency of the considered words is decidable. [

Corollary 4.6. For a € Iy UR});, b € Iy UR}; and n,m € N we denote
wy, = K"H3EANa(4) and v, = KM T3EAN(D). The following two conditions are
equivalent:
(i) the intersection of the sets {(h™N*)*I(wn)}nepo,ara—1), and {(hN)*!
(Vm) Ymelo,M,—1] i85 not empty;
(i) the sets {[(WN*)*7 (wn)}nefo,m, 1) and {{(BN)*7 (vm)]}mefo,p, 1) coin-
ctde and M, = Mj.
Proof. Assuming (i) we have equality h’VeJ(w,) = N (vy,) = z,u”. Arguing
in the similar way as in the above lemma we find the smallest integers M, M,
such that hMe(z,uy) = Teuq and WMo (zauy) = Taua. Lemma 3.3 implies that
M, = My. The result 1 in the above lemma finishes the proof of the implication
(1) = (i1). The implication in the opposite direction is obvious. O

Observation 4.7. The symmetric results for Lemma 4.5 and Corollary 4.6 are
true for a € I7% U L.

Example 4.8. From Example 3.2 follows that a’ € I}%M UR2,. We have N, = 2,
M, = 1 and for n = 0 there is a word w = h9"382(a’) = e%8a’ for which
firstar, z(w) = (e,0) and j = 0 points out the first position of e in A%(e). Lemma 4.5
implies that (h2)*?(w(®)) = ee® is in §Lj,. Observation 4.7 implies that also “ee
isin dLy,.
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From Lemmas 3.1 and 3.3 it follows that the set Ly;Ry = {aub € A* : Jc €
EUIg, h(c) € A*aubA*, a € I}* UL}, be Iy URY, ue Mg} is finite and
effectively constructable.

Now let us consider aub € Ly Rp;, where a, b € A. One can find the small-
est integers sq, sp € [0,#4] such that h**(a) € A*L 5w, and h**(b) € wy R}, A*
where wq, wy, € Mj . Hence h%*t"e(a) € A*L7Gv.h™ (w,) and h%F7e(b) €
h' (wp)vp Ry A*, where v,, vy € M;r \ M*.

We use in the sequel the following notations.

K, =1lm.(va), Kp =1lm.(vp), M =1lcm.(K,, lm(wguwy), Kp),
and  Ngp = lLem.(rq, T, Map).

Thus for any n € [0, Ngp — 1] we have A" T3EDNee (qub) € A*LiamR}, A*, where
m e Mp\ M*.

Lemma 4.9. Let aub € LyfRy. For an arbitrary (but fixred) n € N we denote
w = h"H3EANa (qub) and (c,i) = firstyr, z(h"H3EANa (b)), Let k € N point out
the (first) position of the letter c in w, that is, k =| k"3 Nas (qu) | +i. Finally
let j € N point out the first position of the letter ¢ in h™a»(c).
1. The following statements are true:

(i) (RNev)*J (w®)) is in 6Ly ;

(ii) 4t is decidable, whether or not a word obtained in (i) is periodic;

(iii) if for some n € [0, Map — 1] the word (hNe»)*J (w*)) is not periodic then
among all the possible words (h™N*»)*J (w*)) defined in the above manner
form € N there exist exactly My, nonequivalent words and they are given
by n € [0, Ma — 1]. Hence there exist exactly My, mutually different
equivalence classes in §Ly/c* generated by these words.

2. Foraub, dve € Ly Ryy denotew = h"t3EANa (qub) and v = hmH3EANae (dye).
It is decidable, whether or not two words (hNev)*J (w®)) and (RNae)*P(v(")) are

equivalent.  Hence it 1is decidable, whether or not two equivalence classes
[(hNer) = (wF))] and [(RN4e)*P(v(")] coincide.

Proof. We apply to the letters a, b the argumentation from Lemma 4.5 and come
to the following conclusions.
If p is large enough then denoting

y = hla=Dmotro=1 0y plas=Dret0cy, 1y AT (o). A0 (v —1)
we have for some t € [0, 7, — 1].
BrvtPNa (b) = hsbJr(k*#A)NabJr(#ANabJrnbe)(b)

— hsb-‘r(k—#A)Nab-‘rtb (b) c h(k—Q)Nl-Hb (wb)h(k—Q—l)Nl-Hb(y),

CRR=QEDNIH () pOFt () L b (vg). A0 (v ) RTE AT
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If ¢ is large enough then denoting
2= h(upy—1) k" ug) - o RO DTt Oy, ) e =Tt =l gy

we have for some s € [0, 7, — 1]

hrraNes () € A*Lgh® (ug)... BT (ug)hle (2) - ... - hE—#AT2INavta ().
. h(k—ﬁA—l)Nab+ta (Z)h(k—ﬁA)Nab-Ha (wa).

Applying again the argumentation from Lemma 4.5 we obtain two primitive words
Uup, Ug and words xp, x, of the minimal length such that h2AANL+ (wp) € wpuf and
R#ANIHa (1) € ulz,. The equality A" TUHSEAN (1) = pn+3EANL () (Lem. 3.4)
finally leads to the conclusion that there exist the limit word (hNev)*J (w(*)). There
exists f € EUIg such that h(f) = upaubur where ur,, ug € A*. This means that
there exists the limit word

lim (hN“”)a’j (h"”(ﬁA)N“b (ur) (w(’“)) R 3(EA) Na (uR)) € “UgTaYuTpUpUy

a— 00

and these two limits are equal. Hence (h™Vev)*J(w(*)) is bi-infinite and it is in
OLy. Tt can be factorized in the form (hNav)*J (w*)) = vy AnT3ENas (y)zpupul .
The words vz, and zpupuy’ are left and right-infinite and according to the previous
lemma are in §L;, and so is (hNav)*7 (w*)),

The fact that among all the possible words w defined in the above manner
for n € N there exist exactly M,, nonequivalent words and they are given by
n € [0, M, — 1] can be proved in a similar way as in Lemma 4.5.

For the word (hNev)*7J(w(¥)) let us consider two possible cases:

(1) if uq % up (not conjugates) then (hNer)*J (w*)) is not a periodic word;

(2) if ug =~ up then there exists a word zp, such that upzy, is a suffix of ugu,.
Thus (hVer)*3(w*)) is periodic if and only if zzz,y,21 € u}.

From the above considerations and Lemma 3.4 we conclude that it is decid-
able whether or not the word (hN«v)*J(w(*)) is periodic, which proves (ii). If
(RNev)*J (k) is not a periodic word then from (ii) and Lemma 3.4 there exist no
numbers ny, ng € [0, Map—1], n1 # ng such that (hNev)*3 (1 +3EANw)R) (qup) €
[(WNav)*:d (B2 t3(EANa ) () (qyb)] which proves (iii).

It remains to prove 2. It is decidable whether or not two equivalence classes of
words: (hRNav)*3 (w(F)) € YU TaYuTpupuy and (RNae)*P(p(1)) ¢ CUT Y TUGUY
are equal. Namely:

(1) if ug % ue or up % ug then the equality does not hold;

(2) if u, and u. are equivalent or u, and ug are equivalent and the words
(RNav)*3 (w*)) and (hNae)*P(v(")) are periodic, then the two equivalence
classes are equal;

(3) if ug,u. are equivalent and wuyp, uq are equivalent then there exist words
ur, ur such that u,uy is a suffix of u.u. and ugruy is a prefix of uqguq. Hence
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(RNae )P (y(M)) € “UquLToYpTquruy and there exist words xr,yr of the
minimal length such that z,y,xy, € vru; and urr Yy, rqur € yruj. There
exist also zr,yr of the minimal length such that xr € ulzr and yr €
uyyr. Now taking into account that in the considered case at least one of
the words (hNer)*7 (w*)), (RNa<)*P((")) is not periodic we conclude that
the equivalence classes are equal if and only if z; = yr. This completes
the proof of the lemma. O

Example 4.10. We have Ly Ry = {aea’}, Myor = 1, Nyor = 2. For n = 0 there
is a word w = h0T3%2(qea’) = ae*ee®a’ for which firstys, z(h*8(a’)) = (e,0),
k = 50 and j = 0 points out the first position of e in h%(e). Lemma 4.9 implies
that (h?)*0(w®?) = “eeev is in 6Ly,

Let us introduce two sets

LyR={aube A" : Ic € EUIg, h(c) € A%aubA*,
aclp® ULY,belg UR™ ue Mg},

LRy ={aube A" : Ic € EU Ig, h(c) € A%aubA™,
a€l*UL™ belg URY, ue Mg}

From Lemmas 3.1 and 3.3 these sets are finite and effectively constructable.
Now let aub € LyR, a,b € A. There exists f € E U Ig, such that h(f) €
A*aubA*, u € M}. One can find the smallest integers sq, sp € [0,8A] such that
hse(a) € A*L 5w, h**(b) € wpR™A*, where wg, wy, € Mj.. Moreover h***"a(a) €
A*Lvah" (w,) where v, € M\ M*.

Let May, = lLem.(I.m.(vowauwy),7p), Nap = l.c.m.(rq, Myp). Hence for any
n € [0, Nap — 1] it holds A" F3EDNer (qub) € A*LiamR™ A*, where m € M\ M*.

Lemma 4.11. Let aub € Ly R. For arbitrary (but fivred) n € N we denote w =
RH3EAN (qub) and (c,i) = firstg z(h"H3EANa (b)), Let k € N point out the
position of the letter ¢ in w, that is, k =| h"t3EANa (qu) | +i. Finally let j € N
point out the first position of the letter ¢ in h™e(c).
1. The following statements are true
(i) (RNev)*J (w*)) is in 6Ly ;
(ii) among all the possible words w defined in the above manner for n € N
there exist exactly My, nonequivalent words and they are given by n €
[0, Muy — 1]. Hence there exist exactly My, mutually different equivalence
classes in 0Ly /o* generated by these words.
2. For aub, dve € Ly R denote w = h*T3EANav (qub) and v = h+H3EANae (dye),
It is decidable, whether or not two words (hNev)*J (w*)) and (hNae)*P(v(")) are

equivalent.  Hence it is decidable, whether or not two equivalence classes
[(hNer) = (wF))] and [(RN4e)*P(v(")] coincide.

Proof. Denote by t, = (BA)Nap+n—Sa, tp = ($4)Nap +n—sp for a fixed n. By the
definition of Ng; there exists a number ju; € N such that Ny, = japre. It is clear
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that h*(a) € A*aywq, a1 € L}, h*(b) € wpbi A*, by € R™ and if ¢ € [0, ry — 1]
then At (a1) € A* L4 hO (u;)h* (wi—1) - ... - K1 (uq)ht (ug), where u; € M.

The fact that v, € M \ M* implies that there exists j € [0, 7, — 1] such that
u; € M\ M*.

Now let y = h%(up,—1) - ... - RUab=Dratra=l(yq) where u; € Mj. Thus for p
large enough

hrtPNae (g) € A*LhahO (ug)... k0Tt (ug)hte (y) - ... - RP~EA =D Navtta ().
- p = EA) =D Naptta () (0= EA) Navtta (4 ),

Hence for g € N

(W) (w®)) € A*LihO (). A (uo)-

Rta(y) - ... - Bl9FBFA=EA =) Navtta (1)) (943G A) = (A =D Navta ().

. (g3 (#A)—(A)) Nap+ta (wa).“hn"”(g“l’S(#A)Nab (u)h(g+2(#A))Nab+tb (wp)-
: (hn+3<uA>Nab(b))(” AF

Note that according to Lemma 3.4 it holds for g > 4

RotSEAZGA mONaba () — p2EDNaw e () € o

where u is a primitive word.
Denoting

5 — ptat2(#A)Nap (wa)h/n"r?’(’iA)Nub (u)htb“l‘Q(’iA)Nab (wp).

Lemma 3.4 implies that

hg+3HA)—(#A)) Nap+ta (wa)hn+(g+3(ﬁA))Nub (u)h(g+2(uA))Nab+tb (wp) = 2.

Hence the sequence (hVe»)97 (w*)) converges to (hNev)*J (w*)) when g — oc.
As mentioned in the above there exists f € EUIg, such that h(f) € upaubug,
w € My, ur,ur € A*. This implies that from the sequence of equivalence classes
{(RNav)9 (R +Nab (41 )R+ Neb (qub)h"TNav (ug))} yen one can choose the sequence
of words with origins ¢ and all the words from the sequence are in Lj. We have
lim (hNab)QJ (w(k)) _w uz(hNab)*,j (htb+2(?iA)Nab (bl)(i)).

g—o0
The limit word is bi-infinite and is in L. Now observe that

Wuz(hNab)*vj(htb+2(ﬁA)Nab (bl)(i)) = VL MCEVR
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where
me = A" H3EANas () € (M U Mp)*
and

vy and ,UR:htb+2(ﬁA)Nab(wb)(hNab)*,j(htb+2(ﬁA)Nab(bl)(i))

are left-infinite and right-infinite words. According to Lemmas 4.1 and 4.5 these
words are in § Lj,. It implies finally that (hNev)*7 (w(¥)) is a pasted word, an element
of (5Lh

Taking into account that for every n € N any of the words in (i) is of the form
wyz(RNav )3 (Rt t2(E4)Na (1)) and that alphpor, (uz) = O the justification of
(ii) follows.

For the proof of the statement 2 consider two words: w = h"T3EANas (gqb)
and v = hMT3(#A)Nac (dve). As above there exist wq,2q,Vd, 24 such that w =
“rugzq (RNev )7 (Rt T2 Nas (5 Y)Y and v = Cugzg(hNee)*P(htet2(EA)Nae (o)1),

If w and v are equal then u, and ug have to be equal. If the last equality is
true then there exists a word uy such that ug,ur is a suffix of ugug. There exists
also a word ypr such that the length of yr is minimal and urzq € u,yr. From
Lemmas 3.3, 3.4 and properties of primitive words it follows that w = v if and
only if zr = yg and first (At +t2EANe () = first (htet2(EA)Nae (¢1). Hence the
decidability stated in 2 is proved. (I

Observation 4.12. The symmetric results for Lemma 4.11 hold for aub € LR,.

Example 4.13. We have Ly R = {aea}, Muyy = 2, Ngo = 2. For n = 0,1 there
are two words w = h9*382(aea) = ae*Beae® and w = h1+382(a) = be'®ebe?® for
which first g z(h*®(a)) = (a,0), k = 50 and j = 0 points out the first position of a in
h?(a) and b in h%(b) respectively. Lemma 4.11 implies that (h?)*%(w®9) = “eqe®
and (h?)*9(@OY) = “ebe* are in 6Ly,

The following two lemmas are from the paper Matyja [7]

Lemma 4.14 [7]. Let a € R" and w € A* be a primitive word. Let j € N denote
the first position of a in h"(a).
(R")*7(a®) = wDw if and only if
(1) h2EA7(a) = ugauyaz, where a does not occur in ugu;
(i) hEA=D" (quy) € w;
(iii) A" (w) € whw.

Now let us denote by P a subset of primitive words defined as follows.
P = {w € A*|w primitive, firstgr z(w) = (a,t), (h")**(a?) = w®w* } .

The set P = Ure[l,ﬁ 4 P" is finite and effectively constructable what can be derived
from Lemmas 3.1, 3.2 and the previous lemma.
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Lemma 4.15 [7]. Let v € P" and h : A* — A* be a morphism.

(i) r is the smallest integer, such that h"(v) € vto.

(ii) Let a € R™ Nalphg(v) and t € N point out the position of the letter a in
the word h"=(a()). Then the words (h™=)*!(a(®) and y Oz (yx)* are equal
modulo the origin, where v = xy.

Observation 4.16. The symmetric results for Lemma 4.15 holds for a € L".

From Lemmas 3.1 and 3.2 the set LR = {aub € A* : 3c € EU Ig, h(c) €
AfaubA*, a € I;* UL™, b € I UR™, u € Mj} is finite end effectively con-
structable.

For aub € LR there exist the smallest integers sq, sp € [0,§A4] such that h%*(a) €
A*LTew,, hov(b) € wpR™ A*, where wq, wy € M.

Let Ny = lem.(rq, Lom.(wquwy),rp). For any n € [0, Ng — 1] it holds
R H3EANa (qub) € A*aymby A*, kP H3EAN (h) € myby A*, where ay € L',
by € R™, m, my € (MU Mg)* and mpby is a suffix of mby. Let p =| aymb; |.
Now we are ready to formulate

Lemma4.17. Letaub € LR, a,b € A. For an arbitrary (but fixred) n € [0, Nyp—1]
we denote w = h"3EANa (qub) and (by,i) = firstg (A" T3EANa (b)), Let k € N
point out the position of the letter by in the word w, that is, k =| h"t3EANa (gy,) |
+i. Finally let j € N point out the first position of the letter by in h™av(by).
1. Ny is the smallest integer such that (hNev)*J (w*) = (RNev )7 ((a;mby)P)) €
SLy, and the equivalence class of (h™Nav)*J (wk) is in 6Ly, /o*.
2. If z is a primitive word then the following conditions are equivalent:

(i) (RNev)*I((a1mby)P)) € “zz2*;

(i) there exists a number r € [1,8A] and the word v € P" such that aymby is

a factor of vv and v = z.

3. It is decidable, whether or not the equivalence classes of the periodic words
characterized in 1 are equal.

Proof. From Lemmas 3.4 and 3.5 and the construction of the word
(RNav)*J(wk), repeating the argumentation from Lemmas 4.1, 4.9 and 4.11 we
prove the statement 1.

Now assume 2(i). Lemma 4.1 and the fact that b, € R™ imply that
(hNav)*3 (b)) = 222 where x is a suffix of z. Similarly (h™)*7(b;) = z22*. Hence
there exists a primitive word v such that v & z and xz is a prefix of vv and v € P™.
The word a;mb; is a factor of vv and in consequence 2(ii) follows from 2(i).

Assume now 2(ii). Taking into account the fact that b; € R™ and on the basis
of Lemma 4.15 we obtain (h")*7(b1) = yvv* where y is a suffix of v. Hence there
exists a word u such that v ~ v and yv is a prefix of wu. It is straightforward to
observe that (h’“b)*’j (b1) = uu®. From the description of a;mb; we conclude that
aimb; is a factor of uu.

According to Lemma 4.14 it follows that h™(u) € utu. Since 7, is a divisor
of N, we conclude that the word h*Nev (a;mb,) is a factor of hiNeo (uu) € utu for
i € N. Hence the equality (hNev)*J((a3mb;)P)) = “uuu® follows directly from the
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statement 1. Just from the assumptions u = z, and there exists a word z = viavy
such that (ANev)*7((aymby)P)) € “zz2%.

The statement 3 follows according to the fact that two periodic words are in
relation if and only if their primitive periods are in relation.

This completes the proof of the lemma. (I

Lemma 4.18. Letaub € LR, a,b € A. For an arbitrary (but fixred) n € [0, Nop—1]
we denote w = h"3EANe (qub) and (by, i) = firstp z (A" F3EANar (b)), Let k € N
point out the position of the letter by in w, that is, k =| h" 3N (qy) | +i.
Finally let j € N point out the first position of the letter by in h™e*(by). For
cvd € LR, ¢,d € A we denote @ = hm3(#A) Nea (cvd) and let r be the counterpart
of k, p of j.
The following statements are true:
(1) {(ANar)*I (W)}, en is a set of Nap words in SLy;
(i) it is decidable, whether or not the words (hNe»)*3 (w®)) and (hNea)*» (@)
are equal;
(i) if (RNav)* (wk)), (RNea)=P(w(")) are two different words then their equiv-
alence classes are equal if and only if there exist s € [1,4A] and z € P"
such that

(hN“b)*’j (w(k)) , (thd)*’p (E(T)) € “Yzz2¥.

Proof. The statement (i) follows directly from Lemma 4.17.
Now observe that

(hN‘“’)*’j (w(k)) =wr, (almbl)(el) wr where e; =| aymby |

and

(hNCd)*’p (E(T)) =y (clndl)(@) v where es =|cind; |

for some one-sided infinite words wry,, wg,vr,vR, finite words m,n and letters
ai, bl, Ccy, dl.

From Lemma 3.3 and the proof of Lemma 4.17 the equality wy, (a4 mbl)(el)wR =
v (c1nd;)?)vg holds if and only if a;mb; = ¢;nd; which proves (ii).

For the proof of (iii) let us assume that words (hVe»)*7 (w(¥)) and (hNea)*? (")
are equal modulo the origin. First consider the case:

(WNer) ™ (w®) = wy, (@rmby) ) woerndyvp

(thd)*’p (E(T)) = wraymbiwg (clndl)(ez) VR

(%)

where wg € A*.
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If K = l.c.m.(Ngp, Neq), then there exists the smallest positive integer t €
N\ {0} such that

(htK)j ((a1mb1)(el)> = .. (a1mb1)(el) wocindy ...,

(htK)p ((c1nd1)(€2)) = ...aymbywy (Clndl)(ez)
Since h*¥ (v) = ...vwyv... then for k > 1 we have

(%) (htK)kJr1 (V) = .. VURVW 41 VUKD

where u; = wy, w41 = uvwpvu,; for i € {1,2,..,k — 1}

For every finite factor of (h*¥)*(v) considered as a finite word with the origin
fixed on by or dy there exists the number s € N\ {0} such that this word is a factor
of (h'¥)%(v) with the origin fixed on by or d; respectively (see Lem. 4.17). Hence
from Lemma 4.17 and the condition (%) above we have

(htK)*’j (vwlv(k)) = va(k)vR,
(htK)*’j (v(k)> = ’LUL’U(k)’UR,
(htK)*’p (v(”) = wrvMvp.

Since ht5 (v*)) = wFwyv..., (WP (v(M) = . wvwv(™... then by induction on
k we obtain

(htK)k (wa(k)) = ...'UUk;ka;Jrlv(k)Uk;...’
(htK)k-H (U(k)) _ 0 ® gy R
(htK)k—H (U(T)) = ---Uukvwk+1vukv(r)uk...

From the above, Lemmas 3.4 and 3.5 we conclude that for any
ie€{l,2,.., k} words v vwiy1 v u;, v uvw g vug are factors of (RtEY*d (U(k))
and vu;vw; 1 vuv") is a factor of (AH)*P(v(M).
Hence for k > 1 and every i € {1, 2, ..., k}
(%% %) UVWiH] = Wip10U;.

For every k > 1 there exist ny € N\ {O}such that

(htK)nk (v(”) = . VURVW 1 VU0 T U VW VUL
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The above observations and properties (xx), (x * %) imply that for every k > 1

(5™ () =

w1 (vw)? (vwg_1)? ...(vwl)ka(T) (wlv)Qk

2
o (wp—10)? (W) wig 1 v..

Hence
(hE Y (u()) = (vw1)o? ") (wyv)

and

(ANea) P (@(7')> = (BNea)™" (U(7')> =% (vw v M w; (vw:)*,

(hN“b)*’j (w(k)) =wpvFyp = (vwl)v(k)wl (vwq)®.

Thus there exists a primitive word z, such that vw; € z;‘ . By Lemma 4.17 there
exist a number r € [1,1A] and a word z € P" such that z = z,. It is not difficult
to observe that the similar proof works when we drop the assumption (). O

Example 4.19. We have LR = {d’ea}, Nyq = 2. For n = 0,1 there are two words
w = h9*382(d/ea) = e®Ba’eae®® and W = h1T382(d/ea) = e ebe?? for which
firstg z(h*®(a)) = (a,0) and firstg z(h*?(a)) = (b,0) respectively, k = 50 and
j = 0 points out the first position of a in h%(a) and the first position of b in h?(b).
Lemma 4.18 implies that (h?)*%(w®") = “ea’eae” and (h?)*0 (@) = “eb/ebe
are in 0 Ly,.

5. MAIN RESULT

Now we are able to formulate and prove the main result of our paper charac-
terizing pasted words, that is, words in 6 Lj,. Remind that the set of pasted words
is a subset of the boundary set OL; and both are in the metric space (,d). In
presented below theorem we consider equivalence classes of pasted words so we
work in ©/c*. In the sequel [w] denotes an equivalence class of a word w € Q.

Theorem 5.1. Let h: A* — A* be a morphism.

1. For any equivalence class [w] € 0Ly /o* there exists a representant of the
class such that it is a fixed point of h'Y for some effectively computable
integer N and is constructable as an infinite iterate of kY on some letter
in A.

2. It s decidable whether or not the equivalence classes [w] and [v] in 0Ly /o™
are equal.

3. The set 5Ly /o* is finite. Hence there exists an algorithm describing effec-
tively (in the sense of 1) the set §Lp/o*.
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Proof. Assume first that w € OLy, is right-infinite and that a sequence {z;};en of
words of Lj converges to w. Now there are two possibilities:

(i) firstg(w) =0, then w = mauy, where m € M* and firstas, z(w) = (a,e).
In this case denote w, = (mau;)(®). Notice that w, € [w];

(ii) firstgz(w) = (b, f) then w = mbug, where m € (M U Mpg)*. In this case
denote wy, = (mbuy)H). Notice that wy, € [w].

For s € {a,b} one can choose from {[z]}ien @ sequence {z{}ien of words with
origins which converges to w,s. Hence there exists for s € {a,b} a subsequence
{2; }ren such that z7 € hntner(e) where ¢ € EUIR, ng € N, and numbers n € N,
r € [1, $A] are the smallest ones such that firstp zh" 77 (¢) = firstg zh" U+ (¢)
for each j € N. Now Lemmas 4.1 and 4.5 imply that there exists the smallest
integer p € N\ {0} such that the sequence yi = h"T*P"(c) converges to ws in
both of the above cases. Again from Lemmas 4.1 and 4.5 it follows that there
exists an integer N, such that N is a divisor of p-r and wy is a fixed point of h?.
That is w, = (hY)*®(w,) where € =| h(a) | —1 and similarly for w.

By symmetry we obtain the same result for left-infinite word w € 0Ljy. This
lead us to the conclusion that all one-sided infinite words in 0Ly, (and in dLy) are
described by Lemmas 4.1 and 4.5 and imply for this type of words the statement
1 of the theorem.

Now assume that w € 0Ly is a pasted word. Hence w = umv where m €
(M U Mg)* and u,v € 9L}, are left and right infinite, respectively. It means that
hNi(us) = us and hN2(v,) = v, for some uy a word in [u] such that s is the
origin of w and v, in [v] with r as the origin and for some positive integers N7, Na.
According to Lemma 3.4 there exists the smallest integer N € N\ {0} such that
hN(m) = m and puting l.c.m(Ny, N, N) = L we have:

(i) wmu is a fixed point of A% if the origin of umv is equal r € E and if s € My
(Lem. 4.11);
(ii) umwo is a fixed point of h” if the origin of umuv is equal s in all other cases.

Thus all pasted words in Ly, are described by Lemmas 4.9, 4.11, 4.17 and 4.18,
what finishes the proof of the statement 1.

The statement 2 and 3 follows directly from Lemmas 3.1, 3.3, 4.1, 4.5, 4.9, 4.11,
4.14 and 4.17, 4.18 what finishes the proof of the theorem. (I

Example 5.2. Taking for example an equivalence class [“eb’ebe”] € 6Ly /c* and
“eb'ebe” € [“ebebe®] such that the origin is set on the e between b’ and b observe
that h2(“eb'ebe?) = “eb'ebe® and (h2)*°(Veb?) = “eb'ebe. On the base of all
examples we have JL;, equals

!/ w w w w W w W w W

{ae¥ be?, Yea’, “eb ec”, “ee, “Yeee?, Yeae”, Yebe”, Yea'eae®, “eb'ebe’}-
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