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EQUATIONAL DESCRIPTION
OF PSEUDOVARIETIES OF HOMOMORPHISMS ∗

Michal Kunc1

Abstract. The notion of pseudovarieties of homomorphisms onto fi-
nite monoids was recently introduced by Straubing as an algebraic
characterization for certain classes of regular languages. In this paper
we provide a mechanism of equational description of these pseudovari-
eties based on an appropriate generalization of the notion of implicit
operations. We show that the resulting metric monoids of implicit
operations coincide with the standard ones, the only difference being
the actual interpretation of pseudoidentities. As an example, an equa-
tional characterization of the pseudovariety corresponding to the class
of regular languages in AC0 is given.
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Introduction

Starting from Schützenberger’s characterization of star-free languages in [6],
several results describing certain combinatorial properties of regular languages
by means of their syntactic semigroups were published. Later Eilenberg [3] gave
a general framework for these results by revealing the correspondence between
varieties of regular languages, i.e. classes of regular languages closed under boolean
operations, quotients and pre-images under homomorphisms, and pseudovarieties
of finite monoids, i.e. classes of finite monoids closed under taking homomorphic
images, submonoids and finite direct products.
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But many naturally arising classes of regular languages fail to satisfy some of
the axioms of varieties, so in order to apply standard techniques of logic and al-
gebra one needs to consider appropriate generalizations of the notion of varieties.
A useful tool appears to be the notion of positive varieties introduced by Pin [4]
arising by dropping the requirement on closure under complements. Recently
Straubing [7] considered classes of regular languages which satisfy all axioms of
varieties except they are closed under pre-images only for a certain class of homo-
morphisms. He suggested a generalization of pseudovarieties of finite monoids to
so-called pseudovarieties of homomorphisms from free finitely generated monoids
onto finite monoids and proved an Eilenberg-type correspondence for these classes.
The consideration of homomorphisms instead of plain monoids allows to capture
also some properties of languages whose validity depends not only on the syntactic
monoid of a language but also on its syntactic homomorphism, i.e. one takes into
account which elements of the monoid correspond to the letters of the alphabet.
Straubing also dealt with logical characterizations of these pseudovarieties. In this
paper we provide their equational counterpart using appropriate generalizations
of the notions of implicit operations and pseudoidentities.

The paper is structured as follows. First we recall the definition of pseudovari-
eties of homomorphisms; for a more extensive description of the concept and for
several examples see [7]. In Section 2 we introduce generalized implicit operations
and we show that the arising metric monoids of implicit operations coincide with
the standard ones; this means that one can use the standard syntax for writing
generalized pseudoidentities, which differ from the standard ones just by their in-
terpretation. In this setting the theory of implicit operations, pseudoidentities
and free profinite structures can be developed analogously to the standard case.
Since most of the arguments are very similar, we only justify our claim that the
notion of pseudoidentities introduced in this paper is the appropriate one by prov-
ing a corresponding generalization of the fact that pseudovarieties are precisely
classes of finite monoids definable by pseudoidentities (which is the monoid ver-
sion of Reiterman’s famous theorem [5]). This is the aim of Section 3.

In [7] Straubing described a way to produce a pseudovariety of homomorphisms
from a standard pseudovariety of semigroups by considering stable subsemigroups
of homomorphisms. For instance, the class of regular languages in AC0 corre-
sponds to a pseudovariety created in this way. In Section 4 we show how to obtain
a basis of pseudoidentities for every such pseudovariety from a basis of pseudoiden-
tities of the original pseudovariety of semigroups.

For the necessary background on the theory of pseudoidentities the reader is
referred to [1].

1. Pseudovarieties of Homomorphisms

In this section we recall the concept of pseudovarieties of homomorphisms in-
troduced in [7].
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Let us consider a fixed set A of finite sets and refer to elements of A as finite
alphabets. Let C be an arbitrary category of homomorphisms between free monoids
over finite alphabets, i.e. its objects are all monoids of the form Σ∗, where Σ is
a finite alphabet (from A), and for each pair of alphabets Σ, Ξ a set C(Σ∗,Ξ∗) of
monoid homomorphisms from Σ∗ to Ξ∗ is given in such a way that idΣ∗ ∈ C(Σ∗,Σ∗)
for every Σ and if f ∈ C(Σ∗,Ξ∗) and g ∈ C(Ξ∗,Γ∗) then their composition gf
belongs to C(Σ∗,Γ∗). Throughout the paper, C always denotes such a category of
homomorphisms and H denotes the largest of these categories, where H(Σ∗,Ξ∗)
is the set of all homomorphisms from Σ∗ to Ξ∗ for every Σ and Ξ.

Note 1.1. We assume that all finite alphabets together form a set in order to be
able to characterize every generalized pseudovariety by a set of pseudoidentities; if
we had a proper class of alphabets, there would exist generalized pseudovarieties
which can be defined only using a proper class of pseudoidentities.

The following definition of C-pseudovarieties mimics the definition of standard
pseudovarieties — the class should be closed under taking factors, substructures
(depending on C) and finite direct products.

Let M be the class of all surjective homomorphisms ϕ : Σ∗ � M , where Σ is
a finite alphabet and M is a finite monoid.

Note 1.2. We use the same notation for a mapping no matter what its co-
domain is since it will be always clear from the context. In particular, if we
talk about a non-surjective homomorphism ϕ : Σ∗ → M as an element of M, we
actually mean the corresponding surjective homomorphism from Σ∗ onto im (ϕ).

Definition 1.3. A subclass V of M is called a C-pseudovariety whenever it sat-
isfies the following conditions:

(1) If ϕ : Σ∗ � M belongs to V and α : M � N is a surjective homomor-
phism, then αϕ ∈ V.

(2) If ϕ : Σ∗ � M belongs to V and f ∈ C(Ξ∗,Σ∗), then also the homomor-
phism ϕf : Ξ∗ � im (ϕf) ⊆M is in V.

(3) If n is a non-negative integer and homomorphisms ϕi : Σ∗ � Mi for
i = 1, . . . , n belong to V, then so does the homomorphism

(ϕ1, . . . , ϕn) : Σ∗ � im (ϕ1, . . . , ϕn) ⊆M1 × · · · ×Mn .

The meaning of this definition for particular values of C is discussed in [7]; let us
only mention that H-pseudovarieties can be viewed as standard monoid pseudova-
rieties, and for the category C containing exactly non-erasing homomorphisms,
C-pseudovarieties can be viewed as standard pseudovarieties of semigroups.

2. Implicit Operations

The basic concept of the equational theory of pseudovarieties is the notion of
implicit operations, which consist of operations of a given arity defined on every
finite monoid and invariant under monoid homomorphisms. More precisely, for
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an arbitrary positive integer k, a k-ary implicit operation is a system of mappings
τ = (τM : Mk → M), for all finite monoids M , such that for every monoid
homomorphism α : M → N the diagram

Mk

τM

��

αk // Nk

τN

��
M α

// N

commutes, where αk(e1, . . . , ek) = (α(e1), . . . , α(ek)) for any e1, . . . , ek ∈ M .
We denote the set of all k-ary implicit operations by Ik. A prominent role among
implicit operations is played by term operations; in fact, every k-ary implicit op-
eration can be expressed as a limit of k-ary term operations.

In the case of C-pseudovarieties the situation is similar, with only two major
differences:

– An implicit C-operation consists of partial operations whose domains are
the sets of so-called C-admissible tuples.

– Arities of implicit C-operations are arbitrary finite alphabets; in general,
implicit C-operations for arities of the same cardinality can be different.

Let Γ be a finite alphabet. For a homomorphism ϕ : Σ∗ � M in M we denote
by MΓ

ϕ,C the set {ϕι | ι ∈ C(Γ∗,Σ∗)} consisting of homomorphisms from Γ∗ to M
and call its elements C-admissible Γ-tuples for ϕ. Notice that if the alphabet
Γ = {γ1, . . . , γk} has exactly k elements, then homomorphisms from Γ∗ to M
correspond to k-tuples of elements of M , so we can conceive MΓ

ϕ,C as a subset
of Mk; every ϕι ∈MΓ

ϕ,C represents the k-tuple (ϕι(γ1), . . . , ϕι(γk)) ∈Mk.
For two homomorphisms ϕ : Σ∗ � M and ψ : Ξ∗ � N in M, a monoid

homomorphism α : M → N is termed a C-admissible morphism from ϕ to ψ if
there exists f ∈ C(Σ∗,Ξ∗) making the following diagram commute:

Σ∗

ϕ
����

f // Ξ∗

ψ
����

M α
// N

If α is a C-admissible morphism from ϕ to ψ, then the rule αΓ(ϕι) = αϕι, for
each ι ∈ C(Γ∗,Σ∗), determines a mapping from MΓ

ϕ,C to NΓ
ψ,C. Indeed, as there

exists a homomorphism f ∈ C(Σ∗,Ξ∗) satisfying αϕ = ψf , we have αΓ(ϕι) =
αϕι = ψfι ∈ NΓ

ψ,C since fι ∈ C(Γ∗,Ξ∗). When we understand MΓ
ϕ,C and NΓ

ψ,C as
subsets of Mk and Nk respectively, the mapping αΓ is nothing but the appropriate
restriction of αk. Notice that because C is a category, we obtain for every C
a category whose objects are the elements of M and whose morphisms are the
C-admissible morphisms; for C = H this category is equivalent to the category
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of finite monoids and for C consisting of all non-erasing homomorphisms, it is
equivalent to the category of finite semigroups.

Now we are ready to define implicit C-operations.

Definition 2.1. Let Γ be an arbitrary finite alphabet. A system of mappings
π = (πϕ : MΓ

ϕ,C → M)ϕ∈M, for all homomorphisms ϕ : Σ∗ � M in M, is called
a Γ-ary implicit C-operation if for every C-admissible morphism α from ϕ : Σ∗ � M
to ψ : Ξ∗ � N the following diagram commutes:

MΓ
ϕ,C

πϕ

��

αΓ
// NΓ

ψ,C

πψ

��
M α

// N

The set of all Γ-ary implicit C-operations is denoted IC
Γ ; we write simply IΓ

instead of IH
Γ .

Note 2.2. Notice how the simplification of notation introduced in Note 1.2 applies
to implicit C-operations: for a Γ-ary implicit C-operation π and homomorphisms
ϕ : Σ∗ → M and χ : Γ∗ → M , in the expression πϕ(χ) both mappings ϕ and χ
are considered to have co-domain im (ϕ).

Next we introduce a metric on IC
Γ . Consider two Γ-ary implicit C-operations

π = (πϕ)ϕ∈M and ρ = (ρϕ)ϕ∈M. Let

r = min{|M | | ∃ϕ ∈ M, ϕ : Σ∗ � M,πϕ 6= ρϕ} ,

where |M | denotes the cardinality of M , and define d(π, ρ) = 2−r. Then clearly
d(π, σ) ≤ max{d(π, ρ), d(ρ, σ)} for arbitrary π, ρ, σ ∈ IC

Γ and so d is an ultrametric
on IC

Γ .
Let us now discuss the above definitions in the case of the category H.

Remark 2.3. Let k be a positive integer and let Γ = {γ1, . . . , γk} be a k-element
alphabet. Then the set MΓ

ϕ,H contains in fact all k-tuples of elements of M , every
monoid homomorphism α is H-admissible and the mapping αΓ is the same as αk.
Therefore the commutative diagrams defining standard implicit operations and
implicit H-operations coincide and we get a natural one-to-one correspondence
between Ik and IΓ. More precisely, the implicit H-operation π corresponding to
an implicit operation τ is given by the rule πϕ(ϕι) = τM (ϕι(γ1), . . . , ϕι(γk)) for
every ϕ : Σ∗ � M in M and every homomorphism ι : Γ∗ → Σ∗.

Moreover, if we consider the point-wise multiplication on both Ik and IΓ, we
obtain isomorphic monoids. And because the metric just introduced on IΓ also
coincides with the standard metric on Ik, we can reformulate well-known results
about Ik using the notation of IΓ as follows.

First, the metric space IΓ is compact (see Prop. 3.4.6 in [1]) and the multipli-
cation on IΓ is a uniformly continuous mapping, hence IΓ is a metric monoid. If
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we further consider the injective monoid homomorphism νΓ : Γ∗ → IΓ sending
each Γ-ary monoid term t ∈ Γ∗ to the implicit H-operation corresponding to the
term operation defined by t, we obtain the so-called free profinite monoid over Γ.
In particular, for every finite monoid M (equipped with the discrete topology)
and every homomorphism ϕ : Γ∗ � M in M there exists a unique continuous
homomorphism µ : IΓ →M such that µνΓ = ϕ; this homomorphism is defined by
the rule µ(π) = πϕ(ϕ).

In the following proposition we show that for every category C the metric space
IC

Γ is naturally isometric to the standard space of implicit operations. In fact,
from an implicit H-operation we obtain an implicit C-operation by restricting
to C-admissible Γ-tuples. Conversely, in order to extend an implicit C-operation
to the whole MΓ

ϕ,H, we have to consider for each Γ-tuple of elements of M the
homomorphism from Γ∗ onto the submonoid of M generated by these elements
and use the fact that ψ = ψ idΓ∗ ∈ NΓ

ψ,C for every homomorphism ψ : Γ∗ � N
in M.

Proposition 2.4. Let Γ be a finite alphabet. Then the mappings iCΓ : IΓ → IC
Γ

and jCΓ : IC
Γ → IΓ, defined for every implicit H-operation π ∈ IΓ, every implicit

C-operation ρ ∈ IC
Γ and for homomorphisms ϕ : Σ∗ � M in M, ι ∈ C(Γ∗,Σ∗) and

κ ∈ H(Γ∗,Σ∗) by the rules

iCΓ(π)ϕ(ϕι) = πϕ(ϕι)

jCΓ(ρ)ϕ(ϕκ) = ρϕκ(ϕκ) ,

are mutually inverse isometries of the metric spaces IΓ and IC
Γ .

Proof. It is plain to verify that iCΓ(π) is indeed an implicit C-operation. Let
us prove that jCΓ(ρ) is an implicit H-operation for every implicit C-operation ρ.
Consider any ϕ : Σ∗ � M and ψ : Ξ∗ � N in M and a homomorphism
α : M → N . We have to prove α(jCΓ(ρ))ϕ = jCΓ(ρ)ψαΓ. In order to do this, let
κ : Γ∗ → Σ∗ be an arbitrary homomorphism. Then α

(
jCΓ(ρ)ϕ(ϕκ)

)
= α(ρϕκ(ϕκ))

and jCΓ(ρ)ψ(αΓ(ϕκ)) = jCΓ(ρ)ψ(αϕκ) = ραϕκ(αϕκ) = ραϕκ
(
(α|im (ϕκ))

Γ(ϕκ)
)
.

Since α|im (ϕκ) is a C-admissible morphism from ϕκ to αϕκ (the identity on Γ∗

is a corresponding homomorphism from C), the diagram

(im (ϕκ))Γϕκ,C

ρϕκ

��

(α|im (ϕκ))
Γ

// (im (αϕκ))Γαϕκ,C

ραϕκ

��
im (ϕκ)

α|im (ϕκ)

// im (αϕκ)

commutes, so the last terms in the above calculations are equal. Therefore we
have α(jCΓ(ρ)ϕ(ϕκ)) = jCΓ(ρ)ψ(αΓ(ϕκ)).

Now we verify iCΓj
C
Γ = idIC

Γ
. For any ρ ∈ IC

Γ and homomorphisms ϕ : Σ∗ � M

in M and ι ∈ C(Γ∗,Σ∗) we calculate (iCΓj
C
Γ(ρ))ϕ(ϕι) = jCΓ(ρ)ϕ(ϕι) = ρϕι(ϕι) =
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ρϕ(ϕι), where the final equality follows from the fact that the inclusion of im (ϕι)
into M is a C-admissible morphism from ϕι to ϕ due to ι ∈ C(Γ∗,Σ∗). Similarly
one can also show jCΓi

C
Γ = idIΓ . Altogether, the mappings iCΓ and jCΓ are mutually

inverse bijections.
To complete the proof it remains to verify that these bijections preserve metric.

Because for π, π′ ∈ IΓ the equality πϕ = π′
ϕ immediately implies iCΓ(π)ϕ = iCΓ(π′)ϕ,

we obtain d(iCΓ(π), iCΓ(π′)) ≤ d(π, π′). In order to establish the converse inequality,
let ρ, ρ′ ∈ IC

Γ and assume ρψ = ρ′ψ for every ψ : Ξ∗ � N in M with |N | ≤ n.
Then for any homomorphisms ϕ : Σ∗ � M in M with |M | ≤ n and κ ∈ H(Γ∗,Σ∗)
one gets jCΓ(ρ)ϕ(ϕκ) = ρϕκ(ϕκ) = ρ′ϕκ(ϕκ) = jCΓ(ρ′)ϕ(ϕκ) because |im (ϕκ)| ≤ n.
Therefore jCΓ(ρ)ϕ = jCΓ(ρ′)ϕ and hence d(jCΓ(ρ), jCΓ(ρ′)) ≤ d(ρ, ρ′). �

The following corollary is a direct consequence of Proposition 2.4 and the com-
pactness of IΓ provided by Remark 2.3.

Corollary 2.5. The metric space IC
Γ is compact. �

Proposition 2.4 also shows that for any category C every implicit C-operation
can be obtained as the restriction of a unique implicit H-operation to C-admissible
Γ-tuples. Among other things, this allows us to perform substitutions of implicit
C-operations in the usual way by the rule (π(π1, . . . , πk))ϕ = π((π1)ϕ, . . . , (πk)ϕ),
for π ∈ Ik and π1, . . . , πk ∈ IC

Γ , thereby defining a Γ-ary implicit C-operation
π(π1, . . . , πk). Notice that for every π ∈ Ik the resulting k-ary operation on IC

Γ

is uniformly continuous. In particular, this determines a metric monoid structure
on IC

Γ , where (π · ρ)ϕ(ϕι) = πϕ(ϕι) · ρϕ(ϕι), and the mappings iCΓ and jCΓ become
isomorphisms of the metric monoids IΓ and IC

Γ .

3. Pseudoidentities

Definition 3.1. For a finite alphabet Γ, a Γ-ary C-pseudoidentity is a pair of
Γ-ary implicit C-operations, formally written π .= ρ, where π, ρ ∈ IC

Γ . We say that
a homomorphism ϕ : Σ∗ � M in M satisfies a C-pseudoidentity π .= ρ and write
ϕ |=C π

.= ρ whenever πϕ = ρϕ. For a set of C-pseudoidentities T , the class of all
homomorphisms in M satisfying all C-pseudoidentities in T is denoted ModC(T ).

For any subclass V of M and a finite alphabet Γ, we write

TV
Γ = {(π, ρ) ∈ (IC

Γ)2 | ∀ϕ ∈ V : ϕ |=C π
.= ρ} ,

i.e. TV
Γ is the set of all Γ-ary C-pseudoidentities satisfied by all homomorphisms

belonging to V. It is clear that TV
Γ is a congruence of the monoid IC

Γ . We
denote by νV : IC

Γ � IC
Γ/T

V
Γ the natural projection homomorphism to the factor-

monoid. If we define a metric on IC
Γ/T

V
Γ by the usual formula d(πTV

Γ , ρT
V
Γ ) = 2−r,

where r = min{|M | | ∃ϕ ∈ V, ϕ : Σ∗ � M,πϕ 6= ρϕ}, then νV is easily seen to be
continuous and therefore IC

Γ/T
V
Γ is compact by Corollary 2.5. Finally denote

νV
Γ = νViCΓνΓ : Γ∗ → IC

Γ/T
V
Γ .
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Lemma 3.2. Let V be a subclass of M and ϕ : Σ∗ � M be a homomorphism
in M such that ϕ |=C π

.= ρ for every (π, ρ) ∈ TV
Σ . Then there exists a unique

continuous homomorphism µV : IC
Σ/T

V
Σ →M satisfying µVν

V
Σ = ϕ; it is given by

the formula µV(πTV
Σ ) = πϕ(ϕ).

Proof. Due to Remark 2.3 and Proposition 2.4 there exists a unique continuous
homomorphism µC : IC

Σ → M such that µCi
C
ΣνΣ = ϕ holds, namely µC = µjCΣ.

Then µC(π) = πϕ(ϕ) for every π ∈ IC
Σ by the rules for µ and jCΣ given in Remark 2.3

and Proposition 2.4 respectively. Therefore the assumption of the lemma implies
ker νV = TV

Σ ⊆ ker µC and so the formula in the statement of the lemma indeed
defines a homomorphism µV : IC

Σ/T
V
Σ → M satisfying µVν

V
Σ = ϕ. In order

to prove that µV is continuous, take any subset C ⊆ M and let us show that
µ−1
V (C) is closed. Since µC is continuous, the set µ−1

C (C) ⊆ IC
Σ is closed. Because

IC
Σ is compact due to Corollary 2.5, this set is also compact. Hence µ−1

V (C) =
νV(µ−1

C (C)) is compact and consequently closed as well.
The uniqueness of µV is clear from the uniqueness of µC . �
Now we are ready to prove that C-pseudovarieties are exactly classes of homo-

morphisms definable by C-pseudoidentities.

Theorem 3.3. Let V be a subclass of M. Then V is a C-pseudovariety if and
only if V = ModC(T ) for some set of C-pseudoidentities T .

Proof. “⇐=” First we prove that the class ModC(T ) is closed under factors. Let
a homomorphism ϕ : Σ∗ � M in M satisfy a Γ-ary C-pseudoidentity π .= ρ and let
α : M � N be a surjective homomorphism. Then α is a C-admissible morphism
from ϕ to αϕ, having the identity on Σ∗ as a corresponding homomorphism from C.
Therefore for every ι ∈ C(Γ∗,Σ∗) we have παϕ(αϕι) = παϕα

Γ(ϕι) = απϕ(ϕι) =
αρϕ(ϕι) = ραϕα

Γ(ϕι) = ραϕ(αϕι), which shows that αϕ satisfies π .= ρ.
If ϕ : Σ∗ � M satisfies a C-pseudoidentity π .= ρ and f ∈ C(Ξ∗,Σ∗), then the

inclusion of im (ϕf) into M is a C-admissible morphism from ϕf to ϕ and it is
easy to see that ϕf |=C π

.= ρ. Hence ModC(T ) is closed under substructures.
The situation with products is equally simple because the C-admissibility of

the projections from (ϕ1, . . . , ϕn) to ϕi is testified by the identity homomorphism
on Σ∗.

“=⇒” Let V be an arbitrary C-pseudovariety and let the set T consist of all
C-pseudoidentities satisfied by all homomorphisms belonging to V. We will prove
that V = ModC(T ). The inclusion V ⊆ ModC(T ) is trivial. So take any homo-
morphism ϕ : Σ∗ � M in ModC(T ) and consider the unique continuous homo-
morphism µV : IC

Σ/T
V
Σ →M satisfying µVν

V
Σ = ϕ, whose existence is guaranteed

by Lemma 3.2. Since µV is a continuous mapping from a compact metric space to
a finite discrete space, there exists a positive real number d0 such that for every
π, ρ ∈ IC

Σ the inequality d(πTV
Σ , ρT

V
Σ ) ≤ d0 implies µV(πTV

Σ ) = µV(ρTV
Σ ). Let r

be a positive integer satisfying 2−r ≤ d0 and let V be a set of representatives of
all isomorphism classes of homomorphisms in V of the form ψ : Σ∗ � N where
|N | ≤ r (i.e. for every homomorphism ψ : Σ∗ � N in V such that |N | ≤ r there
exists a homomorphism ψ′ : Σ∗ � N ′ in V and a monoid isomorphism α : N ′ → N
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satisfying ψ = αψ′). Then the homomorphism

χ = (ψ)ψ∈V : Σ∗ � im χ ⊆
∏

ψ∈V
im ψ

belongs to V as well because V is finite. Therefore Lemma 3.2 can be applied to χ
and we denote by µV the unique continuous homomorphism from IC

Σ/T
V
Σ to im χ

satisfying µVν
V
Σ = χ.

In order to verify ϕ ∈ V it is enough to show that ker µV ⊆ ker µV; indeed, then
µV = αµV for a surjective homomorphism α : im χ � M and therefore ϕ = αχ is
a factor of χ. Let π, ρ ∈ IC

Σ satisfy µV(πTV
Σ ) 6= µV(ρTV

Σ ). From the definition of r
we know that there exists a homomorphism ψ : Ξ∗ � N in V with |N | ≤ r which
does not satisfy the C-pseudoidentity π .= ρ. In other words, there is ι ∈ C(Σ∗,Ξ∗)
such that πψ(ψι) 6= ρψ(ψι). Hence the homomorphism ψι : Σ∗ � im (ψι) ⊆ N
belongs to V and because |im (ψι)| ≤ r, it is isomorphic to an element of V .
If we denote by p the projection homomorphism from im χ to im (ψι), then we
can use the C-admissibility of p and of the inclusion morphism from ψι to ψ and
the formula for µV given in Lemma 3.2 to calculate p(µV(πTV

Σ )) = pπχ(χ) =
πψιp

Σ(χ) = πψι(ψι) = πψ(ψι) and analogously p(µV(ρTV
Σ )) = ρψ(ψι), which

shows µV(πTV
Σ ) 6= µV(ρTV

Σ ). �

Let us conclude this section by considering relationships between C-pseudo-
identities of different arities. First, observe that if the category C contains all
isomorphisms, then for arbitrary k-element alphabets Γ and ∆, as soon as we fix
some bijection between them, the setsMΓ

ϕ,C andM∆
ϕ,C are naturally isomorphic and

therefore there is a one-to-one correspondence between Γ-ary and ∆-ary implicit
C-operations preserving validity of C-pseudoidentities, so it is enough to consider
only k-ary implicit C-operations for positive integers k.

Notice that for a Γ-ary H-pseudoidentity π
.= ρ, to be satisfied as a Γ-ary

C-pseudoidentity means to hold on C-admissible Γ-tuples. In particular, if D ⊆ C
then ϕ |=C π

.= ρ implies ϕ |=D π
.= ρ. For example, if the category C consists

exactly of literal homomorphisms, then a k-ary C-pseudoidentity has to be verified
on all k-tuples of images of letters under ϕ; if C contains precisely injective homo-
morphisms, a k-ary C-pseudoidentity has to be verified on images of all k-element
codes.

Since Mk+1 = Mk ×M , every standard k-ary implicit operation τ determines
a (k + 1)-ary implicit operation τ ′ by the rule τ ′M (e1, . . . , ek, ek+1) = τM (e1, . . . , ek)
for e1, . . . , ek+1 ∈ M and this construction preserves validity of pseudoidentities.
But in general there is no such connection between Mk

ϕ,C and Mk+1
ϕ,C . Let us

demonstrate this by an example.

Example 3.4. Let the category C consist of all injective homomorphisms and let
ϕ : Σ∗ � M in M satisfy the binary C-pseudoidentity xy

.= x. Then ϕ satisfies
also the binary C-pseudoidentity x2 .= x. Indeed, we can consider the injective
homomorphisms f, g : {x, y}∗ → {x, y}∗ defined by the rules f(x) = x2, f(y) = y,
g(x) = x and g(y) = xy; then for every injective homomorphism ι : {x, y}∗ → Σ∗,



252 M. KUNC

the compositions ιf and ιg are injective too and so we can use the equality of the
term operations xy and x on ϕιf and ϕιg to calculate

ϕι(x2) = ϕιf(x) = ϕιf(xy) = ϕι(x2y) = ϕιg(xy) = ϕιg(x) = ϕι(x) .

But on the other hand, ϕ does not have to satisfy the unary C-pseudoidentity
x2 .= x; just consider ϕ : {a}∗ � Z2, where Z2 is a 2-element group. The reason
for this is that (Z2)

{x}
ϕ,C 6= ∅ in spite of (Z2)

{x,y}
ϕ,C = ∅.

In fact, the equivalence of a given k-ary pseudoidentity and the corresponding
(k + 1)-ary pseudoidentity is obtained by considering the inclusion of a k-element
alphabet into a (k + 1)-element alphabet and some mapping in the reverse direc-
tion identical on these k letters. Therefore, if every homomorphism of free monoids
determined by an injective mapping of their underlying alphabets belongs to C,
then if a k-ary C-pseudoidentity is satisfied by a given homomorphism, it is also
satisfied when understood as a (k + 1)-ary C-pseudoidentity. Conversely, if every
homomorphism of free monoids determined by an onto mapping of their underly-
ing alphabets belongs to C, then each k-ary C-pseudoidentity is satisfied whenever
it is satisfied as a (k + 1)-ary C-pseudoidentity. Altogether, if C contains all literal
homomorphisms, corresponding pseudoidentities of different arities are equivalent.

4. Example

For this section, let the category C consist of all length-multiplying homomor-
phisms, i.e. such homomorphisms f : Σ∗ → Ξ∗ that there exists a non-negative
integer n satisfying |f(a)| = n for all a ∈ Σ, where |f(a)| denotes the length of
the word f(a). In this case a pseudoidentity is satisfied as a C-pseudoidentity if
it holds on tuples of images of words of equal length; notice that for any homo-
morphism ϕ : Σ∗ � M in M one can effectively decide whether a given k-tuple
(e1, . . . , ek) ∈ Mk is of this form, namely the elements e1, . . . , ek are images of
words of the same length if and only if the regular set of non-negative integers⋂k
l=1 #(ϕ−1(el)) is not empty, where # : Σ∗ → N0 is the homomorphism mapping

each word to its length.
The following construction of C-pseudovarieties was presented in [7].

Definition 4.1. Let ϕ : Σ∗ →M be a homomorphism to a finite monoid M . The
stable subsemigroup of ϕ (written as Stabϕ) is the (unique) subsemigroup S of M
of the form ϕ(Σm) for a positive integer m satisfying S · S = S, where Σm is the
set of words of length m over Σ. In other words, Stabϕ is the idempotent (ϕ(Σ))ω

in the power monoid of M , i.e. Stabϕ = ϕ
(
Σ(2|M|)!

)
.

Definition 4.2. For a class V of finite semigroups, let SV denote the subclass
of M consisting of all homomorphisms whose stable subsemigroups belong to V.

As stated in [7], for any pseudovariety V of finite semigroups, the class SV is
a C-pseudovariety. In the following we show how to construct a basis of C-pseudo-
identities for SV from a basis of pseudoidentities for V. Let us denote for a k-ary
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pseudoidentity π .= ρ, where π, ρ ∈ Ik, by S(π .= ρ) the pseudoidentity

π(x1y
ω−2
1 z1, . . . , xky

ω−2
k zk)

.= ρ(x1y
ω−2
1 z1, . . . , xky

ω−2
k zk) ,

where x1, . . . , xk, y1, . . . , yk, z1, . . . , zk are new variables and the notation yω−2

stands for lim
n→∞ yn!−2.

Proposition 4.3. Let ϕ : Σ∗ � M be a homomorphism in M and π, ρ ∈ Ik.
Then Stabϕ |= π

.= ρ if and only if ϕ |=C S(π .= ρ).

Proof. It is enough to prove the following claim:

Claim 4.4. A k-tuple (e1, . . . , ek) ∈Mk of elements of M belongs to (Stabϕ)k if
and only if there exist words u1, . . . , uk, v1, . . . , vk, w1, . . . , wk ∈ Σ∗ of equal length
such that el = ϕ(ul)(ϕ(vl))ω−2ϕ(wl) for l = 1, . . . , k.

The ‘if’ part of the claim follows from the fact
∣∣ulvn!−2

l wl
∣∣ = |ul| · n!, which

means that for n ≥ 2|M| we have ϕ(ul)(ϕ(vl))n!−2ϕ(wl) ∈ Stabϕ.
Conversely, let e ∈ Stabϕ. Because every element of Stabϕ can be writ-

ten as a product of two elements of Stabϕ, we have e = f1 · · · f|M|+2 for some
f1, . . . , f|M|+2 ∈ Stabϕ. Hence there exist 1 ≤ i < j ≤ |M | + 1 such that
f1 · · · fi = f1 · · · fj . Consequently

e = (f1 · · · fi)(fi+1 · · · fj)ω−2(fj+1 · · · f|M|+2)

and therefore e is of the desired form for some words of length (2|M|)! since
(f1 · · · fi), (fi+1 · · · fj), (fj+1 · · · f|M|+2) ∈ Stabϕ. �
Corollary 4.5. If V = Mod(πi

.= ρi | i ∈ I) is a pseudovariety of finite semi-
groups, then SV = ModC(S(πi

.= ρi) | i ∈ I). �
As observed in [7], classes of homomorphisms corresponding to certain classes of

regular languages defined by means of boolean circuits are in fact C-pseudovarieties
of the form of Definition 4.2. For instance in [2] it was proved that the regular
languages in AC0 (i.e. recognized by constant-depth unbounded fan-in circuits of
polynomial size) are just those languages whose syntactic homomorphisms have
aperiodic stable subsemigroups. Due to the previous result, these languages cor-
respond to the C-pseudovariety ModC

(
(xyω−2z)ω .= (xyω−2z)ω+1

)
.
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