SOME ALGORITHMS TO COMPUTE THE CONJUGATES OF EPISTURMIAN MORPHISMS

Gwenael Richomme ${ }^{1}$

Abstract

Episturmian morphisms generalize Sturmian morphisms. They are defined as compositions of exchange morphisms and two particular morphisms L, and R. Epistandard morphisms are the morphisms obtained without considering R. In [14], a general study of these morphims and of conjugacy of morphisms is given. Here, given a decomposition of an Episturmian morphism f over exchange morphisms and $\{L, R\}$, we consider two problems: how to compute a decomposition of one conjugate of f; how to compute a list of decompositions of all the conjugates of f when f is epistandard. For each problem, we give several algorithms. Although the proposed methods are fundamently different, we show that some of these lead to the same result. We also give other algorithms, using the same input, to compute for instance the length of the morphism, or its number of conjugates.

Mathematics Subject Classification. 68R15.

1. Introduction

Since the works of Morse and Hedlund [12], Sturmian words have been widely studied (see [2] for a recent survey). These infinite words, that are defined over a two-letter alphabet, have a lot of equivalent definitions. When larger alphabets are considered, these definitions give different generalizations of Sturmian words (see for instance [1,3-7, 9, 10, 13]). Episturmian words is one of these generalizations $[5,8]$, and it partially coincides with previous generalizations $[1,4,7]$.

Sturmian (endo)morphisms are defined on two-letter alphabets. They were initially introduced as the morphisms which preserve Sturmian words. In [15], Séébold proved that the monoid of Sturmian morphisms is generated by the exchange (of the two letters) morphism and two other morphisms (L and R).

[^0]In $[5,8,9]$, working on alphabet of arbitrary size, Justin et al. called Episturmian the (endo)morphisms generated by the permutations and a family of morphisms (two morphisms for each letter in the alphabet) generalizing L and R. In [14], we show that Episturmian morphisms can be defined by exchange morphisms and two morphisms also called L and R, so directly generalizing the binary case. One can note that all these morphisms already appear (even if not explicitly) in some works around generalization of Sturmian words [1,4,13]. In [9], Justin and Pirillo show that Episturmian morphisms are the morphisms that preserve Episturmian words. The reader will find a recent survey on Sturmian morphisms in [2].

In [14], a study of intrinsic properties of Episturmian morphisms (without any reference to Episturmian words) is given. We sum up some of these properties. Relations between palindromes and Episturmian morphisms are studied. On binary alphabets, Sturmian morphisms are exactly the invertible morphisms; but, when considering larger alphabets, the monoid of invertible morphisms is no more finitely generated (this result was also proved in [17]). So Episturmian morphisms are invertible, but the converse does not hold necessarily. Generalizing a result from [15], a presentation of the monoid of Episturmian morphisms is stated. This monoid is cancellative and unitary. Consequently, for an Episturmian morphism f given by the images of the letters, as in [2] for Sturmian morphisms, an algorithm is given to compute a decomposition of f over exchange morphisms and $\{L, R\}$.

Most part of [14] concerns conjugacy of Episturmian morphisms. A general study is given and then conjugacy is used in particular to state a presentation of the monoid of Episturmian morphisms. In the present paper, we come back to the conjugacy of Episturmian morphisms. We show that theoretical results in [14] lead to different algorithms to compute any conjugate of an Episturmian morphism, or, to compute the list of conjugates of an epistandard morphism (particular Episturmian morphism).

In Section 2, we recall notions and useful results on words, Episturmian morphisms and conjugacy of morphisms. In Section 3, using Parikh matrices, we present algorithms to compute, given a decomposition over exchanges and $\{L, R\}$ of an Episturmian morphism f, general informations on f as its length or its number of conjugates. In Section 4, we give two algorithms to compute, from a decomposition over exchanges and $\{L, R\}$ of an Episturmian morphism f, a right conjugate of f given by its number. Although the two methods are fundamently different, we show that when f is epistandard, the two algorithms produce the same decomposition in output. In Section 5, we give two other algorithms for the same purpose. The outputs of these algorithms are different from those of the two algorithms in Section 4. But whatever is f in input, the outputs with these two new algorithms are identical. In Section 6, still with the same input, we give six different algorithms to compute a complete list of conjugates of f. Four of them are based on the algorithms of the previous sections. Once again, although the methods used to design the algorithms are different, we get only two different outputs from these six algorithms: three algorithms give one output, the three others give the other output.

2. Words, Episturmian morphisms, conjugacy

In this section, we essentially recall basic notions and results from [14].

2.1. Words

Given a finite set X, we will denote by $\# X$ its cardinal, that is, the number of its elements. An alphabet A is a set of symbols called letters. Here we consider only finite alphabets. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A^{*} of words over A is the free monoid with neutral element ε and set of generators A. Given a non-empty word $u=a_{1} \ldots a_{n}$ with $a_{i} \in A$, the length $|u|$ of u is the integer n. One has $|\varepsilon|=0$. For a word u and a letter $a,|u|_{a}$ is the number of occurrences of a in u. Two words u and v are said conjugate if there exists a word w such that $u w=w v$. Powers of a word are defined inductively by $u^{0}=\varepsilon$, and for any integer $n \geq 1, u^{n}=u u^{n-1}=u^{n-1} u$.

2.2. Episturmian morphisms

A (endo) morphism f on A is an application from A^{*} to A^{*} such that for all words u, v over $A, f(u v)=f(u) f(v)$. A morphism is entirely known by the images of the letters of A. The length of f is the value $\|f\|=\sum_{x \in A}|f(x)|$. Given two morphisms f and g, we will denote $f g$ their composition. A particular morphism is the empty morphism $\epsilon: \forall a \in A, \epsilon(a)=\varepsilon$.

Given two letters x, y, the exchange morphism of x and y is the morphism defined on A by

$$
E_{x y}:\left\{\begin{array}{l}
x \rightarrow y, \\
y \rightarrow x, \\
z \rightarrow z, \quad \forall z \notin\{x, y\} .
\end{array}\right.
$$

We observe that $E_{x y}=E_{y x}$. Moreover, for any $x \in A, E_{x x}$ is the identity morphism (also denoted $I d$). We denote by $\operatorname{Exch}(A)$ the set of exchange morphisms defined on A (including the identity).

Let A be an alphabet. In [5, 8, 9], Droubay, Justin and Pirillo have introduced for each letter α, the morphisms Ψ_{α} and $\bar{\Psi}_{\alpha}$

$$
\Psi_{\alpha}:\left\{\begin{array}{l}
\alpha \rightarrow \alpha \\
x \rightarrow \alpha x,
\end{array} \quad \forall x \in A \backslash\{\alpha\} \quad \bar{\Psi}_{\alpha}:\left\{\begin{array}{l}
\alpha \rightarrow \alpha \\
x \rightarrow x \alpha,
\end{array} \forall x \in A \backslash\{\alpha\} .\right.\right.
$$

Any morphism obtained by composition of exchange morphisms and morphisms Ψ_{α} with $\alpha \in A$ will be called (as in [14]) an epistandard morphism (standard Episturmian in $[8,9])$. In other words, an epistandard morphism is a morphism in

$$
\operatorname{Epistand}(A)=\left(\operatorname{Exch}(A) \cup\left\{\Psi_{\alpha} \mid \alpha \in A\right\}\right)^{*}
$$

Similarly [8, 9], an Episturmian morphism is an element of

$$
\operatorname{Episturm}(A)=\left(\operatorname{Exch}(A) \cup\left\{\Psi_{\alpha}, \bar{\Psi}_{\alpha} \mid \alpha \in A\right\}\right)^{*}
$$

When $\# A=2$, epistandard (resp. Episturmian) morphisms are exactly the standard (resp. Sturmian) morphisms (see [2]).

Following $[14,15]$, in the rest of the paper, we will always consider a finite alphabet A containing at least two letters. We will also distinguish a letter a in A. Following the original notation of Séebold [15], we denote $L=\Psi_{a}$ (that is $L(a)=a, L(x)=a x$ for $x \neq a$) and $R=\bar{\Psi}_{a}$ (that is $R(a)=a, R(x)=x a$ for $x \neq a)$. For any letter α, we have

$$
\Psi_{\alpha}=E_{a \alpha} L E_{a \alpha}, \quad \text { and } \quad \bar{\Psi}_{\alpha}=E_{a \alpha} R E_{a \alpha}
$$

Thus $\operatorname{Epistand}(A)=(\operatorname{Exch}(A) \cup\{L\})^{*}$ and Episturm $(A)=(\operatorname{Exch}(A) \cup\{L, R\})^{*}$.
Note that, in the particular case where $\# A=2, L$ and R are the morphisms G and \tilde{G} in [2]. So all results here and in [14] can be directly considered for Sturmian morphisms with a usual basis.

In [14], an algorithm is designed to compute a decomposition over $\operatorname{Exch}(A) \cup$ $\{L, R\}$ of a given Episturmian morphism. Such a decomposition is not unique. The following theorem shows what are the basic equalities between decompositions:
Theorem 2.1 ([14], Th. 7.1) (see also [15] for the binary case). The monoid Episturm (A) with set of generators $\operatorname{Exch}(A) \cup\{L, R\}$ has the following presentation (x, y, z, t are pairwise different letters):

$$
\begin{aligned}
E_{x y} E_{x y} & =I d, \\
E_{x y} E_{y z} & =E_{y z} E_{z x}, \\
E_{x y} E_{z t} & =E_{z t} E_{x y}, \\
E_{x y} L & =L E_{x y} \quad \text { when } a \notin\{x, y\}, \\
E_{x y} R & =R E_{x y} \quad \text { when } a \notin\{x, y\}, \\
L E_{1} L E_{2} \ldots L E_{k} R & =R E_{1} R E_{2} \ldots R E_{k} L
\end{aligned}
$$

where $k \geq 1$ is an integer and E_{1}, \ldots, E_{k} are exchange morphisms such that $E_{1} \ldots E_{k}(a)=a$, and for each integer $i, 2 \leq i \leq k, E_{i} \ldots E_{k}(a) \neq a$.

2.3. Conjugacy

The notion of conjugation of Sturmian morphisms was introduced by Séébold [16]. On two-letter alphabets, the definition of conjugation is a bit different from the notion of conjugacy given in [2] but the ideas are the same, and similar results are obtained. Conjugacy can be easierly generalized to arbitrary alphabets than conjugation. Thus, we follow $[2,14]$.

A morphism g is a right conjugate of a morphism f defined on A, in symbols $f \triangleleft g$, if there exists a word w such that $f(x) w=w g(x)$ for all words x in A^{*}.

Here, we will also say that f is a left conjugate of g, and we will sometimes write $f \triangleleft_{w} g$. For instance, $L \triangleleft_{a} R$.

Basic properties of conjugacy are given by the following lemma:
Lemma 2.2 ([14], Lem. 3.1) (see also [2]). Let $f, f^{\prime}, g, g^{\prime}, h$ be some morphisms and let w_{1}, w_{2} be some words.
(1) If $f \triangleleft_{w_{1}} g$ and $g \triangleleft_{w_{2}} h$ then $f \triangleleft_{w_{1} w_{2}} h$.
(2) If $g \neq \epsilon, f \triangleleft_{w_{1}} g, f^{\prime} \triangleleft_{w_{2}} g$ and $\left|w_{1}\right| \leq\left|w_{2}\right|$, then there exists a word w_{3} such that $w_{2}=w_{3} w_{1}$ and $f^{\prime} \triangleleft_{w_{3}} f$.
(3) If $f \neq \epsilon, f \triangleleft_{w_{1}} g, f \triangleleft_{w_{2}} g^{\prime}$ and $\left|w_{1}\right| \leq\left|w_{2}\right|$, then there exists a word w_{3} such that $w_{2}=w_{1} w_{3}$ and $g \triangleleft_{w_{3}} g^{\prime}$.
(4) If $f \triangleleft_{w_{1}} g$ and $f^{\prime} \triangleleft_{w_{2}} g^{\prime}$ then $f f^{\prime} \triangleleft_{f\left(w_{2}\right) w_{1}} g g^{\prime}$.

The family of Episturmian morphisms is self conjugated:
Proposition 2.3 ([14], Cor. 5.5, Cor. 5.6). Any (right or left) conjugate of an Episturmian morphism is Episturmian.

Moreover, we have:
Theorem 2.4 ([14], Th. 5.1). A morphism f is Episturmian if and only if it is a right conjugate of a unique epistandard morphism. This epistandard morphism is obtained from any decomposition of f in elements of $\operatorname{Exch}(A) \cup\{L, R\}$ by replacing all the occurrences of R by L.

Following this theorem, given an Episturmian morphism f, we denote by $\operatorname{Stand}(f)$ the epistandard morphism which is a left conjugate of f. Note that $\operatorname{Stand}(L)=\operatorname{Stand}(R)=L$, and, for an exchange morphism $E, \operatorname{Stand}(E)=E$. Moreover, if $f=f_{1} \ldots f_{n}$ with for all $i, 1 \leq i \leq n, f_{i} \in \operatorname{Exch}(A) \cup\{L, R\}$, we have $\operatorname{Stand}(f)=\operatorname{Stand}\left(f_{1}\right) \ldots \operatorname{Stand}\left(f_{n}\right)$.

Given an epistandard morphism $f_{1} \ldots f_{n}$ with for all $i, 1 \leq i \leq n, f_{i} \in$ $\operatorname{Exch}(A) \cup\{R\}$, and given an Episturmian morphism $g_{1} \ldots g_{n}$ with for all i, $1 \leq i \leq n, g_{i} \in \operatorname{Exch}(A) \cup\{L, R\}$, we will say that $g_{1} \ldots g_{n}$ has property $P\left(f_{1} \ldots f_{n}\right)$ if for all $i, 1 \leq i \leq n, \operatorname{Stand}\left(g_{i}\right)=f_{i}$.

We denote by $\operatorname{NbR}(f)$ the number of right conjugates of a morphism f. For instance, since the right conjugates of L are L and R, and since the unique right conjugate of R is R itself, $\operatorname{NbR}(L)=2$ and $\operatorname{NbR}(R)=1$. For any morphism f, we have $\operatorname{NbR}(f) \geq 1$ since f is always its own right conjugate $\left(f \triangleleft_{\varepsilon} f\right)$. Similarly we can define the number $\operatorname{NbL}(f)$ of left conjugates of f.

In [14], it is stated that (left and right) conjugates of a morphism can be ordered. In the particular case of Episturmian morphism, we have (see [14], Lem. 3.3, Lem. 3.4, Lem. 3.6):
Lemma 2.5. Let f, g be Episturmian morphisms.
(1) The morphism g is a right conjugate of f if and only if there exists a unique word w such that $f \triangleleft_{w} g$. Moreover $0 \leq|w| \leq \operatorname{NbR}(f)-1$.
(2) The morphism g is a left conjugate of f if and only if there exists a unique word w such that $g \triangleleft_{w} f$. Moreover $0 \leq|w| \leq \operatorname{NbL}(f)-1$.
Note that this lemma is in fact true for all non-periodic morphisms (see [14]).

Using Lemma 2.2, the previous lemma shows that there exists a one-to-one correspondance between conjugates of an Episturmian morphism and integers in $[0 . . \operatorname{NbR}(f)-1]$.

According to the previous lemma and following [16], for f, g Episturmian morphisms, we say that g is the $|w|^{\text {th }}$ right conjugate of f if w is the word such that $f \triangleleft_{w} g$. Of course, f is the $0^{\text {th }}$ conjugate of f. If $|w|=1, g$ will be called the first (right) conjugate of f, and f will be called the previous (left) conjugate of g. If $|w|=\operatorname{NbR}(f)-1, g$ will be called the last (right) conjugate of f.

Once again using Lemma 2.2, we can see:
Property 2.6. Given an integer $p \geq 0$, the $(p+1)^{\text {th }}$ right conjugate (if it exists) of an Episturmian morphism f is the first right conjugate of the $p^{\text {th }}$ right conjugate of f.

Now, let $\mathrm{NbC}(f)$ be the total number of left or right conjugates of a morphism f, that is, $\operatorname{NbC}(f)=\#\{g \mid g \triangleleft f$ or $f \triangleleft g\}$. For instance $\operatorname{NbC}(\epsilon)=1, \operatorname{NbC}(L)=$ $\operatorname{NbC}(R)=2$. We have:

Lemma 2.7 ([14], Lem. 3.7). Let f be an Episturmian morphism.
(1) $\mathrm{NbC}(f)=\mathrm{NbR}(f)+\mathrm{NbL}(f)-1$.
(2) For any right conjugate g of $f, \mathrm{NbC}(f)=\mathrm{NbC}(g)$.

3. Computation of the numbers of conjugates

In [14] (Prop. 3.8), it was proved that, given an Episturmian morphism f, the values $\operatorname{NbC}(f), \operatorname{NbR}(f)$ and $\operatorname{NbL}(f)$ can be computed in time $O(\|f\|)$. The underlying algorithms assumed that the morphism f was given by the images of the letters. In this section, we prove a similar result when the morphism is given by a decomposition f_{1}, \ldots, f_{n} of f over $\operatorname{Exch}(A) \cup\{L, R\}$. These computations are related to the computations of $\left\|f_{1} \ldots f_{n}\right\|$ and of the values of $\left|f_{1} \ldots f_{i-1}(a)\right|$ for $1 \leq i \leq n$ (we take the convention $f_{1} \ldots f_{0}=I d$). Then we have:

Proposition 3.1 ([14], Prop. 6.1). For any Episturmian morphism f, $\operatorname{NbC}(f)=\frac{\|f\|-1}{\# A-1}$.
Proposition 3.2 ([14], Prop. 6.2). If $f=f_{1} \ldots f_{n}$ is an Episturmian morphism with $f_{i} \in \operatorname{Exch}(A) \cup\{L, R\}$,
a) $\operatorname{NbL}(f)=1+\sum_{1 \leq i \leq n \mid f_{i}=R}\left|f_{1} \ldots f_{i-1}(a)\right|$;
b) $\operatorname{NbR}(f)=1+\sum_{1 \leq i \leq n \mid f_{i}=L}\left|f_{1} \ldots f_{i-1}(a)\right|$;
c) $\operatorname{NbC}(f)=1+\sum_{1 \leq i \leq n \mid f_{i} \in\{L, R\}}\left|f_{1} \ldots f_{i-1}(a)\right|$.

Here, we state:
Proposition 3.3. Let f_{1}, \ldots, f_{n} be $n \geq 1$ morphisms in $\operatorname{Exch}(A) \cup\{L, R\}$. Considering \#A as a constant, the values $\left\|f_{1} \ldots f_{n}\right\|, \operatorname{NbC}\left(f_{1} \ldots f_{n}\right), \operatorname{NbR}\left(f_{1} \ldots f_{n}\right)$, $\operatorname{NbL}\left(f_{1} \ldots f_{n}\right),\left|f_{1} \ldots f_{i}(b)\right|($ for $0 \leq i \leq n$ and $b \in A)$ can all be (simultaneously) computed in $O(n)$ arithmetic operations.

For the proof, we assume that A is totally ordered, and a is the least letter: $A=\left\{a_{1}, \ldots, a_{n}\right\}, a_{1}=a$. We use the Parikh matrix of a morphism f, that is, the $\# A \times \# A$ matrix P_{f} such that $P_{f}[i, j]=\left|f\left(a_{j}\right)\right|_{a_{i}}$.

For instance if $A=\{a, b, c\}$ (with $a<b<c$) then

$$
P_{L}=P_{R}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad P_{E_{a b}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

One can verify that if f, g are two morphisms, we have $P_{f g}=P_{f} P_{g}$. Using this property, we can compute the matrix of an Episturmian morphism from one of its decomposition over $\operatorname{Exch}(A) \cup\{L, R\}$.
Example. When $A=\{a, b, c\}$, the Parikh matrix of $R E_{a c} E_{a b} R R E_{a c} R E_{b c} L$ is

$$
P_{E_{a b}}=\left[\begin{array}{ccc}
3 & 7 & 9 \\
2 & 5 & 6 \\
0 & 0 & 1
\end{array}\right]
$$

Proof of Proposition 3.3. Let us consider the following sequence of instructions:

1. let M be a $\# A \times \# A$ matrix of integers
$M \leftarrow$ identity matrix;
2. let $\mathrm{NbL}, \mathrm{NbR}, \mathrm{NbC}, k, x, L g t h$ be integers
$\mathrm{NbL} \leftarrow 1$
$\mathrm{NbR} \leftarrow 1 ;$
3. for k from 1 to n do
3.1. $x \leftarrow \sum_{i=1}^{\# A} M[i, 1]$;
3.2. \quad if $f_{k}=R$ then $\mathrm{NbL} \leftarrow \mathrm{NbL}+x$;
3.3. \quad if $f_{k}=L$ then $\mathrm{NbR} \leftarrow \mathrm{NbR}+x$;
3.4. $M \leftarrow M P_{f_{k}}$
end for
4. $\mathrm{NbC} \leftarrow \mathrm{NbR}+\mathrm{NbL}-1$;
5. Lgth $\leftarrow(\# A-1) \mathrm{NbC}+1$.

We verify that this algorithm allows to get all the expected values. At Step 1, we initialize M in such a way that for all $i, j, 1 \leq i, j \leq n, M[i, j]=\left|f_{1} \ldots f_{0}\left(a_{j}\right)\right| a_{i}$ (recall $f_{1} \ldots f_{0}$ denotes the identity morphism). By induction, at the end of the k^{th} loop, thanks to Instruction 3.4, we have for all $i, j, 1 \leq i, j \leq n, M[i, j]$
$=\left|f_{1} \ldots f_{k}\left(a_{j}\right)\right|_{a_{i}}$. From this value of M, we can get in a bounded number of arithmetic operations (since $\# A$ is a constant) for a_{j} in A, the value $\left|f_{1} \ldots f_{k}\left(a_{j}\right)\right|=$ $\sum_{i=1}^{\# A}\left|f_{1} \ldots f_{k}\left(a_{j}\right)\right|_{a_{i}}=\sum_{i=1}^{\# A} M[i, j]$. In particular, after Instruction 3.1, we have $x=\left|f_{1} \ldots f_{k-1}(a)\right|$. Thus by induction, we can see that after Instruction 3.2 (resp. Instruct. 3.3), $\mathrm{NbL}=1+\sum_{1 \leq i \leq k \mid f_{i}=R}\left|f_{1} \ldots f_{i-1}(a)\right|$ (resp. NbR $\left.=1+\sum_{1 \leq i \leq k \mid f_{i}=L}\left|f_{1} \ldots f_{i-1}(a)\right|\right)$. So at the end of Instruction 3, with an additional $\mathrm{O}(1)$ number of arithmetic operations, we have been able to compute the values $\left|f_{1} \ldots f_{i}(b)\right|$ for $i, 0 \leq i \leq n$ and for $b \in A$. We also have NbL $=$ $1+\sum_{1 \leq i \leq n \mid f_{i}=R}\left|f_{1} \ldots f_{i-1}(a)\right|$, and, NbR $=1+\sum_{1 \leq i \leq k \mid f_{i}=L}\left|f_{1} \ldots f_{i-1}(a)\right|$. From Proposition 3.2, this means $\mathrm{NbL}=\operatorname{NbL}\left(f_{1} \ldots f_{n}\right)$ and $\operatorname{NbR}=\operatorname{NbR}\left(f_{1} \ldots f_{n}\right)$. It follows from Lemma 2.7 that Instruction 4 computes $\operatorname{NbC}\left(f_{1} \ldots f_{n}\right)$. Finally from Proposition 3.1, Instruction 5 computes the length of $f_{1} \ldots f_{n}$, that is, $\left\|f_{1} \ldots f_{n}\right\|$.

To end, we let to the reader to verify that the given sequence of instructions acts in $O(n)$ arithmetic operations (recall that $\# A$ is a constant - if it is not the case, the sequence acts in time $\left.O\left(n(\# A)^{3}\right)\right)$).

Note that the values in Proposition 3.3 (and in the sequence of instructions in the proof) can grow exponentially with n so that arithmetic operations can not be considered to be made in bounded time (for instance one can see when $A=\{a, b\}$, for $n \geq 0, \operatorname{NbC}\left((L E)^{n}\right)=f_{n+2}-1=O\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)$ where $\left(f_{n}\right)_{n \geq 0}$ is the Fibonacci sequence defined by $f_{0}=1, f_{1}=1$ and $\left.\forall n \geq 0 f_{n+2}=f_{n+1}+f_{n}\right)$. Using Lemma 2.7 and Proposition 3.1, we can also see that all these values are in $O\left(\left\|f_{1} \ldots f_{n}\right\|\right)$.

4. Computation of a Right conjugate

Let f be an Episturmian morphism, and let $p \geq 0$ be an integer. We want to compute the $p^{\text {th }}$ right conjugate (if it exists) of f. In case f is known by the images of the letters, the computation of the images by g of the letters can be easily made. Indeed, first we have to compute the word w of length p such that $f \triangleleft_{w} g$: for instance, this word is the prefix of length p of $f\left(a^{p}\right)$. Then for each x in A, we can compute $g(x)$ since $f(x) w=w g(x)$ (note that if w is not a prefix of $f(x) w$, then the $p^{\text {th }}$ right conjugate of f does not exist).

From now on, we consider that the input morphism is given by one of its decomposition over $\operatorname{Exch}(A) \cup\{L, R\}$. We study the following:

Problem 1. Let $p \geq 0$ and let f be an Episturmian morphism given by a decomposition f_{1}, \ldots, f_{n} over $\operatorname{Exch}(A) \cup\{L, R\}(n \geq 1)$. How to compute the empty sequence if f has not a $p^{\text {th }}$ right conjugate, and to compute otherwise a decomposition g_{1}, \ldots, g_{n} of the $p^{\text {th }}$ right conjugate of f such that $g_{1} \ldots g_{n}$ has Property $P\left(\operatorname{Stand}\left(f_{1}\right) \ldots \operatorname{Stand}\left(f_{n}\right)\right)$.

Let us recall that the $0^{\text {th }}$ right conjugate of a morphism f is f itself.

When $p=1$, Problem 1 has already been solved in [14] by the following proposition:

Proposition 4.1 ([14], Prop 5.2). Let f be an Episturmian morphism on A. Let f_{1}, \ldots, f_{n} be some elements of $\operatorname{Exch}(A) \cup\{L, R\}$ such that $f=f_{1} \ldots f_{n}$.

The morphism f has a right conjugate different from f if and only if there exists an integer k between 1 and n such that $f_{k}=L$.

When it is the case, let k be the least integer between 1 and n such that $f_{k}=L$. For each i between 1 and $k-1$, let g_{i} be the morphism defined by:

- $g_{i}=L$ if $f_{i}=R$ and the first letter of $f_{i+1} \ldots f_{k}(a)$ is different from a;
- $g_{i}=f_{i}$ otherwise.

Then the first right conjugate of f is the morphism $g_{1} g_{2} \ldots g_{k-1} R f_{k+1} \ldots f_{n}$ $\left(R f_{2} \ldots f_{n}\right.$ when $\left.k=1\right)$.

This proposition can be (quite verbosing) rewritten into Algorithm 1 that will be used for comparison. We use a function named first that, when applied on a non-empty word w, gives the first letter of w. Note that, since morphisms in $\operatorname{Exch}(A) \cup\{L, R\}$ are not erasing, for $i \leq k-2$, $\operatorname{first}\left(f_{i+1} \ldots f_{k}(a)\right)=$ first $\left(f_{i+1}\left(\right.\right.$ first $\left.\left(f_{i+2} \ldots f_{k}(a)\right)\right)$.

```
Algorithm 1 solves Problem 1 when \(p=1\).
    local: \(i, k\) integer
        \(x\) letter
```

Step 1. Compute the least integer k such that $1 \leq k \leq n$ and $f_{k}=L$.
If k does not exist, then quit with an empty sequence as output.
Step 2. $x \leftarrow a$
for i from $k-1$ downto 1 do
$x \leftarrow \operatorname{first}\left(f_{i+1}(x)\right)$
if $f_{i}=R$ and $x \neq a$ then $g_{i} \leftarrow L$
else $g_{i} \leftarrow f_{i}$

Step 3. $g_{k} \leftarrow R$
$g_{k+1}, \ldots, g_{n} \leftarrow f_{k+1}, \ldots, f_{n}$.

As said in [14], an implementation can be done in time $O(n)$. Indeed function first, comparisons of morphisms with L, affectations of morphisms, and, list constructions can all be implemented in bounded time.

Now, let us take back the example of the previous section to illustrate Algorithm 1.

Example (continued). We work on alphabet $\{a, b, c\}$, with $n=9$ and

$$
f_{1}, \ldots, f_{n}=R, E_{a c}, E_{a b}, R, R, E_{a c}, R, E_{b c}, L
$$

At Step 1, we get $k=9$. During Step 2, we get successively $g_{8}=E_{b c}, g_{7}=R$, $g_{6}=E_{a c}, g_{5}=L, g_{4}=L, g_{3}=E_{a b}, g_{2}=E_{a c}, g_{1}=R$. At Step 3, we state
$g_{9}=R$. Thus,

$$
g_{1}, \ldots, g_{n}=R, E_{a c}, E_{a b}, L, L, E_{a c}, R, E_{b c}, R .
$$

By computing the images of letters, it can be verified that the morphism $g=$ $g_{1} \ldots g_{n}$ is the first conjugate of $f=f_{1} \ldots f_{9}$:

$$
\begin{array}{ll}
f_{1} \ldots f_{9}(a)=a(b a)^{2}, & g_{1} \ldots g_{9}(a)=(b a)^{2} a, \\
f_{1} \ldots f_{9}(b)=a(b a)^{3} a(b a)^{2}, & g_{1} \ldots g_{9}(b)=(b a)^{3} a(b a)^{2} a, \\
f_{1} \ldots f_{9}(c)=a(b a)^{2} c a(b a)^{2} a(b a)^{2}, & g_{1} \ldots g_{9}(c)=(b a)^{2} c a(b a)^{2} a(b a)^{2} a .
\end{array}
$$

And so $f(a) a=a g(a), f(b) a=a g(b), f(c) a=a g(a)$. It follows $f \triangleleft_{a} g$.
From Property 2.6, using Algorithm 1, we can design naturally Algorithm 2 which is an answer for Problem 1 (for arbitrary value of p).

Algorithm 2 solves Problem 1.
$g_{1}, \ldots, g_{n} \leftarrow f_{1}, \ldots, f_{n}$
Apply p times Algorithm 1 with input and output g_{1}, \ldots, g_{n} :
if g_{1}, \ldots, g_{n} becomes the empty sequence, quit with the empty sequence as output.

Example (continued). If we apply Algorithm 2 with $p=3, n=9$ and f_{1}, \ldots, f_{n} as previously, then g_{1}, \ldots, g_{n} take successively the values:

$$
\begin{aligned}
& R, E_{a c}, E_{a b}, R, R, E_{a c}, R, E_{b c}, L ; \\
& R, E_{a c}, E_{a b}, L, L, E_{a c}, R, E_{b c}, R ; \\
& L, E_{a c}, E_{a b}, R, L, E_{a c}, R, E_{b c}, R ; \\
& R, E_{a c}, E_{a b}, R, L, E_{a c}, R, E_{b c}, R .
\end{aligned}
$$

Time complexity of Algorithm 2 is in $O(n \times \min (p, \mathrm{NbC}(f)))$ and so in $O(n\|f\|)$. We now consider Algorithm 3 based on Proposition 3.2 that acts in $O(n)$ arithmetic operations.
Example (continued). Let us illustrate Algorithm 3 with the same input as we take with Algorithm 2: $p=3, n=9$ and $f_{1}, \ldots, f_{n}=R, E_{a c}, E_{a b}, R, R, E_{a c}, R$, $E_{b c}, L$. The initial values of $N L, N C$ and the $\left|f_{1} \ldots f_{i-1}(a)\right|$ for i from 1 to n can be computed using Section 3. By Proposition 3.2, we know that

$$
\begin{aligned}
\operatorname{NbL}\left(f_{1} \ldots f_{9}\right) & =1+|I d(a)|+\left|R E_{a c} E_{a b}\right|+\left|R E_{a c} E_{a b} R\right|+\left|R E_{a c} E_{a b} R R E_{a c}(a)\right| \\
& =1+1+2+2+5=11 . \\
\operatorname{NbC}\left(f_{1} \ldots f_{9}\right) & =\operatorname{NbL}\left(f_{1} \ldots f_{9}\right)+\left|R E_{a c} E_{a b} R R E_{a c}(a) R E_{b c}(a)\right| \\
& =\operatorname{NbL}\left(f_{1} \ldots f_{9}\right)+5=16 .
\end{aligned}
$$

Thus t is initialized to the value 2 .
When f_{i} is an exchange, that is when $i \in\{8,6,3,2\}$, we get $g_{i}=f_{i}$ and the value of t does not change.

For $i=9$ and $i=7,\left|f_{1} \ldots f_{i-1}(a)\right|=5>t$, thus $g_{9} \leftarrow R$ and $g_{7} \leftarrow R$. For $i=5,\left|f_{1} \ldots f_{i-1}(a)\right|=2$, thus $g_{5} \leftarrow L$ and $t \leftarrow 0$. For $i=4$ and $i=1$, $\left|f_{1} \ldots f_{i-1}(a)\right|>0$, thus $g_{4} \leftarrow R$ and $g_{1} \leftarrow R$. Observe that we get the same result as with Algorithm 2. We will see in Theorem 4.2 that it is not by chance.

```
Algorithm 3 solves Problem 1.
    local: \(i, t, N L, N C\) integer
    \(N L \leftarrow \operatorname{NbL}\left(f_{1} \ldots f_{n}\right)\)
    \(N C \leftarrow \mathrm{NbC}\left(f_{1} \ldots f_{n}\right)\)
    \(t \leftarrow N C-p-N L\)
    if \((t<0)\) then exit with the empty sequence as output
    for \(i\) from n downto 1 do
        \(\begin{aligned} & \text { if } f_{i} \in\{L, R\} \text { then } \\ & \text { if }\left|f_{1} \ldots f_{i-1}(a)\right| \leq t \text { then } \\ & g_{i} \leftarrow L \\ & t \leftarrow t-\left|f_{1} \ldots f_{i-1}(a)\right| \\ & \text { else } \\ & g_{i} \leftarrow R\end{aligned}\)
        else
            \(g_{i} \leftarrow f_{i}\)
```

Proof of validity of Algorithm 3. Let $f=f_{1} \ldots f_{n}$ and let g be its $p^{\text {th }}$ right conjugate. Let also g_{1}, \ldots, g_{n} be the result of Algorithm 3. We have to verify that $g=g_{1} \ldots g_{n}$. Note that the morphism g has $\mathrm{NbL}(f)+p$ left conjugates. Indeed, using Lemma 2.2 , we can verify that the left conjugates of g are the left conjugates of f, together with the $i^{\text {th }}$ right conjugate of f for each i such that $1 \leq i \leq p$.

Let t_{0} be the value of t after initialization. From Lemma 2.7, the number of right conjugates of g is $\operatorname{NbC}(f)-(\operatorname{NbL}(f)+p)+1=t_{0}+1$. So t_{0} is the number of right conjugates of g different from g. To continue, we must have $t_{0} \geq 0$. Assume that it is the case: $t_{0}=\operatorname{NbR}(g)-1$.

Following Theorem 2.4, the morphism f is a conjugate of a unique epistandard morphism $s_{1} \ldots s_{n}$ with (for $\left.1 \leq i \leq n\right) s_{i}=\operatorname{Stand}\left(f_{i}\right): f_{1} \ldots f_{n}$ has Property $P\left(s_{1} \ldots s_{n}\right)$.

The morphism g can have several decompositions verifying Property $P\left(s_{1} \ldots s_{n}\right)$. Let us consider the unique one h_{1}, \ldots, h_{n} such that, for any other different decomposition (if it exists) $h_{1}^{\prime}, \ldots, h_{n}^{\prime}$ verifying Property $P\left(s_{1} \ldots s_{n}\right)$, if k is the greatest integer such that $h_{k} \neq h_{k}^{\prime}$, then $h_{k}=L$ and $h_{k}^{\prime}=R$. In the rest of the proof, we show that the output of Algorithm 3 is h_{1}, \ldots, h_{n}.

Before let us observe (by induction) that for any decomposition $h_{1}^{\prime}, \ldots, h_{n}^{\prime}$ verifying Property $P\left(s_{1} \ldots s_{n}\right)$, we have for all $i, 1 \leq i \leq n,\left|h_{1}^{\prime} \ldots h_{i-1}^{\prime}(a)\right|=$ $\left|f_{1} \ldots f_{i-1}(a)\right|$.

From what preceeds and Proposition 3.2, we have $t_{0}=\sum_{1 \leq i \leq n \mid h_{i}=L}\left|h_{1} \ldots h_{i-1}(a)\right|$.
Let m be an integer between 1 and n. Assume that, $\forall j, m+1 \leq j \leq n, g_{j}=h_{j}$, and, assume that, before the execution of the block of the instruction "for" with $i=m, t=\sum_{1 \leq i \leq m \mid h_{i}=L}\left|h_{1} \ldots h_{i-1}(a)\right|$. We prove $g_{m}=h_{m}$, and, the following:

Fact F: after the execution of the block of the instruction "for" with $i=m$,

$$
t=\sum_{1 \leq i \leq m-1 \mid h_{i}=L}\left|h_{1} \ldots h_{i-1}(a)\right| .
$$

The proof of validity follows by induction.
If $f_{m} \notin\{L, R\}$, by definition, $f_{m}=\operatorname{Stand}\left(f_{m}\right)=\operatorname{Stand}\left(h_{m}\right)$. It follows $f_{m}=$ h_{m}. Moreover by algorithm, $g_{m}=f_{m}$. Thus $g_{m}=h_{m}$. Fact F follows from $h_{m} \neq L$.

If $f_{m} \in\{L, R\}$, then by definition, $h_{m} \in\{L, R\}$.
If $f_{m} \in\{L, R\}$ and $\left|f_{1} \ldots f_{m-1}(a)\right|>t$, then, from the value of t, and since $\left|f_{1} \ldots f_{m-1}(a)\right|=\left|h_{1} \ldots h_{m-1}(a)\right|$, we deduce that $h_{m} \neq L$, that is, since $\operatorname{Stand}\left(h_{m}\right)=\operatorname{Stand}\left(f_{m}\right), h_{m}=R$. By the algorithm, it follows $g_{m}=h_{m}$. Once again, Fact F follows from $h_{m} \neq L$.

If $f_{m} \in\{L, R\}$ and $\left|f_{1} \ldots f_{m-1}(a)\right| \leq t$, then we get $g_{m}=L$. Assume $h_{m}=R$. The number of right conjugates of $h_{1} \ldots h_{m-1}$ is $1+\sum_{1 \leq i \leq m-1 \mid h_{i}=L}\left|h_{1} \ldots h_{i-1}(a)\right|$ $=1+t>\left|f_{1} \ldots f_{m-1}(a)\right|$. Let h^{\prime} be the $\left|f_{1} \ldots f_{m-1}(a)\right|^{\text {th }}$ right conjugate of $h_{1} \ldots h_{m-1}$. The number of right conjugates of h^{\prime} is $1+t-\left|f_{1} \ldots f_{m-1}(a)\right|$. Let $h_{1}^{\prime}, \ldots, h_{m-1}^{\prime}$ be a decomposition of h^{\prime} verifying Property $P\left(s_{1} \ldots s_{m-1}\right)$. The morphism $h_{1}^{\prime} \ldots h_{m-1}^{\prime} g_{m} h_{m+1} \ldots h_{n}$ verifies Property $P\left(s_{1} \ldots s_{n}\right)$ and, by Proposition 3.2(b), has exactly the same number of right conjugates as $h_{1} \ldots h_{n}$. So $h_{1}^{\prime} \ldots h_{m-1}^{\prime} g_{m} h_{m+1} \ldots h_{n}$ is a decomposition of the $p^{\text {th }}$ conjugate of f. From $g_{m}=L$ and $h_{m}=R$, we get a contradiction with the last part of the definition of h_{1}, \ldots, h_{m}. Thus $h_{m}=L=g_{m}$. Fact F follows from the diminution of t that occurs.

From Proposition 3.3, considering $\# A$ as a constant, the initial values of $N L$, $N C$ and the $\left|f_{1} \ldots f_{i-1}(a)\right|$ for i from 1 to n can be computed in $O(n)$ arithmetic operations. It follows that Algorithm 3 can be implemented in $O(n)$ arithmetic operations. By the remark at the end of Section 3, Algorithm 3 has complexity in time in $O(n\|f\|)$ as Algorithm 2. Now, we compare the decompositions obtains with Algorithms 2 and 3.
Theorem 4.2. Let f_{1}, \ldots, f_{n} be morphisms in $\operatorname{Exch}(A) \cup\{L\}$. With input f_{1}, \ldots, f_{n}, whatever is p in input, Algorithms 2 and 3 give the same output.

Example (continued). The decomposition $g_{1}, \ldots, g_{n}=R, E_{a c}, E_{a b}, R, R, E_{a c}, R$, $E_{b c}, L$ is the decomposition obtained by Algorithm 2 from input $n=9, p=11$, and

$$
f_{1}, \ldots, f_{n}=L, E_{a c}, E_{a b}, L, L, E_{a c}, L, E_{b c}, L
$$

Consequently the decomposition of the third conjugate of g_{1}, \ldots, g_{n} obtained previously with Algorithm 2 is the same as the decomposition of the $14^{\text {th }}$ conjugate of f_{1}, \ldots, f_{n} obtained with Algorithm 3.

Theorem 4.2 shows that it is not a matter of chance to have obtained the same decomposition of the third conjugate of g_{1}, \ldots, g_{n} with Algorithm 3. Indeed, we can see that the initializations of Algorithm 3 when input is g_{1}, \ldots, g_{n} and $p=3$, or, when input is f_{1}, \ldots, f_{n} and $p=14$, lead to the same initial value of t.

Observe that $R E_{b c} L=L E_{b c} R$. Thus $R E_{a c} E_{a b} R R E_{a c} R E_{b c} L=R E_{a c} E_{a b}$ $R R E_{a c} L E_{b c} R$.

Consequently, when the input is $n=9, p=0$ and $f_{1}, \ldots, f_{n}=R, E_{a c}, E_{a b}$, $R, R, E_{a c}, L, E_{b c}, R$, then Algorithms 2 and 3 do not give the same output. Theorem 4.2 cannot be stated with arbitrary input in $\operatorname{Exch}(A) \cup\{L, R\}$.

Proof of Theorem 4.2. We act by induction on p. Let f_{1}, \ldots, f_{n} be morphisms in $\operatorname{Exch}(A) \cup\{L\}$.

Assume first $p=0$. The outputs of Algorithms 2 and 3 are both a decomposition g_{1}, \ldots, g_{n} that verifies Property $P\left(f_{1} \ldots f_{n}\right)$. By Theorem 2.1, since $g_{1} \ldots g_{n}=$ $f_{1} \ldots f_{n}$, we have, for all $i, 1 \leq i \leq n, f_{i}=L$ if and only if $g_{i}=L$. Thus the outputs of Algorithms 2 and 3 are the same.

Assume now $1 \leq p \leq \operatorname{NbC}\left(f_{1} \ldots f_{n}\right)-1$. Let g_{1}, \ldots, g_{n} be the morphisms obtained by Algorithm 3 applied with the integer $p-1$. Let h_{1}, \ldots, h_{n} be the morphisms obtained by Algorithm 3 applied with the integer p. By inductive hypothesis, $g_{1} \ldots g_{n}$ is also the decomposition obtained from $f_{1} \ldots f_{n}$ by Algorithm 2 . We have to prove that when we apply Algorithm 1 on $g_{1} \ldots g_{n}$, we obtain $h_{1} \ldots h_{n}$.

We have $h_{1} \ldots h_{n} \neq g_{1} \ldots g_{n}$ by Lemma 2.5. Let k be the greatest integer such that $h_{k} \neq g_{k}$.

Let t_{i} (resp. t_{i}^{\prime}) be the value of t just before the test " $f_{i} \in\{L, R\}$ " in Algorithm 3 applied with the integer $(p-1)$ (resp. p). We have $t_{n}=t_{n}^{\prime}+1$. Let also t_{0} (resp. $\left.t_{0}^{\prime}\right)$ be the value of t at the end of Algorithm 3 applied with the integer ($p-1$) (resp. p). By definition of k, we get for each integer $i, k \leq i \leq n, t_{i}=t_{i}^{\prime}+1$. In particular $t_{k}=t_{k}^{\prime}+1$. Since $g_{k} \neq h_{k}$, this implies $\left|f_{1} \ldots f_{k-1}(a)\right|=t_{k}, g_{k}=L$, $h_{k}=R$. Moreover for each $i, 0 \leq i \leq k-1, t_{i}=0$, and thus $g_{i} \in \operatorname{Exch}(A) \cup\{R\}$. It follows that k is the same as the one which is computed in Algorithm 1.

For $1 \leq i \leq k$, let x_{i} be the first letter of $g_{i} \ldots g_{k}(a)$. Note that $x_{k}=g_{k}(a)=$ $L(a)=a$, and for $1 \leq i<k, x_{i}$ is the first letter of $g_{i}\left(x_{i+1}\right)$. To end the proof, we show by induction on i from $k-1$ to 1 , that $t_{i}^{\prime}=\left|g_{1} \ldots g_{i}\left(x_{i+1}\right)\right|-1$ and, if $g_{i}=R$ then $h_{i}=L$ if and only if $x_{i} \neq a$. We already know that $t_{k}^{\prime}=$ $t_{k}-1=\left|f_{1} \ldots f_{k-1}(a)\right|-1$. Note that since $g_{1} \ldots g_{i}$ is a right conjugate of $f_{1} \ldots f_{i}$ for all $i(0 \leq i \leq n),\left|g_{1} \ldots g_{i}(x)\right|=\left|f_{1} \ldots f_{i}(x)\right|$. For instance, $t_{k}^{\prime}=$ $\left|g_{1} \ldots g_{k-1}(a)\right|-1$. Since $h_{k}=R$, we also have $t_{k-1}^{\prime}=t_{k}^{\prime}$. From $x_{k}=a$, we get $t_{k-1}^{\prime}=\left|g_{1} \ldots g_{k-1}\left(x_{k}\right)\right|-1$.

Let i be an integer, $1 \leq i \leq k-1$, such that $t_{i}^{\prime}=\left|g_{1} \ldots g_{i}\left(x_{i+1}\right)\right|-1$.
If g_{i} is an exchange, we have $x_{i}=g_{i}\left(x_{i+1}\right)$. It follows by Algorithm 3 that $t_{i-1}^{\prime}=t_{i}^{\prime}=\left|g_{1} \ldots g_{i}\left(x_{i+1}\right)\right|-1=\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|-1$.

Assume $g_{i}=R$ (thus $f_{i}=L$). We have $x_{i}=x_{i+1}$.
If $x_{i}=a$, then $x_{i}=g_{i}\left(x_{i+1}\right)$ and so $\left|f_{1} \ldots f_{i-1}(a)\right|=\left|f_{1} \ldots f_{i-1}\left(x_{i}\right)\right|=$ $\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|=\left|g_{1} \ldots g_{i}\left(x_{i+1}\right)\right|>t_{i}^{\prime}$. It follows $h_{i}=R$, and $t_{i-1}^{\prime}=t_{i}^{\prime}=$ $\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|-1$.

If $x_{i} \neq a, t_{i}^{\prime}=\left|g_{1} \ldots g_{i-1} R\left(x_{i+1}\right)\right|-1=\left|g_{1} \ldots g_{i-1}\left(x_{i} a\right)\right|-1=\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|+$ $\left|g_{1} \ldots g_{i-1}(a)\right|-1=\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|+\left|f_{1} \ldots f_{i-1}(a)\right|-1$. It follows $h_{i}=L$, and $t_{i-1}^{\prime}=t_{i}^{\prime}-\left|f_{1} \ldots f_{i-1}(a)\right|=\left|g_{1} \ldots g_{i-1}\left(x_{i}\right)\right|-1$.

5. Computation of a Right conjugate USING LEFT CONJUGACY

In the previous section, we have recalled a proposition (Prop. 4.1) that allows to compute a decomposition of the first conjugate (when exists) of an Episturmian morphism. The following proposition allows to compute the previous conjugate of an Episturmian morphism.

Proposition 5.1 ([14], Prop. 5.4). Let f be an Episturmian morphism on A. Let f_{1}, \ldots, f_{n} be some elements of $\operatorname{Exch}(A) \cup\{L, R\}$ such that $f=f_{1} \ldots f_{n}$.

The morphism f is a right conjugate of another morphism if and only if there exists an integer k between 1 and n such that $f_{k}=R$.

When it is the case, let k be the least integer between 1 and n such that $f_{k}=R$. For each i between 1 and $k-1$, let g_{i} be the morphism defined by:

- $g_{i}=R$ if $f_{i}=L$ and the last letter of $f_{i+1} \ldots f_{k}(a)$ is different from a;
$-g_{i}=f_{i}$ otherwise.
Then the previous right conjugate of f is the morphism $g_{1} g_{2} \ldots g_{k-1} L f_{k+1} \ldots f_{n}$ ($L f_{2} \ldots f_{n}$ when $k=1$).

We let to the reader to design a corresponding algorithm that we will call Algorithm 4.

Now let us come back to Problem 1. Let $f=f_{1} \ldots f_{n}$ be an Episturmian morphism, let g be its $p^{\text {th }}$ right conjugate (if it exists), and let h be its last right conjugate. Let $N R$ be the number of right conjugates of f. The number of left conjugates of g is $N R-p$ (we must have $N R-p \geq 1$). In other words, g is the $(N R-p-1)^{\text {th }}$ left conjugate of its last conjugate. By Proposition 4.1 and Lemma 2.2, we can see that the last conjugate of g is also the last conjugate of f, and one of its decomposition verifying Property $P\left(\operatorname{Stand}\left(f_{1}\right) \ldots \operatorname{Stand}\left(f_{n}\right)\right)$ is obtained by replacing each $f_{i} \in\{L, R\}$ by R. Thus we obtain Algorithm 5.

```
Algorithm 5 solves Problem 1.
    local: \(N R\) integer
    \(N R \leftarrow \operatorname{NbR}\left(f_{1} \ldots f_{n}\right)\)
    if \(N R-p<1\) then quit with the empty sequence as output.
    \(g_{1} \ldots g_{n} \leftarrow\) last conjugate of \(f_{1} \ldots f_{n}\)
    Apply \(N R-p-1\) times Algorithm 4 with input and output \(g_{1}, \ldots, g_{n}\).
```

Example (continued). Once again, we take as input $n=9, f_{1}, \ldots, f_{n}=R, E_{a c}$, $E_{a b}, R, R, E_{a c}, R, E_{b c}, L$ and $p=3$.

We have $N R=6$. The decomposition of the last conjugate of f_{1}, \ldots, f_{n} which has to be computed is

$$
R, E_{a c}, E_{a b}, R, R, E_{a c}, R, E_{b c}, R
$$

We iterate twice Algorithm 4. We obtain successively:

$$
\begin{aligned}
& L, E_{a c}, E_{a b}, R, R, E_{a c}, R, E_{b c}, R . \\
& R, E_{a c}, E_{a b}, L, R, E_{a c}, R, E_{b c}, R .
\end{aligned}
$$

Observe that we do not get the same output as with Algorithm 2.
As for Algorithm 2, the time complexity of Algorithm 5 is in $O(n\|f\|)$. As in the previous section, we consider Algorithm 6 which is a greedy algorithm to compute in $O(n)$ arithmetic operations the $p^{\text {th }}$ conjugate of an Episturmian morphism.

```
Algorithm 6 solves Problem 1.
    local: \(i, t, N L, N C\) integer
    \(N L \leftarrow \operatorname{NbL}\left(f_{1} \ldots f_{n}\right)\)
    \(N C \leftarrow \operatorname{NbC}\left(f_{1} \ldots f_{n}\right)\)
    \(t \leftarrow p+N L-1\)
    if \((t>N C)\) then exit with the empty sequence as output
    for \(i\) from n downto 1 do
        if \(f_{i} \in\{L, R\}\) then
            if \(\left|f_{1} \ldots f_{i-1}(a)\right| \leq t\) then
                \(g_{i} \leftarrow R\)
                \(t \leftarrow t-\left|f_{1} \ldots f_{i-1}(a)\right|\)
            else
                \(g_{i} \leftarrow L\)
        else
            \(g_{i} \leftarrow f_{i}\)
```

We let to the reader to verify as in the previous section the validity of Algorithm 6.

Example (continued). Once again with the same input, we have $N L=11, N C=$ 16 , and t is initialize to the value $3+11-1=13$. Since $\left|f_{1} \ldots f_{3}(a)\right|=2=$ $\left|f_{1} \ldots f_{4}(a)\right|,\left|f_{1} \ldots f_{6}(a)\right|=5$, and $\left|f_{1} \ldots f_{8}(a)\right|=5$, we get $g_{9}=R, g_{8}=E_{b c}$, $g_{7}=R, g_{6}=E_{a c}, g_{5}=R, g_{4}=L, g_{3}=E_{a b}, g_{2}=E_{a c}$ and $g_{1}=R$. We obtain the same decomposition as with Algorithm 5.

We also let to the reader to prove:
Theorem 5.2. When used with the same input, Algorithms 5 and 6 give the same output.

In Theorem 5.2, there is no restriction on the input (it is the case in Th. 4.2) since the computation in Algorithm 5 is, whatever is the value of p, done from the same decomposition: that of the last conjugate of the input.

To end this section, let us mention that all we have done in this section and in the previous one can be adapted to get algorithms to compute a left conjugate of an Episturmian morphism.

6. Computation of all the conjugates

In this section, we want to compute, not only one particular conjugate of an Episturmian morphisms, but all the conjugates.

Any left or right conjugate of f is also a right conjugate of $\operatorname{Stand}(f)$. Thus we treat the

Problem 2. Let f be an epistandard morphism given by a decomposition f_{1}, \ldots, f_{n} over $\operatorname{Exch}(A) \cup\{L\}(n \geq 1)$. How to compute an ordered list $\mathcal{L}=\left(h_{0}, \ldots\right.$, $\left.h_{\mathrm{NbC}\left(f_{1} \ldots f_{n}\right)}-1\right)$ of the conjugates of f such that for each $1 \leq i \leq \mathrm{NbC}\left(f_{1} \ldots f_{n}\right)-$ $1, h_{i}$ is a decomposition of the $i^{\text {th }}$ right conjugate of $f_{1} \ldots f_{n}$ verifying Property $P\left(f_{1} \ldots f_{n}\right)$.

Solutions to Problem 1 give naturally solutions to Problem 2. Algorithm 2 (resp. Algorithm 5) can be transformed to give an $O(n \mathrm{NbC}(f))$ (and so $O(n\|f\|)$) time algorithm to solve Problem 2: we call Algorithm 7 (resp. Algorithm 8) these transformations. Moreover, applying Algorithm 3 (resp. Algorithm 6), for each value of $p, 0 \leq p \leq \mathrm{NbC}(f)-1$, we get Algorithm 9 (resp. Algorithm 10) that solves Problem 2 in $O(n \mathrm{NbC}(f))$ arithmetic operations (and so in time $O\left(n\|f\|^{2}\right)$). By Theorem 4.2, Algorithms 7 and 9 (resp. Algorithms 8 and 10) give the same output.

All these algorithms show that, for any conjugate g of an epistandard morphism $f_{1} \ldots f_{n}$ (with $\left.f_{i} \in \operatorname{Exch}(A) \cup\{L\}\right), g$ has at least one decomposition $g_{1} \ldots g_{n}$ (with $\left.g_{i} \in \operatorname{Exch}(A) \cup\{L, R\}\right)$ that verifies Property $P\left(f_{1} \ldots f_{n}\right)$. Conversely by Theorem 2.4, for any decomposition $g_{1} \ldots g_{n}$ with Property $P\left(f_{1} \ldots f_{n}\right), g_{1} \ldots g_{n}$ is a right conjugate of $f_{1} \ldots f_{n}$. Thus one idea to solve Problem 2 can be to make out the list of decompositions we can obtain from $f_{1} \ldots f_{n}$ replacing some occurrences of L by R. The problem is that we can obtain several decompositions of the same conjugate. For instance, from $L L$, the two decompositions $L R$ and $R L$ are obtained for the first conjugate. Thus we have to eliminate some decompositions to keep only one for each conjugate (this can be done using Th. 2.1) and we have to order the list. A simpler way to obtain the list is to compute it inductively. Here again, we propose two algorithms for this purpose. The first one is Algorithm 11.

```
Algorithm 11 solves Problem 2
    if \(\mathrm{n}=1\)
        if \(f_{1} \in \operatorname{Exch}(A)\) then \(\mathcal{L} \leftarrow\left(f_{1}\right)\)
                            else \(\mathcal{L} \leftarrow(L, R)\)
    else
        apply recursively Algorithm 11 to compute the list
            \(\left(h_{0}, \ldots, h_{k-1}\right)\) of conjugates of \(f_{1} \ldots f_{n-1}\)
        if \(f_{n} \in \operatorname{Exch}(A)\) then
            \(\mathcal{L} \leftarrow\left(h_{0} f_{n}, \ldots, h_{k-1} f_{n}\right)\)
        else
            \(j \leftarrow\left|f_{1} \ldots f_{n-1}(a)\right|\)
            \(\mathcal{L} \leftarrow\left(h_{0} L, \ldots, h_{k-1} L, h_{k-j} R, \ldots, h_{k-1} R\right)\)
```

Let us observe that Algorithm 11 was already presented by Levé and Séébold [11] in case of standard morphisms, that is in the binary case.

Algorithm 12 is a variant of Algorithm 11 obtained (by of course applying recursively Algorithm 12 and) by replacing Instruction (*) by

$$
\mathcal{L} \leftarrow\left(h_{0} L, \ldots, h_{j-1} L, h_{0} R, \ldots, h_{k-1} R\right) .
$$

Example (continued). The list of conjugates we obtain

if input is	with Algorithm 11	with Algorithm 12
L	(L, R)	as with Algorithm 11
$L E_{a c} E_{a b}$	$\left(L E_{a c} E_{a b}, R E_{a c} E_{a b}\right)$	as with Algorithm 11
$L E_{a c} E_{a b} L$	$\left(L E_{a c} E_{a b} L, R E_{a c} E_{a b} L\right.$,	as with Algorithm 11
$L E_{a c} E_{a b} L L$	$\left.L E_{a c} E_{a b} R, R E_{a c} E_{a b} R\right)$	
	$\left(L E_{a c} E_{a b} L L, R E_{a c} E_{a b} L L\right.$,	$\left(L E_{a c} E_{a b} L L, R E_{a c} E_{a b} L L\right.$,
	$L E_{a c} E_{a b} R L, R E_{a c} E_{a b} R L$,	$L E_{a c} E_{a b} L R, R E_{a c} E_{a b} L R$,
	$\left.L E_{a c} E_{a b} R R, R E_{a c} E_{a b} R R\right)$	$\left.L E_{a c} E_{a b} R R, R E_{a c} E_{a b} R R\right)$.

We can observe that the output with Algorithm 11 (resp Algorithm 12) is the same as with Algorithm 7 (resp. with Algorithm 8). Again, it is not by chance as we will see in Theorem 6.2.

To prove the validity of Algorithms 11 and 12, we need the following lemma:
Lemma 6.1. For all Episturmian morphisms f,
(1) $\mathrm{NbC}(f E)=\mathrm{NbC}(f)$ for all exchange morphisms E;
(2) $\mathrm{NbC}(f L)=\mathrm{NbC}(f R)=\mathrm{NbC}(f)+|f(a)|$;
(3) $\mathrm{NbC}(f) \geq|f(x)|$, for all letters x.

Proof. The first and the second part are direct consequences of Proposition 3.2(c). They are already mentioned in [14] (Lem. 4.2).

To prove the third part, let f be an Episturmian morphism, and let E be an exchange morphism. We have for all x in A :

- $\operatorname{NbC}(E)=1=|E(x)|$;
- $\mathrm{NbC}(L)=\mathrm{NbC}(R)=2 \geq|L(x)|=|R(x)|$;
- $\mathrm{NbC}(f E)=\mathrm{NbC}(f)$ and thus, since $E(x)$ is a letter, $\mathrm{NbC}(f E) \geq|f E(x)|$;
- $\mathrm{NbC}(f L)=\operatorname{NbC}(f R)=\mathrm{NbC}(f)+|f(a)| \geq|f(x)|+|f(a)|=|f L(x)|=$ $|f R(x)|$.
The proof of the third part follows by induction on the number of morphisms in the decomposition of f over $\operatorname{Exch}(A) \cup\{L, R\}$.

Proof of validity of Algorithms 11 and 12. Let f_{1}, \ldots, f_{n} be morphisms in $\operatorname{Exch}(A) \cup\{L\}$.

If $n=1$, the algorithms act correctly.
Assume that $n \geq 2$. We denote $f=f_{1} \ldots f_{n-1}$ and $k=\operatorname{NbC}(f)$. Let $\left(h_{0}, \ldots, h_{k-1}\right)$ be the output of one of the two algorithms applied on f_{1}, \ldots, f_{n-1}.

By construction, for any integer $i, 1 \leq i \leq k-1, h_{i}$ is the first right conjugate of h_{i-1}. Thus for any morphism $\phi, h_{i} \phi$ is the first right conjugate of $h_{i-1} \phi$ (see Lem. 2.2(4)). It follows that $\left(h_{0} \phi, \ldots, h_{k-1} \phi\right)$ is a list of k consecutive conjugates of $f_{1} \ldots f_{n} \phi$.

If f_{n} is an exchange morphism, since $\operatorname{NbC}\left(f f_{n}\right)=k$, by Lemma 6.1, the list of conjugates of $f_{1} \ldots f_{n}$ is $\left(h_{0} f_{n}, \ldots, h_{k-1} f_{n}\right)$.

Assume now $f_{n}=L$. Since $h_{0} L$ has no left conjugates (it is epistandard), $\left(h_{0} L, \ldots, h_{k-1} L\right)$ is the list of the first k conjugates of $f_{1} \ldots f_{n}$. In a similar way $\left(h_{0} R, \ldots, h_{k-1} R\right)$ is the list of the last k conjugates. The number of conjugates of $f_{1} \ldots f_{n}$ is $\mathrm{NbC}(f)+|f(a)|$. We denote as in Algorithm 11 and $12, j=|f(a)|$. By Lemma $6.1, j<k$. It follows that $\left(h_{0} L, \ldots, h_{k-1} L, h_{k-j} R, \ldots, h_{k-1} R\right)$ and $\left(h_{0} L, \ldots, h_{j-1} L, h_{0} R, \ldots, h_{k-1} R\right)$ are both the list of the $k+j$ conjugates of $f f_{n}$.

The proof of validity ends by induction.
As announced in the example, we have:
Theorem 6.2. From a given input,
(1) Algorithm 11 computes the same output as Algorithms 7 and 9;
(2) Algorithm 12 computes the same output as Algorithms 8 and 10.

Proof. We prove only Part 1 of this proposition. The second part is similar. We already know that Algorithms 7 and 9 give the same output. Let us compare this output with the one of Algorithm 11. We act by induction on n.

If $n=1$, the result is true: the output is $\left(f_{1}\right)$ where f_{1} is the input.
If $n \geq 2$, we denote $f=f_{1} \ldots f_{n-1}$ and $k=\mathrm{NbC}(f)$. Let $\left(h_{0}, \ldots, h_{k-1}\right)$ be the output of Algorithm 11 applied on f_{1}, \ldots, f_{n-1}. By inductive hypothesis, $\left(h_{0}, \ldots, h_{k-1}\right)$ is also the list of decompositions of the k conjugates of $f_{1} \ldots f_{n-1}$ obtained with Algorithm 7 or 9 .

Note that, whatever is a morphism f_{n} in $\operatorname{Exch}(A) \cup\{L, R\}$ when we apply successively k times Algorithm 1 to obtain successive conjugates of $f_{1} \ldots f_{n}$, we obtain the list $\left(h_{0} f_{n}, \ldots, h_{k-1} f_{n}\right)$.

Thus if f_{n} is an exchange morphism, we obtain the same output with Algorithms 7 and 11.

Now assume $f_{n}=L$. The first conjugates of $f_{1} \ldots f_{n}$ are $h_{0} L, \ldots, h_{k-1} L$. The last conjugates of $f_{1} \ldots f_{n}$ are $h_{k-j} R, \ldots, h_{k-1} R$ where $j=\left|f_{1} \ldots f_{n-1}(a)\right|$ as in Algorithm 11. To end the proof we have to show that when we apply Algorithm 3 with input f_{1}, \ldots, f_{n}, and $p=k$, we get the decomposition $h_{k-j} R$. When we do this application, we initialize $N L$ at 1 and $N C$ at $\operatorname{NbC}\left(f_{1} \ldots f_{n}\right)$. By Lemma 6.1, $\operatorname{NbC}\left(f_{1} \ldots f_{n}\right)=\operatorname{NbC}\left(f_{1} \ldots f_{n-1}\right)+\left|f_{1} \ldots f_{n-1}(a)\right|=k+j$. It follows that the initial value of t is $j-1$. When executing the "for" block in Algorithm 3 with $i=n$, we get $g_{n}=R$ and t is unchanged. Moreover, after that, the algorithm continues as if the input is f_{1}, \ldots, f_{n-1} and $p=k-j$. Indeed $\operatorname{NbC}\left(f_{1} \ldots f_{n-1}\right)=$ $\operatorname{NbC}\left(f_{1} \ldots f_{n}\right)-j$ and, by Proposition $3.2 \operatorname{NbL}\left(f_{1} \ldots f_{n-1}\right)=\operatorname{NbL}\left(f_{1} \ldots f_{n}\right)-j$. So by inductive hypothesis, the obtained decomposition is $h_{k-j} R$.

Acknowledgements. This paper solves questions initially asked by P. Séébold. I thank him for his remarks and his encouragements. Thanks also to an anonymous referee for his interesting remarks.

References

[1] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexités $2 n+1$. Bull. Soc. Math. France 119 (1991) 199-215.
[2] J. Berstel and P. Séébold, Sturmian words, Chap. 2, edited by M. Lothaire. Cambridge Mathematical Library, Algebraic Combinatorics on Words 90 (2002).
[3] V. Berthé and L. Vuillon, Tilings and rotations on the torus: A two dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53.
[4] M.G. Castelli, F. Mignosi and A. Restivo, Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94.
[5] X. Droubay, J. Justin and G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci. 255 (2001) 539-553.
[6] P. Hubert, Suites équilibrées. Theoret. Comput. Sci. 242 (2000) 91-108.
[7] J. Justin, On a paper by Castelli, Mignosi, Restivo. RAIRO: Theoret. Informatics Appl. 34 (2000) 373-377.
[8] J. Justin, Episturmian words and morphisms (results and conjectures), edited by H. Crapo and D. Senato. Springer-Verlag, Algebraic Combinatorics and Comput. Sci. (2001) 533-539.
[9] J. Justin and G. Pirillo, Episturmian words and Episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313.
[10] J. Justin and L. Vuillon, Return words in Sturmian and Episturmian words. RAIRO: Theoret. Informatics Appl. 34 (2000) 343-356.
[11] F. Levé and P. Séébold, Conjugation of standard morphisms and a generalization of singular words, in Proc. of the $9^{\text {th }}$ international conference Journées Montoises d'Informatique Théorique. Montpellier, France (2002).
[12] M. Morse and G.A. Hedlund, Symbolic Dynamics II: Sturmian trajectories. Amer. J. Math. 61 (1940) 1-42.
[13] G. Rauzy, Suites à termes dans un alphabet fini, in Séminaire de théorie des Nombres de Bordeaux. Exposé 25 (1983).
[14] G. Richomme, Conjugacy and Episturmian morphisms, Technical Report 2001-03. LaRIA, Theoret. Comput. Sci. (to appear).
[15] P. Séébold, Fibonacci morphisms and Sturmian words. Theoret. Comput. Sci. 88 (1991) 365-384.
[16] P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109.
[17] Z.X. Wen and Y. Zhang, Some remarks on invertible substitutions on three letter alphabet. Chin. Sci. Bulletin 44 (1999) 1755-1760.

Communicated by J. Berstel.
Received October, 2002. Accepted January, 2003.

[^0]: Keywords and phrases. Combinatorics on words, Sturmian morphisms, conjugacy, algorithms.
 ${ }^{1}$ LaRIA, Université de Picardie Jules Verne, 5 rue du Moulin Neuf, 80000 Amiens, France; e-mail: richomme@laria.u-picardie.fr

