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ON CORE XPATH WITH INFLATIONARY FIXED
POINTS ∗
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Abstract. We prove the undecidability of Core XPath 1.0 (CXP)
[G. Gottlob and C. Koch, in Proc. of 17th Ann. IEEE Symp. on Logic in
Computer Science, LICS ’02 (Copenhagen, July 2002). IEEE CS Press
(2002) 189–202.] extended with an Inflationary Fixed Point (IFP) op-
erator. More specifically, we prove that the satisfiability problem of this
language is undecidable. In fact, the fragment of CXP+IFP containing
only the self and descendant axes is already undecidable.
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1. Introduction

The Extensible Markup Language (XML), first published as a recommenda-
tion by the W3 Consortium in 1998, has become a standard for the exchange,
presentation, and storage of data across the World Wide Web. The XML format
has proven to be versatile enough to describe virtually any kind of information,
ranging from structured to unstructured, and from short Web Service messages to
gigabyte-sized data collections (e.g., [9]), and to serve a rich spectrum of applica-
tions. The fundamental data structure underlying XML data model is that of a
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finite ordered tree, where the nodes of the tree are the elements, attributes, and
pieces of text in the document.

Because of the large amount of data available in XML format, different
XML querying and processing languages have been developed, such as the XML
Path Language (XPath), version 1.0 and 2.0 [19, 20] and XML Query Language
(XQuery), version 1.0 [21]. XQuery is the main query language for XML, featur-
ing, for example, constructs for joins and sorting, and XPath is a strict subset
of XQuery, whose main functionality is to descibe ways to navigate though XML
trees.

Since the data model of XML, being based on trees, is inherently recursive, it
is important for the associated query languages to be able to express recursive
queries. XPath has a very restricted form of recursion by means of the recursive
axes (e.g., ancestor and descendant). The main construct for expressing recur-
sive queries in XQuery [21], however, is recursive user-defined functions (RUDFs).
They are also the reason for the fact that XQuery’s is Turing-complete. User-
defined functions in XQuery make it possible to express any types of recursion,
and they make the language inherently procedural, largely evading automatic op-
timization approaches beyond simple strategies such as tail-recursion elimination
and unfolding. This places the burden of optimization on the user’s shoulders. An-
other difficulty with the RUDFs is that they do not seem to fit naturally into the
algebraic frameworks commonly adopted by the database community for query
optimization. Most XQuery engines have an underlying algebra that facilitates
optimizations (e.g., Natix Physical Algebra (NPA) [8], or TAX, a tree algebra for
XML used by the Timber engine [13]), but since there is no proper algebraic cor-
respondent for user-defined recursive functions, these algebras cannot be used for
recursive queries.

For these reasons, in [1, 2], an extension of the XML query language XQuery
with an inflationary fixed point operator was developed and implemented. The
inflationary fixed point operator provides a declarative means to specify recur-
sive queries, and is more amenable to query optimization since it blends in
naturally with algebra-based query optimization frameworks such as the one of
MonetDB/XQuery [4]. Indeed, it was shown in [2] that a significant performance
gain can be achieved in this way.

While the empirical evidence is there, a foundational question remains: how
feasible is it to do static analysis for recursive queries specified by means of the
inflationary fixed point operator? Specifically, are there substantial fragments of
XQuery with the inflationary fixed point operator for which static analysis tasks
such as satisfiability are decidable?

In this paper, we give a strong negative answer. Our main result states that,
already for the downward-looking fragment of Core XPath 1.0 with the inflationary
fixed point operator (CXP+IFP), satisfiability is undecidable. Core XPath 1.0
(CXP) [10] is the core navigational fragment of XPath 1.0 and thus of XQuery. The
proof is based on a reduction from the undecidable halting problem for 2-register
machines (cf. [5]), and borrows ideas from the work of Dawar et al. [7] on the
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Modal Iteration Calculus (MIC), an extension of modal logic with inflationary
fixed points.

A second question we address in this paper is the relationship between
CXP+IFP and MIC. While similar in spirit, it turns out that the two formalisms
differ in subtle and important ways. Nevertheless, we obtain a translation from
1MIC (the fragment of MIC that does not involve simultaneous induction) to
CXP+IFP node expressions.

A further implication of this translation is the fact that CXP extended with IFP
is strictly more expressive than CXP extended with the transitive closure (TC)
operator, also known as Regular XPath [15]. The result follows from the ability of
1MIC to define non-regular string languages [7].

1.1. Background and related work on fixed point logics

Logics with fixed point operators have been studied extensively in finite model
theory, where it has been shown that complexity classes such as NLOGSPACE, and
PTIME, and PSPACE can be characterized by means of extensions of first-order
logic with fixed point operators (cf. [12]). In particular, on finite ordered structures,
first-order logic extended with the transitive closure operator (FO(TC)) captures
the complexity class NLOGSPACE (meaning that FO(TC) can express exactly
those queries that can be evaluated in NLOGSPACE), and in the same way, first-
order logic extended with the least fixed point operator (FO(LFP)) captures the
complexity class PTIME, and first-order logic extended with the inflationary fixed
point operator (FO(IFP)) captures PTIME. Incidentally, these results rely on the
fact that the fixed point operators in question can bind second order variables of
arbitrarily large arity. They do not depend on the question whether simultaneous
fixed point definitions are allowed, as it turns out that allowing simultaneous
fixed point definitions does not increase the expressive power of the languages in
question.

FO(TC), FO(LFP), and FO(IFP) are undecidable for satisfiability, for the sim-
ple reason that satisfiability is already undecidable for first-order logic itself. This
has lead to the question whether certain decidable fragments of first-order logic,
such as modal logic or the two-variable fragment, can be extended with fixed point
operators while preserving decidability. In the case of the two-variable fragment,
the answer is negative: even the two-variable fragment extended with monadic
transitive closure is already undecidable for satisfiability [11]. Modal logic, on the
other hand, turned out to be more robust. In particular, extensions of modal logic
with monadic transitive closure (in the form of Propositional Dynamic Logic and
Regular XPath) and with least fixed point (in the form of the Modal μ-Calculus)
are decidable and have been studied in depth [6]. Note that, in the setting of modal
logic, it is most natural to consider monadic versions of the fixed point operators.

It is in this context that the extension of modal logic with the monadic inflation-
ary fixed point operator was introduced and studied in [7], under the name Modal
Iteration Calculus (MIC). Unfortunately, the modal iteration calculus turns out to
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be less well behaved than Propositional Dynamic Logic and the Modal μ-Calculus.
In particular, it has an undecidable satisfiability problem and the expressive power
of the logic depends on whether simultaneous fixed point definitions are allowed
(the undecidability was shown to hold already for the fragment 1MIC of MIC in
which simultaneous fixed point definitions are not allowed). The results we present
in this paper imply something stronger, namely that satisfiability of 1MIC formulas
on finite trees is already undecidable.

2. Preliminaries

2.1. Core XPath 1.0 extended with IFP (CXP+IFP)

Core XPath 1.0 (CXP) was introduced in [10] to capture the navigational core
of XPath 1.0. We will follow here the definition of CXP given in [16], which differs
from the one of [10], as it allows unions to be applied to arbitrary expressions (we
do not know whether our proofs could be adapted for the more restrictive syntax
used in [10]). On the other hand, we will consider only the downward axes child
and descendant (plus the self axis), both in order to facilitate the comparison with
MIC, and because this will already suffice for our undecidability result. We will
briefly comment on the other axes later.

We consider the extension of CXP, which we call CXP+IFP, with an inflation-
ary fixed-point operator. This inflationary fixed-point operator was first proposed
in [1, 2] in the context of XQuery, and is naturally adapted here to the setting
of CXP. We first give the syntax and semantics of CXP+IFP, then discuss the
intuition behind the operator.

Definition 2.1 (Syntax and Semantics of CXP+IFP). Let Σ be a set of labels
and VAR a set of variables. The CXP+IFP expressions are defined as follows:

axis ::= self | child | desc
step ::= axis::l | axis::∗
α ::= step | α1/α2 | α1 ∪ α2 | | α[ϕ] | X | with X in α1 recurse α2

ϕ ::= false | 〈α〉 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | X ,

where l ∈ Σ and X ∈ V AR. The α expressions are called path expressions,
the ϕ expressions are called node expressions. The with . . . in . . . recurse . . .
operator is called the WITH operator, while X, α1, and α2 in the expression
with X in α1 recurse α2 are called the variable, the seed, and the body of the
recursion.

The CXP+IFP expressions are evaluated on finite node-labeled trees. Let T =
(N,R,L) be a finite node-labeled tree, where N is a finite set of nodes, R ⊂ N×N is
the child relation in the tree, and L is a function from N to a set of labels. Let g(·)
be an assignment function from variables to sets of nodes, g : V AR → ℘(N).
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Then the semantics of CXP+IFP expressions are as follows:

[[self]]T,g = {(u, u) | u ∈ N}
[[child]]T,g = R
[[desc]]T,g = R+ (the transitive closure of R)

[[axis::l]]T,g = {(u, v) ∈ [[axis]]T,g | L(v) = l}
[[axis::∗]]T,g = [[axis]]T,g

[[α1/α2]]T,g = {(u, v) | ∃w.(u,w) ∈ [[α1]]T,g ∧ (w, v) ∈ [[α2]]T,g}
[[α1 ∪ α2]]T,g = [[α1]]T,g ∪ [[α2]]T,g

[[α[ϕ]]]T,g = {(u, v) ∈ [[α]]T,g | v ∈ [[ϕ]]T,g}
[[X ]]T,g = N × g(X), X ∈ V AR

[[with X in α1

recurse α2]]T,g = union of all sets {w} × gk(X), for all w ∈ N ,
where gk is obtained in the following manner, for i ≥ 1:
g1 := g[X 
→ {v ∈ N | (w, v) ∈ [[α1]]T,g}],
gi+1 := gi[X 
→ gi(X) ∪ {v ∈ N | (w, v) ∈ [[α2]]T,gi}],
and k is the least natural number for which gk+1=gk.

[〈false〉]T,g = ∅
[〈〈α〉〉]T,g = {u ∈ N | (u, v) ∈ [[α]]T,g for some v ∈ N}
[〈¬ϕ〉]T,g = N \ [〈ϕ〉]T,g

[〈ϕ1 ∧ ϕ2〉]T,g = [〈ϕ1〉]T,g ∩ [〈ϕ2〉]T,g
[〈ϕ1 ∨ ϕ2〉]T,g = [〈ϕ1〉]T,g ∪ [〈ϕ2〉]T,g

[〈X〉]T,g = g(X), X ∈ V AR
We will sometimes write T, g, u � ϕ if u ∈ [〈ϕ〉]T,g .

While the semantics [[α]]T,g of a path expression α is defined as a binary relation,
it is natural to think of it as a function mapping each node u to a set of nodes
{v | (u, v) ∈ [[α]]T,g}, which we denote by Resultgu(α). It represents the result of
evaluating α in the context node u (using the assignment g). The semantics of
the variables and of the WITH operator is most naturally understood from this
perspective, and can be equivalently stated as follows:

• Resultgu(X) = g(X), i.e., when X is used as a path expression, it evaluates to
g(X) regardless of the context node.
• Resultgu(with X in α1 recurse α2) = Xk, where X1 = Result

g[X �→∅]
u (α1),

Xi+1 = Xi ∪ Resultg[X �→Xi]
u (α2) for i ≥ 1, and k is the smallest number such

that Xk = Xk+1.

Note that, at each iteration, the context node of the evaluation of α1 or α2 re-
mains u.

When a variable X is used as a node expression, it simply tests whether the
current node belongs to the set assigned to X .

The example query below yields the set of nodes that can be reached from the
context node by following the transitive closure of the child::a relation.

with X in child::a recurse X/child::a
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The query below yields the set of nodes that are labeled with a and are at an even
distance from the context node.

(with X in self:: ∗ recurse X/child:: ∗ /child::∗)/self::a

It is important to note that (unlike MIC) the language provides no way to test
whether a given node belongs to the result of with X in α1 recurse α2, it only allows
us to go to a node belonging to the result set. From the point of view of XQuery
and XPath, it is very natural to define the inflationary fixed point operator in
this way, i.e., as an operator on path expressions. However, this has some subtle
consequences, as we explain next.

The semantics of the WITH operator we give here differs slighly from the
original semantics used in [1, 2]. According to the original semantics, when
Resultgu(with X in α1 recurse α2) is computed, the result of α1 is only used as
a seed of the recursion but is not itself added to the fixed point set. In other
words, Resultgu(with X in α1 recurse α2) was defined there as Xk, where X0 =
Result

g[X �→∅]
u (α1), X1 = Result

g[X �→X0]
u (α2), Xi+1 = Xi ∪ Resultg[X �→Xi]

u (α2) for
i ≥ 1, and k is the least number such that Xk = Xk+1. The semantics we use here
is arguably mathematically cleaner and more intuitive since it is truly inflationary:
all the nodes assigned to the recursion variable during fixed-point computation end
up in the result.

2.2. Propositional Modal Logic extended with IFP (ML+IFP)

The language ML+IFP we consider is an extension of Propositional Modal Logic
(ML) [3] with a monadic IFP operator. It is also known as 1MIC, the fragment
of Modal Iteration Calculus (MIC) that does not involve simultaneous induction,
and it was first introduced in [7], where it was also shown that its satisfiability
problem is undecidable on arbitrary structures.

Definition 2.2 (ML+IFP). Let Σ be a set of labels and V AR a set of variables.
Then the syntax of ML+IFP is defined as follows:

ϕ ::= ⊥ | l | X | ♦ϕ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
(
ifp X ← ϕ

)

where l ∈ Σ, X ∈ V AR.
The semantics of ML+IFP is given in terms of Kripke models. To facilitate

the comparison with CXP+IFP, we will assume that the Kripke models assign a
unique label to each node, rather than a set of labels. This is not essential, since for
a finite set of labels Σ this property can be expressed with a Modal Logic formula.
Let T = (N,R,L) be a Kripke model, where N is a set of nodes, R ⊆ N × N is
a binary relation on the nodes in N , and L is a valuation function that assigns a
label from Σ to each node in N . Let g(·) be an assignment function from variables
to sets of nodes, g : V AR→ ℘(N). Then the semantics of ML+IFP formulas are
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as follows:

[[⊥]]T,g = ∅
[[l]]T,g = {n ∈ N | L(n) = l}

[[X ]]T,g = g(X)
[[♦ϕ]]T,g = {u | ∃v.(u, v) ∈ R ∧ v ∈ [[ϕ]]T,g}
[[¬ϕ]]T,g = N \ [[ϕ]]T,g

[[ϕ1 ∧ ϕ2]]T,g = [[ϕ1]]T,g ∩ [[ϕ2]]T,g
[[ϕ1 ∨ ϕ2]]T,g = [[ϕ1]]T,g ∪ [[ϕ2]]T,g

[[ifp X ← ϕ]]T,g = gk(X), where gk is obtained in the following manner:
g0 := g[X 
→ ∅],
gi+1 := gi[X 
→ gi(X) ∪ [[ϕ]]T,gi ], for i ≥ 0,
where k is the minimum number for which gk+1=gk.

We write T, g, u � ϕ if u ∈ [[ϕ]]T,g. If a formula has no free variables, we may
leave out the assignment and write T, u � ϕ or u ∈ [[ϕ]]T .

It was shown in [7] that the satisfiability problem for ML+IFP on arbitrary
Kripke models is highly undecidable (i.e., neither recursively enumerable nor co-
recursively enumerable. As we will show below, it is undecidable on finite trees as
well.

3. Relation between ML+IFP and CXP+IFP

In this section, we give a truth-preserving translation from ML+IFP to
CXP+IFP (i.e., a translation that preserves truth or falsity at any given node
of a structure). In fact, the translation yields CXP+IFP expressions that use only
the self and descendant axes. It follows that this fragment of CXP+IFP already
has (at least) the expressive power of ML+IFP.

One of the main differences between ML+IFP and CXP+IFP is that, in the
former, fixed-point expressions are node expressions that test whether the current
node belongs to the fixed point of a formula, while in the latter, fixed-point ex-
pressions are path expressions that travel to nodes belonging to the fixed point of
a formula. Another difference is that, in CXP+IFP, during the entire fixed point
computation, the expressions are evaluated from a fixed context node, whereas in
ML+IFP, whether a node is added to the set at some stage of the fixed point
computation is determined by local properties of the subtree below that node.

In our translation from ML+IFP to CXP+IFP we have to overcome these differ-
ences. The main idea of the translation of ML+IFP formulas of the form ifpX ← ϕ
will be that, during the fixed point computation, we treat leaf nodes in a special
way, never adding them to the fixed point set but keeping track of them separately.
Specifically, we first compute the set Y of all leaf nodes satisfying ifp X ← ϕ. Next,
we let X0 = ∅ and Xi+1 is computed as Xi ∪ ([[ϕ]]T,g[X �→Xi∪Y ] − Y ). Observe how
the nodes in Y are added to the input and substracted again from the output.
Let Xk be the fixed point of the sequence X0 ⊆ X1 ⊆ · · · . Then we have that
[[ifp X ← ϕ]]T,g = Xk ∪ Y . The advantage of this construction is that, since the
leaves are never added during the fixed point computation, they can be freely used
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for signalling that the context node was added to the set X : if the context node is
added at some stage, we add a leaf node as well, and the presence of a leaf node
in the result set will be used as a sign that we test for afterwards.

Before we give the details of the construction, we first note that when computing
the inflationary fixed point of an ML+IFP formula, any leaf node that is added
to the fixed point set is in fact already added at the first stage of the fixed point
computation. This is expressed by the following lemma.

Lemma 3.1. Let u be any node in a Kripke model T , and let ϕ(X) be any
ML+IFP formula and g an assignment. If u has no successors, then u ∈ [[ifp X ←
ϕ]]T,g iff u ∈ [[ϕ]]T,g[X �→∅].

Proof. Follows from the fact that the modal formula ϕ only speaks about the
submodel generated by u, i.e., the submodel consisting only of the node u
itself. �

In what follows, we will use � as shorthand for self:: ∗ [false], desc-or-self::∗ as
shorthand for desc:: ∗∪ self::∗, and leaf as shorthand for ¬〈child::∗〉. Also, for node
expressions ϕ, ψ and a variableX , such that X only occurs in ϕ in the form of node
tests, we will denote by ϕX/ψ the node expression obtained from ϕ by replacing
all free occurrences of X by the node expression ψ.

The translation τ(·) from ML+IFP formulas to CXP+IFP node expressions is
given by equation (3.1).

τ(⊥) = false
τ(l) = 〈self::l〉

τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2)
τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2)

τ(¬ϕ) = ¬τ(ϕ)
τ(X) = X
τ(♦ϕ) = 〈child:: ∗ [τ(ϕ)]〉

τ
(
ifp X ← ϕ

)
= 〈(with X in desc-or-self:: ∗ [τ(ϕ)X/false ∧ ¬τ(ϕ)leaf] recurse

desc-or-self:: ∗ [τ(ϕ)X/(X∨τ(ϕ)leaf) ∧ ¬τ(ϕ)leaf] ∪
self:: ∗ [X ∨ τ(ϕ)leaf]/desc-or-self:: ∗ )

[leaf]〉
where τ(ϕ)leaf = τ(ϕ)X/false ∧ leaf

(3.1)
The last clause of the above translation follows exactly the strategy that we

described above: τ(ϕ)leaf computes the set Y of leaf-nodes belonging to the infla-
tionary fixed point of ϕ, and every time the body of the fixed point operator is
evaluated, the nodes in Y are added to the input and subtracted from the output,
until possibly at some stage the context node comes to satisfy ϕ, in which case
all its descendants are added to the fixed point set. Finally, we test whether the
resulting fixed point set contains a leaf. The latter holds if and only if the context
node satisfies

(
ifp X ← ϕ

)
.

Theorem 3.2. Let T = (N,R,L) be a node-labeled finite tree, g an assignment,
and u a node in T . Then T, g, u � ϕ iff T, g, u � τ(ϕ).
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Proof. The proof is by simultaneous induction on the form of the formula ϕ. The
cases for ⊥, l, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ, X , and ♦ψ are immediate. Therefore, let
ϕ =

(
ifp X ← ψ

)
.

Since ML+IFP formulas and CXP+IFP node expressions can only see the
subtree of the context node, we may assume without loss of generality that u
is the root of the tree T . We write Tu instead of T , to make this explicit.

Let gi, 0 ≤ i ≤ k, be the variable assignments computed for ϕ in accordance
with the semantics of the IFP operator (see Def. 2.2) on Tu, where g0 = g[X 
→ ∅]
and where k is the least natural number such that either u ∈ gk(X) or gk(X) =
gk+1(X), whichever happens first. Similarly, let g′i, 1 ≤ i ≤ k, be the first k variable
assignments computed for the recursive sub-expression of τ(ϕ) in accordance with
the semantics of the WITH operator (see Def. 2.1) for u as the context.

Let Y = [[τ(ϕ)leaf]]T,g. It follows from the induction hypothesis, together with
Lemma 3.1, that Y is precisely the set of all leaf nodes belonging to gk(X), and
moreover, for every 1 ≤ i ≤ k, Y is precisely the set of all leaf nodes belonging
to gi(X).

Now, a straightforward induction shows that, for each i ≤ k, gi(X) is exactly
the disjoint union of the sets g′i(X) and Y (note that we use here the fact that
u �∈ gk−1(X)).

Now, there are two possibilities: either u ∈ gk(X) (in which case u satisfies(
ifp X ← ϕ

)
) or u �∈ gk(X) (in which case u does not satisfy

(
ifp X ← ϕ

)
). In

the first case, it is easy to see that g′k+1(X) contains all nodes below u, and in
particular, contains a leaf node, and therefore τ(

(
ifp X ← ϕ

)
) is satisfied. In the

second case, g′k+1(X) = g′k(X), and therefore u does not satisfy τ(
(
ifp X ← ϕ

)
).

This concludes the proof. �

We can conclude that CXP+IFP node expressions have (at least) the expressive
power of ML+IFP. Since the desc axis is definable from the child axis, the same
holds of course for the fragment of CXP+IFP without the desc axis. What is more
surprising is that the same holds for the fragment of CXP+IFP without the child
axis. The next lemma shows that the use of the child axis in the above translation
can be avoided (provided that we keep, of course, the desc axis). Note that the
child axis was only used in the translation of formulas of the form ♦ϕ.

Proposition 3.3. For any node expression ϕ, 〈child:: ∗ [ϕ]〉 is equivalent to the
following node expression (which does not use the child axis):

〈
(
with X in desc:: ∗ /desc:: ∗ [leaf] recurse

self:: ∗ [〈desc:: ∗ [leaf ∧ ¬X ∧ ϕ]〉]
)
[¬leaf]〉

∨
〈
(
with X in desc:: ∗ /desc:: ∗ [¬leaf] recurse

desc:: ∗ [¬leaf ∧ ¬X ∧ ϕ]/desc:: ∗
)
[leaf]〉
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Proof. Let T = (N,R,L) be a finite nodel-labeled tree, u ∈ N a node, and g:
V AR → ℘(N) an assignment. We will show that the first disjunct of the node
expression is true at u under the assignment g if and only if u has a child satisfy-
ing ϕ (under g) that is a leaf. Similarly, it can be shown that the second disjunct
is true if and only if u has a child satisfying ϕ that is not a leaf.

Thus, let us consider the first disjunct. In the first step of the inflationary fixed
point computation, all leaf nodes below u are added to the set X except those
that are a child of u. Next, u itself is added to the set X just in case it has a
descendant satisfying ϕ that is a leaf and that was not marked with X already.
After these two steps, the fixed point is reached. It is easy to see that the set X
obtained in this way contains a non-leaf node if and only if it contains the node u,
which holds if and only if u has a descendant satisfying ϕ that is a leaf and that
was nor marked by X in the first step of the fixed point computation. The latter
holds if and only if u has a child that is a leaf and that satisfies ϕ.

In the same way, for the second disjunct of the node expression, it can be shown
that the inflationary fixed point set X contains a leaf node if and only if u has a
child satisfying ϕ that is not a leaf. �

4. Undecidability of CXP+IFP and ML+IFP on finite

trees

We show that the satisfiability problem for ML+IFP on finite trees is undecid-
able, and therefore also (by our earlier translation), the satisfiability problem for
CXP+IFP.

Theorem 4.1. The satisfiability problem of ML+IFP on finite trees is undecid-
able.

Corollary 4.2. The satisfiability problem of CXP+IFP is undecidable, even if the
child axis is disallowed.

The proof, given in Section 4.2, is based on a reduction from the halting problem
for 2-register machines (cf. [5]).

4.1. Two-Register machines

A 2-register machine is a very simple kind of deterministic automaton without
input and output. It has two registers containing integer values, and instructions
for incrementing and decrementing the content of the registers. These 2-register
automata form one of the simplest types of machines for which the halting problem
is undecidable. The formal definition is as follows:

A 2-register machine M is a tuple M = (Q, δ, q0, qf ), where Q is a finite set of
states, δ is a transition function from Q to a set of instructions I, defined below,
and q0, qf are designated states in Q, called the initial state and the final state,
respectively [5].
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The set of instructions I consists of four kinds of instructions:

• INCA(q′): increment the value stored in A and move to state q′;
• INCB(q′): increment the value stored in B and move to state q′;
• DECA(q′, q′′): if the value stored in A is bigger than 0 then decrement it by

one and move to state q′, otherwise move to state q′′ without changing the
value in A nor B; and
• DECB(q′, q′′): if the value stored in B is bigger than 0 then decrement it by

one and move to state q′, otherwise move to state q′′ without changing the
value in A nor B.

A configuration of the machine M is a triple S = (q, a, b), where q is a state
in Q, and a, b are non-negative integers that correspond to the numbers stored
in the registers A and B, respectively. The configuration S0 = (q0, 0, 0) is called
the initial configuration, and the configuration Sf = (qf , 0, 0) is called the final
configuration.

A successful run of the machine is a sequence of configurations, Si = (qi, ai, bi),
0 ≤ i ≤ n, n > 0, such that:

• the sequence starts with the initial configuration, S0, and it ends with the final
configuration Sf , and
• any pair of consecutive configurations in the sequence, Si and Si+1, satisfies δ,

i.e., the state and the register values in the successor configuration correspond
to the instruction attributed to the state in the predecessor configuration by δ:
– if δ(qi) = INCA(q′i), then Si+1 = (q′i, ai + 1, bi);
– if δ(qi) = INCB(q′i), then Si+1 = (q′i, ai, bi + 1);
– if δ(qi) = DECA(q′i, q

′′
i ), then Si+1 = (q′i, ai − 1, bi), if ai > 0, else Si+1 =

(q′′i , ai, bi);
– if δ(qi) = DECB(q′i, q

′′
i ), then Si+1 = (q′i, ai, bi − 1), if bi > 0, else Si+1 =

(q′′i , ai, bi).

Theorem 4.3 ([5]). The following question is undecidable: given a 2-register
machine, is there a successful run of this machine?

Note that, since a 2-register machine is deterministic without input, it can have
only one minimal successful run, and any other successful other run must contain
the first one as a prefix. We may in fact assume without loss of generality that the
machine does not pass through the final configuration (qf , 0, 0) more than once,
and hence has at most one successful run. Two further assumptions we can safely
make are: (i ) the initial and final states are distinct (if q0 = qf then the machine
trivially has a successful run), and (ii ) no two subsequent configurations on any
run of the machine have the same state (this can be ensured by adding additional
intermediate states if necessary).

4.2. The reduction

In this section, we construct a ML+IFP formula that is satisfied in the root of a
finite labeled tree if and only if all the paths from the root to the leaves represent
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a successful run of a given 2-register machine. If a successful run exists, then there
is a tree that satisfies this formula, and vice versa, if there is no successful run,
then there is no tree that satisfies the formula.

For the remainder of this section, fix a 2-register machine M = (Q, δ, q0, qf ).
The set of labels used in the formula will be Σ = Q ∪ {a, b, $}, where Q is the
set of states of the 2-register machine, a, b are symbols used for representing the
register content in each configuration, and $ is another symbol used for marking
the end of the encoding of the successful run. It is convenient in what follows to
treat these labels as mutually exclusive. In other words, when we write a symbol
such as a, we actually mean a ∧∧

c∈Σ\{a} ¬c.
We model the registers A and B of a 2-register machine with paths labeled with

a and b, respectively. The number of nodes in the path corresponds to the integer
number stored in the respective register. Then we prove that we can express the
equality of two register values in ML+IFP. This is needed in order to express
that two configurations of the machine satisfy the transition function δ. Once we
can express that two configurations satisfy the transition function, we construct
a formula that forces the existence of a sequence of configurations that forms a
successful run.

It will be convenient to consider regular expressions describing paths in the
tree. By a path in a tree, we mean a sequence of nodes v1, . . . , vn (n ≥ 1) such
that any two consecutive nodes satisfy the child relation, i.e., (vi, vi+1) ∈ R, for
1 ≤ i ≤ n − 1. A path that ends with a leaf node is called a branch. A prefix of
a path v1, . . . , vn is any path v1, . . . , vi with i ≤ n. In order to describe paths,
we will use expressions built up inductively from ML+IFP formulas using the
regular operations of composition, union (+), and transitive closure (·+) as well as
reflexive transitive closure (·∗). We call such expressions regular path expressions.
For example, a(¬a) is a regular path expression that is satisfied by paths of length
two whose first node satisfies a and whose second node does not, and (��)∗ is a
regular path expression that is satisfied by paths of even length.

We want to build a formula that describes a successful run of a given 2-
register machine. For this purpose, we encode a configuration of this machine,
S = (q, n,m), n,m ≥ 0, with a path that satisfies qan+1bm+1, i.e, we represent the
values n andm stored in the A and B registers with a sequence of n+1 a-labels and
a sequence ofm+1 b-labels. A sequence of configurations S1, . . . , Sk is encoded by a
path that satisfies q1an1+1bm1+1 . . . qka

nk+1bmk+1$, where $ is a special label indi-
cating the end of the sequence. In order to describe a successful run, we first build a
formula describing that a pair of configurations satisfy the transition function δ of
the given machine, then we build a formula that ensures that every consecutive pair
of configurations satisfies δ. In order to describe a pair of configurations that sat-
isfy δ, we need to be able to express the equality constraints that δ enforces on the
register values before and after a transition. For example, for δ(q) = INCA(q′) and
two configurations that satisfy δ, S = (q, n,m) and S′ = (q′, n+ 1,m), n,m > 0,
we need to express that a path satisfies qanbmq′an+1bm.
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ϕ∃
α ϕ∀

α

Figure 1. Graphical depiction of the meaning of ϕ∃
α and ϕ∀

α.

Below, in Lemma 4.5, we show a generic formula that expresses the equality
of the lengths of two a-labeled sequences. But first, we prove an auxiliary lemma
that helps with the notations and interpretation of the formulas.

Lemma 4.4. Let α be any regular path expression. Then there are ML+IFP
formulas ϕ∃

α and ϕ∀
α such that for any finite labeled tree T and node v,

1. T, v � ϕ∃
α iff there is a path starting with v satisfying α, and

2. T, v � ϕ∀
α iff every branch starting with v has a prefix-path that satisfies α.

(cf. Fig. 1)

Proof. We know that the statement holds for the modal μ-calculus (it follows from
the fact that the modal μ-calculus is the bisimulation invariant fragment of MSO
on finite trees [14]). To see that it holds also for ML+IFP we proceed as follows:

Let an expression α be given. First we replace each ML+IFP formula ψ occur-
ring in α by a new corresponding fresh propositional variable pψ. Let the resulting
expression be α′. Then, clearly, α′ is an expression built up from formulas of the
modal μ-calculus using concatenation, union, and star. Hence, there are formu-
las ϕ∃

α′ and ϕ∀
α′ of the modal μ-calculus satisfying the required conditions with

respect to α′. Now, replace each pψ back by the original formula ψ (making sure
that no free occurrences of variables in ψ accidentally get bound by a fixed point
operator during the substitution – this can be ensured by renaming bound vari-
ables appropriately). It follows that the resulting formulas satisfy the required
conditions with respect to α. �

In the following, we rely heavily on this lemma.

Lemma 4.5. There is a formula, ϕ∀
anbanc, such that for any finite labeled tree T

and a node v in this tree, T, v � ϕ∀
anbanc iff there is a k > 0 such that every branch

starting with v has a prefix-path that satisfies akbakc.
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Proof. In [7], a formula was constructed that, on finite strings (i.e., finite trees in
which each node has at most one child), defines the language anb≥n. Our construc-
tion below differs from the one in [7] in that our formula expresses exact equality,
and, more importantly, in the fact that it works on arbitrary finite trees, which
makes it a non-trivial generalization.

We define ϕ∀
anbanc as in equation (4.1).

ϕ∀
anbanc := ϕ∀

anba≥nc ∧ ¬ϕ∃
anba>nc+aa+c, (4.1)

where

ϕ∀
anba≥nc

:= ϕ∀
a∗ba∗c ∧

(
ifp X ← ϕ∀

a(a∧X)∗b(a∧¬X)a∗c ∨ ϕ∃
a(a∧X)∗c

)

ϕ∃
anba>nc+aa+c :=

(
ifp X ← ϕ∃

a(a∧X)∗b(a∧¬X)a∗ac ∨ ϕ∃
a(a∧X)∗ac

)
.

The idea behind the two conjuncts of the formula is that ϕ∀
anba≥nc expresses some-

thing slightly too weak, since it only enforces the second sequence of a-nodes
on each path to be at least as long as the first sequence. The second conjunct
¬ϕ∃

anba>nc+aa+c corrects for this by enforcing that there is no path on which the
second sequence of a-nodes is strictly longer than the first sequence. For technical
reasons, the formula ϕ∃

anba>nc+aa+c in question expresses something weaker than
the existence of a path satisfying anba>nc: it also accepts nodes where a path
starts satisfying aa+c. However, this clearly does not affect the correctness of the
overall formula ϕ∀

anbanc.
Below, we prove that the formulas ϕ∀

anba≥nc and ϕ∃
anba>nc+aa+c do indeed have

the intended meaning, which is captured by the following claims:

1. T, v � ϕ∀
anba≥nc

iff ∃k, such that every branch starting with v has a prefix-path
that satisfies a≤kba≥kc.

2. T, v � ϕ∃
anba>nc+aa+c iff there exists a path starting with v that satisfies

anbamc, for some m > n > 0, or that satisfies anc, for some n ≥ 2.

It is clear from the above discussion that the lemma follows directly from (1)
and (2). Below we give the proof for (1). The proof for (2) is similar. Note
that we rely on Lemma 4.4 for the existence and the semantics of the formulas
ϕ∃
a(a∧X)∗b(a∧¬X), ϕ

∀
a(a∧X)∗b(a∧¬X), ϕ

∃
a(a∧X)∗ac, and ϕ∀

a∗ba∗c.
Let g(·) be a variable assignment and let gi(·), 0 ≤ i, be the variable assign-

ments obtained for
(
ifp X ← ϕ∀

a(a∧X)∗b(a∧¬X)∨ϕ∃
a(a∧X)∗c

)
in accordance with the

semantics of the IFP operator (Def. 2.2), where g0 = g[X 
→ ∅]. First, we show,
by induction on i, 0 < i, the following:

i. A node in [[ϕ∃
a+c]]T,g is added to gi(X) at the recursion step i iff there is a path

from that node that satisfies aic and there is no other path from that node
that satisfies a<ic (i.e., that satisfies aj for some j < i).

Here, by “is added to gi(X) at the recursion step i”, we mean that the node belongs
to gi(X) and not to gi−1(X). Then, using this equivalence, again by induction on i,
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0 < i, we show the following:

ii. A node in [[ϕ∀
a∗ba∗c]]T,g is added to gi(X) at the recursion step i iff every branch

starting with that node has a prefix-path that satisfies a≤iba∗aic and i is the
least number with this property.

Suppose u ∈ [[ϕ∃
a+c]]T,g. It is easy to see that u is added to g1(X) iff u ∈

[[ϕ∃
a(a∧X)∗c]]T,g[X �→∅] iff there is a path starting with u that satisfies ac. Next,

suppose that (i) holds for some i ≥ 1. We show that (i) holds for i+ 1.
Suppose u ∈ [[ϕ∃

a+c]]T,g and u is added to gi+1(X). Then u ∈ [[ϕ∃
a(a∧X)∗c]]T,gi .

From this it follows that u is labeled with a and there is a successor w labeled with c
or w ∈ gi(X). Note that w ∈ [[ϕ∃

a∗c]]T,g. In the first case, by induction hypothesis,
u was added already to g1(X), which contradicts our assumption. In the second
case, w ∈ gi(X) and w was added to gi(X) at the recursion step i, otherwise, by
the same argument, u would be already in gi(X). By induction hypothesis, there
is a path starting with w that satisfies aic and thus, there is a path starting with u
that satisfies ai+1c.

Conversely, suppose that there is a path from u that satisfies ai+1c and there
is no other path from that node that satisfies a<i+1c. Let w be the successor of u
on that path. Then there is a path from w that satisfies aic and there is no other
path from w that satisfies a<ic. By induction hypothesis, w was added to gi(X)
and thus, u must be added to gi+1(X).

This concludes the proof of (i). We now proceed with the proof of (ii).
Suppose u ∈ [[ϕ∀

a∗ba∗c]]T,g . Again it is easy to see that u is added to g1(X) iff
u ∈ [[ϕ∀

a(a∧X)∗b(a∧¬X)a∗c]]T,g[X �→∅] iff every branch starting with u has a prefix-path
that satisfies abaa∗c. Further, suppose that (ii) holds for i, 0 < i. We show that
(ii) holds for i+ 1.

Suppose u ∈ [[ϕ∀
a∗ba∗c]]T,g and u is added to gi+1(X). Then we know that u ∈

[[ϕ∀
a(a∧X)∗b(a∧¬X)a∗c]]T,gi and thus, every successor w of u (there is at least one

successor) is in gi(X). Suppose that w was added to gj(X) at iteration step j ≤ i.
By induction hypothesis, every branch from w has a prefix-path that satisfies
a≤jba∗ajc, thus it satisfies a≤iba∗c. By statement (i) proven above, every branch
from u has prefix-path that satisfies a∗ba∗ai+1c. From the last two statements it
follows that every branch from u has a prefix-path that satisfies a≤i+1ba∗ai+1c.
Note that i + 1 is the least number with this property, otherwise u would have
been added at an earlier iteration step.

For the other direction, suppose that every branch from u has a prefix-path
that satisfies a≤i+1ba∗ai+1c and i + 1 is the least number with this property.
From this, it follows that every branch from a successor w of u, has a prefix-path
that satisfies a≤iba∗ai+1c, and hence a≤iba∗aic. Let j be the least number with
this property for w. Then, by induction hypothesis, it follows that w was added
to gj(X) at iteration step j. Let j0 be the least number such that gj0(X) contains
all successors of u. Note that j0 equals i, otherwise every branch from u has
a prefix-path that satisfies a≤iba∗aic, which contradicts our initial assumption.
From this, it follows that u ∈ [[ϕ∀

a(a∧X)≤iba∗aic
]]T,gi and i is the least number
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with this property. From the fact that every branch from u has a prefix-path that
satisfies a≤i+1ba∗ai+1c and conform the statement (i) proven above, it follows that
u ∈ [[ϕ∀

a∗b(a∧¬X)a∗(a∧X)ic]]T,gi . From the last two statements it follows that u is
added to gi+1(X) at iteration step i+ 1.

Now, based on (ii) we can prove the statement of (1): T, v � ϕ∀
anba≥nc iff v ∈

gk(X) ∩ [[ϕ∀
a∗ba∗c]]T,g, where k is the recursive step at which the computation of

the IFP operator ends ⇐⇒ ∃n0, 0 < n0 ≤ k, such that v was added to gn0(X) at
the iteration n0 and v ∈ [[ϕ∀

a∗ba∗c]]T,g ⇐⇒ ∃n0, 0 < n0 ≤ k, every branch starting
with that node has a prefix-path that satisfies anbamc, for some 0 < n ≤ n0 ≤ m.

The proof for (2) is similar to the proof for (i). �

Lemma 4.5 can be extended to other formulas of the form ϕ∀
αanβanγ , where α, β,

and γ are a certain kind of regular expressions denoting sequences of labels. We
do not attempt a general result along these lines, but we consider instances of
this general pattern for which it is clear that the proof of Lemma 4.5 works. In
particular, in order for the proof of Lemma 4.5 to work, it is important that β
and γ are incompatible, in the sense that they cannot be satisfied by the same
path. Below, we give two examples of such formulas and state their semantics. We
use these examples further on for our reduction.

Intuitively, the first example is a formula that describes a transition of the 2-
register machine, in which register A is incremented. The second example describes
a transition in which register A is decremented. The variable Y in these formulas
is intended to represent that the remaining part of the run is already known to be
correct (and will be bound by an IFP-operator).

Let q, q′, q′′ ∈ Q such that q �= q′ and q �= q′′, and let Q′
Y := q′∧Y , Q′′

Y := q′′∧Y ,
and EY := Y ∨ $, where Y is a variable in V AR.

Example 4.6. Consider ϕ∀
qanb∗Q′

Y a
n+1b∗EY

defined by equation (4.2). Similarly to
Lemma 4.5, we can prove that ϕ∀

qanb∗Q′
Y a

n+1b∗EY
is valid in a node v of a finite

labeled tree T iff every branch starting with v has a prefix-path that satisfies
qanb∗Q′

Y a
n+1b∗EY , for some n > 0.

ϕ∀
qanb∗Q′

Y a
n+1b∗EY

:= ϕ∀
qanb∗Q′

Y a
≥n+1b∗EY

∧
¬ϕ∃

qanb∗Q′
Y a

>n+1b∗EY +a∗a3b∗EY

ϕ∀
qanb∗Q′

Y a
≥n+1b∗EY

:= ϕ∀
qa∗b∗Q′

Y a
∗b∗EY

∧
�

(
ifp X ← ϕ∀

a(a∧X)∗b∗Q′
Y (a∧¬X)a∗ab∗EY

∨
ϕ∃
a(a∧X)∗(a∧¬X)b∗EY

)

ϕ∃
qanb∗Q′

Y a
>n+1b∗EY +a∗a3b∗EY

:= q ∧ ♦
(
ifp X ← ϕ∃

a(a∧X)∗b∗Q′
Y (a∧¬X)a∗a2b∗EY

∨
ϕ∃
a(a∧X)∗(a∧¬X)2b∗EY

)
.

(4.2)

Example 4.7. For convenience, consider the following alternative notations for
the until formulas ψ1 EU ψ2 := ϕ∃

ψ∗
1ψ2

and ψ1 AU ψ2 := ϕ∀
ψ∗

1ψ2
. Consider
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ϕ∀
qa∗bn+1Q′

Y a
∗bnEY

defined by equation (4.3) and let g(·) be a variable assignment
that covers Y . Similarly to Lemma 4.5, we can prove that ϕ∀

qa∗bn+1Q′
Y a

∗bnEY
is

valid in a node v of a finite labeled tree T and given g(·) ⇐⇒ every branch
starting with v has a prefix-path that satisfies qa∗bn+1Q′

Y a
∗bnEY , for some n > 0.

ϕ∀
qa∗bn+1Q′

Y a
∗bnEY

:= ϕ∀
qa∗bn+1Q′

Y a
∗b≥nEY

∧
¬ϕ∃

qa∗bn+1Q′
Y a

∗b>nEY +b∗b2EY

ϕ∀
qa∗bn+1Q′

Y a
∗b≥nEY

:= ϕ∀
qa∗b∗Q′

Y a
∗b∗EY

∧ (
a AU (b∧(

ifp X ← ϕ∀
b(b∧X)∗Q′

Y a
∗(b∧¬X)b∗EY

∨ ϕ∃
b(b∧X)∗EY

)
)
)

ϕ∃
qa∗bn+1Q′

Y a
∗b>nEY +b∗b2EY

:= q ∧ (
a EU (b∧(

ifp X ← ϕ∃
b(b∧X)∗Q′

Y a
∗(b∧¬X)b∗bEY

∨
ϕ∃
b(b∧X)∗(b∧¬X)EY

)
)
)
.

(4.3)

In a similar fashion, we construct the following formulas:

ϕ∀
qanb∗Q′

Y a
nb∗EY

ϕ∀
qa∗bmQ′

Y a
∗bmEY

ϕ∀
qanb∗Q′

Y a
n+1b∗EY

ϕ∀
qa∗bmQ′

Y a
∗bm+1EY

ϕ∀
qan+1b∗Q′

Y a
nb∗EY

ϕ∀
qa∗bm+1Q′

Y a
∗bmEY

ϕ∀
qanbQ′′

Y a
nbEY

ϕ∀
qabnQ′′

Y ab
nEY

An equivalent of Lemma 4.5 can be proven for each of these formulas. Finally, we
are ready to define the transition function of a given 2-register machine.

ϕ∀
qanbmQ′

Y a
n+1bmEY

:= ϕ∀
qanb∗Q′

Y a
n+1b∗EY

∧ ϕ∀
qa∗bmQ′

Y a
∗bmEY

ϕ∀
qanbmQ′

Y a
nbm+1EY

:= ϕ∀
qanb∗Q′

Y a
nb∗EY

∧ ϕ∀
qa∗bmQ′

Y a
∗bm+1EY

ϕ∀
qan+1bmQ′

Y a
nbmEY

:= ϕ∀
qan+1b∗Q′

Y a
nb∗EY

∧ ϕ∀
qa∗bmQ′

Y a
∗bmEY

ϕ∀
qanbm+1Q′

Y a
nbmEY

:= ϕ∀
qanb∗Q′

Y a
nb∗EY

∧ ϕ∀
qa∗bm+1Q′

Y a
∗bmEY

(4.4)

Trq(Y ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ∀
qanbmQ′

Y a
n+1bmEY

if δ(q) = INCA(q′),
ϕ∀
qanbmQ′

Y a
nbm+1EY

if δ(q) = INCB(q′),
ϕ∀
qan+1bmQ′

Y a
nbmEY

∨ ϕ∀
qabnQ′′

Y ab
nEY

if δ(q) = DECA(q′, q′′),
ϕ∀
qanbm+1Q′

Y a
nbmEY

∨ ϕ∀
qanbQ′′

Y a
nbEY

if δ(q) = DECB(q′, q′′)
Tr(Y ) :=

∨
q∈Q Trq(Y ).

(4.5)
Recall from Section 4.1 that we assume without loss of generality that the 2-register
machine M is such that no two subsequent configurations on a run have the same
state and therefore q′ and q′′ are always distinct from q in the formulas in (4.5).
Thus, generalizing from the above examples and the proof of Lemma 4.5, we have
the following.
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Lemma 4.8. Let T = (N,R,L) be a finite labeled tree and g(·) be a variable
assignment that covers the free variable Y . Then T, v, g � Tr(Y ) iff every branch
starting with v has a prefix-path that satisfies qanbmq′an

′
bm

′
EY , for some pair of

triples, S = (q, n,m) and S′ = (q′, n′,m′), that satisfies δ (n, n′,m,m′ > 0).

Having the formula that describes a transition, we can build the formula ϕrun,
below, that describes a successful run of a given 2-register machine; ϕrun enforces
that every branch starting from a node in the tree represents a successful run of
the given machine.

Qs := ϕ∀
qsab(

∨
q∈Q q)

Qf := ϕ∀
qfab$

ϕrun := Qs ∧
(
ifp Y ← Tr(Y ) ∨Qf

)
.

(4.6)

Theorem 4.9. The formula ϕrun is satisfiable iff the 2-register machine M has
a successful run.

Proof. (⇐=) Suppose that the sequence of configurations, S1, . . . , Sn, n > 0, is a
successful run of M , with Si = (qi, ki, �i). In particular, S1 = (q0, 0, 0) is the initial
configuration and Sn = (qf , 0, 0) is the final configuration. Also, as explained in
Section 4.1, we may assume that n > 1, and that qi �= qi+1 for 1 ≤ i < n. Let T
be the tree consisting of a single branch, such that the sequence of labels of the
nodes on the branch forms the string q1ak1+1b	1+1 · · · qnakn+1bkn+1$. Let ui (for
1 ≤ i ≤ n) be the i-th node on the branch whose label belongs to Q. It is clear
that the root of the tree, u1, satisfies Qs, and that un satisfies Qf . Furthermore,
for each i ≤ n, T, ui �

(
ifp Y ← Tr(Y )∨Qf

)
as can be shown by a straightforward

induction on n− i. It follows that T, u1 � ϕrun.
(=⇒) Suppose T, v � ϕrun. Let g(·) be a variable assignment. Since T, v �(

ifp Y ← Tr(Y ) ∨ Qf
)

we have that v ∈ gk(Y ), where gk(·) is the last vari-
able assignment obtained following the definition of the IFP operator (Def. 2.2)
for

(
ifp Y ← Tr(Y ) ∨ Qf

)
. One can show by a straightforward induction on i,

1 ≤ i ≤ k, that for every branch starting with a node u ∈ gi(Y ), the sequence of
labels of the nodes on this branch, up to the first node satisfying $, forms an en-
coding of a run of the 2-register machine, starting in some (not necessarily initial)
configuration and ending in the final configuration. In particular, since v ∈ gk(Y ),
and also T, v � Qs, we then have that for every branch starting at v, the sequence
of labels of the nodes on this branch, up to the first node saytisfying $, forms
an encoding of a successful run of the 2-register machine (starting in the initial
configuration). �

We have shown that the undecidable halting problem for 2-register machines re-
duces to the satisfiability problem for ML+IFP on finite trees. Theorem 4.1 now
follows.
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5. Discussions and conclusions

We proved that the fragment of CXP+IFP with only self and descendant axes
is undecidable. This implies the undecidability of CXP+IFP with all the axes.
Moreover, since the undecidability proof for ML+IFP, as well as the translation
from ML+IFP into CXP+IFP, works on strings too, no matter what axis one
takes (along with the self axis) the fragment of CXP+IFP with only that axis is
undecidable. Recall that the transitive axes (e.g., descendant, ancestor, following-
sibling, preceding-sibling) are easily defined from the corresponding non-transitive
axes using the IFP operator.

This result means that a complete static analysis of recursive queries specified
by means of the IFP operator is not feasible. In other words, we cannot do bet-
ter than implementing sound-but-not-complete query optimizations, such as the
distributivity-based optimization presented in [1, 2].

Another recursion operator that has been studied extensively in the context of
CXP, is the transitive closure (TC) of path expressions and the language is known
as Regular XPath [15]. Note that we can express the transitive closure of a path
expression α by using the IFP operator as follows:

α+ = with X in α recurse X/α

Regular XPath falls within monadic second-order logic (MSO) [17], while
CXP+IFP can define (among all finite strings) non-regular string languages [7]
(cf. also Lem. 4.5).

that satisfy anbnc, n > 0, which is not a regular string language and thus
not definable in MSO [18]. From this it follows that CXP+IFP is strictly more
expressive than Regular XPath.

Note that the definition of the TC operator via IFP does not use negation on
the recursion variable. Thus the TC operator can be expressed also via a least
fixed point (LFP) operator, which is a non-inflationary fixed point operator that
does not allow the recursion variable to occur under an odd number of negations.
If we consider CXP extended with LFP, then this language still falls within MSO
and is at least as expressive as Regular XPath but strictly less expressive than
CXP+IFP on finite trees.

In conclusion, when choosing a recursion operator to extend CXP, one should
keep in mind that the inflationary fixed point operator is the most expressive
and expensive operator (with undecidable static analysis problems) of the three
recursion operators discussed above.

5.1. Remaining questions

One natural follow-up question is whether CXP+IFP node expressions are
strictly more expressive than ML+IFP formulas.

Other natural follow-up questions concern fragments of CXP+IFP. Recall that
in CXP+IFP, the variables can be used both as atomic path expressions and as
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atomic node expressions. The former is the most natural, but the translation we
gave from ML+IFP to CXP+IFP crucially uses the latter. Our conjecture is that
the fragment of CXP+IFP in which variables are only allowed as atomic path
expressions is also undecidable.

It is also natural to consider CXP+IFP expressions where the fixed point vari-
ables occur only under an even number of negations, so that the WITH-operator
computes the least fixed point of a monotone operation. Note that this fragment is
decidable, since it is contained in monadic second-order logic. Thus, further ques-
tions like the complexity of the static analysis problems and the expressive power
of this language are open to investigation.
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