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HOMOGENIZATION OF MONOTONE SYSTEMS
OF HAMILTON-JACOBI EQUATIONS
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Abstract. In this paper we study homogenization for a class of monotone systems of first-order time-
dependent periodic Hamilton-Jacobi equations. We characterize the Hamiltonians of the limit problem
by appropriate cell problems. Hence we show the uniform convergence of the solution of the oscillating
systems to the bounded uniformly continuous solution of the homogenized system.
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1. Introduction

In this paper we study the behavior as ε→ 0 of the monotone system of Hamilton-Jacobi equations{
∂uε

i

∂t +Hi(x, x
ε , u

ε, Duε
i ) = 0 (x, t) ∈ R

N × (0, T ],

uε
i (x, 0) = u0,i(x) x ∈ R

N , i = 1, . . . ,M,
(1.1)

where the Hamiltonians Hi(x, y, r, p), i = 1, . . . ,M , are periodic in y, coercive in p and satisfy some uniform
continuity properties, see (2.2). The u0,i’s are bounded uniformly continuous (BUC in short). The monotonicity
condition, see (2.3), we assume for the system is a standard assumption to obtain a comparison principle for (1.1)
(see [10,12–14]).

The main result of the paper, see Theorem 5.2, is the convergence of uε, as ε → 0, to a BUC function
u = (u1, . . . , uM ) which solves in viscosity sense the homogenized system{

∂ui

∂t +Hi(x, u,Dui) = 0 (x, t) ∈ R
N × (0, T ),

ui(x, 0) = u0,i(x) x ∈ R
N , i = 1, . . . ,M.

(1.2)

The HamiltoniansHi of the limit problem, the so-called effective Hamiltonians, are characterized by appropriate
cell problems. The comparison principle for (1.2) which provides existence and uniqueness is not an immediate
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consequence of the comparison principle for (1.1) since the regularity properties we could prove for the effective
Hamiltonians are weaker than those for the initial ones (compare (2.2) and (4.3)).

Homogenization of Hamilton-Jacobi equations in the framework of viscosity solution theory was firstly con-
sidered in the seminal paper by Lions et al. [16]. The proof of our homogenization result relies on an appropriate
modification of the classical perturbed test function method. This technique was introduced in the framework
of the viscosity solutions theory by Evans [11] for the case of a periodic equation. Then it has been adapted
to many different homogenization problems, see e.g. [1,7,8,15]. For a complete account of the homogenization
theory in the periodic case we refer to [1].

Concerning the homogenization of systems of Hamilton-Jacobi equations we refer to [11,17]. In these papers,
homogenization of weakly coupled systems, i.e. systems with a linear coupling, was considered together with
a penalization of the coupling term of order ε−1. Because of the penalization, the limit problem is a single
Hamilton-Jacobi equation and all the components of the solution of the perturbed system converge to the
unique solution of this equation.

We consider the more general class of monotone systems, which in particular includes the weakly coupled
ones. Moreover, since we do not penalize the coupling term, the homogenized problem is still a system of
Hamilton-Jacobi equations and the perturbed test function method has to be adapted to this situation.

In Section 6, we discuss in more details the homogenization of the weakly coupled systems. In particular
we show that the homogenized system is not necessarily weakly coupled but only monotone. For a particular
1-dimensional weakly coupled eikonal system, we give an explicit formula for the effective Hamiltonians.

The plan of the paper is the following.
In Section 2 we describe our assumptions and definitions. In Section 3 we study the system (1.1) for ε > 0.

In Section 4, we define the effective Hamiltonians and we study their properties. In Section 5 we prove the
homogenization result. In Section 6 we study some examples and in particular the weakly coupled systems.
Finally in the Appendix we prove a comparison theorem for (1.1).
Notation: We will use the following norm

|f |∞ = ess sup
x∈RN

|f(x)|

and Bk(x,R) denotes the k-dimensional ball of center x ∈ R
N and radius R > 0.

2. Assumptions and preliminary results

We consider the monotone system of Hamilton-Jacobi equations⎧⎨
⎩

∂uε
i

∂t
+Hi

(
x,
x

ε
, uε, Duε

i

)
= 0 (x, t) ∈ R

N × (0, T ), i = 1, . . . ,M,

uε
i (x, 0) = u0,i(x) x ∈ R

N ,

(2.1)

where uε = (uε
1, . . . , u

ε
M ) and uε

i is a real valued function defined in R
N×[0, T ].We assume that the Hamiltonians

Hj : R
N × R

N × R
M × R

N → R, j = 1, . . . ,M , are continuous and satisfy the following assumptions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Hj(x, y, r, p) is Z
N -periodic in y for any (x, r, p);

(ii) Hj(x, y, r, p) is coercive in p, i.e.
lim

|p|→+∞
Hj(x, y, r, p) = +∞ uniformly in (x, y, r);

(iii) for all R > 0, Hj ∈ BUC(RN × R
N × [−R,R]M ×BN (0, R));

(iv) there exists a modulus of continuity ω s.t.
|Hj(x1, y1, r, p) −Hj(x2, y2, r, p)| ≤ ω((1 + |p|)(|x1 − x2| + |y1 − y2|)),
for every x1, x2, y1, y2, p ∈ R

N and r ∈ R
M .

(2.2)
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Unless otherwise specified all the periodic functions we consider have period T
N = [0, 1]N . We also assume the

following monotonicity condition

If r, s ∈ R
M and rj − sj = max

k=1,...,M
{rk − sk} ≥ 0, then

for all x, y, p ∈ R
N , Hj(x, y, r, p) −Hj(x, y, s, p) ≥ 0.

(2.3)

Concerning the initial datum we assume

u0,j is bounded uniformly continuous in R
N for j = 1, . . . ,M. (2.4)

Example 2.1. (1) Consider

Hj(x, y, r, p) = aj(x, y)|p| + Fj(r), (2.5)

where aj ∈ C(RN × R
N ) and Fj ∈ C(RM ). If aj is Z

N -periodic in y, then (2.2) (i) holds. If there exists δ > 0
such that aj ≥ δ then (2.2) (ii) is satisfied. If aj is bounded with respect to x then (2.2) (iii) holds (note that
aj is bounded with respect to y since it is periodic). Finally, we have (2.2) (iv) if, for instance, aj is Lipschitz
continuous with respect to (x, y). The assumption (2.3) is satisfied if Fj is increasing in rj , decreasing in rk for
k �= j.
(2) A weakly coupled system is a system of the type

∂uε
i

∂t
+Hi

(
x,
x

ε
,Duε

i

)
+

M∑
j=1

cji

(
x,
x

ε

)
uj = 0, i = 1, . . . ,M. (2.6)

Some assumptions on cij to ensure (2.3) are given in Section 6. Weakly coupled systems arise in optimal control
theory of random evolution processes (see [10]). Moreover they are associated to large deviation theory for small
random perturbations of a random evolution process (see [6,9]). We will study some specific case of weakly
coupled systems in Section 6.

For a function u : E → R
M , we say that u = (u1, . . . , uM ) is upper-semicontinuous (u.s.c. in short),

respectively lower-semicontinuous (l.s.c. in short), in E if all the components ui, i = 1, . . . ,M , are u.s.c.,
respectively l.s.c., in E. We define in the same way bounded uniformly continuous (BUC) and Lipschitz
continuous functions u : E → R

M . If u = (u1, . . . , uM ), v = (v1, . . . , vM ), are two functions defined in a set E
we write u ≤ v in E if ui ≤ vi in E for all i ∈ {1, . . . ,M}.

We recall the definition of viscosity solution for the system (2.1).

Definition 2.1.
(i) An u.s.c. function u : R

N × (0, T ) → R
M is said a viscosity subsolution of (2.1) if ui(·, 0) ≤ u0,i in R

N for
all i ∈ {1, . . . ,M} and if whenever φ ∈ C1, i ∈ {1, . . . ,M} and ui − φ attains a local maximum at (x, t) with
t > 0, then

∂φ

∂t
(x, t) +Hi

(
x,
x

ε
, u(x, t), Dφ(x, t)

)
≤ 0.

(ii) A l.s.c. function v : R
N × (0, T ) → R

M is said a viscosity supersolution of (2.1) if vi(·, 0) ≥ u0,i in R
N for

all i ∈ {1, . . . ,M} and if whenever φ ∈ C1, i ∈ {1, . . . ,M} and vi − φ attains a local minimum at (x, t) with
t > 0, then

∂φ

∂t
(x, t) +Hi

(
x,
x

ε
, v(x, t), Dφ(x, t)

)
≥ 0.

(iii) A continuous function u is said a viscosity solution of (2.1) if it is both a viscosity sub- and supersolution
of (2.1).
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3. The evolutive problem for ε > 0

In this section we study the system (2.1) for ε > 0 fixed. We first prove a comparison theorem which applies
to prove existence and uniqueness for (2.1). Without loss of generality, we can skip the y-dependence in the
Hamiltonians below and we prove a slightly more general result for Hj = Hj(x, t, u, p) which depends also on t
(and is continuous in R

N × [0, T ]× R
M × R

N ).

Proposition 3.1. Let u be a bounded u.s.c. subsolution and v be a bounded l.s.c. supersolution of{
∂ui

∂t +Hi(x, t, u,Dui) = 0 (x, t) ∈ R
N × (0, T ),

ui(x, 0) = u0,i(x) x ∈ R
N , i = 1, . . . ,M,

(3.1)

where Hi satisfies (2.2)–(2.3) and u0 satisfies (2.4). Then u ≤ v in R
N × [0, T ] and there exists a unique

continuous viscosity solution u of (3.1).

Proof. We first prove the comparison principle. Define

Ψ(x, y, t, s, j) = uj(x, t) − vj(y, s) −
|x− y|2

2α
− |t− s|2

2μ
− β(|x|2 + |y|2) − ηt,

where α, β, μ, η are positive constants. Since u, v are bounded, maxj sup(RN )2×[0,T ] Ψ is finite and achieved at
some (x, y, t, s, j).

For all j and (x, t) ∈ R
N , we have

uj(x, t) − vj(x, t) − 2β|x|2 − ηt = Ψ(x, x, t, t, j) ≤ Ψ(x, y, t, s, j) ≤ uj(x, t) − vj(y, s).

If uj(x, t) − vj(y, s) ≤ 0 for all β, η > 0, then the comparison holds. Therefore, we suppose that

uj(x, t) − vj(y, s) ≥ 0 (3.2)

for β, η sufficiently small.
The following inequality

u1(0, 0)− v1(0, 0) = Ψ(0, 0, 0, 0, 1) ≤ Ψ(x, y, t, s, j)

and the boundedness of u, v leads to the classical estimates (see [3], Lem. 4.3)

β(|x|2 + |y|2), |t− s|2
2μ

,
|x− y|2

2α
≤ 2(|u|∞ + |v|∞), (3.3)

lim
μ→0

|t− s|2
2μ

= 0, lim
β→0

β(|x| + |y|) = 0 and lim
α→0

lim sup
μ,β→0

|x− y|2
2α

= 0 (3.4)

we will need later.
Assume for a while that it is possible to extract some subsequences α, β, μ→ 0 such that

t > 0 and s > 0. (3.5)

It follows that we can write the viscosity inequalities for the subsolution u and the supersolution v. Setting
p = (x − y)/α, we have

(t− s)
α

+Hj

(
x, t, u(x, t), p+ 2βx

)
≤ 0 (3.6)
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and
(t− s)
α

+Hj (y, s, v(y, s), p− 2βy) ≥ 0. (3.7)

Subtracting (3.7) from (3.6), we obtain

η ≤ Hj (y, s, v(y, s), p− 2βy) −Hj

(
x, t, u(x, t), p+ 2βx

)
= T1 + T2 + T3 + T4, (3.8)

where

T1 = Hj (y, s, v(y, s), p− 2βy) −Hj (x, s, v(y, s), p− 2βy),

T2 = Hj (x, s, v(y, s), p− 2βy) −Hj

(
x, t, v(y, s), p− 2βy

)
,

T3 = Hj

(
x, t, v(y, s), p− 2βy

)
−Hj

(
x, t, v(y, s), p+ 2βx

)
,

T4 = Hj

(
x, t, v(y, s), p+ 2βx

)
−Hj

(
x, t, u(x, t), p+ 2βx

)
.

From (3.3), choosing 0 < α, β < 1 and setting M =
√

2(|u|∞ + |v|∞) we have

β|x|, β|y| ≤M
√
β ≤M and |p| ≤ M√

α
· (3.9)

From (2.2) (iv), we have

T1 ≤ ω((1 + |p| + 2β|y|)|y − x|)

≤ ω

(
(1 + 2M)M

√
α+

|y − x|2
α

)
· (3.10)

If α, β are fixed, x, v(y, s), p − 2βy are bounded independently of μ by (3.3). It follows that there exists a
modulus of continuity ωα,β,|v|∞,T such that

T2 ≤ ωα,β,|v|∞,,T (|s− t|).

By (3.9),

|p− 2βy|, |p+ 2βx| ≤ M√
α

+ 2M

and therefore, by (2.2) (iii), there exists a modulus of continuity ωα,|v|∞,T such that

T3 ≤ ωα,|v|∞,T (β(|x| + |y|)) ≤ ωα,|v|∞,T (2Mβ).

The non classical term here is T4 for which we have to use (2.3) to deal with: since 0 ≤ uj(x, t) − vj(y, s) =
max1≤i≤M{ui(x, t) − vi(y, s)} by definition of j and (3.2), we obtain

T4 ≤ 0.

Finally, (3.8) reads

η ≤ ω

(
(1+2M)M

√
α+

|y − x|2
α

)
+ωα,β,|v|∞,T (|s− t|)+ωα,|v|∞,T (β(|x|+|y|)). (3.11)

By (3.4), we can take α small enough to have ω(. . .) ≤ η/3. Then we choose successively β and μ small enough
to obtain a contradiction in (3.11).
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Therefore, choosing μ 	 β 	 α 	 η small enough, (3.5) does not hold and, for all extractions, one has for
instance t = 0. It follows that, for all j and x, y ∈ R

N , t ∈ [0, T ], we have

uj(x, t) − vj(y, t) ≤ ηt+
|x− y|2

2α
+ β(|x|2 + |y|2) +

(
uj(x, 0) − vj(y, s)

)+

− |x− y|2
2α

·

Sending μ→ 0 and then β → 0, we obtain, using (3.4),

uj(x, t) − vj(y, t) ≤ ηt+
|x− y|2

2α
+

(
uj(x, 0) − vj(y, 0)

)+

− |x− y|2
2α

· (3.12)

But uj(x, 0) − vj(y, 0) ≤ u0,j(x) − u0,j(y) and by uniform continuity of the u0,j’s, j = 1, . . . ,M, for all ρ > 0,
there exists Cj,ρ > 0 such that

u0,j(x) − u0,j(y) ≤ ρ+ Cj,ρ|x− y| (3.13)

and therefore

u0,j(x) − u0,j(y) −
|x− y|2

2α
≤ ρ+ Cj,ρ|x− y| − |x− y|2

2α
≤ ρ+

1
2
αC2

j,ρ. (3.14)

We fix ρ > 0 and set Cρ = max1≤i≤M Ci,ρ/
√

2. Then (3.12) becomes

uj(x, t) − vj(y, t) ≤ ρ+ ηt+ αC2
ρ +

|x− y|2
2α

· (3.15)

Using (3.4) and sending successively α→ 0, η → 0, ρ→ 0, we conclude that the comparison holds.
By classical Perron’s method (see [14]), comparison implies the existence of a continuous viscosity solution u

to (3.1). Applying the comparison principle again, we obtain the uniqueness of the solution. �
Proposition 3.2. Under the assumptions of Proposition 3.1, let u be the unique bounded continuous viscosity
solution of (3.1). Then u ∈ BUC(RN × [0, T ]).

Proof. We first prove that u is bounded. Let

u±(x, t) = (±|u0|∞ ± Ct, . . . ,±|u0|∞ ± Ct),

where C = C(H, |u0|∞, T ) is defined by

C := sup
{
|Hj (x, t, r, 0)| : x ∈ R

N , t ∈ [0, T ], |r| ≤ |u0|∞, 1 ≤ j ≤M
}
. (3.16)

It suffices to prove that u+ is a supersolution and u− a subsolution of (3.1). Then, by the comparison principle
of Proposition 3.1, we get

u− ≤ u ≤ u+
R

N × [0, T ]

and we obtain the global L∞ bound

|u| ≤ |u0|∞ + C(H, |u0|∞, T )T. (3.17)

We only prove that u+ is a supersolution, the proof for u− being similar. At first, u+ satisfies clearly the initial
condition. Since u+ is smooth, for all j and (x, t) ∈ R

N × (0, T ),

∂u+
j

∂t
+Hj(x, t, u+(x, t), Du+

j (x, t)) = C +Hj(x, t, u+(x, t), 0).
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But

max
1≤k≤M

{u+
k (x, t) − |u0|∞} = Ct ≥ 0

is achieved for every index 1 ≤ k ≤M. Therefore, from (2.3), for all j,

Hj(x, t, u+(x, t), 0) ≥ Hj(x, t, (|u0|∞, . . . , |u0|∞), 0) ≥ −C

which proves the result.
We prove the uniform continuity of u in the space variable uniformly in time. Repeating the proof of the

comparison principle with v = u, from (3.15), we obtain for all ρ, η > 0, there exists Cρ such that, for all j,
x, y ∈ R

N , and t ∈ [0, T ],

uj(x, t) − uj(y, t) ≤ ρ+ ηt+ inf
α>0

{
αC2

ρ +
|x− y|2

2α

}
≤ 2ρ+

√
2Cρ|x− y|,

if we take η such that ηT ≤ ρ. This proves that there exists a modulus of continuity ωsp in space for u which is
independent of t ∈ [0, T ]:

uj(x, t) − uj(y, t) ≤ ωsp(|x− y|) x, y ∈ R
N , t ∈ [0, T ].

We continue by deducing a modulus of continuity in time (uniformly in space). This result is classical in
parabolic PDEs. Here we adapt the proof of [5], Lemma 9.1. We want to prove that, for all ρ > 0, there exist
positive constants Cρ and Kρ such that, for all j, x, x0 ∈ R

N with |x− x0| ≤ 1 and 0 ≤ t0 ≤ t ≤ T,

uj(x, t) − uj(x0, t0) ≤ ρ+ Cρ|x− x0|2 +Kρ(t− t0) (3.18)

and

− ρ− Cρ|x− x0|2 −Kρ(t− t0) ≤ uj(x, t) − uj(x0, t0). (3.19)

We will prove only the first inequality, the proof of the second one being analogous. Since x ∈ B(x0, 1), taking

Cρ ≥ 2|u|∞,

we are sure that (3.18) holds on ∂B(x0, 1)× [t0, T ] for every ρ,Kρ > 0. It is worth noticing that Cρ depends only
on |u|∞. Next we would like to ensure that (3.18) holds in B(x0, 1)×{t0}. To this end, we argue by contradiction
assuming there exists ρ > 0 such that, for every Cρ > 0, there exists j and yCρ ∈ B(x0, 1) with

uj(yCρ , t0) − uj(x0, t0) > ρ+ Cρ|yCρ − x0|2. (3.20)

It follows

|yCρ − x0| ≤
√

2|u|∞
Cρ

→ 0 as Cρ → +∞.

From (3.20), we get

ωsp(|yCρ − x0|) ≥ uj(yCρ , t0) − uj(x0, t0) > ρ+ Cρ|yCρ − x0|2 ≥ ρ,
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which leads to a contradiction for Cρ large enough. Note that the choice of Cρ to obtain the contradiction
depends only on ρ, |u|∞ and ωsp. Finally we proved that, up to choose Cρ = Cρ(ρ, |u|∞, ωsp) big enough, (3.18)
holds on (∂B(x0, 1) × [t0, T ]) ∪ (B(x0, 1) × {t0}).

For all 1 ≤ j ≤M, we set

χj(y, t) := uj(x0, t0) + ρ+ Cρ|y − x0|2 +Kρ(t− t0) (y, t) ∈ R
N × [0, T ]

and χ = (χ1, . . . , χM ). Note that χ is a smooth function. We claim that we can choose the constant Kρ big
enough in order that χ is a strict supersolution of (3.1) in B(x0, 1) × (t0, T ). Indeed, for all j, and (y, t) ∈
B(x0, 1) × (t0, T ),

∂χj

∂t
+Hj(y, t, χ(y, t), Dχj(y, t)) = Kρ +Hj(y, t, χ(y, t), 2Cρ(y − x0)). (3.21)

But

max
1≤k≤M

{χk(y, t) − uk(x0, t0)} = ρ+ Cρ|y − x0|2 +Kρ(t− t0) ≥ 0

is achieved for every index 1 ≤ k ≤M. Therefore, from (2.3), for all j,

Hj(y, t, χ(y, t), 2Cρ(y − x0)) ≥ Hj(y, t, u(x0, t0), 2Cρ(y − x0)). (3.22)

By (2.2) (iii),

MCρ,|u|∞ := inf{Hj(y, t, r, p) : y ∈ R
N , t ∈ [0, T ], |r| ≤ |u|∞, |p| ≤ 2Cρ, 1 ≤ j ≤M}

is finite. Taking

Kρ > −MCρ,|u|∞ ,

from (3.21) and (3.22), we obtain, for all j,

∂χj

∂t
+Hj(y, t, χ(y, t), Dχj(y, t)) > 0 (y, t) ∈ B(x0, 1) × (t0, T )

which proves the claim.
From the very definition of viscosity solution, it follows that, for all j, max

B(x0,1)×(t0,T )
{uj − χj} is necessarily

achieved on the parabolic boundary of B(x0, 1) × (t0, T ) and therefore (3.18) holds in B(x0, R) × [t0, T ].
From (3.18) and (3.19), we obtain that, for all ρ > 0, 1 ≤ j ≤M, x ∈ R

N , and t, s ∈ [0, T ],

|uj(x, t) − uj(x, s)| ≤ ρ+Kρ|t− s|

andKρ is independent of x. This proves the existence of a modulus of continuity ωtm in time which is independent
of x ∈ R

N . �
In the following proposition, we prove some a-priori bounds, independent of ε, which are used in the homog-

enization theorem.

Proposition 3.3. Assume (2.2), (2.3) and (2.4). For any ε > 0 there exists a unique solution uε ∈ BUC(RN ×
[0, T ]) of (2.1). Moreover

(i) If u0 is bounded Lipschitz continuous, then uε ∈ W 1,∞(RN × [0, T ]) and |Duε|∞ can be bounded inde-
pendently of ε.
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(ii) If u0 is BUC, then

|uε|∞ ≤ L(Hi, |u0|∞, T ); (3.23)

|uε(x, t) − uε(y, s)| ≤ ωsp(|x− y|) + ωtm(|t− s|) x, y ∈ R
N , t, s ∈ [0, T ] (3.24)

and L(Hi, |u0|∞, T ), ωsp, ωtm are independent of ε.

Proof. For fixed ε > 0, the existence and uniqueness of the solution uε ∈ BUC(RN × [0, T ]) to (2.1) follows
immediately by Propositions 3.1 and 3.2. Note that the L∞ bound for uε does not depend on ε. Indeed, replacing
C in (3.16) by

C := sup
{∣∣∣Hj

(
x,
y

ε
, r, 0

)∣∣∣ : x ∈ R
N , y ∈ R

N , |r| ≤ |u0|∞, 1 ≤ j ≤M
}

which is finite and independent of ε by periodicity of Hj in y, we obtain (3.17) and therefore (3.23).
We now prove (3.24). Let uε be a subsolution and vε be a supersolution of (2.1) which are BUC (the modulus

of continuity of the solution may a priori depend of ε). Arguing as in Proposition 3.1, from (3.12) we have, for
all j and (x, t) ∈ R

N × [0, T ],

uε
j(x, t) − vε

j (x, t) ≤ ηt+ (uε
j
(x, 0) − vε

j
(y, 0))+ − |x− y|2

2α

≤ ηT + max
1≤j≤M

sup
RN

(uε
j(·, 0) − vε

j (·, 0))+ + (vε
j
(x, 0) − vε

j
(y, 0))+ − |x− y|2

2α

and

lim sup
α→0

(vε
j
(x, 0) − vε

j
(y, 0))+ − |x− y|2

2α
≤ 0

since v is uniformly continuous (see (3.13) and (3.14)). Letting α→ 0 and then η → 0, we obtain

max
1≤j≤M

sup
RN×[0,T ]

uε
j − vε

j ≤ max
1≤j≤M

sup
RN

(
uε

j(·, 0) − vε
j (·, 0)

)+
. (3.25)

We have to prove that the modulus of continuity of uε do not depend on ε. We proceed by approximation
showing first the result for u0 Lipschitz continuous. Replacing C in (3.16) by

C := sup
{∣∣∣Hj

(
x,
y

ε
, r, p

)∣∣∣ : x ∈ R
N , y ∈ R

N , |r| ≤ |u0|∞, |p| ≤ |Du0|∞, 1 ≤ j ≤M
}
,

we prove as at the beginning of the proof of Proposition 3.2 that, if v±(x, t) = (u0,1(x)±Ct, . . . , u0,M (x)±Ct),
then v+ is a supersolution and v− is a subsolution of (2.1). By Proposition 3.1, it follows

v− ≤ u ≤ v+ in R
N × [0, T ]. (3.26)

Let 0 ≤ h ≤ T and note that, since the Hi’s are independent of t, uε(·, · + h) is still a solution of (2.1) with
initial data uε(·, h). By (3.25) and (3.26), we get for all j, (x, t) ∈ R

N × [0, T ]

uε
j(x, t+ h) − uε

j(x, t) ≤ max
1≤j≤M

sup
RN

(
uε

j(·, h) − u0,j

)+ ≤ Ch

and therefore uε
j is Lipschitz with respect to t for every x with∣∣∣∣∂u

ε
j

∂t

∣∣∣∣
∞

≤ C.
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From (2.1), we obtain, in the viscosity sense

−C ≤ Hj

(
x,
x

ε
, uε, Duε

j

)
≤ C (x, t) ∈ R

N × [0, T ].

By the coercivity of Hi (uniformly with respect to the other variables, see (2.2) (ii)), there exists Lj > 0 such
that, for all p ∈ R

N ,

|p| ≥ Lj =⇒ for all ε > 0, x ∈ R
N , r ∈ R

M , Hj(x,
x

ε
, r, p) > C.

It follows that uε
j is Lipschitz continuous in x for every t with |Duε

j |∞ ≤ Lj (with Lj independent of ε).
Now if u0 ∈ BUC(RN ), then it is possible to approach it by Lipschitz continuous functions: for all γ > 0,

there exists uγ
0 such that |u0 − uγ

0 |∞ ≤ γ. Let uε (respectively uε,γ) be the unique BUC (respectively Lipschitz
continuous with constant Cγ) solution of (2.1) with initial data u0 (respectively uγ

0). Note that Cγ is independent
of ε. By (3.25), we obtain

|uε − uε,γ |∞ ≤ |u0 − uγ
0 |∞ ≤ γ.

It follows that, for all 1 ≤ j ≤M, x, y ∈ R
N , t, s ∈ [0, T ],

|uε
j(x, t) − uε

j(y, s)| ≤ |uε,γ
j (x, t) − uε,γ

j (y, s)| + 2γ ≤ Cγ(|x− y| + |t− s|) + 2γ. (3.27)

Since (3.27) holds for all γ > 0 and Cγ is independent of ε, we conclude that uε is BUC with a modulus
independent of ε. �

4. The cell problem

In this section we prove the existence of the effective Hamiltonians, the Hamiltonians for the limit sys-
tem (1.2). Since at this level we work for a fixed index i, i.e. there is no coupling, we can follow the classical
argument based on the ergodic approximation of the cell problem. The only point is to prove that effective
Hamiltonians we are going to define still verify some regularity and monotonicity properties so that the homog-
enized problem verifies a comparison principle.

The cell problem. For any i = 1, . . . ,M , given (x, r, p) ∈ R
N × R

M × R
N , find λi = λi(x, r, p) such that the

equation
Hi(x, y, r, p+Dv(y)) = λi y ∈ T

N (4.1)
admits a viscosity solution vi = vi,x,r,p.

Proposition 4.1. Assume (2.2). For any i = 1, . . . ,M , there exists a unique λi = λi(x, r, p) ∈ R such that the
cell problem (4.1) admits a periodic solution vi(y) = vi(y;x, r, p) which is Lipschitz continuous. More precisely,
for all R > 0, there exists LR > 0 such that

sup{|Dyvi(y;x, r, p)|∞ : x ∈ R
N , |r| + |p| ≤ R} ≤ LR.

Proof. We only give a sketch of the proof, see for instance [8] for details. Fix i ∈ {1, . . . ,M}, R > 0 and
(x, r, p) ∈ R

N × R
M × R

N such that |r| + |p| ≤ R. Consider the ergodic approximation of the cell problem

αwα
i (y) +Hi(x, y, r, p+Dwα

i (y)) = 0 y ∈ T
N . (4.2)

By (2.2), (4.2) satisfies a comparison principle for any α > 0 and therefore it admits a unique continuous
viscosity solution wα

i which is periodic. By (2.2) (iii),

CR := sup{|Hj(x, y, r, p)| : x, y ∈ R
N , |r| + |p| ≤ R, j = 1, . . . ,M} < +∞
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and −CR/α is a subsolution and CR/α is a supersolution of (4.2). It follows

−CR ≤ αwα
i ≤ CR.

By the coercitivity of the Hamiltonian Hi, there exists LR = L(R,Hi) such that

|p+Dwα
i | > LR =⇒ Hi(x, y, r, p+Dwα

i ) > CR.

We then get the global gradient bounds for wα
i independent of α:

|Dwα
i |∞ ≤ LR.

It follows that, for a fixed y0 ∈ T
N , there exists a sequence αn → 0 such that

lim
n→∞αnw

αn

i (y) = λi for any y ∈ T
N ,

lim
n→∞wαn

i (y) − wαn

i (y0) = vi(y) uniformly in T
N .

Moreover vi is Lipschitz continuous with constant LR and by standard stability result in viscosity solution
theory (λi, vi) is a solution to (4.1). Finally it is possible to prove that the number λi for which (4.1) admits
a solution is univocally defined, while it is well known that in general the viscosity solution of (4.1) is not
unique. �

Definition 4.2. For any i = 1, . . . ,M , the effective Hamiltonian Hi(x, r, p) associated to the Hamiltonian Hi

is defined by setting
Hi(x, r, p) = λi

where λi is given by Proposition 4.1.

We now deduce some properties of the effective Hamiltonians.

Proposition 4.3. Assume (2.2). For any i = 1, . . . ,M , the effective Hamiltonian Hi satisfies:

(i) Hi is continuous in (x, r, p) and, for all R > 0, there exists a modulus of continuity ωR such that, for
all x, x′ ∈ R

N , r, r′ ∈ R
M , p, p′ ∈ R

N with |r| + |r′| + |p| + |p′| ≤ R, we have

|Hi(x, r, p) −Hi(x′, r′, p′)| ≤ ωR(|x − x′|) + ωR(|r − r′| + |p− p′|). (4.3)

(ii) Hi is coercive in p (uniformly with respect to (x, r)).
(iii) If Hi is convex in p, then Hi is convex in p.
(iv) If Hi satisfies (2.3), then Hi satisfies (2.3).

Proof. We first prove (i). Let R > 0 and (x, r, p), (α, s, q) ∈ R
N × R

M × R
N such that |r| + |s| + |p| + |q| ≤ R.

Let v, w two periodic functions which satisfy

Hi(x, y, r, p+Dv(y)) = Hi(x, r, p) y ∈ T
N , (4.4)

Hi(x+ α, y, r + s, p+ q +Dw(y)) = Hi(x + α, r + s, p+ q) y ∈ T
N . (4.5)

By periodicity of v and w, for any ε > 0, the supremum

sup
z,y∈RN

{
v(z) − w(y) − |z − y|2

ε2

}
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is achieved at some point (z̄, ȳ) (which depends on x, α, p, q, r, s, ε). Moreover it is easy to see that, since v, w
are bounded Lipschitz continuous, we have

|z̄ − ȳ|
ε2

≤ |Dv|∞, |Dw|∞ ≤ LR (4.6)

where LR is given by Proposition 4.1. Since v is a viscosity subsolution of (4.4) and w is a supersolution of (4.5),
we obtain

Hi(x, z̄, r, p+ p̄) ≤ Hi(x, r, p),

Hi(x+ α, ȳ, r + s, p+ q + p̄) ≥ Hi(x+ α, r + s, p+ q).

By (2.2) we get

Hi(x+ α, r + s, p+ q) −Hi(x, r, p) ≤ Hi(x+ α, ȳ, r + s, p+ q + p̄) −Hi(x, z̄, r, p+ p̄)

= Hi(x+ α, ȳ, r + s, p+ q + p̄) −Hi(x, z̄, r + s, p+ q + p̄)

+Hi(x, z̄, r + s, p+ q + p̄) −Hi(x, z̄, r, p+ p̄)

≤ ω
(
(1 + R+ LR)(|α| + |z̄ − ȳ|)

)
+ ω̃R(|s| + |q|),

where ω is given by (2.2) (iv) and ω̃R is a modulus of continuity of the continuous function Hi on the subset
R

N ×T
N × [−R,R]M ×BN (0, R+LR) given by (2.2) (iii). Sending ε to 0 and setting ωR(l) = max{ω((1+R+

LR)l), ω̃R(l)}, we get

Hi(x+ α, r + s, p+ q) −Hi(x, r, p) ≤ ωR(|α|) + ωR(|s| + |q|),

which ends the proof of (i).
The proof of (ii) and (iii) are standard, see [8].
We now prove that Hi, i = 1, . . . ,M , satisfies the monotonicity condition (2.3). We assume by contradiction

that there exist r, s ∈ R
M for which rj − sj = max

k=1,...,M
{rk − sk} ≥ 0 and

Hj(x, r, p) < Hj(x, s, p)

for some x, p ∈ R
N . Let v, w be two periodic functions such that

Hj(x, y, r, p+Dv) = Hj(x, r, p) y ∈ T
N ,

Hj(x, y, s, p+Dw) = Hj(x, s, p) y ∈ T
N .

Since v, w are bounded, by adding a constant we can assume w.l.o.g. v > w in T
N . By (2.3)

Hj(x, y, r, p+Dv) = Hj(x, r, p) < Hj(x, s, p) ≤ Hj(x, y, s, p+Dw) ≤ Hj(x, y, r, p+Dw)

and for α sufficiently small

αv +Hj(x, y, r, p+Dv) > αw +Hj(x, y, r, p+Dw) y ∈ T
N .

This last inequality gives a contradiction by the comparison principle for (4.2). �
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5. The homogenization theorem

In this section we prove the homogenization theorem for the problem (1.1).

Proposition 5.1. Assume (2.2), (2.3) and (2.4). Then there exists a unique solution u ∈ BUC(RN × [0, T ])
of ⎧⎨

⎩
∂ui

∂t
+Hi(x, u,Dui) = 0 (x, t) ∈ R

N × (0,∞),

ui(x, 0) = u0,i(x) x ∈ R
N , i = 1, . . . ,M.

(5.1)

Proof. The difficulty here is that the comparison principle for the limit system (5.1) is not a straightforward
consequence of Proposition 4.3. Indeed, the regularity of the Hamiltonians Hi is weaker than (2.2) (in partic-
ular compare (2.2) (iv) and (4.3)). To prove the comparison principle we first prove comparison in the case
where either the subsolution or the supersolution is bounded Lipschitz continuous and then we proceed by
approximation.

Suppose that u0 is bounded Lipschitz continuous, u is a bounded subsolution and v a bounded supersolution
of (5.1) and u, for instance, is Lipschitz continuous (with constant L). Arguing as in Proposition 3.1 and looking
carefully at the proof of Proposition 4.3 (see in particular (4.6)), it follows that the second estimate in (3.9)
could be replaced by

|p| ≤ L,

and therefore, setting R = |v|∞ + 2M + L, from (4.3), (3.10) becomes

T1 ≤ ωR(Lα).

The term T2 does not exist since Hj does not depend on t. We deal with T3 using again (4.3) and T4 ≤ 0
as in the proof of Proposition 4.3. The rest of the proof is the same (even easier since u(·, 0) is Lipschitz
continuous). Hence we have comparison between Lipschitz continuous sub- and supersolutions. In particular,
by Perron’s method, for any Lipschitz continuous u0, there exists a unique Lipschitz continuous solution u
of (5.1). Moreover, repeating the beginning of the proof of Proposition 3.3, we obtain (3.25), i.e.

max
1≤j≤M

sup
RN×[0,T ]

uj − vj ≤ max
1≤j≤M

sup
RN

(uj(·, 0) − vj(·, 0))+ (5.2)

if u is a subsolution and v a supersolution of (5.1) and either u or v is Lipschitz continuous.
Now, consider the case when u0 is BUC. Let u (respectively v) be a BUC subsolution (respectively super-

solution) of (5.1). For all γ > 0, there exists a Lipschitz continuous function uγ
0 such that

uγ
0 ≤ u0 ≤ uγ

0 + γ in R
N . (5.3)

Let uγ (respectively vγ) be the Lipschitz continuous solution to (5.1) with initial data uγ
0 (respectively uγ

0 + γ).
By comparison in the Lipschitz case, uγ ≤ vγ . From (5.2) and (5.3), it follows

u ≤ uγ + γ ≤ vγ + γ ≤ v + 2γ in R
N × [0, T ].

Since the previous inequality is true for all γ > 0, we obtain the desired comparison u ≤ v. We also obtain the
existence and the uniqueness of a BUC solution as a byproduct of this latter proof. �

Theorem 5.2. Assume (2.2), (2.3) and (2.4). The viscosity solution uε of (1.1) converges locally uniformly
on R

N × [0, T ] to the viscosity solution u ∈ BUC(RN × [0, T ]) of (5.1).
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Proof. By Proposition 3.3 there exists a continuous solution uε of (1.1) which is bounded independently of ε.
It follows that we can define the half-relaxed limits

u(x, t) = lim sup
ε→0,(xε,tε)→(x,t)

uε(xε, tε) and u(x, t) = lim inf
ε→0,(xε,tε)→(x,t)

uε(xε, tε).

Let us mention at this step that we could use Ascoli’s theorem in view of the equicontinuity property of
Proposition 3.3 (ii) to obtain a limit for uε along a subsequence. We choose to use the half-relaxed limits since
it is not much more complicated and it does not require uniform moduli of continuity for the uε’s.

We first show that u is a viscosity subsolution of the system (5.1). We assume there exist j ∈ {1, . . . ,M}
and φ ∈ C1 such that uj − φ has a strict maximum point at some (x, t) with t > 0 and uj(x, t) = φ(x, t). We
assume w.l.o.g. j = 1. By Proposition 4.1, there exists a corrector v for (x, u(x, t), Dφ(x, t)), i.e. a viscosity
solution of

H1(x, y, u(x, t), Dφ(x, t) +Dv(y)) = H1(x, u(x, t), Dφ(x, t)) y ∈ T
N . (5.4)

Define the “perturbed test-function”

φε,α(x, y, t) = φ(x, t) + εv
(y
ε

)
+

|x− y|2
α2

· (5.5)

By classical results on viscosity solutions (see [3], Lem. 4.3, or [2]), we have, since u1 − φ has a strict maximum
point at (x, t), up to extract subsequences, there exist (xε,α, yε,α, tε,α) ∈ R

N × R
N × (0, T ] and (xε, tε) ∈

R
N × (0, T ] such that (xε,α, yε,α, tε,α) is a local maximum of uε

1(x, t) − φε,α(x, y, t) and

(xε,α, yε,α, tε,α) → (xε, xε, tε) as α→ 0,
(xε, tε) → (x, t) as ε→ 0,
lim
ε→0

lim
α→0

uε
1(xε,α, tε,α) = u1(x, t).

Since uε
1(x, t) − φε,α(x, yε,α, t) has a maximum point at (xε,α, tε,α) and uε is a subsolution of (1.1), setting

pε,α = 2
xε,α − yε,α

α2
, we get

φt(xε,α, tε,α) +H1(xε,α,
xε,α

ε
, uε(xε,α, tε,α), Dφ(xε,α, tε,α) + pε,α) ≤ 0. (5.6)

Since v is a supersolution of (5.4) and y �→ v(y) − ψε,α(εy) has a minimum point at yε,α/ε with

ψε,α(y) = −1
ε

(
|xε,α − y|2

α2
+ φ(xε,α, tε,α) − uε

1(xε,α, tε,α)
)
,

we get
H1

(
x,
yε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
≥ H1(x, u(x, t), Dφ(x, t)). (5.7)

The corrector v is Lipschitz continuous by coercivity of H1 (see Prop. 4.1). Therefore, from (4.6), we have

|pε,α| ≤ |Dv|∞ ≤ LR with R = |Dφ(x, t)| + |u|∞. (5.8)

By (5.6) and (5.7), we have

φt(x, t) +H1(x, u(x, t), Dφ(x, t)) ≤ φt(x, t) − φt(xε,α, tε,α) +H1

(
x,
yε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, uε(xε,α, tε,α), Dφ(xε,α, tε,α) + pε,α

)
. (5.9)
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Since (xε,α, tε,α) → (x, t) and φ is smooth we get

lim
ε→0

lim
α→0

φt(x, t) − φt(xε,α, tε,α) = 0. (5.10)

To estimate the second term of the right-hand side we set

T1 = H1

(
x,
yε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
,

T2 = H1

(
xε,α,

xε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, uε(xε,α, tε,α), Dφ(x, t) + pε,α

)
,

T3 = H1

(
xε,α,

xε,α

ε
, uε(xε,α, tε,α), Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, uε(xε,α, tε,α), Dφ(xε,α, tε,α) + pε,α

)
.

From (2.2) (iv) and (5.8),

T1 ≤ ω

(
(1 + |Dφ(x, t) + pε,α|)

(
|x− xε,α| +

|xε,α − yε,α|
ε

))

≤ ω

(
(1 +R+ LR)

(
|x− xε,α| +

LRα
2

ε

))

and therefore

lim
ε→0

lim
α→0

T1 = 0.

To deal with T2, we use the monotonicity assumption (2.3). Let δ > 0. At first, up to extract some subse-
quences, we can assume by definition of u that for α, ε small enough with α	 ε, we have

uε
j(xε,α, tε,α) − uj(x, t) ≤

δ

2
for 2 ≤ j ≤M.

Hence

max
{
u1(x, t) + δ − u1(x, t), uε

2(xε,α, tε,α) − u2(x, t), . . . , uε
M (xε,α, tε,α) − uM (x, t)

}
= δ

is achieved for the first component. Set rδ = (u1(x, t) + δ, uε
2(xε,α, tε,α), . . . , uε

M (xε,α, tε,α)), then by (2.3)

H1

(
xε,α,

xε,α

ε
, u(x, t), Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, rδ, Dφ(x, t) + pε,α

)
≤ 0.

Then

T2 ≤ H1

(
xε,α,

xε,α

ε
, rδ, Dφ(x, t) + pε,α

)
−H1

(
xε,α,

xε,α

ε
, uε(xε,α, tε,α), Dφ(x, t) + pε,α

)
:= T4.

To prove

lim
ε→0

lim
α→0

T3 = 0 and lim
δ→0

lim
ε→0

lim
α→0

T4 = 0, (5.11)

we use the uniform continuity of H1 on compact subsets. We have

lim
ε→0

lim
α→0

(xε,α, u
ε(xε,α, tε,α), Dφ(xε,α, tε,α)) = (x, u(x, t), Dφ(x, t))
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and

lim
δ→0

lim
ε→0

lim
α→0

rδ = u(x, t).

Since xε,α, yε,α → x we have xε,α, yε,α stay in some ball B(x,R). Hence choosing K = B(x,R) × T
N

× [−|u|∞ − 1, |u|∞ + 1]M × B(0, |Dφ(x, t)| + LR + 1), by uniform continuity of H1 on K, (5.11) holds. The
periodicity of H1 allows to deal with xε,α/ε which is not bounded.

Finally, sending α → 0 at first, then ε → 0 and finally δ → 0, we conclude that the right-hand side of (5.9)
is non positive. Then u is a subsolution of (5.1).

We prove that u is a viscosity supersolution of (5.1) in a similar way. From Proposition 3.1, we then obtain
u ≤ u in R

N × [0, T ]. It follows that u = u := u where u is the (local) uniform limit of the uε’s. �

Remark 5.3.
(1) As mentioned above, the coercivity of the Hamiltonians plays a crucial role: it ensures the Lipschitz conti-
nuity of the correctors which allows us to deal with T3 and T4 with weak regularity assumptions with respect to
(r, p) in (2.2). When the Hamiltonians are not coercive anymore (and therefore the corrector is not necessarily
Lipschitz continuous), the proof is more delicate. A way to solve this problem is to use the ideas of Barles [4]
and his “F k-trick” (see [4], Lem. 2.1 and Thm. 2.1).
(2) In the Lipschitz case (when u0 is Lipschitz continuous), the above proof can be done in a simpler way using
the uniform Lipschitz estimates on uε given by Proposition 3.3.

6. example

We first describes a class of systems (2.1) which satisfy (2.3). We assume that the Hamiltonians Hj satisfy
the following assumption (see [10])

There exists cij ∈ R, 1 ≤ i, j ≤M, s.t.
∑M

j=1 cji ≥ 0 and

for any (x, y, r, p) ∈ R
N × R

N × R
M × R

N , δ > 0,

cjiδ ≤ Hi(x, y, r + δej , p) −Hi(x, y, r, p) ≤ 0 if j �= i,

ciiδ ≤ Hi(x, y, r + δei, p) −Hi(x, y, r, p)

(6.1)

where (e1, . . . , en) is the canonical basis of R
M . Note that necessarily cji ≤ 0 for i �= j and cii ≥ 0.

In the next proposition we prove that the assumption (6.1) implies the monotonicity condition (2.3).

Proposition 6.1. Condition (6.1) implies (2.3).

Proof. Assume that rj − sj = maxk=1,...,M{rk − sk} ≥ 0. For simplicity, we drop the dependence in (x, y, p) in
H(x, y, r, p) in the proof of the proposition since these variables do not play any role here. We have

Hj(r) −Hj(s) = Hj(r1, r2, . . . , rj , . . . , rM ) −Hj(s1, s2, . . . , sj, . . . , sM )
= Hj(r1, r2, . . . , rj , . . . , rM ) −Hj(s1, r2, . . . , rj , . . . , rM )

+ Hj(s1, r2, . . . , rj , . . . , rM ) −Hj(s1, s2, r3, . . . , rj , . . . , rM )
+ . . .

+ Hj(s1, . . . , sj−1, rj , . . . , rM ) −Hj(s1, . . . , sj , rj+1, . . . , rM )
+ . . .

+ Hj(s1, . . . , sM−1, rM ) −Hj(s1, . . . , sM ).
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If k �= j,

Hj(s1, . . . sk−1, rk, rk+1, . . . , rM ) −Hj(s1, . . . , sk−1, sk, rk+1, . . . , rM ) ≥{
0 if rk − sk < 0

ckj(rk − sk) if rk − sk ≥ 0 ≥ ckj(rj − sj)

since ckj ≤ 0 and rj − sj = maxk=1,...,M{rk − sk} ≥ 0. Moreover,

Hj(s1, . . . , sj−1, rj , rj+1, . . . , rM ) −Hj(s1, . . . , sj−1, sj, rj+1, . . . , rM ) ≥ cjj(rj − sj).

It follows

Hj(r) −Hj(s) ≥
M∑

k=1

ckj(rj − sj) ≥ 0

as desired. �

Remark 6.2. Property (2.3) is not equivalent to (6.1). More precisely, if (2.3) holds, the existence of cji for
j �= i is not always true (the others assertions hold). Indeed, for M = 2, consider for instance H1(r1, r2) =
er1−r2 + 2r1 − r2 (and define H2 symmetrically). Then

H1(r1 + δ, r2 + μ) −H1(r1, r2) = er1−r2(eδ−μ − 1) + 2δ − μ ≥ δ

when μ ≤ δ. This ensures (2.3) with λ0 = 1. Nevertheless, H1(r1, r2 +μ)−H1(r1, r2) ∼ −(1+er1−r2)μ for small
μ and 1 + er1−r2 is not bounded.

A particular case of monotone systems are the weakly coupled systems (2.6). For (2.6), assumption (6.1) is
satisfied if

cii(x, y) ≥ 0, cji(x, y) ≤ 0 for j �= i and
M∑

j=1

cji(x, y) ≥ 0 (6.2)

for any x, y ∈ R
N , i, j ∈ {1, . . . ,M}. Let us consider a specific example of weakly coupled system for which it

is possible to have an explicit formula for the effective Hamiltonians. Consider the system

∂ui

∂t
+

∣∣∣∣∂ui

∂x

∣∣∣∣ +
M∑

j=1

cji

(x
ε

)
uj = 0 (x, t) ∈ R × [0,∞),

where the cji’s satisfy (6.2). The associated cell problems are

|p+ v′(y)| +
M∑

j=1

cji(y)rj = λ y ∈ [0, 1], λ ∈ R, (6.3)

for i = 1, . . . ,M . We rewrite (6.3) as

|p+ v′(y)| = λ+ f(y) y ∈ [0, 1] (6.4)
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where f(y) = −
M∑

j=1

cji(y)rj . The effective Hamiltonian for (6.4) is given by (see [8])

H(p) = max
{
−min

[0,1]
f, |p| −

∫ 1

0

f(y)dy
}

(6.5)

and therefore we get the effective Hamiltonian for (6.3)

Hi(r, p) = max

⎧⎨
⎩max

[0,1]

M∑
j=1

cji(y)rj , |p| +
M∑

j=1

rj

∫ 1

0

cji(y)dy

⎫⎬
⎭ · (6.6)

A natural question is that if the problem (5.1) which arises in the homogenized limit of the weakly coupled
system (2.6) is still of weakly coupled type. Whereas the answer is positive if the coefficients cij are independent
of y, in general it is not necessarily true.

Proposition 6.3. Assume that (2.2) holds and that the coefficients cij in (2.6) are constant and satisfy (6.2).
Then

Hi(r, p) = Hi(p) +
M∑

j=1

cji rj (6.7)

where Hi(p) is the effective Hamiltonian of Hi(x, p), i.e. the unique λ ∈ R for which the equation

Hi(y, p+Dv(y)) = Hi(p) y ∈ T
N (6.8)

admits a viscosity solution.

Proof. By definition, there exists a viscosity solution to

Hi(y, p+Dv(y)) +
M∑

j=1

cjirj = Hi(r, p), y ∈ T
N

or equivalently to

Hi(y, p+Dv(y)) = Hi(r, p) −
M∑

j=1

cjirj y ∈ T
N .

By (6.8) and the uniqueness of the effective Hamiltonian, the constant in the right hand side of the previous
equation is given by Hi(p), hence the formula (6.7). �

The following example shows that if the coupling coefficients cij are not constants, the limit system is not
necessarily weakly coupled. Consider the 1-dimensional case (6.3). Take i = 1 and r = (r1, 0, . . . , 0), then

H1(r, p) = max
{

max
[0,1]

c11(y)r1, |p| + r1

∫ 1

0

c11(y)dy
}
·

If max[0,1] c11 = α, min[0,1] c11 = β and
∫ 1

0 c11(y)dy = γ, with α > γ > β ≥ 0, then for p �= 0 fixed

H1(r, p) =

⎧⎨
⎩

βr1 if r1 ≤ |p|/(β − γ),
γr1 + |p| if |p|/(β − γ) ≤ r1 ≤ |p|/(α− γ),
αr1 if r1 ≥ |p|/(α− γ).
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Then H1(r, p) is not a linear function of r and therefore is not of weakly coupled type.
By the formula (6.6) it is possible to see another typical phenomenon in homogenization of Hamilton-Jacobi

equation, the presence of a flat part in the graph of effective Hamiltonian (see [8,16]).
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