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1. Introduction

We are concerned with the equation

− Δu+ F ′(u) +H(x) = 0, x ∈ Rn, (1.1)

where the smooth function F is a double-well potential.
More precisely, we assume that

• F (t) � 0 for any t ∈ R;
• F (t) = 0 if and only if t = ± 1, and F ′′(1) = F ′′(−1) > 0;
• there exist positive constants δ0, c such that F ′(−1 − s) � −c and F ′(1 + s) � c for any s � δ0;
• F (−1 + s) = F (1 + s) for any s ∈ [−δ0, δ0].

The function H ∈ L∞(Rn) in (1.1) will be a small periodic perturbation of the operator. To this extent, we
suppose that

• ‖H‖L∞(Rn) is suitably small;
• H is Zn-periodic, with zero average on [0, 1]n, that is

H(x+ k) = H(x) ∀x ∈ Rn and k ∈ Zn

and
∫

[0,1]n
H(x) dx = 0. (1.2)
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Equation (1.1) is the Euler-Lagrange equation of the (formal) functional

∫
Rn

|∇u|2
2

+ F (u) +H(x)u dx. (1.3)

The functional in (1.3) has been considered in [10,21] as a mesoscopic model for phase transitions (see also [9]
for the analysis of the gradient flow of (1.3), and [8] for a related problem in the random setting).

When H = 0, (1.1) is called the Ginzburg-Landau or Allen-Cahn equation, which is a popular model for
superconductors and superfluids [15,17] and for gas and solid interfaces [2,25]. Similar equations also arise in
cosmology [6].

The term H may be seen as a small defect which favors locally one of the phases: condition (1.2) then says
that such defect is “neutral” on large scales, in the sense that both the phases are equally treated.

We refer to [8–10,21] for further physical motivations and geometric interpretations.
In [21], minimizers of (1.3) have been dealt with. We say that u ∈ W 1,2

loc (Rn) is a minimizer if

∫
U

|∇u|2
2

+ F (u) +H(x)u dx �
∫

U

|∇(u + ψ)|2
2

+ F (u+ ψ) +H(x)(u + ψ) dx (1.4)

for any ψ ∈ C∞
0 (U) and any bounded domain U (minimizers of this type are often called “local”, or “class A”,

minimizers). As usual in the calculus of variation framework, the word minimizer for (1.4) refers to the fact
that the energy is increased by compact perturbations, even if the energy (1.3) in the whole of Rn may well be
infinite.

In particular, the following result has been proved in [21].

Theorem 1.1. For small ‖H‖L∞(Rn), there exist two Zn-periodic minimizers U± of (1.3), with U+ = U− + 2.
Also, U+ and U− are uniformly close to +1 and −1, respectively, in the sense that there exists a constant

C0 > 0, independent of H, in such a way that

‖U+ − 1‖L∞(Rn) � C0 ‖H‖L∞(Rn), ‖U− + 1‖L∞(Rn) � C0 ‖H‖L∞(Rn). (1.5)

Moreover, given ω ∈ Sn−1, there exist minimizers u±ω of (1.3), which connects U+ and U− far from ω⊥.
More explicitly, there are constants C1, C2 > 0, independent of H, such that

|u+
ω (x) − U+(x)| + |u−ω (x) − U−(x)| � C1e−C2〈ω,x〉 (1.6)

and

|u+
ω (x) − U−(x)| + |u−ω (x) − U+(x)| � C1eC2〈ω,x〉 (1.7)

for any x ∈ Rn.

The gist of this paper is to detect multibump solutions of the mesoscopic model by gluing together pieces of
u±ω ’s, according to the following result:

Theorem 1.2. Under a suitable non-degeneracy assumption on H and ω ∈ Sn−1, there exist solutions of (1.1)
which connects U+ and U− in the direction given by ω, as many times as we want.

Analogous layered and multibump solutions have been studied in [1,23,24] and multiplicity results are also
in [7]: differently from those results, the multibumps are here obtained not by perturbing the potential F (t)
into Q(x)F (t), but by using the mesoscopic term H(x).
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Figure 1. The multibump solution of Theorem 1.3.

A more formal description of Theorem 1.2 will be given in the subsequent Section 2.
We now state the non-degeneracy condition needed in our paper.
For this, we introduce the following equivalence relation on Rn. Given ω ∈ SN−1 and x, y ∈ Rn, we say that

x ∼ω y if and only if 〈ω, x− y〉 = 0 and x− y ∈ Zn.
The quotient space Rn/ ∼ω will be denoted by Rn

ω.
Let ω ∈ Sn−1 be such that

(A) The minimal eigenvalues λ+
ω and λ−ω of − Δ + F ′′(u±ω ) in L2(Rn

ω)
are strictly positive and belong to the discrete spectrum of the operator.

Note that condition (A) is an assumption on both ω and H , since u+
ω and u−ω depend on H (recall Thm. 1.1).

An equivalent formulation of condition (A) is that

λ±ω := inf
‖u‖L2(Rn

ω)=1

∫
Rn

ω

|∇u|2 + F ′′(u±ω )u2 dx

are strictly positive and attained at some eigenfunction v±ω . (1.8)

Note that, even when (A) fails, the quantity in (1.8) is non-negative, due to the minimizing properties of u±ω
(recall (1.4) and Thm. 1.1).

We reckon that assumption (A) is satisfied for a generic function H . Such condition is analogous to the
stability condition assumed in [9], and a formal computation is performed in Section 4.2 of [9] to justify such
assumption. Related asymptotic expansion of eigenvalues are also in [4,18].

Here, in Section 4, we will make rigorous expansions, interesting in themselves, to make condition (A) more
explicit in the rational perturbative case.

The concrete case of small perturbations in a periodic setting will also be considered in Section 4, where we
give an explicit, quite general, nondegeneracy condition for the multibump solutions to exist (there, we also
relate such condition to a Poincaré-Mel’nikov type non-degeneracy).

Indeed, the following result will be proven in Section 4:

Theorem 1.3. Let ω ∈ Qn and H(x) := εh(x). Then, the functions u±ω given by Theorem 1.1 approach
uniformly, as ε→ 0+, the one-dimensional heteroclinic solutions γ± of

−Δγ± + F ′(γ±) = 0.

More precisely, for all ε > 0, there exist φ± ∈ L∞(Rn
ω) which are solutions of

−Δφ± + F ′′(γ±)φ± + h = 0
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in such a way that the functions u±ω have the following asymptotics:

u±ω (x) = γ±
(
x+ o(1)ω

)
+ εφ±(x) + o(ε).

Moreover, the following eigenvalue expansion hold:

λ±ω =
ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

F ′′′(γ±)
(
(γ±)′

)2

φ± dx+ o(ε).

In particular, if F is even

λ±ω =
ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

h(x) (γ±)′′(x) dx + o(ε)

and, if ∫
Rn

ω

h(x) (γ±)′′(x) dx 
= 0

then the non-degeneracy assumption required in Theorem 1.2 is fulfilled for small ε.

In Section 3, we prove Theorem 1.2 (and, in fact, the more explicit version of it given in Thm. 2.1 below),
while Section 4 contains comments and examples about the nondegeneracy assumption needed in Theorem 1.2
and an asymptotic expansion for the rational perturbative case, which we think is interesting in itself (see, in
particular Thms. 4.1, 4.2 and 4.3 in there).

2. Formal setup and eigenvalues

First we recall an elementary property of the minimal eigenvalue:

Lemma 2.1. Let f : Rn → R be a smooth and Zn-periodic function. Then,

inf
u∈W1,2(R

n/Z
n)

‖u‖
L2(Rn/Zn)=1

∫
Rn/Zn

|∇u(x)|2 + f(x)u2(x) dx (2.1)

is finite and attained at some function v ∈W 1,2(Rn/Zn).
Also, {v = 0} = ∅ and, if λ ∈ R is the quantity in (2.1), we have that

− Δv + fv = λv. (2.2)

We omit the standard proof of Lemma 2.1.
We now consider the linearization of (1.1) around a function u ∈ L∞(Rn):

− Δv + F ′′(u)v = λv, λ ∈ R (2.3)

and we investigate the properties of its eigenvalues.
Notice that, by Theorem 1.1, we have

F ′′(U+) = F ′′(U−). (2.4)
Then, the following is a plain consequence of Lemma 2.1 and (2.4):

Proposition 2.1. Let λ� be the minimal eigenvalue of the operator −Δ+F ′′(U±) in L2(Rn/Zn). Then λ� > 0
and there exists a Zn-periodic function w > 0 satisfying

−Δw + F ′′(U±)w = λ�w.

We are now in the position of giving a formal statement of Theorem 1.2, which is the main result of the paper.
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Theorem 2.1. Let H and ω ∈ Sn−1 be such that assumption (A) holds. Then, there exist solutions of (1.1)
which connects U+ and U− in the direction given by ω, as many times as we want.

More precisely, there exists a constant C > 0 such that for any ε > 0 there exists κ(ε) > 0 with the following
property.

Let N ∈ Z ∪ {−∞} and M ∈ Z ∪ {+∞}, with N < M , and K � κ(ε).
Then there exist 
i ∈ R, for i ∈ Z∩ [N,M ], such that, if we set 
̃i := (
i + 
i+1)/2, 
N−1 := −∞ if N > −∞

and 
M+1 := +∞ if M < +∞, we have:
• 
j+1 − 
j � K for any j ∈ Z ∩ [N,M − 1];
• there exists a solution u of (1.1) such that u(x) has distance less than Cε from, alternately, u+

ω (x− 
iω)
and u−ω (x − 
iω), for any x ∈ Rn such that 〈ω, x〉 ∈ (
̃i−1 + 1, 
̃i − 1);

• u(x) has distance less than Cε from, alternately, U+(x) and U−(x) for any x ∈ Rn such that 〈ω, x〉 ∈
(
̃i − 2, 
̃i + 2).

In Theorem 2.1 above, we made use of the obvious notation

[−∞, a] := (−∞, a] ∪ {−∞}, [a,+∞] := [a,+∞) ∪ {+∞}
and [−∞,+∞] := R ∪ {−∞} ∪ {+∞}.

The content of Theorem 2.1 is visualized in Figure 1. Namely, the multibump solution we construct has one
and only one excursion from (the vicinity of) one phase to (the vicinity of) the other one in a large interval
around 
i, while each of these transitions is suitable glued with the opposite one near 
̃i.

The gluing near 
̃i will be made in order to approximately synchronize U±(x− ω
i) with U±(x− ω
i+1): in
fact they will be both almost synchronized with U±(x) (see (3.4) below).

Note that in Theorem 2.1 it is not necessary to require that the size of H is small with respect to ε. However,
when this happens, any sequence of 
i’s, that are sufficiently far apart, is favorable to multibumps, provided
that condition (A) holds, since the above mentioned synchronization is not needed (namely, (3.4) below will be
satisfied just by controlling the oscillations of U± by the size of H via Thm. 1.1).

In the perturbative setting, condition (A) may be reduced to a Poincaré-Mel’nikov type non-degeneracy, as
discussed in Section 4.

Theorem 2.1 may also be strengthened by taking subsequences of 
i’s to locate the jumps and by bounding
the mutual distance of the 
i’s from above too. More precisely, the following result also holds:

Theorem 2.2. Let the assumptions of Theorem 2.1 hold.
Then, for any ε > 0 there exist κ+(ε) > κ−(ε) > 0 and a bilateral sequence 
 := {
i, i ∈ Z}, with 
i ∈ R

and 
i+1−
i ∈ [κ−(ε), κ+(ε)], for which given any J ⊆ Z and any subsequence p := {pj, j ∈ J } ⊆ 
, there exists
a solution up of (1.1) such that up(x) has distance less than ε from alternately u+

ω (x − pjω) and u−ω (x − pjω),

if j ∈ J and 〈ω, x〉 ∈
(

pj−1+pj

2 ,
pj+pj+1

2

)
.

In Theorem 2.2 we have used again the notation for which pj−1 := −∞ if j = inf J > −∞ and pj+1 := +∞
if j = supJ < +∞. The proof of Theorem 2.2 is in fact perfectly analogous to the one of Theorem 2.1 –
the reader will just note that the constant C in Theorem 2.1 may be dropped up to relabelling ε and that
the synchronization in (3.3), thence the one in (3.4), may be obtained with |
i| � κ∗(ε), for some κ∗(ε),
thence 
i+1 − 
i � κ+(ε).

3. Proof of Theorem 2.1

First, let us suppose that N 
= −∞ and M 
= +∞. Up to relabelling 
i, we may suppose that N = 0, so the
points 
i are just


0, 
1, . . . , 
M .
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Moreover, given y ∈ Rn, we define
‖y‖Tn := inf

z∈Zn
|y − z|.

We consider a sequence Θ := {θj ∈ R, j ∈ N} for which

θj+1 − θj � ao, for some ao > 0, (3.1)

and
lim

j→+∞
‖ωθj‖Tn = 0. (3.2)

The existence of such a sequence Θ can be proved by induction over n. The inductive step goes as follows. If

{m ∈ Zn s.t. ω ·m = 0} = {0},

the claim is true (see, e.g., [13], p. 250). If, on the other hand, there exists m = (m′,mn) ∈ Zn−1 ×Z with, say,
mn > 0, and such that ω ·m = 0, we write ω = (ω′, ωn) ∈ Rn−1 × R and we apply the inductive hypothesis
to ω′. This gives the existence of a sequence sj ∈ R for which sj+1 − sj � αo for some αo > 0 and ‖ω′sj‖Tn is
infinitesimal. Then, θj := mnsj satisfies (3.1) and (3.2), with ao := mnαo.

In the following, we take the 
i’s to be far apart elements of the sequence Θ, so that (3.2) implies that

‖ω
i‖Tn is as small as we wish. (3.3)

In particular,
|U±(x− ω
i) − U±(x)| is as small as we wish, (3.4)

where U± is given in Theorem 1.1.
Let φ ∈ C∞(R, [0, 1]) be such that φ(t) = 1 for any t � 1 and φ(t) = 0 for any t � −1.
For any i ∈ Z ∩ [0,M − 1], let φi(x) := φ(〈ω, x〉 − 
̃i).
For any i ∈ Z∩ [0,M ] let also ui be alternately u+

ω (x− 
iω) and u−ω (x− 
iω), as prescribed by Theorem 2.1.
We also set vi to be either v+

ω (x− 
iω), if ui = u+
ω (x− 
iω), or v−ω (x− 
iω), if ui = u−ω (x− 
iω), where v±ω is

given by condition (A), according to (1.8).
The eigenvalue λ±ω corresponding to vi will be denoted by λi.
Analogously, we set zi (resp., ẑi) to be either U+(x − 
iω) (resp., U−(x − 
iω)), if ui = u+

ω (x − 
iω), or
U−(x− 
iω) (resp., U+(x− 
iω)), if ui = u−ω (x− 
iω).

Note that, by Theorem 1.1,

|ui(x) − zi(x)| gets arbitrarily small for 〈ω, x〉 − 
i � R, and

|ui(x) − ẑi(x)| gets arbitrarily small for 〈ω, x〉 − 
i � −R, (3.5)

provided that R is large enough.
In particular, there exists a suitable L > 0 in such a way that

|ui(x) − zi(x)| � λ�

2‖F ′′′‖L∞([−2,2])
as long as 〈ω, x〉 − 
i � L, and

|ui(x) − ẑi(x)| � λ�

2‖F ′′′‖L∞([−2,2])
as long as 〈ω, x〉 − 
i � −L. (3.6)

Recalling (2.4), we also define
Φ(x) := F ′′(zi(x)) = F ′′(ẑi(x)). (3.7)

Note that

|Φ(x) − F ′′(ui(x))| � ‖F ′′′‖L∞([−2,2]) min{|ui(x) − zi(x)|, |ui(x) − ẑi(x)|} for any x ∈ Rn. (3.8)
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Also,
sup

x∈Rn

|Φ(x) − F ′′(U±(x))| + |H(x) −H(x− ω
i)| is as small as we wish, (3.9)

due to (3.4) and (3.3).
Given C > 0, to take suitably large in the sequel, we define

ũ±i := ui ± ε(w + Cvi),

where w is the one of Proposition 2.1.
By (1.8), we know that ‖v±ω ‖L2(Rn

ω) = 1 and so

lim
R→+∞

‖v±ω ‖L2(|〈ω,x〉|�R) = 0.

Elliptic regularity [14], Theorem 8.13, then yields

lim
R→+∞

‖v±ω ‖C2(|〈ω,x〉|�R) = 0. (3.10)

Therefore,

‖ũ±i+1 − ũ±i ‖C2(|〈ω,x〉−�̃i|�2) = ‖ui+1 − ui ± Cε(vi+1 − vi)‖C2(|〈ω,x〉−�̃i|�2)

� ‖ui+1 − ẑi+1‖C2(|〈ω,x〉−�̃i|�2) + ‖ui − zi‖C2(|〈ω,x〉−�̃i|�2)

+ ‖ẑi+1 − zi‖C2(|〈ω,x〉−�̃i|�2)

+ ‖vi+1‖C2(|〈ω,x〉−�̃i|�2) + ‖vi‖C2(|〈ω,x〉−�̃i|�2)

� ‖ui+1 − ẑi+1‖C2(|〈ω,x〉−�̃i|�2) + ‖ui − zi‖C2(|〈ω,x〉−�̃i|�2)

+ ‖U±(x − ω
i+1) − U±(x− ω
i)‖C2(|〈ω,x〉−�̃i|�2)

+ ‖v±ω ‖C2(|〈ω,x〉+�i+1−�̃i|�2) + ‖v±ω ‖C2(|〈ω,x〉+�i−�̃i|�2)

is as small as we wish, (3.11)

if the 
i’s are far apart, thanks to (3.4), (3.5) and (3.10).
We now define

β±(x) :=

⎛⎝M−1∏
j=0

(1 − φj(x))

⎞⎠ ũ±0 (x)

+
M−1∑
i=1

⎛⎝⎛⎝M−1∏
j=i

(1 − φj(x))

⎞⎠ φi−1(x)ũ±i (x)

⎞⎠
+ φM−1(x)ũ±M (x).

Note that, if k ∈ Z ∩ [1,M − 1] and 〈ω, x〉 ∈ [
̃k−1 + 1, 
̃k − 1], we have that φj(x) = 0 for any j � k and
φj(x) = 1 for any j � k − 1, thence

β± = ũ±k if 〈ω, x〉 ∈ [
̃k−1 + 1, 
̃k − 1]. (3.12)

Also,
β±(x) = ũ±0 (x) (3.13)
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if 〈ω, x〉 � 
̃0 − 1 and
β±(x) = ũ±M (x) (3.14)

if 〈ω, x〉 � 
̃M + 1.
Also, if k ∈ Z ∩ [0,M − 1], we have that φj(x) = 0 if k < j � M − 1 and φj(x) = 1 if 0 � j < k, when

〈ω, x〉 ∈ (
̃k − 2, 
̃k + 2). Accordingly,

β± = (1 − φk)ũ±k + φkũ
±
k+1 if 〈ω, x〉 ∈ (
̃k − 2, 
̃k + 2). (3.15)

From (3.15) and (3.11), we deduce that

‖β± − ũ±k ‖C2({〈ω,x〉∈(�̃k−2,�̃k+2)}) is as small as we like, (3.16)

as long as 
k+1 − 
k is large enough.
As a consequence of (3.12), (3.13), (3.14) and (3.16), we have that for any x ∈ Rn there exists i in such a

way that
2∑

|j|=0

|Dj(β± − ũ±i )(x)| is as small as we like, (3.17)

provided that the 
i’s are conveniently far apart.
We now claim that there exists c > 0 such that

− ‖F ′′′‖L∞([−2,2]) min{|ui − zi|, |ui − ẑi|}w + λ�w + Cλivi � c, (3.18)

as long as C is chosen suitably large (recall that w and λ� are the ones given by Prop. 2.1).
To prove (3.18), we distinguish two cases. If |〈ω, x〉 − 
i| � L, we use (3.6) to get

− ‖F ′′′‖L∞([−2,2]) min{|ui − zi|, |ui − ẑi|}wλ�w + Cλivi � λ�

2
w + Cλivi

� λ�

2
inf

Rn/Zn
w. (3.19)

If, on the other hand, |〈ω, x〉 − 
i| � L, we have

−‖F ′′′‖L∞([−2,2]) min{|ui − zi|, |ui − ẑi|}w + λ�w + Cλivi � −5‖F ′′′‖L∞([−2,2]) + Cλi inf
|〈ω,x〉|�L

vi. (3.20)

Then, (3.18) follows from (3.19) and (3.20) if C is conveniently large.
Furthermore, recalling the setting of (3.7), we see that

−Δũ±i + F ′(ũ±i ) +H(x) = −Δui + F ′(ui ± ε(w + Cvi)) +H(x) ± ε(−Δw − CΔvi)

= F ′(ui ± ε(w + Cvi)
)
− F ′(ui) ± ε(λ�w + Cλivi − F ′′(U±)w − CF ′′(ui)vi)

+ H(x) −H(x− 
iω)

= ± ε
((
F ′′(ui) − Φ

)
w + λ�w + Cλivi

)
+O(ε2)

+ H(x) −H(x− 
iω) ± ε
(
Φ − F ′′(U±)

)
w.

As a consequence of the latter estimate, (3.8), (3.9) and (3.18), we deduce that

− Δũ+
i + F ′(ũ+

i ) +H(x) � cε/2 and

− Δũ−i + F ′(ũ−i ) +H(x) � −cε/2. (3.21)
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By (3.17) and (3.21), we gather that

− Δβ+ + F ′(β+) +H(x) � cε/4 and

− Δβ− + F ′(β−) +H(x) � −cε/4, (3.22)

as long as 
i+1 and 
i are all distanced enough (possibly in dependence of ε).
Let η := (β+ + β−)/2. Then, η is smooth and β− < η < β+. Thus, for any R > 0, we let uR be a solution of

−ΔuR + F ′(uR) +H(x) = 0

in the open ball BR, with u = η on ∂BR.
Note that the existence of such uR is warranted, for instance, by direct minimization and that β− � uR � β+

by Comparison Principle and (3.22).
Also, by elliptic regularity theory, uR converges, up to subsequences, to some u, which is a solution of (1.1)

and which is trapped between β− and β+.
Such u is the desired multibump solution, thanks to (3.12), (3.13) (3.14), (3.16) and (1.5), thus proving

Theorem 2.1 when both N and M are finite.
The case in which N or/and M become infinite is then obtained by taking limits, due to elliptic estimates.

This ends the proof of Theorem 2.1.

Remark 3.1. From the above proof it also follows that when λ+
ω > 0 (but possibly λ−ω = 0), then there are

homoclinic type connections between u+
ω (x− 
0) and u−ω (x− 
1), for 
1 − 
0 suitably large.

Analogously, when λ−ω > 0 (but possibly λ+
ω = 0), then there are homoclinic type connections between

u−ω (x− 
0) and u+
ω (x− 
1).

That is, if we control only one eigenvalue in (A), we are still able to construct one bump solutions.

4. On the validity of the non-degeneracy assumption

We consider now the case in which ω 
= 0 is rational, i.e, up to normalization, ω ∈ Qn. Notice that in this
case Rn

ω is the topological product of R and a (n− 1)-dimensional torus.
We also suppose that

Hε = εh, (4.1)
and we show that, even if assumption (A) is violated for ε = 0, it does hold, for somewhat generic h’s, if ε 
= 0
(see for instance Thm. 4.3 below).

Lemma 4.1. Let u±ε = u±ω be the function given by Theorem 1.1 when H = εh is as in (4.1). Then, there exists
a sequence εn → 0 and a smooth function γ± which is a minimal solution of

− Δγ± + F ′(γ±) = 0, for any x ∈ Rn (4.2)

satisfying
γ±(x) = γ±o (〈ω, x〉) for any x ∈ Rn (4.3)

for suitable γ±o : R → R, with

lim
t→+∞ γ±o (t) = ± 1, and lim

t→−∞ γ±o (t) = ∓ 1, (4.4)

for which
lim
ε→0

u±ε = γ±, (4.5)

uniformly on Rn
ω.
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Proof. By elliptic regularity estimates and the Ascoli-Arzelà theorem, u±ε converges locally uniformly, up to
subsequence, to some γ±. Since u±ε is a solution of (1.1) with H as in (4.1), passing to the limit we get (4.2).
More precisely, since u±ε minimizes the energy (1.4) under compact perturbations with H as in (4.1), passing
to the limit we conclude that γ± minimizes the energy under compact perturbations with H = 0.

In fact, the limit in (4.5) is uniform, not only locally uniform, in Rn
ω. Indeed, suppose, by contradiction, that

there exists an infinitesimal sequence εm and xm ∈ Rn
ω such that

|u+
εm

(xm) − γ+(xm)| � a, (4.6)

for some a > 0. From (1.6), (1.7) and (1.5),

|u+
εm

(x) − γ+(x)| � C
(
e−C|〈ω,x〉| + εm

)
and so |〈ω, xm〉| � C̄, for a suitable C̄ > 0, due to (4.6). Then, by the locally uniform convergence,

|u+
εm

(xm) − γ+(xm)| � ‖u+
εm

− γ+‖L∞({|〈ω,x〉|�C̄}) � a/2

for large m, in contradiction with (4.6).
This proves the limit in (4.5) to be uniform in Rn

ω.
Accordingly, the limits of γ± for 〈ω, x〉 → ± ∞ are uniformly attained, because so are the ones of u±ε , in the

light of (1.6), (1.7) and (1.5).
Then, the results in the literature on the De Giorgi-Gibbons conjecture (see, e.g., Cor. 7 in [12]) imply the

one-dimensional symmetry claimed in (4.3). �
From now on, we will fix the sequence εn, which for simplicity we will still call ε, and the limit functions γ±

given by Lemma 4.1.

Lemma 4.2. The functions (γ±o )′ are strictly positive on the whole of R.

The standard proof of Lemma 4.2 is omitted.
In what follows, when no confusion is possible, the subindex of γ±o will be dropped and γ± will be identified

with γ±o without further comments. In particular, we will denote by (γ±)′ the derivative of γ± in the direction
given by ω, i.e (γ±)′ = 〈∇γ±, ω〉 = (γ±o )′(〈ω, x〉).

We now introduce the Schrödinger operator

T± = −Δ + F ′′(γ±(x)).

Lemma 4.3. The spectrum of T± is composed of an essential spectrum, corresponding to the unbounded interval
[F ′′(1),+∞), and of a discrete spectrum, given by a finite number of eigenvalues 0 = λ±0 < . . . < λ±N < F ′′(1),
with finite multiplicities.

Moreover, the eigenspace corresponding to λ±0 = 0 is spanned by the eigenfunction (γ±)′ ∈ L2(Rn
ω).

Proof. The first assertion follows from [16], Theorem 5.7 in Chapter V.5.3.
The fact that λ±0 has multiplicity one follows from the minimality property of (γ±)′ and the strong maximum

principle, applied to the equation T±v = 0 (indeed, the argument in [11], p. 340, may be repeated verbatim
here). �

For further spectral results on related equations see [26] and references therein.
We now define

� :=
(
(γ±)′

)⊥ =

{
ψ ∈ L2(Rn

ω) s.t.
∫

Rn
ω

ψ (γ±)′ dx = 0

}
.

Lemma 4.4. For any g0 ∈ � there exists a unique g1 ∈ � such that T±g1 = g0.
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Proof. Notice that T± is self-adjoint and its domain is dense in L2(Rn
ω), thence it is a closed operator, and its

image is the orthogonal to the kernel (see, e.g., Sect. II.6 in [5]). Since the kernel of T± is spanned by (γ±)′,
due to Lemma 4.3, we get that given any g0 ∈ � there exists g̃1 ∈ L2(Rn

ω) such that T±g̃1 = g0.
We now set

g1 := g̃1 −
∫

Rn
ω
g̃1(γ±)′ dx

‖(γ±)′‖2
L2(Rn

ω)

(γ±)′.

Such g1 lies in � and T±g1 = T±g̃1 = g0.
Moreover, if T±g2 = g0, with g2 ∈ �, we have that T±(g1− g2) = 0 and so, by Lemma 4.3, g1− g2 = C(γ±)′,

for some C ∈ R. Therefore,

C‖(γ±)′‖2
L2(Rn

ω) =
∫

Rn
ω

(g1 − g2)(γ±)′ dx = 0,

so C = 0 and g1 = g2. �
In the light of Lemma 4.4, given g0 ∈ �, we define (T±)−1g0 to be the unique element g1 in � for which

T±g1 = g0.
Since T± is self-adjoint, we have that∫

Rn
ω

(
(T±)−1f

)
g dx =

∫
Rn

ω

f
(
(T±)−1g

)
dx, (4.7)

for any f , g ∈ �.
Given x ∈ Rn

ω, we let
Ωx := {y ∈ Rn

ω : 〈ω, x− y〉 = 0}.
Note that Ωx is an (n− 1)-dimensional torus.

Lemma 4.5. Let x±0 ∈ Rn
ω be such that γ±(x±0 ) = 0. Then, there exists an infinitesimal sequence M±

ε for which∫
Ω

x
±
0

u±ε (x) dx = γ±(x±0 +M±
ε ω)|Ωx±

0
|.

Proof. Let

m±
ε :=

1
|Ωx±

0
|

∫
Ω

x
±
0

u±ε (x) dx.

Thanks to (4.5) we get m±
ε → 0, as ε → 0. By Lemma 4.2, we know that γo is invertible. Thus, the thesis

follows by letting M±
ε := (γ±o )−1(m±

ε ) − 〈ω, x±0 〉. �
We will now consider the translated heteroclinic

γ±ε (x) := γ±(x+M±
ε ω),

for which there holds ∫
Ω

x
±
0

γ±ε dx =
∫

Ω
x
±
0

u±ε dx. (4.8)

We are in the position of improving the asymptotics of Lemma 4.1:

Theorem 4.1. For all ε > 0, there exist smooth functions φ± ∈ L∞(Rn
ω) such that

u±ε (x) = γ±ε (x) + εφ±(x) + o(ε). (4.9)

Moreover, φ± are solutions of
− Δφ± + F ′′(γ±)φ± + h = 0. (4.10)
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Proof. We introduce the cylindrical slab

BR := {x ∈ Rn
ω such that |〈ω, x〉| � R}.

Let

φ±ε :=
u±ε − γ±ε

ε
(4.11)

and

c±ε :=
∫ 1

0

F ′′(γ±ε + τ(u±ε − γ±ε )) dτ.

Note that c±ε is a smooth function, which is uniformly bounded in ε and close to F ′′(γ±) for small ε, by (4.5),
and that

L±
ε φ

±
ε + h = 0, (4.12)

where we defined the operator
L±

ε := −Δ + c±ε .

We claim that, for any R � 1 there exists CR > 0, independent of ε, such that

‖φ±ε ‖L2(BR) � CR. (4.13)

For this, we denote by U±
ε = U± the Zn-periodic minimizers of Theorem 1.1 and we consider the functions

ψ±
ε :=

U±
ε ∓ 1
ε

,

which solve the equation
−Δψ±

ε + d±ε ψ
±
ε + h = 0,

where

d±ε :=
∫ 1

0

F ′′(± 1 + τ(U±
ε ∓ 1)) dτ.

Recall that, from (1.5),
‖ψ±

ε ‖L∞(Rn
ω) � C‖h‖L∞(Rn

ω), (4.14)

where the constant C does not depend on ε.
We now let

η±ε := φ±ε − ψ±
ε .

From Theorem 1.1, we have that the functions η±ε lie in W 2,2(Rn
ω), and solve

L±
ε η

±
ε =

(
d±ε − c±ε

)
ψ±

ε . (4.15)

Notice that, since u±ε converge exponentially to U±
ε independently of ε, we have

‖d±ε − c±ε ‖L2(Rn
ω) � C, (4.16)

for some constant C > 0 independent of ε.
Let now μ±

ε be the minimal eigenvalue of the operator L±
ε on L2(Rn

ω), and w±
ε > 0 the corresponding

eigenvector, which we may take with L2(Rn
ω)-norm equal to 1. Notice that, as ε → 0, we have that μ±

ε is
simple, μ±

ε → 0 and w±
ε → ±(γ±)′/‖(γ±)′‖L2(Rn

ω), uniformly on compact subsets of Rn
ω, due to Lemma 4.3,

the continuity properties of the eigenvalues [16], Chapter IV.3.5, and the regularity estimates for w±
ε [14],

Theorem 8.13.
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In particular, by Lemma 4.2 there exists c > 0 such that

w±
ε (y) � c for all y ∈ Ωx±

0
. (4.17)

Let us now split η±ε = η̃±ε +α±
ε w

±
ε , where α±

ε = 〈η±ε , w±
ε 〉L2(Rn

ω). Recalling (4.5), we see that L±
ε is a perturbation

of T± and so, by Lemma 4.3 and [16], p. 208, Theorem 3.1, we see that [−σo, σo] does not meet the spectrum
of L±

ε except that in μ±
ε , for some suitably small σo > 0, independent of ε.

As a consequence, we get ∫
Rn

ω

(L±
ε η

±
ε )η̃±ε dx =

∫
Rn

ω

(L±
ε η̃

±
ε )η̃±ε dx � σo‖η̃±ε ‖2

L2(Rn
ω)

and so, recalling (4.15), (4.16) and (4.14), we get

‖η̃±ε ‖L2(Rn
ω) � C

‖η̃±ε ‖L2(Rn
ω)

∫
Rn

ω

(L±
ε η

±
ε )η̃±ε dx

� C‖d±ε − c±ε ‖L2(Rn
ω)‖ψ±

ε ‖L∞(Rn
ω) (4.18)

� C‖h‖L∞(Rn
ω).

Since, by (4.15),

α±
ε L

±
ε w

±
ε = 〈η±ε , w±

ε 〉L2(Rn
ω) μ

±
ε w

±
ε

= 〈η±ε , L±
ε w

±
ε 〉L2(Rn

ω) w
±
ε

= 〈L±
ε η

±
ε , w

±
ε 〉L2(Rn

ω) w
±
ε

= 〈(d±ε − c±ε )ψ±
ε , w

±
ε 〉L2(Rn

ω)w
±
ε ,

we see that η̃±ε solves the equation

L±
ε η̃

±
ε =

(
d±ε − c±ε

)
ψ±

ε − 〈
(
d±ε − c±ε

)
ψ±

ε , w
±
ε 〉L2(Rn

ω) w
±
ε .

Therefore, recalling (4.14), (4.16) and (4.18), elliptic regularity [14], Theorem 8.12, yields

‖η̃±ε ‖W 2,2(Rn
ω) � C

(
‖η̃±ε ‖L2(Rn

ω) + ‖
(
d±ε − c±ε

)
ψ±

ε ‖L2(Rn
ω)

)
� C‖h‖L∞(Rn

ω). (4.19)

We let η±ε : R → R be the average of η̃±ε on sections of Rn
ω orthogonal to ω, i.e

η±ε (t) :=
1

|Ωtω|

∫
Ωtω

η̃±ε dx.

From (4.19) and the one-dimensional Sobolev Embedding theorem [5], Theorem IX.12, we get

‖η±ε ‖L∞(R) � C‖η±ε ‖W 2,2(R) � C‖η̃±ε ‖W 2,2(Rn
ω) � C‖h‖L∞(Rn

ω). (4.20)

In order to obtain (4.13), it remains to bound the coefficient α±
ε . Recalling (4.8) and (4.14), we have

1
|Ωx±

0
|

∣∣∣∣∣∣
∫

Ω
x
±
0

η±ε dx

∣∣∣∣∣∣ � C‖h‖L∞(Rn
ω).
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Therefore, by (4.17) and (4.20),

c |α±
ε | � |α±

ε |
|Ωx±

0
|

∣∣∣∣∣∣
∫

Ω
x
±
0

w±
ε dx

∣∣∣∣∣∣
=

1
|Ωx±

0
|

∣∣∣∣∣∣
∫

Ω
x
±
0

(
η±ε − η̃±ε

)
dx

∣∣∣∣∣∣ � C‖h‖L∞(Rn
ω).

This estimate, together with (4.14) and (4.18), gives (4.13).
It follows from (4.12), (4.13) and standard elliptic estimates (see, e.g., [11], Sect. 6.3.1) that φ±ε converges,

up to subsequence, to some φ± ∈ L∞(Rn
ω), uniformly on compact subsets of Rn

ω. Hence, (4.9) is a consequence
of (4.11).

Passing to the limit in (4.12) and recalling Lemma 4.1, we finally obtain (4.10). �
Proposition 4.1. Let

λ±ε := inf
‖u‖L2(Rn

ω)=1

∫
Rn

ω

|∇u|2 + F ′′(u±ε )u2 dx.

Then, λ±ε belongs to the discrete spectrum of the operator and

λ±ε =
ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

F ′′′(γ±)
(
(γ±)′

)2

φ± dx+ o(ε). (4.21)

Proof. Since, by (4.9),∫
Rn

ω

|∇u|2 + F ′′(u±ε )u2dx �
∫

Rn
ω

|∇u|2 + F ′′(γ±ε )u2dx+ ε‖F ′′′‖L∞([−2,2])‖φ±‖L∞(Rn
ω)

∫
Rn

ω

u2dx,

we get
λ±ε � Cε. (4.22)

Since λ±ε is small, according to Lemma 4.3 and the continuity properties of the spectrum (see [16], Chap. IV),
it does not lie in the essential spectrum of −Δ + F ′′(u±ε ), hence it belongs to the discrete spectrum.

Let now w±
ε be the eigenvector corresponding to λ±ε such that

‖w±
ε ‖L2(Rn

ω) = 1, (4.23)

i.e. there holds
λ±ε =

∫
Rn

ω

|∇w±
ε |2 + F ′′(u±ε )(w±

ε )2 dx. (4.24)

Then, by (4.9),

λ±ε =
∫

Rn
ω

|∇w±
ε |2 + F ′′(γ±ε )(w±

ε )2 + εF ′′′(γ±ε )(w±
ε )2φ± dx+ o(ε). (4.25)

In particular, ‖∇w±
ε ‖L2(Rn

ω) is uniformly bounded, thence we may suppose that

w±
ε converges to some w± weakly in W 1,2(Rn

ω) and strongly in L2
loc(R

n
ω). (4.26)

Recall that from Lemma 4.3 and the spectral theorem we have∫
Rn

ω

|∇u|2 + F ′′(γ±ε )u2 dx � λ±�

∫
Rn

ω

û2 dx, (4.27)
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where λ±� > 0 (here we set λ±� = F ′′(1) if 0 is the only discrete eigenvalue),

κ := 1/‖(γ±)′‖L2(Rn) and û := u− κ2〈u, (γ±ε )′〉L2(Rn
ω)(γ±ε )′.

Since
lim
ε→0

∫
Rn

ω

|∇w±
ε |2 + F ′′(γ±ε )(w±

ε )2 dx = 0,

due to (4.22) and (4.25), it follows from (4.27) that

‖ŵ±
ε ‖2

L2(Rn
ω) � C ε. (4.28)

As a consequence, recalling also (4.23) and (4.26), we conclude that

w±
ε converges to w± := κ(γ±)′ in L2(Rn

ω), as ε→ 0. (4.29)

Moreover, since ŵ±
ε solves the equation

T±
ε ŵ

±
ε := −Δŵ±

ε + F ′′(γ±ε )ŵ±
ε = λ±ε ŵ

±
ε +

(
F ′′(γ±ε ) − F ′′(u±ε )

)
w±

ε ,

by elliptic regularity [14], Corollary 8.7, and recalling Theorem 4.1, (4.22) and (4.28) we get

‖ŵ±
ε ‖2

W 1,2(Rn
ω) � C

(
‖λ±ε ŵ±

ε ‖2
L2(Rn

ω) + ‖
(
F ′′(γ±ε ) − F ′′(u±ε )

)
w±

ε ‖2
L2(Rn

ω)

)
� C ‖u±ε − γ±ε ‖2

L2(Rn
ω) + o(ε) = o(ε).

In particular, it follows that∫
Rn

ω

T±
ε w

±
ε w

±
ε dx =

∫
Rn

ω

T±
ε ŵ

±
ε ŵ

±
ε dx =

∫
Rn

ω

|∇w±
ε |2 + F ′′(γ±ε )(w±

ε )2 dx = o(ε). (4.30)

Accordingly, exploiting (4.25), (4.29) and (4.30), we get

λ±ε + o(ε) =
∫

Rn
ω

|∇w±
ε |2 + F ′′(γ±ε )(w±

ε )2 + εF ′′′(γ±ε )(w±
ε )2φ± dx

=
∫

Rn
ω

T±
ε w

±
ε w±

ε dx+ ε

∫
Rn

ω

F ′′′(γ±ε )(w±
ε )2φ± dx

= ε κ2

∫
Rn

ω

F ′′′(γ±)
(
(γ±)′

)2
φ± dx+ o(ε).

This proves (4.21). �
Lemma 4.6. We have that ∫

Rn
ω

h(γ±)′ dx = 0. (4.31)

Proof. From Theorem 4.1,

−
∫

Rn
ω

h(γ±)′ dx =
∫

Rn
ω

−Δφ±(γ±)′ + F ′′(γ±)φ±(γ±)′ dx

=
∫

Rn
ω

(
−(γ±)′′′ + F ′′(γ±)(γ±)′

)
φ± dx = 0,

as desired. �
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Notice that condition (4.31) identifies γ±, which is determined up to a translation along ω, in dependence of
the function h.

Lemma 4.7. Let f ∈ �, and assume that f decays exponentially, possibly with its derivatives, in the directions
given by ± ω. Then, v± := (T±)−1f ∈ � enjoys the same decay properties of f , and∫

Rn
ω

fφ± dx = −
∫

Rn
ω

v±h dx. (4.32)

Proof. We first observe that, thanks to Lemma 4.4, there exists a unique v± ∈ � such that T±v± = f . The
decay properties of v± then follow from the decay properties of f by elliptic regularity [14], Theorem 8.13. In
particular, v± ∈ L1(Rn

ω) so that the right-hand side of (4.32) makes sense.
Since, by (4.10), T±φ± = −h and T± is self-adjoint on L2(Rn

ω), (4.32) can now be easily obtained by
approximating φ± with functions φ±R := φ±ρR, where ρR are suitable cut-off functions with support in BR. �

Theorem 4.2. Suppose that F is even. Then,

λ±ε =
ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

h(x) (γ±)′′(x) dx + o(ε). (4.33)

Proof. Since F is even, we have that γ±o (· + 〈ω, x±0 〉) is odd, and so∫
Rn

ω

F ′′′(γ±)
(
(γ±)′

)2
(γ±)′ dx = 0, (4.34)

so that we can apply Lemma 4.7 with f = F ′′′(γ±)
(
(γ±)′

)2.
Then, from (4.32) we get∫

Rn
ω

F ′′′(γ±)
(
(γ±)′

)2
φ± dx = −

∫
Rn

ω

(T±)−1
(
F ′′′(γ±)

(
(γ±)′

)2
)
h dx.

Hence, by (4.21) we have

λ±ε =
ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

F ′′′(γ±)
(
(γ±)′

)2
φ± dx+ o(ε)

= − ε

‖(γ±)′‖2
L2(Rn

ω)

∫
Rn

ω

(T±)−1
(
F ′′′(γ±)

(
(γ±)′

)2
)
h dx+ o(ε). (4.35)

We also observe that, as a consequence of (4.2),

T±(
(γ±)′′

)
= T±(

F ′(γ±)
)

= −Δ
(
F ′(γ±)

)
+ F ′′(γ±)F ′(γ±)

= −F ′′′(γ±)
(
(γ±)′

)2 − F ′′(γ±) (γ±)′′ + F ′′(γ±)F ′(γ±)

= −F ′′′(γ±)
(
(γ±)′

)2
.

This and (4.35) imply the desired claim. �

We are now in the position to give explicit conditions that imply (A) in the rational perturbative setting,
when the potential F is even.
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For this, we also recall that
λ±ε � 0, (4.36)

due to the minimality of u±ε .

Proposition 4.2. Let F be an even function, and suppose that h satisfies∫
Rn

ω

h(x) (γ±)′′(x) dx 
= 0. (4.37)

Then, condition (A) is fulfilled by H = εh, for ε small enough.

Proof. By Theorem 4.2 and (4.37), we have that λ±ε 
= 0, for ε small enough. In fact, from (4.36), we necessarily
have that λ±ε > 0, for ε small enough.

Thus, λ±ε is strictly positive, and lies in the discrete spectrum of the operator by Proposition 4.1. �

We now better clarify (4.37). Note that γ+ and γ− are determined by h itself, in the sense that h selects the
translation of γ±o from which u±ε bifurcates. This selection occurs due to (4.31) and to the minimality of u±ε .

We introduce the notation
ft(x) := f(x+ ωt)

for a given function f and t ∈ R.
We observe that, if F is even, the two heteroclinic orbits γ+

o and γ−o are the same up to sign-change and
translation, that is we can write γ+ = γθ+ and γ− = −γθ− for a suitable heteroclinic γ and suitable θ± ∈ R.

We consider the function

R � t �−→ F(t) :=
∫

Rn
ω

h(x)γ′t(x) dx. (4.38)

The function F is periodic since h is periodic and ω is rational. Also, condition (4.31) says that

F(θ+) = 0 = F(θ−). (4.39)

In this spirit, we now prove that condition (A) is assured if these zeroes are non-degenerate:

Theorem 4.3. Let F be even and suppose that

{F = 0} ∩ {F ′ = 0} = ∅. (4.40)

Then, condition (A) holds true for H = εh, and ε small enough.

Proof. By (4.39) and (4.40),

0 
= F ′(θ±) =
∫

Rn
ω

hγ′′θ± dx = ±
∫

Rn
ω

h (γ±)′′ dx (4.41)

thence (4.37) is fulfilled. Recalling Proposition 4.2, we obtain the desired result. �

Remark 4.1. The proof of Theorem 4.3 also characterizes θ+ and θ− according to the way F cuts the abscissa.
Indeed, from (4.33), (4.36), (4.39) and (4.41) we obtain

θ+ ∈ {F = 0} ∩ {F ′ > 0} and θ− ∈ {F = 0} ∩ {F ′ < 0}. (4.42)
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Remark 4.2. It would be suggestive to define the function

R � t �−→ E(t) :=
∫

Rn
ω

h(x)γt(x) dx (4.43)

and to use critical points of E instead of zeroes of F in Theorem 4.3.
Analogously, it would be nice to write (4.42) by characterizing θ± in terms of the minimality or maximality

attained by E .
Notice that these are only formal statements, since the integral in (4.43) does not converge in general.
The non-degeneracy of an integral function (see [22]) or of its derivative (see [19]) is a classical feature in

the construction of chaotic orbits in dynamical systems. In this sense, our functions E and F may be seen as
Poincaré-Mel’nikov functions.

In dynamical systems, these functions are usually obtained by integrating the perturbation along standard
homo/heteroclinics (see, e.g., [3]). In our case, an average on the transversal directions is also needed.

For results and comments on variational non-degeneracy conditions, see [20].

Theorem 4.3 easily gives concrete examples of h’s for which Theorem 2.1 applies:

Corollary 4.1. Let κ > 0, F̄ be an even double-well potential and F = κF̄ . Given ω ∈ Sn−1, we let

hω(t) :=
∫

Ωtω

h(z) dz, ∀t ∈ R.

Suppose that h ∈ C1(Rn/Zn) and that

{hω = 0} ∩ {h′ω = 0} = ∅. (4.44)

Then, there exists δ > 0 such that condition (A) holds true for H = εh, provided that ε ∈ (0, δ) and κ � 1/δ.

Proof. If γ̄ is the heteroclinic of F̄ , then the heteroclinic of F is

γ(x) := γ̄
(
x+ (

√
κ− 1)〈ω, x〉ω

)
.

Accordingly, from (4.38) we get

F(t) =
∫

Rn
ω

h

(
y +

(
1√
κ
− 1

)
〈ω, y〉ω − tω

)
γ̄′(y) dy, (4.45)

and therefore

F ′(t) = −
∫

Rn
ω

∂ωh

(
y +

(
1√
κ
− 1

)
〈ω, y〉ω − tω

)
γ̄′(y) dy. (4.46)

We now claim that
(4.40) holds if κ is large enough. (4.47)

The proof of (4.47) is by contradiction: if not, by (4.45) and (4.46), there would exist a diverging sequence κj

and points tj ∈ R for which

0 =
∫

Rn
ω

h

(
y +

(
1

√
κj

− 1
)
〈ω, y〉ω − tjω

)
γ̄′(y) dy

=
∫

Rn
ω

∂ωh

(
y +

(
1

√
κj

− 1
)
〈ω, y〉ω − tjω

)
γ̄′(y) dy. (4.48)
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Since F is periodic, say of period T , we may suppose that tj ∈ [0, T ). Hence, there exists t� ∈ [0, T ] and a
subsequence for which

lim
�→+∞

tj�
= t�.

Therefore, by (4.48) and the Dominated Convergence Theorem,

0 =
1

|Ω−t�ω|

∫
Ω−t�ω

h(z) dz
∫

Rn
ω

γ̄′(y) dy =
∫

Rn
ω

h(y − 〈ω, y〉ω − t�ω)γ̄′(y) dy

=
∫

Rn
ω

∂ωh(y − 〈ω, y〉ω − t�ω)γ̄′(y) dy =
1

|Ω−t�ω|

∫
Ω−t�ω

∂ωh(z) dz
∫

Rn
ω

γ̄′(y) dy,

that is
−t� ∈ {hω = 0} ∩ {h′ω = 0}.

This is in contradiction with (4.44) and thus proves (4.47).
Then, the desired claim follows from Theorem 4.3. �

As an example, we observe that if, say ω = (1, 0, . . . , 0), the function

h(x) = sin(2πx1)

satisfies the assumptions of Corollary 4.1 and so it gives rise to the multibump solutions of Theorem 2.1.
More generally, when ω = p/q, with 0 
= p ∈ Zn, 0 
= q ∈ N, a concrete example is given by

h(x) = sin(2πp · x).

Also, the function

h(x) =
N∑

i=1

sin(2πxi)

provides an example for any coordinate direction ω = (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1).
What is more, given any sequence ω(j) ∈ Zn, such that ω(i) is not parallel to ω(j) unless i = j (and this may

exhaust the rational directions), the function

h(x) =
∑
k∈N

1
ek + |ω(k)|2 sin(2πω(k) · x)

satisfies the assumptions of Corollary 4.1 for any ω(j), since

hω(j)(t) = Cj sin
(
2π |ω(j)|2 t

)
for some Cj > 0.
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[15] V.L. Ginzburg and L.P. Pitaevskĭı, On the theory of superfluidity. Soviet Physics. JETP 34 (1958) 858–861 (Ž. Eksper.
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