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EXTERNAL APPROXIMATION OF FIRST ORDER VARIATIONAL
PROBLEMS VIA W −1,p ESTIMATES
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Abstract. Here we present an approximation method for a rather broad class of first order varia-
tional problems in spaces of piece-wise constant functions over triangulations of the base domain. The
convergence of the method is based on an inequality involving W−1,p norms obtained by Nečas and on
the general framework of Γ-convergence theory.
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Introduction

A classical problem in the calculus of variations is: find the minimizers of the functional

F(v) =
∫

Ω

W (x, v,∇v) dx − 〈f, v〉

among all functions v ∈W 1,p(Ω) with trace equal to w ∈W 1,p(Ω) over a subset (of positive length) ∂uΩ of the
boundary of Ω, where 1 < p < +∞, Ω ⊂ R

2 is an open bounded set with Lipschitz boundary, f ∈ Lq(Ω) and
W : Ω×R×R

2 → R is a Carathéodory function convex in the last variable and satisfying a standard p-growth
from below and above (see Sect. 5 for the precise requirements).

Different schemes have been developed in order to find an approximation of the minimizer(s) of the problem
above. Probably, the most popular is the technique based on the use of continuous piece-wise affine finite
elements. This simple (internal) approximation is particularly advantageous when W depends on ∇v only,
because then the integrand is constant on each element of the triangulation of the base domain. Higher order
approximants have also been used. These on one hand give a better rate of convergence but on the other hand
make the numerical scheme more complex.

Our point of view here is to consider the space which makes the numerical scheme for general W as simple
as possible, which is the space of piece-wise constant functions over triangulations of the base domain.

Our approach can be classified as a discontinuous Galerkin (DG) method, although the techniques and
the functional framework we use are not common in that context. The DG methods were first proposed
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for hyperbolic problems by Reed and Hill [28]. Discontinuous approximations for elliptic or parabolic-elliptic
problems were also introduced in about the same years by various authors, e.g., Babuška [5], Babuška and
Zlámal [6], Wheeler [29], Arnold [2], and evolved somewhat independently of those for the hyperbolic case.
Unlike other standard finite element approaches, DG methods do not require continuity of the approximation
functions across the interelement boundary, but use a penalty to enforce the matching of the values that the
functions take on contiguous elements of the mesh. The idea was derived from Lions [25], who introduced a
penalty term in order to impose the respect of rough Dirichlet data in elliptic problems, and it was imported in
the context of the approximation theory by Aubin [4], Nitsche [27] and Babuška [5]. Allowing for discontinuities
yields some flexibility under the point of view of both the functional setting and the computational efficiency.
This is especially true for higher order problems. For the second order ones the advantages are less obvious, but
the DG methods maintain interest because they provide “high order accuracy, high parallelizability, localizability
and easy handling of complicated geometries”, as noticed by Ye [30]. Thus, in spite of the fact that they were
never proven to be more advantageous than the classical conforming finite element methods, these features have
kept the interest for DG methods alive and have led to some revival of attention for their potential applications
in recent years, see, e.g., [7–10,14]. An account of the development of the DG methods is given by Cockburn,
Karniadakis and Shu [15]. The various families of DG methods are characterized by different choices of the terms
describing the non-conformity. Arnold et al. describe a common setting and discuss some relevant properties
of a number of these methods in [3].

For the problem described at the beginning of the Introduction, in this paper we aim to construct a sequence
of discrete functionals, defined in spaces of piece-wise constant functions, whose minima and relative minimizers
converge to those of the original problem. We simply prove that this kind of approximation is possible without
worrying, this will be done in a subsequent paper, to estimate the rate of convergence of the scheme. To achieve
this goal we shall use the definition and the techniques of Γ-convergence’s theory.

By using piece-wise constant functions the first problem at our hand is to define what we mean by gradient.
At each nodal point xi of the triangulation of the base domain we call generalized gradient of a piece-wise
constant function a suitable mean of the distributional gradient on a dual element around the point xi (see
equation (3.1) and the remark after it). This notion is then extended to the full triangulation by taking the
generalized gradient constant on each dual element (see (3.2)).

Despite the given name, the generalized gradient is not a gradient, even though we show that it has some of
the properties which are peculiar to a gradient. In particular we prove that if a sequence of generalized gradients
weakly converges in Lp then the weak limit is a gradient (see Th. 3.1). The generalized gradient instead does
not have the “imbedding property” of a gradient, which is: a sequence of piece-wise constant functions which
weakly converges together with the sequence of the generalized gradients does not necessarily strongly converges
(see the example before Lem. 3.2). This property is recovered by requiring that a certain weighted Lp norm
of the jumps of the piece-wise constant function across the edges of the mesh should tend to zero as the size
of the triangulation goes to zero (see Th. 3.5). This is proved by strongly relying on an inequality due to
Nečas. The lacking of this imbedding property strongly influences the definition of the discrete functionals
which approximate the original one. Indeed in order to make the sequence of the approximating functionals
coercive, in the appropriate norm, it is necessary to include a weighted norm of the jumps of the piece-wise
constant functions in the definition.

On one side, our approach is close to the Finite Volume or Covolume methods. In particular, the introduction
of a generalized gradient operator reminds the method by Andreianov, Gutnic and Wittbold [1], although a
comparison is hardly made. More simply, here we carry over ideas discussed in [20,22,23], for second order
variational problems, and in [18], for the Poisson problem in 2-dimensional domains.

The present paper generalizes the analysis of [18] under several respects. First of all, it takes into account
mixed boundary conditions and extends the results from the Hilbertian case to convergence in Lp spaces, with
1 < p < +∞. We use an inequality obtained by Nečas and involving the norm in W−1,p as a basis for
proving coerciveness of the approximating functionals. In particular, this extends the proof of convergence to
the case of domains with Lipschitz boundary. Finally, we recourse to classical results from the direct methods
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of the Calculus of Variations to show how the method studied in [18] can be modified in order to cover functionals
of the class described above.

As said above, we confine our attention to unqualified convergence and postpone the deduction of error
estimates to a future work [21]. Some numerical applications of the method for the quadratic homogeneous case
are found in [19].

1. Preliminaries and notation

Throughout the paper p will denote a real number such that 1 < p < +∞, q := p/(p − 1), and Ω ⊂ R
2 is

an open bounded connected set with Lipschitz boundary. With W−1,p(Ω) we denote the dual of W 1,q
0 (Ω). The

norm on W−1,p(Ω) is defined by

‖f‖W−1,p(Ω) = sup{|〈f, v〉| : v ∈W 1,q
0 (Ω), and ‖v‖W 1,q

0 (Ω) ≤ 1}.

As W 1,q
0 (Ω) is reflexive, a sequence {fn} ⊂W−1,p(Ω) weakly converges to f ∈ W−1,p(Ω) if

〈fn, v〉 → 〈f, v〉,

for every v ∈W 1,q
0 (Ω). We shall write fn ⇀ f in W−1,p(Ω).

If fn ⇀ f in W−1,p(Ω) then ‖fn‖W−1,p(Ω) is bounded and lim inf ‖fn‖W−1,p(Ω) ≥ ‖f‖W−1,p(Ω). Moreover, if
vn → v in W 1,q

0 (Ω), then 〈fn, vn〉 → 〈f, v〉.
We further recall that by the Banach-Alaoglu-Bourbaki theorem the set {f ∈ W−1,p(Ω) : ‖f‖W−1,p(Ω) ≤ 1}

is weakly compact. Moreover for 1 < q < +∞ the spaces W 1,q(Ω) are separable and hence the unit ball
in W−1,p(Ω) is relatively sequentially weakly compact; thus a bounded sequence in W−1,p(Ω) has a weakly
converging subsequence.

Since the imbedding of W 1,q
0 (Ω) in Lq(Ω) is compact, by Schauder’s theorem, see Brezis [11], also the

imbedding of Lp(Ω) in W−1,p(Ω) is compact, and hence weakly converging sequences in Lp(Ω) are strongly
converging in W−1,p(Ω).

Let v ∈ Lp(Ω), from the definition of the norm in W−1,p(Ω) it immediately follows that

(
‖v‖W−1,p(Ω) + ‖Dv‖W−1,p(Ω)

)
≤ c ‖v‖Lp(Ω)

for some constant c independent of v. Nečas in [26] has proved that also the reverse inequality holds, more
precisely he has shown that there exists a constant C, such that for every distribution v

‖v‖Lp(Ω) ≤ C
(
‖v‖W−1,p(Ω) + ‖Dv‖W−1,p(Ω)

)
, (1.1)

where the constant C does not depend on v.

In what follows it is convenient to regard functions v as defined in all R
2 by extending them to zero outside

of Ω, and Dv as elements of W−1,p(R2) with support in Ω̄. Let ∂tΩ be a subset of ∂Ω and W 1,q
∂tΩ

(Ω) ⊂W 1,q(R2)
be the subspace of functions vanishing at ∂tΩ. By definition, for every f ∈ (W 1,q

∂tΩ
(Ω))′

‖f‖(W 1,q
∂tΩ

(Ω))′ = sup
g∈W 1,q

∂tΩ(Ω)

〈f, g〉
‖g‖W 1,q(Ω)

,

and, since W 1,q
0 (Ω) ⊂W 1,q

∂tΩ
(Ω), we have

‖f‖W−1,p(Ω) ≤ ‖f‖(W 1,q
∂tΩ

(Ω))′ ,
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where f denotes a continuous linear functional on W 1,q
∂tΩ

(Ω) in the right hand side, and its restriction to W 1,q
0 (Ω)

in the left hand side.
Rewriting equation (1.1) as

‖v‖Lp(Ω) ≤ C
(
‖v‖W−1,p(Ω) + ‖Dv‖(W 1,q

∂tΩ
(Ω))′

)
, (1.2)

we can prove the following lemma.
Hereafter, we denote by H1 the one-dimensional Hausdorff measure.

Lemma 1.1. Let ∂tΩ and ∂uΩ be two disjoint subsets of ∂Ω such that

∂tΩ ∪ ∂uΩ = ∂Ω, with H1(∂uΩ) > 0.

Then, there exists a constant C such that

‖v‖Lp(Ω) ≤ C‖Dv‖(W 1,q
∂tΩ(Ω))′ ∀ v ∈ Lp(Ω). (1.3)

Proof. Suppose not. Then there exists a sequence {vn} ⊂ Lp(Ω) such that

‖vn‖Lp(Ω) = 1 and ‖Dvn‖(W 1,q
∂tΩ(Ω))′ ≤

1
n
·

Then, up to a subsequence, we have vn ⇀ v in Lp(Ω) and therefore vn → v in W−1,p(Ω). Since Dvn → 0
in (W 1,q

∂tΩ
(Ω))′, from inequality (1.2) we deduce that vn is a Cauchy sequence in Lp(Ω) and therefore that vn → v

in Lp(Ω). But 0 = lim infn ‖Dvn‖(W 1,q
∂tΩ

(Ω))′ ≥ ‖Dv‖W−1,p(Ω) and therefore v is constant almost everywhere,
v = const. =: k. Then, from

〈Dv, g〉 = −
∫

Ω

v∇g dx,

which holds for every g ∈W 1,q
∂tΩ

(Ω), it follows that

0 = 〈Dv, g〉 = −
∫

Ω

v∇g dx = −k
∫
∂uΩ

gν dH1 ∀ g ∈ W 1,q
∂tΩ

(Ω)

which is false unless k = 0. But this contradicts the fact that ‖v‖Lp(Ω) = 1. �

2. Discretization of the domain

We recall that Ω ⊂ R
2 denotes an open, bounded set with Lipschitz boundary. Let Th := {Tj}j=1,...,Ph

,
with h taking values in some countable set H of real numbers, be a sequence of triangulations of Ω regular
in the sense of Ciarlet [12], i.e., such that the ratio between ρh = inf

j
sup {diam (S) : S is a disk contained in

Tj} and h := sup
j

{diam Tj} is bounded away from zero by a constant independent of h. We shall call Th the

primal mesh. Let Ωh :=
◦⋃

Tj∈Th

Tj approximate Ω from inside, i.e., there exists a constant C > 0 such that

dist(x, ∂Ω) ≤ Ch for every x ∈ ∂Ωh.
We denote by xi the vertices of the triangles Tj and call them the nodes of the mesh. We indicate by

Ph := {1, 2, . . . , Ph} and Nh := {1, 2, . . . , Nh} the sets of values taken by the indexes of the triangles and the
mesh nodes, respectively. We will indicate by Ih and Bh the sets of the index values corresponding to the nodes
in

◦
Ωh and ∂Ωh, respectively.
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Figure 1. Ω,Ωh, the primal and the dual mesh.

Following Davini and Pitacco [22,23], for each h ∈ H we also introduce a dual mesh T̂h :=
{
T̂i

}
i=1,...,Nh

consisting of disjoint open polygonal domains, each containing just one primal node, as shown in Figure 1, where
the dual elements are drawn with dashed lines. We assume that the sequence of dual meshes is also regular and

that Ωh =
◦⋃

T̂i∈T̂h

T̂i.

Let Xh be the space of functions which are affine on Tj and continuous on Ωh (briefly, the polyhedral functions
over Th), and let X0h ⊂ Xh denote the set of functions that vanish on ∂Ωh. We regard X0h as a subspace of
H1

0 (Ω) by extending the functions to zero in Ω \ Ωh. ϕ̂i will be the polyhedral splines in Xh defined by the
condition that ϕ̂i(xj) = δij for i, j = 1, . . . , Nh.

Although we never need to construct the dual mesh explicitly, as it will be clear later, we assume that the
area of the dual elements satisfies the condition

|T̂i| =
∫

Ωh

ϕ̂i dx
(

=
1
3
|supp(ϕ̂i)|

)
. (2.1)

Finally, let us define

Yh :=
{
v : v = const. on Tj ∈ Th, with v = 0 in R

2 \ Ωh
}
. (2.2)

Throughout the paper we shall denote the functions of Yh with an overline, to remind us that they are piecewise
constant. For instance we will write v̄h.

3. Generalized gradient: definition and properties

From the definition it follows that Yh ⊂ Lp(R2). Let v̄h ∈ Yh, then the distributional gradient Dv̄h belongs
to W−1,p(R2) and has support in Ω̄h, thus the following definition makes sense

∇hv̄h(xi) :=
〈Dv̄h, ϕ̂i〉

|T̂i|
= − 1

|T̂i|

∫
Ωh

v̄h∇ϕ̂i dx (3.1)
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for all i ∈ Nh. When Dv̄h is interpreted as a Radon measure on R
2 and T̂i cuts the sides of mesh Th at the

midpoints, a simple computation shows that

∇hv̄h(xi) =
Dv̄h(T̂i)

|T̂i|
·

Thus, ∇hv̄h(xi) is the mean value of the gradient on T̂i and will be called then the generalized gradient of v̄h
in T̂i. Note that, while for the inner nodes these quantities have an intrinsic meaning, for the boundary
elements they account for the extension of v̄h to zero outside of Ωh and are affected by the jumps across ∂Ωh.
The implication of this in treating the boundary value problems will be considered in the following section.

Here we introduce the simple function

◦
∇hv̄h(x) :=

∑
i∈Ih

∇hv̄h(xi)χT̂i
(x), (3.2)

where χR denotes the characteristic function of the region R, i.e., χR(x) = 1 if x ∈ R, and otherwise equal to

zero. We note that
◦
∇hv̄h ∈ Lp(Ω).

For i ∈ Ih, equation (3.1) can be written in an integral form with the use of the following definitions. Given
a continuous function f we define

chf(x) :=
∑
i∈Nh

f(xi)χT̂i
(x), (3.3)

◦
rhf(x) :=

∑
i∈Ih

f(xi)ϕ̂i(x), and rhf(x) :=
∑
i∈Nh

f(xi)ϕ̂i(x). (3.4)

We note that if f is continuous with compact support in Ω, f ∈ C0(Ω), then
◦
rhf = rhf , for h small enough.

Let g ∈ C0(Ω). Then, multiplying (3.1) by g(xi)|T̂i| and summing over i ∈ Ih we obtain

〈Dv̄h,
◦
rhg〉 =

∫
Ωh

◦
∇hv̄h chg dx. (3.5)

Theorem 3.1. Let v̄h ∈ Yh for every h ∈ H. Assume that

sup
h

‖
◦
∇hv̄h‖Lp(Ω) < +∞, and v̄h ⇀ v in Lp(Ω).

Then

v ∈W 1,p(Ω) and
◦
∇hv̄h ⇀ ∇v in Lp(Ω).

Proof. Since v̄h ⇀ v in Lp(Ω) we have that Dv̄h ⇀ Dv in W−1,p(Ω). Moreover, since suph ‖
◦
∇hv̄h‖Lp(Ω) < +∞,

up to a subsequence,
◦
∇hv̄h ⇀ A in Lp(Ω), for some A ∈ Lp(Ω) with values in R

2. Let g ∈ C∞
0 (Ω), then, since

◦
rhg → g in W 1,q(Ω) and chg → g in Lq(Ω), by equation (3.5) we have

〈Dv, g〉 = lim
h→0

〈Dv̄h,
◦
rhg〉 = lim

h→0

∫
Ω

◦
∇hv̄h chg dx =

∫
Ω

Ag dx.

Hence Dv = ∇v = A and the proof is concluded. �
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Figure 2. Representation of the sequence used in the example.

The generalized gradient satisfies also a Green type equality. In fact, for g ∈ L1(Ω) we have

∫
Ω

◦
∇hv̄h g dx =

∫
Ω

∑
i∈Ih

〈Dv̄h, ϕ̂i〉
|T̂i|

χT̂i
g dx =

∑
i∈Ih

〈Dv̄h, ϕ̂i〉
1
|T̂i|

∫
T̂i

g dx

= −
∑
i∈Ih

∫
Ωh

v̄h∇ϕ̂i dx
1
|T̂i|

∫
T̂i

g dx,

and setting

◦
mhg(x) :=

∑
i∈Ih

1
|T̂i|

∫
T̂i

g dy ϕ̂i(x) =:
∑
i∈Ih

∫
T̂i,

− g dy ϕ̂i(x), (3.6)

we obtain

∫
Ω

◦
∇hv̄h g dx = 〈Dv̄h,

◦
mhg〉 = −

∫
Ω

v̄h∇
◦
mhg dx. (3.7)

The theorem and the equality above show that some of the properties enjoyed by the gradient of a function
hold also for the generalized gradient, of course with the appropriate modifications. The example below shows
that it is not always so. Indeed, it is well known that if a sequence vh ⇀ v in Lp(Ω), and ∇vh ⇀ ∇v in Lp(Ω; R2)
then by compactness vh → v in Lp(Ω). The next example shows that this is not true if we replace the gradient
with the generalized gradient.

Example. Let us consider a triangulation made of equilateral triangles of side length h. Let the dual mesh be
the one obtained by joining the center of adjacent triangles. Furthermore, let v̄h be the functions that take the
values +c and −c as represented in Figure 2, with c a fixed constant. We then have that v̄h ⇀ 0 in Lp(Ω), but

not strongly. Also, an easy computation shows that
◦
∇hv̄h = 0.

In the rest of the section we will look for a condition on the sequence v̄h that guarantees the strong convergence
from the weak convergence of v̄h and the boundedness of the Lp norm of its generalized gradient. This will
be achieved by using inequality (1.2) after having deduced an appropriate estimate of the W−1,p norm of the
distributional gradient of v̄h. This last estimate will follow by appropriately manipulating equation (3.7) and
after we have studied the convergence properties of

◦
mhg.
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Lemma 3.2. Let g ∈ W 1,q
0 (Ω). There exists a constant c > 0, independent of g, such that for all sufficiently

small h we have

‖g − ◦
mhg‖Lq(Ω) ≤ ch ‖∇g‖Lq(Ω), (3.8)

and

‖∇ ◦
mhg‖Lq(Ω) ≤ c ‖∇g‖Lq(Ω). (3.9)

Proof. We start with the proof of inequality (3.9) and observe that if it holds for every g ∈ C1
0 (Ω) it holds

also for every g ∈ W 1,q
0 (Ω). This follows easily from the fact that if gε ∈ C1

0 (Ω) and gε → g in W 1,q(Ω), then
◦
mhgε →

◦
mhg in W 1,q(Ω), as ε goes to zero, since for fixed h the sum in (3.6) is finite.

So, let g ∈ C1
0 (Ω). Let T ∈ Th be the generic triangle, and let i, j and k be the indexes of the nodes of the

triangle T . The function
◦
mhg is affine on T and there exists a constant c such that

|∇ ◦
mhg(x)| ≤

c

h
(|Gi −Gj | + |Gi −Gk| + |Gk −Gj |), (3.10)

for every x ∈ T , where we have set

Gl :=
∫
T̂l

− g(x) dx, with l = i, j, k.

Here we also used the regularity of the triangulation, which will be done without mention in the following.
Assume, for the moment, that

|Gi −Gj |q ≤ c
hq+2

|T̂i| |T̂j |

∫
Sij

|∇g(x)|q dx (3.11)

where Sij denotes the convex hull of T̂i ∪ T̂j, and that similar inequalities hold for the pairs of indexes {i, k}
and {k, j}.

Then,

∫
T

|Gi −Gj |q
hq

dx =
|Gi −Gj |q

hq
|T | ≤ c

h2

|T̂i| |T̂j |
|T |

∫
Sij

|∇g(x)|q dx

≤ c

∫
Sij

|∇g(x)|q dx

and hence, taking into account equation (3.10), we find

∫
T

|∇ ◦
mhg(x)|q dx ≤ c

∫
ST

|∇g(x)|q dx,

where ST := Sij ∪ Sjk ∪Ski is the convex hull of T̂i ∪ T̂j ∪ T̂k. Summing the above equation over all triangles T
in Th we easily obtain equation (3.9). So it only remains to prove inequality (3.11), which is a Poincaré’s kind
of inequality and can be proved as Lemma 1 and Theorem 2 of Section 4.5.2 of Evans and Gariepy [24]. We
sketch here the proof for completeness.
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Let z ∈ T̂j . Then

∫
T̂i∩∂B(z,s)

|g(x) − g(z)|q dH1(x) ≤
∫
T̂l∩∂B(z,s)

∣∣∣∣
∫ 1

0

d
dt
g(z + t(x− z)) dt

∣∣∣∣
q

dH1(x),

≤
∫ 1

0

∫
T̂i∩∂B(z,s)

|∇g(z + t(x− z))|q|x− z|q dH1(x) dt,

≤
∫ 1

0

1
t

∫
Sij∩∂B(z,ts)

|∇g(y)|qsq dH1(y) dt,

≤ sq+1

∫ 1

0

∫
Sij∩∂B(z,ts)

|∇g(y)|q
|y − z| dH1(y) dt,

≤ sq
∫ s

0

∫
Sij∩∂B(z,t)

|∇g(y)|q
|y − z| dH1(y) dt,

≤ sq
∫
Sij∩B(z,s)

|∇g(y)|q
|y − z| dy ≤ sq

∫
Sij

|∇g(y)|q
|y − z| dy,

and integrating the above inequality in ds between 0 and diam(T̂i ∪ T̂j) we find

∫
T̂i

|g(x) − g(z)|q dx ≤ chq+1

∫
Sij

|∇g(y)|q
|y − z| dy.

Since the inequality above holds for every z ∈ T̂j , we have

∫
T̂ j

−
∫
T̂ i

− |g(x) − g(z)|q dxdz ≤ c
hq+1

|T̂i| |T̂j |

∫
Sij

|∇g(y)|q
∫
T̂j

1
|y − z| dz dy,

≤ c
hq+2

|T̂i| |T̂j |

∫
Sij

|∇g(y)|q dy,

where the last inequality follows by passing to polar coordinates in the integral
∫
T̂j

1
|y−z| dz. Finally, using

Jensen’s inequality we deduce equation (3.11) and this concludes the proof of inequality (3.9).
We now prove inequality (3.8). Note that for x ∈ T̂i we have

◦
mhg(x) =

◦
mhg(xi) + ∇ ◦

mhg(x) · (x − xi) =
∫
T̂ i

− g(x) dx+ ∇ ◦
mhg(x) · (x− xi).

Thus by Poincaré’s inequality and equation (3.9) we have

‖g − ◦
mhg‖Lq(T̂i)

≤
∥∥∥∥g −

∫
T̂ i

− g(x) dx
∥∥∥∥
Lq(T̂i)

+ h ‖∇ ◦
mhg‖Lq(T̂i)

,

≤ (c+ 1)h ‖∇g‖Lq(T̂i)
,

and summing over i we deduce
‖g − ◦

mhg‖Lq(Ωh) ≤ ch‖∇g‖Lq(Ωh).

Taking into account that
◦
mhg = 0 on Ω \Ωh and, by Poincaré’s inequality, that ‖g‖Lq(Ω\Ωh) ≤ ch‖∇g‖Lq(Ω\Ωh)

we deduce equation (3.8). �
In the next theorem we deduce an estimate of the W−1,p norm of the distributional gradient of v̄h.
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Theorem 3.3. Let Th = {Tj}j=1,...,Ph
. There exists a constant c independent of h such that

‖Dv̄h‖W−1,p(Ω) ≤ ‖
◦
∇hv̄h‖W−1,p(Ω) + c

(
h

∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

(3.12)

for all v̄h ∈ Yh. Above, [[v̄h]] stands for the jump of v̄h across the sides of the mesh.

Proof. Let g ∈ W 1,q
0 (Ω; R2), with ‖g‖W 1,q(Ω) ≤ 1. Then, by(3.7),

〈Dv̄h, g〉 = 〈Dv̄h,
◦
mhg〉 + 〈Dv̄h, g −

◦
mhg〉

=
∫

Ω

◦
∇hv̄h · g dx+ 〈Dv̄h, g −

◦
mhg〉 (3.13)

and hence

‖Dv̄h‖W−1,p(Ω) ≤ ‖
◦
∇hv̄h‖W−1,p(Ω) + sup

g∈W 1,q
0 (Ω)

|〈Dv̄h, g −
◦
mhg〉|

‖g‖W 1,q(Ω)
·

But

|〈Dv̄h, g −
◦
mhg〉| =

∣∣∣∣∣
∫
∪j∂Tj

[[v̄h]] (g −
◦
mhg) · ν dH1

∣∣∣∣∣
≤

∫
∪j∂Tj

| [[v̄h]] | |g −
◦
mhg| dH1

≤
(∫

∪j∂Tj

| [[v̄h]] |p dH1

)1/p(∫
∪j∂Tj

|g − ◦
mhg|q dH1

)1/q

,

and since ∫
∂Tj

|g − ◦
mhg|q dH1 ≤ c

h

∫
Tj

|g − ◦
mhg|q dx+ chq−1

∫
Tj

|∇g −∇ ◦
mhg|q dx

(3.14)

where c does not depend on h, see Appendix, by Lemma 3.2 we deduce∫
∪j∂Tj

|g − ◦
mhg|q dH1 ≤ c

h

∫
Ω

|g − ◦
mhg|q dx+ chq−1

∫
Ω

|∇g −∇ ◦
mhg|q dx

≤ c

h
hq‖g‖qW 1,q(Ω) + chq−1

∫
Ω

|∇g|q dx.

Hence

|〈Dv̄h, g −
◦
mhg〉| ≤

(∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p (
chq−1‖g‖qW 1,q(Ω)

)1/q

= c

(∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

h1/p‖g‖W 1,q(Ω)
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and therefore we conclude that

‖Dv̄h‖W−1,p(Ω) ≤ ‖
◦
∇hv̄h‖W−1,p(Ω) + c

(
h

∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

. �

The following lemma can be proved similarly, indeed it suffices to write an equation like (3.13) for k in place
of h, subtract the equation in k from the one in h and proceed as above.

Lemma 3.4. Let Th = {Tj}j=1,...,Ph
. There exists a constant c such that

‖Dv̄h −Dv̄k‖W−1,p(Ω) ≤ ‖
◦
∇hv̄h −

◦
∇kv̄k‖W−1,p(Ω)

+ c

(
h

∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

+ c

(
k

∫
∪j∂Tj

|[[v̄k]] |p dH1

)1/p

.

Finally, the next theorem gives sufficient conditions to obtain strong convergence from weak convergence of
the sequence {v̄h}. The theorem strengthens a similar result proved in [18], Theorem 3.

Theorem 3.5. Let Th = {Tj}j=1,...,Ph
. If v̄h ⇀ v in Lp(Ω),

◦
∇hv̄h weakly converges in Lp(Ω) and

lim
h→0

h

∫
∪j∂Tj

| [[v̄h]] |p dH1 = 0,

then v̄h → v in Lp(Ω).

Proof. Since
◦
∇hv̄h weakly converges in Lp(Ω; R2) we have that it strongly converges in W−1,p(Ω). Thus, from

Lemma 3.4, we deduce that {Dv̄h} is a Cauchy sequence in W−1,p(Ω). Hence, since v̄h ⇀ v in Lp(Ω) implies
Dv̄h ⇀ Dv in W−1,p(Ω), we have Dv̄h → Dv in W−1,p(Ω). Also, since v̄h ⇀ v in Lp(Ω), we have v̄h → v
in W−1,p(Ω). The proof is concluded since

‖v̄h − v‖Lp(Ω) ≤ C
(
‖v̄h − v‖W−1,p(Ω) + ‖Dv̄h −Dv‖W−1,p(Ω)

)
. �

4. Generalized gradient at the boundary

In this section we want to study the approximation with piece-wise constant functions of a function v ∈
W 1,p(Ω) whose trace on ∂uΩ equals that of a given function w ∈ W 1,p(Ω). To do so, we shall modify the
definition of generalized gradient to the boundary of ∂Ωh by taking into account that the inner value of v̄h has
to match w. We recall that ∂Ω is Lipschitz and divided into two complementary parts, ∂tΩ and ∂uΩ, on which
Neumann and Dirichlet boundary conditions are assigned, respectively. To avoid subtleties, we assume that
∂tΩ and ∂uΩ are finite unions of arcs, and, as previously done, that ∂uΩ has strictly positive one-dimensional
Hausdorff measure. Accordingly we define on ∂Ωh two complementary parts as follows.

Let Bh∂u be a subset of Bh such that, if ∂uΩh is the subset of ∂Ωh generated by1 the nodes xi with i ∈ Bh∂u ,
we have

lim
h→0

{
sup
x∈∂uΩ

dist(x, ∂uΩh) + sup
x∈∂uΩh

dist(x, ∂uΩ)
}

= 0. (4.1)

1With the sentence “∂uΩh is the subset of ∂Ωh generated by the nodes xi with i ∈ Bh∂u” we mean that ∂uΩh is the union of

the sides of the triangles Tj lying on ∂Ωh having a vertex in xi with i in Bh∂u .
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For i ∈ Bh∂u , we define

∇∂uΩ
h v̄h(xi) := ∇hv̄h(xi) +

1
|T̂i|

∫
∂uΩh

wϕ̂iν dH1, (4.2)

where we recall, see equation (3.1), that

∇hv̄h(xi) =
〈Dv̄h, ϕ̂i〉

|T̂i|
=

−1
|T̂i|

∫
Ωh

v̄hDϕ̂i dx. (4.3)

The results of the previous section can be extended and in some case strengthened if we consider the functions

∇∂uΩ
h v̄h(x) :=

∑
i∈Ih

⋃
Bh∂u

∇∂uΩ
h v̄h(xi)χT̂i

(x), (4.4)

and, for g ∈ L1(Ω),

m∂uΩ
h g(x) :=

∑
i∈Ih

⋃
Bh∂u

∫
T̂i,

− g dx ϕ̂i(x). (4.5)

Then we obtain ∫
Ω

∇∂uΩ
h v̄h g dx = 〈Dv̄h,m∂uΩ

h g〉 +
∫
∂uΩh

wm∂uΩ
h g ν dH1. (4.6)

Hence, by repeating the argument of Lemma 3.2 we get

‖g −m∂uΩ
h g‖Lq(Ω) ≤ ch ‖∇g‖Lq(Ω), (4.7)

and
‖∇m∂uΩ

h g‖Lq(Ω) ≤ c ‖∇g‖Lq(Ω). (4.8)
The following theorem is similar to Theorem 3.3.

Theorem 4.1. Let Th = {Tj}j=1,...,Ph
. There exist positive constants c1 and c2 such that

‖Dv̄h‖(W 1,q
∂tΩ

(Ω))′ ≤ ‖∇∂uΩ
h v̄h‖(W 1,q

∂tΩ
(Ω))′

+ c1 ‖w‖W 1,p(Ω) + c2

(
h

∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

. (4.9)

Proof. We prove inequality (4.9) by taking tests function g ∈ C1
∂tΩ

(Ω; R2), first, and then extending it to all
W 1,q
∂tΩ

(Ω; R2) by continuity.
Let g ∈ C1

∂tΩ
(Ω; R2), with ‖g‖W 1,q(Ω) ≤ 1. Then using equation (4.6) we find

〈Dv̄h, g〉 = 〈Dv̄h,m∂uΩ
h g〉 + 〈Dv̄h, g −m∂uΩ

h g〉

=
∫

Ω

∇∂uΩ
h v̄h · g dx−

∫
∂uΩh

wm∂uΩ
h g · ν dH1 + 〈Dv̄h, g −m∂uΩ

h g〉

and hence

‖Dv̄h‖(W 1,q
∂tΩ(Ω))′ ≤ ‖∇∂uΩ

h v̄h‖(W 1,q
∂tΩ

(Ω))′ + sup
g∈W 1,q

∂tΩ(Ω)

|
∫
∂uΩh

wm∂uΩ
h g · ν dH1|

‖g‖W 1,q(Ω)

+ sup
g∈W 1,q

∂tΩ(Ω)

|〈Dv̄h, g −m∂uΩ
h g〉|

‖g‖W 1,q(Ω)
·
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The last term can be bounded from above exactly as is done in Theorem 3.3, but including now the sides
on ∂uΩh. It remains to bound only the second term. Since m∂uΩ

h g is equal to zero on ∂Ωh \ ∂uΩh we have

∫
∂uΩh

wm∂uΩ
h g · ν dH1 =

∫
∂Ωh

wm∂uΩ
h g · ν dH1 =

∫
Ωh

div (wm∂uΩ
h g) dx

and hence ∣∣∣∣
∫
∂uΩh

wm∂uΩ
h g · ν dH1

∣∣∣∣ ≤ c ‖w‖W 1,p(Ω)‖m∂uΩ
h g‖W 1,q(Ω) ≤ c ‖w‖W 1,p(Ω)‖g‖W 1,q(Ω).

The proof of the lemma follows easily by combining the above inequalities. �

For any function g ∈ C(Ω̄), from equations (4.2) and (4.3) we find, arguing as in the previous section

∫
Ωh

∇∂uΩ
h v̄h chg dx = −

∫
Ωh

v̄h∇r∂uΩ
h g dx+

∫
∂uΩh

w r∂uΩ
h g ν dH1, (4.10)

where

r∂uΩ
h g(x) :=

∑
i∈Ih∪Bh∂u

g(xi)ϕ̂i(x).

In what follows the two function spaces will be useful

W 1,p
∂uΩ(Ω) := {v ∈W 1,p(Ω) : v = 0 on ∂uΩ},
C∞
∂t,0(Ω) := {v ∈ C∞(Ω̄) : v = 0 in a neighborhood of ∂tΩ},

where Ω̄ denotes the closure of Ω. Note that if g ∈ C∞
∂t,0

(Ω) then for all sufficiently small h we have ‖g −
r∂uΩ
h g‖W 1,∞(Ωh) ≤ c(g)h.

The following theorem, which is similar to Theorem 3.1, shows that by taking into account the generalized
gradient up to the boundary it is possible to recover the desired boundary condition.

Theorem 4.2. Let v̄h ∈ Yh for every h ∈ H. Assume that

sup
h

‖∇∂uΩ
h v̄h‖Lp(Ω) < +∞, and v̄h ⇀ v in Lp(Ω).

Then
v ∈ (w +W 1,p

∂uΩ(Ω)) and ∇∂uΩ
h v̄h ⇀ ∇v in Lp(Ω).

Proof. Since suph ‖∇∂uΩ
h v̄h‖Lp(Ω) < +∞ we have that, up to a subsequence, ∇∂uΩ

h v̄h weakly converges in Lp(Ω)

and that suph ‖
◦
∇hv̄h‖Lp(Ω) < +∞. Let g ∈ C∞

0 (Ω), then, taking into account Lemma 3.1, we have

lim
h→0

∫
Ω

∇∂uΩ
h v̄h g dx = lim

h→0

∫
Ω

◦
∇hv̄h g dx =

∫
Ω

∇v g dx;

hence ∇∂uΩ
h v̄h ⇀ ∇v in Lp(Ω).
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Figure 3. Schematic to illustrate the notation used.

Let g ∈ C∞
∂t,0

(Ω). Taking the limit, as h goes to zero, in equation (4.10) we obtain

∫
Ω

∇v g dx = −
∫

Ω

v∇g dx+ lim
h→0

∫
∂uΩh

w r∂uΩ
h g ν dH1.

In Lemma 4.3, below, we show that

lim
h→0

∫
∂uΩh

w r∂uΩ
h g ν dH1 =

∫
∂uΩ

w g ν dH1,

hence ∫
Ω

∇v g dx = −
∫

Ω

v∇g dx+
∫
∂uΩ

w g ν dH1.

Integrating by parts and simplifying we deduce∫
∂uΩ

(v − w) g ν dH1 = 0,

which holds for every g ∈ C∞
∂t,0

(Ω). Thus v = w on ∂uΩ. �

Lemma 4.3. Let g ∈ C∞
∂t,0

(Ω) and w ∈W 1,p(Ω). Let ν denote the outward unit normal to Ωh and to Ω. Then,

lim
h→0

∫
∂uΩh

w r∂uΩ
h g ν dH1 =

∫
∂uΩ

w g ν dH1.

Proof. Let T+ and T− be the segments obtained by joining the end points of ∂uΩ and ∂uΩh, see Figure 3.
Let Sh be the region bounded by T+, T−, ∂uΩh and ∂uΩ, and let νS be the outward normal to Sh. By the
Gauss-Green theorem we have ∫

∂Sh

w g νS dH1 =
∫
Sh

∇(w g) dx.

Equation (4.1) implies that |Sh| approaches 0 as h goes to zero, thus

lim
h→0

∫
∂Sh

w g νS dH1 = lim
h→0

∫
Sh

∇(w g) dx = 0.
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Equation (4.1) also implies that limh→0 H1(T+) = limh→0 H1(T−) = 0, hence

0 = lim
h→0

∫
∂Sh

w g νS dH1 = lim
h→0

∫
∂uΩh∪∂uΩ

w g νS dH1.

Taking into account the relation between νS and ν, see Figure 3, the previous equation can be rewritten as

lim
h→0

(∫
∂uΩ

w g ν dH1 −
∫
∂uΩh

w g ν dH1

)
= 0.

To conclude the proof it suffices to note that

lim
h→0

∫
∂uΩh

w g ν dH1 = lim
h→0

∫
∂uΩh

w r∂uΩ
h g ν dH1. �

We conclude the section by proving a density result.

Theorem 4.4. For every v ∈ w +W 1,p
∂uΩ(Ω) there is a sequence {v̄h}, with vh ∈ Yh, such that

v̄h → v in Lp(Ω),

∇∂uΩ
h v̄h → ∇v in Lp(Ω),∫

∪j∂Tj∩Ωh
| [[v̄h]] |p dH1 +

∫
∂uΩh

|w − v̄h|p dH1 + 1
| lnh|

∫
∂tΩh

|v̄h|p dH1 → 0,

where ∂tΩh := ∂Ωh \ ∂uΩh.

Proof. Let us suppose, for the moment, that v, w ∈W 1,p(Ω)∩C∞(Ω̄) and that v = w in a neighborhood of ∂uΩ.
Let

v̂h(x) := rhv(x).

Since v̂h is affine on every triangle Tj it can be written as

v̂h(x) =
Ph∑
j=1

(
v̂h(xGj ) + ∇v̂h(x) · (x− xGj )

)
χTj (x),

where xGj is the center of mass of Tj , i.e.,

xGj :=
∫
Tj

− xdx.

We define

v̄h(x) =
Ph∑
j=1

v̂h(xGj )χTj (x).

We obviously have
lim
h→0

‖v̄h − v‖Lp(Ω) = lim
h→0

‖v̄h − v̂h‖Lp(Ω) = 0.

Let us compute the generalized gradient of v̄h. Let i ∈ Ih ∪ Bh∂u . Since ∇ϕ̂i is constant on Tj , we have

∫
Ωh

v̄h∇ϕ̂i dx =
Ph∑
j=1

∫
Tj

v̂h(xGj )∇ϕ̂i dx =
Ph∑
j=1

∫
Tj

v̂h∇ϕ̂i dx =
∫

Ωh

v̂h∇ϕ̂i dx.
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Thus

∇∂uΩ
h v̄h(xi) =

−1
|T̂i|

(∫
Ωh

v̂h∇ϕ̂i dx−
∫
∂uΩh

wϕ̂iν dH1

)

=
1
|T̂i|

(∫
Ωh

∇v̂h ϕ̂i dx+
∫
∂uΩh

(w − v̂h)ϕ̂iν dH1

)

=
1
|T̂i|

(∫
Ωh

∇v ϕ̂i dx+
∫

Ωh

∇(v̂h − v)ϕ̂i dx+
∫
∂uΩh

(w − v̂h)ϕ̂iν dH1

)
,

and hence
∇∂uΩ
h v̄h = Rh(∇v) +Ah +Bh, (4.11)

where we have set

Rh(∇v) :=
∑

i∈Ih∪Bh∂u

1
|T̂i|

∫
Ωh

∇v ϕ̂i dxχT̂i
,

Ah :=
∑

i∈Ih∪Bh∂u

1
|T̂i|

∫
Ωh

∇(v̂h − v)ϕ̂i dxχT̂i
,

Bh :=
∑

i∈Bh∂u

1
|T̂i|

∫
∂uΩh

(w − v̂h)ϕ̂iν dH1 χT̂i
.

Note that Ah → 0 in Lp(Ω), and since v = w in a neighborhood of ∂uΩ and |v(x) − v̂h(x)| ≤ c(v)h2 we also
have that Bh → 0 in Lp(Ω). Under the assumption that |T̂i| =

∫
Ωh
ϕ̂i dx, Rh is a mapping which preserves the

constant functions, and, by a classical result in approximation theory, cf. Ciarlet [13], Theorem 15.3, we have
that Rh(∇v) → ∇v in Lp(Ω). Thus, from equation (4.11), we deduce

lim
h→0

‖∇∂uΩ
h v̄h −∇v‖Lp(Ω) = 0.

As the distance between the centers of mass is bounded by h, we have that | [[v̄h]] | ≤ c(v)h and hence

∫
∪j∂Tj∩Ωh

| [[v̄h]] |p dH1 ≤ c
hp+1

h2
→ 0,

while at ∂uΩh, where |w − v̄h| ≤ c(v)h, it is∫
∂uΩh

|w − v̄h|p dH1 ≤ c hp → 0.

Finally, at ∂tΩh we have
1

| lnh|

∫
∂tΩh

|v̄h|p dH1 ≤ c
1

| lnh| → 0,

and this concludes the proof for the case of smooth functions v and w.
Let us now consider the general case. Let zk, wk ∈ W 1,p(Ω) ∩ C∞(Ω) such that zk → v − w in W 1,p(Ω),

wk → w in W 1,p(Ω) and zk = 0 in a neighborhood of ∂uΩ. Define vk := zk+wk. Applying the argument above
for each k and using a diagonalization procedure we conclude the proof. Indeed let

Gkh(v̄) :=
∫
∪j∂Tj∩Ωh

| [[v̄]] |p dH1 +
∫
∂uΩh

|wk − v̄|p dH1 +
1

| lnh|

∫
∂tΩh

|v̄|p dH1,
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then, for each k there exists a Hk and {v̄kh} ∈ ∪h∈HYh such that for each h ≤ Hk we have

‖v̄kh − vk‖Lp(Ω) + ‖∇∂uΩ
h v̄kh −∇vk‖Lp(Ω) +Gkh(v̄

k
h) < 1/k.

Without loss of generality we may assume that Hk > Hk+1 for all values of k. To conclude the proof it suffices
to set v̄h = v̄kh for each Hk ≥ h > Hk+1. �

5. External approximations of convex functionals

We consider here functionals of the form

F(v) :=
∫

Ω

W (x, v,∇v) dx − 〈f, v〉 (5.1)

to be minimized in w +W 1,p
∂uΩ(Ω), where f ∈ Lq(Ω). We assume that W : Ω × R × R

2 → R is a Carathéodory
function (measurable in the first variable and continuous in the last two) satisfying the following requirements:

(H1) for almost every x ∈ Ω and every s ∈ R the function W (x, s, ·) is convex on R
2;

(H2) there exist four constants c1, c2, b1, b2 > 0 such that

−c1 + b1|ξ|p ≤W (x, s, ξ) ≤ c2 + b2(|s|p + |ξ|p)

for a.e. x ∈ Ω and for every (s, ξ) ∈ R × R
2.

The goal of this and the next section is to study the approximation of this type of functionals in the spaces Yh
by using the generalized notion of gradient introduced above. Namely, we adopt the framework of Γ-convergence
theory [17] in order to prove that a suitable sequence of functionals {Fh} defined in the spaces Yh Γ-converges
to the functional F in an appropriate topology. Then, according to the central property of Γ-convergence this
implies, under suitable conditions, that:

F(umin) = minF(v) = lim
h

minFh(v) = lim
h

Fh(ūmin
h )

and
ūmin
h → umin,

with ūmin
h and umin being the respective minimizers, see [17], Theorems 7.8 and 7.24. So, in particular, the ūmin

h

provide an approximation of umin.
We extend F to Lp(Ω) by defining it equal to +∞ in Lp(Ω) \ (w+W 1,p

∂uΩ,(Ω)) and introduce the sequence of
“discrete” functionals

Fh(v̄) :=

⎧⎨
⎩
∫

Ωh

W (x, v̄,∇∂uΩ
h v̄) dx+ Jh(v̄) − 〈f, v̄〉 if v̄ ∈ Yh,

+∞ if v̄ ∈ Lp(Ω) \ Yh,
(5.2)

where
Jh(v̄) :=

∫
∪j∂Tj∩Ωh

|[[ v̄ ]]|p dH1 +
∫
∂uΩh

|w − v̄|p dH1 +
1

| lnh|

∫
∂tΩh

|v̄h|p dH1. (5.3)

In definition (5.3) the first integral on the right hand side is extended to the inner sides of the mesh Th.
Theorem 5.1. The functional Fh sequentially Γ-converges to F , with respect to the weak-Lp(Ω) topology, that is

(1) [Lim inf inequality] for every sequence of positive numbers h converging to 0 and for every sequence {v̄h} ⊂
Lp(Ω) and v ∈ Lp(Ω) such that v̄h ⇀ v in Lp(Ω),

lim inf
h→0

Fh(v̄h) ≥ F(v);
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(2) [Recovery sequence] for every sequence of positive numbers h converging to 0 and for every v ∈ Lp(Ω)
there exists a corresponding sequence of functions {v̄h} ⊂ Lp(Ω) such that v̄h ⇀ v in Lp(Ω), and

lim sup
h→0

Fh(v̄h) ≤ F(v).

Proof. We first prove the lim inf inequality. Let v̄h be a sequence weakly converging in Lp(Ω) to v. If
lim infh Fh(v̄h) = +∞ there is nothing to prove. Hence, by passing to a subsequence, if necessary, we may
suppose lim infh Fh(v̄h) = limh Fh(v̄h) < +∞. Then, using (H2) and equation (5.3) we find

Fh(v̄h) ≥ −c1|Ω| + b1‖∇∂uΩ
h v̄h‖pLp(Ω) + Jh(v̄h) − ‖f‖Lq(Ω)‖v̄h‖Lp(Ω).

Since ‖v̄h‖Lp(Ω) is bounded, we have that

sup
h

‖
◦
∇hv̄h‖Lp(Ω) ≤ sup

h
‖∇∂uΩ

h v̄h‖Lp(Ω) < +∞

and, also,
sup
h

Jh(v̄h) <∞.

Observing that |[[ v̄h ]]| = |v̄h| at the boundary and using the trace theorem, for some positive constant c we
have that

Jh(v̄h) ≥ c

(
1

| lnh|

∫
∪j∂Tj

|[[ v̄h ]]|p dH1 − ‖w‖pW 1,p(Ω)

)
. (5.4)

From the last two inequalities it follows then

h

∫
∪j∂Tj

| [[v̄h]] |p dH1 → 0.

By Theorem 4.2 we deduce that

v ∈ w +W 1,p
∂uΩ(Ω) and ∇∂uΩ

h v̄h ⇀ ∇v in Lp(Ω),

while by Theorem 3.5 we have that
v̄h → v, in Lp(Ω).

By Theorem 5.2 below and, without loss of generality, supposing that W is non-negative2, we find

lim inf
h

Fh(v̄h) ≥ lim inf
h

∫
Ω

W (x, v̄h,∇∂uΩ
h v̄h) dx− lim

h
〈f, v̄h〉

≥
∫

Ω

W (x, v,∇v) dx − 〈f, v〉.

We now prove the recovery sequence condition. If v does not belong to Lp(Ω) \ (w + W 1,p
∂uΩ,(Ω)) there is

nothing to prove. So, let v ∈ (w +W 1,p
∂uΩ,(Ω)). By Theorem 4.4 there is a sequence {v̄h} ∈ ∪h∈HYh such that

v̄h → v in Lp(Ω),

∇∂uΩ
h v̄h → ∇v in Lp(Ω),
Jh(v̄h) → 0.

2If not, we can always apply the argument to the integrand W + a, with a a large enough constant.
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Thus, thanks to the growth from above of W , see hypothesis (H2), and the dominated convergence theorem the
proof is completed. �

We finally state the theorem on lower-semicontinuity used in the proof above.

Theorem 5.2 (see Dacorogna [16]). Let Ω be a bounded open set of R
n. Let g : Ω × R

m × R
N → [0,+∞] be a

Carathéodory function. Let

G(ψ, ξ) :=
∫

Ω

g(x, ψ(x), ξ(x)) dx.

Assume that g(x, ψ, ·) is convex that ψk → ψ in Lp(Ω) and that ξk ⇀ ξ in Lp(Ω) then

lim inf
k

G(ψk, ξk) ≥ G(ψ, ξ).

We conclude the section by observing that if W is continuous and not just measurable in x it is possible to
localize the functional also in the x variable. Indeed one can define

Fh(v̄) :=

⎧⎨
⎩
∫

Ωh

W (chx, v̄,∇∂uΩ
h v̄) dx+ Jh(v̄) − 〈f, v̄〉 if v̄ ∈ Yh,

+∞ if v̄ ∈ Lp(Ω) \ Yh,
(5.5)

where

chx(x) :=
Nh∑
j=1

xjχT̂j
(x).

The proof of Theorem 5.1 follows as before after observing that chx → id(x) := x in L∞(Ω), and that
ψh := (chx, v̄h) → ψ := (id, v) in Lp(Ω; R3), so that Theorem 5.2 still applies.

6. Convergence of minima and minimizers

In this last section we prove the convergence of the minima and minimizers of the discretized functionals.
We start by showing that the functionals Fh are equicoercive.

Theorem 6.1. There exist two constants k1, k2 > 0, independent of h, such that

Fh(v) ≥ − k1 + k2 ‖v‖Lp(Ω),

for all v ∈ Lp(Ω).

Proof. From definition (5.2) of Fh we have that the theorem trivially holds for v ∈ Lp(Ω)\Yh. So let v = v̄ ∈ Yh.
After noticing that for any g ∈ Lp(Ω) we have

‖g‖Lp(Ω) = sup
ψ∈Lq(Ω)

∫
Ω
ψg dx

‖ψ‖Lq(Ω)
≥ sup
ψ∈W 1,q

∂tΩ(Ω)

∫
Ω
ψg dx

‖ψ‖W 1,q(Ω)
= ‖g‖(W 1,q

∂tΩ
(Ω))′ , (6.1)
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we deduce, from the definition of Fh, property (H2), inequality (5.4) and Theorem 4.1 that

Fh(v̄) ≥ − c1|Ω| + b1‖∇∂uΩ
h v̄‖pLp(Ω) + c

1
| lnh|

∫
∪j∂Tj

|[[ v̄ ]]|p dH1 (6.2)

− c ‖w‖pW 1,p(Ω) − ‖f‖Lq(Ω)‖v̄‖Lp(Ω),

≥ − c1|Ω| + b1‖∇∂uΩ
h v̄‖p

(W 1,q
∂tΩ(Ω))′

+ c h

∫
∪j∂Tj

| [[v̄]] |p dH1

− c ‖w‖pW 1,p(Ω) − ‖f‖Lq(Ω)‖v̄‖Lp(Ω),

≥ − c1|Ω| + c ‖Dv‖p
(W 1,q

∂tΩ
(Ω))′

− c ‖w‖pW 1,p(Ω) − ‖f‖Lq(Ω)‖v̄‖Lp(Ω).

Now applying Lemma 1.1 we find

Fh(v̄) ≥ − c1|Ω| + c̃ ‖v̄‖pLp(Ω) − c ‖w‖pW 1,p(Ω) − c ‖f‖qLq(Ω) −
c̃

2
‖v̄‖pLp(Ω),

and hence

Fh(v̄) ≥ − k1 + k2 ‖v̄‖pLp(Ω),

where the constant k1 depends on f , w but not on h. �

Let us denote by ūmin
h a minimizer of Fh, that is

Fh(ūmin
h ) := min

v̄∈Yh

Fh(v̄).

By Theorem 6.1 and the inequality Fh(ūmin
h ) ≤ Fh(0) it follows that suph ‖ūmin

h ‖Lp(Ω) is finite and therefore, up
to subsequences, we have

ūmin
h ⇀ umin in Lp(Ω),

for some umin ∈ Lp(Ω). By the growth from below of W and the definition of Fh we deduce that

sup
h

‖∇∂uΩ
h ūmin

h ‖pLp(Ω) < +∞.

Hence, from Theorem 4.2

umin ∈ w +W 1,p
∂uΩ(Ω) and ∇∂uΩ

h ūmin
h ⇀ ∇umin in Lp(Ω).

Let v be any function in w+W 1,p
∂uΩ(Ω). Applying Theorem 5.1 we can find a recovery sequence {v̄h} ⊂ Lp(Ω)

of v, i.e., lim suph→0 Fh(v̄h) ≤ F(v), and we have

F(umin) ≤ lim inf
h→0

Fh(ūmin
h ) ≤ lim sup

h→0
Fh(ūmin

h ) ≤ lim sup
h→0

Fh(v̄h) ≤ F(v).

This implies that
F(umin) = min

v∈w+W 1,p
∂uΩ(Ω)

F(v)

and also that
lim
h

Fh(ūmin
h ) = F(umin)

when we take v = umin.
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The last implication yields in particular that h
∫
∪j∂Tj\∂Ωh

| [[ūmin
h ]] |p dH1 → 0. Thus, by Theorem 3.5 it

follows that

ūmin
h → umin in Lp(Ω).

Theorem 6.2. Let ūmin
h be a minimizer of Fh over Lp(Ω). Then:

(1) {ūmin
h } has at least a weakly convergent subsequence in Lp(Ω);

(2) if umin ∈ Lp(Ω) is a weak limit of {ūmin
h } (or a subsequence), then umin is a minimizer of F over Lp(Ω)

and

ūmin
h → umin in Lp(Ω),

umin ∈ (w +W 1,p
∂uΩ(Ω)) and ∇∂uΩ

h ūmin
h ⇀ ∇umin in Lp(Ω).

Furthermore,

lim
h

Fh(ūmin
h ) = F(umin).

The last part follows immediately from Theorem 5.1.
If the integrand W is strictly convex in the last variable, the convergence of the generalized gradient is indeed

strong, i.e.,

∇∂uΩ
h ūmin

h → ∇umin in Lp(Ω).

This can be proved, for instance, like Theorem 7 of [20]. We also note that if the minimizer of F is unique then
the full sequence {ūmin

h } is convergent.
We conclude by observing that Theorems 3.3 and 4.1 might be written in a slightly different but equivalent

form. For instance, we could write Theorem 3.3 as:
For every η > 0, there is a γ > 0 such that

γ ‖Dv̄h‖W−1,p(Ω) ≤ ‖
◦
∇hv̄h‖W−1,p(Ω) + η

(
h

∫
∪j∂Tj

| [[v̄h]] |p dH1

)1/p

, (6.3)

arriving at the same conclusions seen above. Accordingly, we could take the functional ηIh, instead of Ih,
in the definition of Fh and still get the results proved in Sections 5 and 6. While nothing changes from a
theoretical point of view, for the efficiency of the method the free parameter η in the approximating functionals
may be conveniently used, at least in some cases, to optimize the convergence of the numerical results, see for
instance [19].

Appendix
In this appendix we prove inequality (3.14), that is: there exists a constant c independent of h and Tj

such that ∫
∂Tj

|f |q dH1 ≤ c

h

∫
Tj

|f |q dx+ c hq−1

∫
Tj

|∇f |q dx, (6.4)

for every f ∈W 1,q(Tj).
Consider any Tj ∈ Th and let ph(y) := hy be the rescaling that maps the normalized triangle T̃j onto

Tj = hT̃j. For every j, it is always possible to define an affine transformation B(j), continuous together with
its inverse, that maps T̃j onto one and the same triangle T ◦. Moreover, from the regularity of the family of
meshes, there are two constants α and β independent of j and h such that

α < |B(j)|, detB(j) < β. (6.5)
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Using the inverse of the map ph ◦B(j) to transform the domain Tj to T ◦ and the continuity of the trace we
easily get ∫

∂Tj

|f |q dH1 ≤ |B(j)|h
∫
∂T◦

|f ◦ ph ◦B(j)|q dH1

≤ C0 h |B(j)| ‖f ◦ ph ◦B(j)‖qW 1,q(T◦).

On the other hand, by [13], Theorem 15.1, we have:

|v ◦B(j)|Wm,q(T◦) ≤ C|B(j)|m | detB(j)|−1/q |v|Wm,q(T̃j)
∀ v ∈Wm,q(T̃j),

where C depends on m only. The symbol | · |Wm,q(T̃j)
denotes the seminorm of Wm,q(T̃j). Then, taking (6.5)

into account, we deduce∫
∂Tj

|f |q dH1 ≤ C(α, β)h ‖f ◦ ph‖qW 1,q(T̃j)

= C(α, β)h

(∫
T̃j

|f ◦ ph|q dy +
∫
T̃j

|h(∇f) ◦ ph|q dy

)

= C(α, β)h

(
1
h2

∫
Tj

|f |q dx+ hq−2

∫
Tj

|∇f |q dx

)
,

which is (6.4).
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