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SOME NEW EXISTENCE, SENSITIVITY AND STABILITY RESULTS
FOR THE NONLINEAR COMPLEMENTARITY PROBLEM ∗

Rubén López1

Abstract. In this work we study the nonlinear complementarity problem on the nonnegative or-
thant. This is done by approximating its equivalent variational-inequality-formulation by a sequence
of variational inequalities with nested compact domains. This approach yields simultaneously exis-
tence, sensitivity, and stability results. By introducing new classes of functions and a suitable metric
for performing the approximation, we provide bounds for the asymptotic set of the solution set and
coercive existence results, which extend and generalize most of the existing ones from the literature.
Such results are given in terms of some sets called coercive existence sets, which we also employ for
obtaining new sensitivity and stability results. Topological properties of the solution-set-mapping and
bounds for it are also established. Finally, we deal with the piecewise affine case.
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Introduction

Let F : R
n
+ → R

n be a given function, and let R
n
+ be the set of vectors from R

n with nonnegative components.
The nonlinear complementarity problem in R

n, denoted by NCP(F ), is the following:

find x̄ ∈ R
n
+ such that F (x̄) ∈ R

n
+ and 〈F (x̄), x̄〉 = 0. (NCP)

If we set F (x) = Mx + q where M ∈ R
n×n and q ∈ R

n, then the problem is called the linear complementarity
problem (LCP). These problems are important in various equilibrium settings and has wide range of applications
in Science and Engineering (see [3,8,15,19,22,32] and the references therein).

Problem (NCP) is known to be equivalent to the following variational inequality problem VIP(Rn
+, F ) (see

Lem. 3.1 from [23]), which will serve as our main framework for its study.

find x̄ ∈ R
n
+ such that 〈F (x̄), x − x̄〉 ≥ 0 ∀ x ∈ R

n
+. (VIP)

Sensitivity and stability analysis of the NCP(F ) is concerned with the study of the behavior of the solution(s)
of this problem when the data are subject to change. This analysis provide valuable qualitative information
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on the problem. In the literature we can find different approaches for obtaining sensitivity and stability results for
the nonlinear complementarity problem and variational inequalities. Meggido [30], Tobin [35] and Kyparisis [26]
obtained some results on continuity of a locally unique solution x(ε) of the parametric nonlinear complementarity
problem NCP(F (·, ε)). All these papers assume differentiability of the function F and they employ either the
Implicit Function Theorem or the theory of generalized equations. Ha [18] used degree theory to derive sufficient
conditions for the existence of solutions for small perturbations of the function. His approach does not require
that the function F be differentiable. Dafermos [5] employed an approach based on geometric arguments
considering the variational inequalities as an orthogonal projection on some set. Facchinei and Pang [7] studied
the “total stability” of the variational inequality VIP(K, F ) when both the function F and the set K are
perturbed. They employed degree theory and variational analytic tools to establish a general stability result
for a variational inequality with a bounded solution set.

Our approach is totally different from theirs; we use tools of variational convergence and asymptotic analysis.
We approximate the problem VIP(Rn

+, F ) by a sequence of problems VIP(Dk, F k) (k ∈ N) where {Dk} is a
sequence of nested compact convex sets converging to R

n
+ and {F k} is a sequence of continuous functions

converging continuously to F . This approach allows us to develop a general theory yielding simultaneously
existence, sensitivity and stability results. It is worth pointing out that our results are concerned with global
sensitivity/stability analysis, which refers to the investigation of the change of the entire solution set SOL(F )
when the function F undergoes small perturbation, and not with isolated sensitivity analysis as in most of the
papers cited before.

This paper is a continuation of the previous work [11] where this new approach was employed for studying
the multivalued complementarity problem. This approach has been developed when studying (LCP) in [9]. The
novelty of the present paper with respect to the former lies in the fact that we now deal with single-valued
mappings and to this end we employ another metric instead of that characterizing the graphical convergence
(see also Rem. 1.9). The choice of this metric is natural and has the advantage that for the homogeneous type
case it has an equivalent metric that allows us to obtain Lipschitzian properties for the solution-set-mapping
for the piecewise affine case.

In Section 2, we list some preliminaries and introduce new classes of functions and the metrics we shall
work with. In Section 3, we perform an asymptotic analysis of a sequence of normalized approximate solutions
to (VIP) and obtain some bounds for the asymptotic set to the solution set. In Section 4, we study the
nonemptiness and boundedness of the solution set for the new classes of functions and for the pseudomonotone
ones. We organize, extend, and generalize most of the existing results from the literature. In Section 5, we
obtain new sensitivity and stability results, study topological properties of the solution-set-mapping, and obtain
some bounds for the solution set. Section 6 is devoted to study the piecewise affine case.

We shall use the following notation: x ≥ 0 (resp. x > 0) whenever x ∈ R
n
+ (resp. x ∈ int R

n
+); B is the

unit ball in R
n; I = {1, . . . , n}; ||y||∞-maximum norm, |y| = (|y1|, . . . , |yn|), ||y||d = 〈d, |y|〉 is the d-norm,

dmin = mini∈I di, Δd = {x ≥ 0 : ||x||d = 1} whenever y ∈ R
n and d > 0; {ei : i ∈ I} is the canonical basis of R

n;
SOL(F ) (resp. FEA(F ) = {x ≥ 0 : F (x) ≥ 0}, FEAs(F ) = {x ≥ 0 : F (x) > 0}) is the solution (resp. feasibility,
strictly feasibility) set of NCP(F ); given d > 0 the set A∞

d = {v ∈ R
n : ∃ xk ∈ A, ||xk||d → +∞, xk

||xk||d → v}
is the d-asymptotic set of A; d(x, A) is the distance of a point x to A; dI(A, B) is the integrated set distance
between A and B; C = {c : R++ → R++ : c(0) ≥ 0, limt→+∞ c(t) = +∞}.

In what follows, by d and c we shall denote a positive vector and a function from C.

1. Preliminary facts

Here and in the subsequent sections we shall deal with functions F defined on R
n
+. We recall some well-known

definitions from the literature (see [8,19,34,37]). A function F : R
n
+ → R

n is said to be:

• copositive if 〈F (x) − F (0), x〉 ≥ 0 ∀x ≥ 0;
• strictly copositive if 〈F (x) − F (0), x〉 > 0 ∀0 
= x ≥ 0;
• strongly copositive if ∃α > 0 such that 〈F (x) − F (0), x〉 ≥ α||x||2 ∀x ≥ 0;
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• monotone if 〈F (x) − F (y), x − y〉 ≥ 0 ∀x, y ≥ 0;
• strictly monotone if 〈F (x) − F (y), x − y〉 > 0 ∀x, y ≥ 0, x 
= y;
• strongly monotone if ∃α > 0 such that 〈F (x) − F (y), x − y〉 ≥ α||x − y||2 ∀x, y ≥ 0;
• pseudomonotone if 〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0 ∀x, y ≥ 0;
• a G(d)-function (d–Garcia’s function), or F ∈ G(d), if SOL(F − F (0) + τd) = {0} ∀τ > 0;
• an R(d)-function (d–regular function), or F ∈ R(d), if SOL(F − F (0) + τd) = {0} ∀τ ≥ 0;
• an R0-function, or F ∈ R0, if SOL(F − F (0)) = {0};
• piecewise affine if R

n
+ can be represented as the union of finitely many polyhedral sets, relative to each

of which F (x) is given by an expression of the form Mx + q for M ∈ R
n×n and q ∈ R

n;
• R

n
+–convex if F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y) ∀x, y ≥ 0, ∀λ ∈ [0, 1].

If the inverse sign holds, we say that F is R
n
+–concave;

• a Qb-function if SOL(F + q) is nonempty and compact for all q ∈ R
n.

We also recall some definitions concerning multifunctions, we shall need in what follows (see [1,17,20,33,34]).
Let X and Y be two metric spaces. A multifunction or set-valued mapping Φ : X ⇒ Y is said to be:

• (X = R
l, Y = R

m) piecewise polyhedral if its graph defined by gph Φ = {(x, y) : x ∈ dom Φ, y ∈ Φ(x)}
is expressible as the union of finitely many polyhedral sets;

• (X = R
l, Y = R

m) locally upper Lipschitzian at x̄ with modulus λ or locally UL(λ) at x̄ if there is a
neighborhood U of x̄ such that Φ(x) ⊆ Φ(x̄) + λ ‖x − x̄‖B for all x ∈ U . If in addition, Φ(x̄) 
= ∅ then
Φ is called calm at x̄;

• (X = R
l, Y = R

m) Lipschitzian if there exits a scalar λ > 0 such that Φ(x) ⊆ Φ(y) + λ ‖x − y‖B for
all x and y;

• outer semicontinuous (OSC) (or closed) at x ∈ domΦ if whenever a sequence {(xk, yk)} ⊆ gph Φ
converges to (x, y) then y ∈ Φ(x);

• inner semicontinuous (ISC) (or open or lower semicontinuous (lsc)) at x ∈ domΦ if for any y ∈ Φ(x)
and for any sequence {xk} ⊆ domΦ such that xk → x there exists a sequence {yk} such that yk ∈ Φ(xk)
for all k and yk → y;

• continuous at x ∈ domΦ if it is OSC and ISC at x.
We now introduce two new classes of functions which are the single-valued analogous to those defined in [11]

for the multivalued complementarity problem (see (b) of Ex. 1.3 below). As will be shown in the next example,
such classes encompass various classes of functions from the literature that are important in the complementarity
problem theory.

Definition 1.1. A function F : R
n
+ → R

n is said to be:
• c-homogeneous (on Δd) if F (λx) − F (0) = c(λ)[F (x) − F (0)] for all x ∈ Δd and λ > 0;
• c-Moré (on Δd) if 〈F (λx) − F (0), x〉 ≥ c(λ)〈F (x) − F (0), x〉 for all x ∈ Δd and λ > 0.

Remark 1.2. (a) It is important to point out that our notions of c-homogeneous on Δd and c-Moré on Δd

functions are given on the compact set Δd instead of being given on the whole R
n
+ as is done in the literature

(see Ex. 1.3). Henceforth, we shall consider that all the functions are c-homogeneous and c-Moré on the set Δd

unless otherwise is specially stated.
(b) If the function F is: copositive type, monotone type, G(d), R(d), R0, piecewise-affine, Qb, R

n
+-convex,

R
n
+-concave, c-homogeneous, or c-Moré, then so too is F + q for all q ∈ R

n. This property does not hold for
pseudomonotone functions as is shown in Example 1.7 below.
(c) We may impose that the relationships defining c-homogeneous or c-Moré functions hold for all λ sufficiently
large (see [37]) or for all λ ≥ 1 (see [11]) respectively. It is important to point out that our existence results
hold under those assumptions. However, for obtaining also bounds for the solution set, sensitivity and stability
results in a unified manner, our definitions are more suitable.

Example 1.3. (a) A function H : R
n
+ → R

n is said to be (positively) generalized homogeneous (see [37]), if for
some c the equality H(λx) = c(λ)H(x) holds for all x ≥ 0 and λ > 0. In particular, if c(λ) = λγ , then H is said
to be (positively) homogeneous of degree γ > 0. For instance, the functions H1(x) = Mx, where M ∈ R

n×n;
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H2(x) = (h2
1(x), . . . , h2

n(x))�, where h2
i (x) = max{〈wij , x〉 : j ∈ Λi} with wij ∈ R

n and Λi being a finite index
set, are homogeneous of degree 1. The function H3(x) = ||x||Mx is homogeneous of degree 2.

If F −F (0) is generalized homogeneous (for some c), then F is c-homogeneous on Δd for any d. The functions
F 1(x) = x if 0 ≤ x ≤ 1 and F 1(x) = 3x − 2 if x ≥ 1, F 2(x) = x if 0 ≤ x ≤ 1 and F 2(x) = x2 if x ≥ 1, and
F 3(x, y) = ex+y

√
x2 + y2(x, y)� are c-homogeneous on Δd for d = 1, c1(λ) = F 1(λ), c2(λ) = F 2(λ), and

d = (1, 1)�, c3(λ) = λ2eλ−1 respectively. However, F i(x)−F i(0) (i = 1, 2, 3) are not generalized homogeneous.
(b) A multifunction Φ : R

n
+ ⇒ R

n is said to be c-subhomogeneous, if 0 ∈ Φ(0) and for some c it holds that
Φ(λx) ⊆ c(λ)Φ(x) for all x ∈ Δd and λ > 0 (see [11]). If Φ is single-valued, then Φ is c-homogeneous. Therefore,
for single-valued mappings the classes of c-subhomogeneous and c-homogeneous mappings coincide.
(c) A function F : R

n
+ → R

n such that 〈F (λx) − F (0), x〉 ≥ c(λ)〈F (x) − F (0), x〉 for some c and for all x ≥ 0
and λ > 0 (see [37]) is c-Moré on Δd for any d. For instance, F such that F (λx) − F (0) ≥ c(λ)[F (x) − F (0)]
for some c and for all x ≥ 0 and λ > 0 (see [31]) satisfies such a condition. The function F (x, y) = (x3, y4)�

satisfies the latter inequality for c̃(λ) = min{λ3, λ4} but it is not c-homogeneous on Δd for any c and d.
(d) The functions F 4(x) = Mx + q for M ∈ R

n×n, q ∈ R
n, and F 5(x) = PC(x)-projection function onto the

polyhedral set C ⊆ R
n are piecewise affine (see Ex. 12.31 from [34]). If T : R

n ⇒ R
n is maximal monotone

piecewise polyhedral and f : R
n → R is proper lsc convex piecewise linear-quadratic, then the resolvent and

proximal mappings Rλ(x) = (I + λT )−1 and Pλf(x) = argminw

{
f(w) + 1

2λ ||w − x||2} are piecewise affine for
every λ > 0 (see Props. 12.29 and 12.30 from [34] respectively).
(e) If F is copositive (resp. strictly copositive), then F ∈ G(d) (resp. F ∈ R(d)) for all d. Indeed, if x ∈ SOL(F−
F (0)+τd) for τ > 0 (resp. τ ≥ 0), then 0 ≤ x ⊥ F (x)−F (0)+τd ≥ 0, therefore, 0 ≤ 〈F (x)−F (0), x〉 = −τ〈d, x〉
a contradiction if x 
= 0.

The following definition generalizes that used for linear mappings in [21] and is the single-valued variant of
that used for multifunctions in [11].

Definition 1.4. Let F : R
n
+ → R

n be a continuous function. The d-numerical range of F is by definition the
set ω(F ) := {〈F (x) − F (0), x〉 : x ∈ Δd} . We define MF := max ω(F ) and mF := min ω(F ).

The next result is similar to Propositions 2.5 and 4.5 from [11] and complements them. Part (a) generalizes
Corollary 3.3 from [31].

Proposition 1.5. Let F : R
n
+ → R

n be a continuous function.
(a) if F is c-Moré, then mF ||x||d c(||x||d) ≤ 〈F (x) − F (0), x〉 for all x ≥ 0;
(b) if F is c-homogeneous, then F is c-Moré and 〈F (x) − F (0), x〉 ≤ MF ||x||d c(||x||d) for all x ≥ 0;
(c) if F is strongly copositive, then F is c̄-Moré on Δd for any d and c̄(λ) = αλ

MF ||d||2 ;
(d) if F is strictly copositive, then mF > 0. If in addition, F is homogeneous of degree 1, then F is strongly

copositive;
(e) if F is c-Moré and mF > 0, then F is strictly copositive;
(f) if F is R

n
+-convex, then it holds that F (λx) − F (0) ≥ λ[F (x) − F (0)] for all x ≥ 0 and λ ≥ 1, and

F (λx) − F (0) ≤ λ[F (x) − F (0)] for all x ≥ 0 and λ ∈ [0, 1];
if in addition, F is strictly copositive, then F is c̃-Moré on Δd for any d and c̃(λ) = λ if λ ≥ 1 and
c̃(λ) = minx∈Δd

〈F (λx)−F (0),x〉
〈F (x)−F (0),x〉 if 0 ≤ λ ≤ 1;

(g) if F is pseudomonotone c-homogeneous and FEA(F ) 
= 0, then F is copositive.

Proof. (a)-(b): Are trivial.
(c): If x ∈ Δd and λ > 0, then by hypothesis and since it holds that 1 = ||x||d ≤ ||d|| ||x|| we obtain
〈F (λx) − F (0), λx〉 ≥ αλ2||x||2 ≥ αλ2

||d||2MF
〈F (x) − F (0), x〉.

(d): If F is strictly copositive, then by Weierstrass theorem mF > 0. Moreover, by the homogeneity of degree 1
and (a), we obtain 〈F (x) − F (0), x〉 ≥ mF ||x||2d ≥ mF d2

min||x||2 for all 0 
= x ≥ 0.
(e): It follows from (a).
(f): If x ≥ 0, then by hypothesis F (x) = F ( 1

λ(λx) + (1 − 1
λ)0) ≤ 1

λF (λx) + (1 − 1
λ )F (0) for λ ≥ 1, thus,
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F (λx) − F (0) ≥ λ[F (x) − F (0)]. The proof for λ ∈ [0, 1] runs as before. The rest of the proof is immediate.
(g): If x̄ ∈ FEA(F ) and x > 0, then there exists tx > 0 such that t

||x||d x − x̄ ≥ 0 and 〈F (x̄), t
||x||d x − x̄〉 ≥ 0 for

all t > tx. By c-homogeneity we have F ( t
||x||d x)− F (0) = c(t)

c(||x||d) [F (x)−F (0)] and by using the last inequality

and the pseudomonotonicity hypothesis we conclude that 〈F (0) + c(t)
c(||x||d) [F (x) − F (0)], t

||x||d x − x̄〉 ≥ 0. On
dividing the previous inequality by c(t)t and taking the limit t → +∞, we get 〈F (x)−F (0), x〉 ≥ 0 for all x > 0.
If x lies on the boundary of R

n
+, then there exists {xk} ⊆ int R

n
+ such that xk → x and 〈F (xk)− F (0), xk〉 ≥ 0.

By the continuity of F we obtain 〈F (x) − F (0), x〉 ≥ 0. �

Our approach consists of the approximation of (VIP) by a sequence of solvable problems and the later study
of the asymptotic properties of a sequence of normalized solutions of such approximations. To do that we must
introduce a suitable metric space.

The metric space (C(Rn
+; Rn), D): where C(Rn

+; Rn) is the set of continuous functions F = (f1, . . . , fn)�

defined on R
n
+ and D is the metric defined by:

D(F, G) := max
i∈I

dIepi(fi, gi) + max
i∈I

dIhyp(fi, gi)

where dIepi and dIhyp are the metrics which characterize the epi-convergence ( e→) and hypo-convergence ( h→)
respectively and for f, g ∈ C(Rn

+; R) are defined by dIepi(f, g) := dI(epi f, epi g) and dIhyp(f, g) := dI(hyp f, hyp g)
where the right-hand terms are the integrated set distances between the epigraphs and hypographs of f and g
respectively (see Chaps. 5 and 7 from [34]).

In order to obtain some properties for this metric, we recall a well-known type of convergence. A sequence of
functions {F k} from R

n to R
n converges continuously to the function F if F k(xk) → F (x) whenever xk → x.

In Proposition 7.2 from [34] it is proved that for {fk} and f being functions from R
n to R it holds that:

• fk e→ f if and only if at each point x one has: • fk h→ f if and only if at each point x one has:{
lim infk fk(xk) ≥ f(x) for every sequence xk → x
lim supk fk(xk) ≤ f(x) for some sequence xk → x

{
lim infk fk(xk) ≥ f(x) for some sequence xk → x

lim supk fk(xk) ≤ f(x) for every sequence xk → x.

Thus, by joining both assertions we conclude that fk e→ f and fk h→ f iff {fk} converges continuously to f
(see Th. 7.11 from [34]). Consequently, D(F k, F ) → 0 iff {F k} converges continuously to F .

Proposition 1.6. Let {F k} and F be functions such that D(F k, F ) → 0. If the sequence {F k} is from one of
the following classes: c-homogeneous, c-Moré, copositive, or monotone, then so too is F .

Proof. Let {F k} be from the first class of functions and let x ∈ Δd and λ > 0 be given. By hypothesis we have
F k(λx) − F k(0) = c(λ)[F k(x) − F k(0)]. Taking limit and by the continuous convergence of {F k} to F we get
F (λx) − F (0) = c(λ)[F (x) − F (0)], thus, F is c-homogeneous. The rest of the proof runs as before. �

Example 1.7. Each function F k(x, y) = (y+ 1
k , 0)� is pseudomonotone and D(F k, F ) → 0 for F (x, y) = (y, 0)�,

but F is not pseudomonotone since 〈F (e1), e2 − e1〉 = 0 and 〈F (e2), e2 − e1〉 < 0.

We now introduce a new metric space, which plays an important role when dealing with c-homogeneous
functions.
The metric space (C(Rn

+; Rn)c, Do): where C(Rn
+; Rn)c is the set of c-homogeneous continuous functions

F = (f1, . . . , fn)� defined on R
n
+ and Do is the metric defined by:

Do(F, H) := max
x∈Δd

||F (x) − F (0) − H(x) + H(0)||∞ + ||F (0) − H(0)||∞.

It is not difficult to prove that Do(F k, F ) → 0 iff {F k} converges uniformly to F on Δd and F k(0) → F (0).
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Proposition 1.8.

(a) If F, H ∈ C(Rn
+; R)n

c , then ||F (x) − H(x)||∞ ≤ c(||x||d) Do(F, H) + ||F (0) − H(0)||∞ for all x ≥ 0;
(b) if c is nondecreasing and {F k}, F are from C(Rn

+; Rn)c, then Do(F k, F ) → 0 iff D(F k, F ) → 0. Hence,
D and Do are equivalent metrics on C(Rn

+; Rn)c.

Proof. (a): For x = 0 the assertion is trivial. If 0 
= x ≥ 0, then by the c-homogeneity we have

||F (x)−H(x)||∞ ≤ ||F (x)−F (0)− [H(x)−H(0)]||∞ + ||F (0)−H(0)||∞ ≤ c(||x||d)Do(F, H)+ ||F (0)−H(0)||∞.

(b): “Only if part”: If {xk} converges to x, then there exists an r > 0 such that ||xk||d ≤ r for all k, thus, by
hypothesis c(||xk||d) ≤ c(r). By (a), the continuity of F , and the following inequalities

||F k(xk) − F (x)||∞ ≤ ||F k(xk) − F (xk)||∞ + ||F (xk) − F (x)||∞
≤ c(r)Do(F k, F ) + ||F k(0) − F (0)||∞ + ||F (xk) − F (x)||∞

we conclude that F k(xk) → F (xk). Hence D(F k, F ) → 0.
“If part”: The hypothesis implies that {F k} converges uniformly to F on all compact subsets of R

n
+ (see Th. 7.14

from [34]). In particular, this holds on Δd and {0}. Hence Do(F k, F ) → 0.
The last part follows from the fact that two metrics are equivalent iff they induce the same convergence. �

Remark 1.9. By Corollary 5.45 from [34] it is known that {F k} converges continuously to F iff {F k} converges
graphically to F and the sequence {F k} is eventually locally bounded at each x̄, i.e., there exist a neighborhood V
of x̄, k0 ∈ N, and a bounded set B such that F k(V ) ∈ B for all k ≥ k0. Therefore, if we approximate (VIP)
by using the continuous convergence, then the approximation is also by using the graphical convergence and
the results from [11] hold (in terms of the metric characterizing the graphical convergence). However, if we
approximate (VIP) by using the graphical convergence we cannot capture all the results of this paper (unless
an additional assumption is assumed).

In the next three sections we shall employ the metric D for obtaining our results. In the last section we shall
employ the equivalent metric Do to deal with c-homogeneous piecewise affine functions for c being nondecreasing.

2. Asymptotic analysis

We approximate (VIP) by the following sequence of problems:

find xk ∈ Dk : 〈F k(xk), x − xk〉 ≥ 0 ∀x ∈ Dk (PVIPk)

where d > 0, {σk} is an increasing sequence of positive numbers converging to +∞, Dk = {x ∈ R
n
+ : ||x||d ≤ σk}

and D(F k, F ) → 0.
The existence of solutions xk to this problem is a consequence of the following result (see [25]).

Theorem 2.1 (Hartman-Stampacchia). Let C ⊂ R
n be a compact convex nonempty set and let F : C → R

n be
a continuous function. There exists a vector x̄ ∈ C such that 〈F (x̄), x − x̄〉 ≥ 0 for all x ∈ C.

Henceforth, we assume that all the functions we shall deal with are from C(Rn
+; Rn).

We now introduce some sets called coercive existence sets, which are fundamental in our study. The impor-
tance of these sets lies in the fact that they provide valuable information on (NCP): the accumulation points
of any sequence of normalized approximate solutions belong to these sets (see Lem. 2.3), they bound the as-
ymptotic cones/sets of the solution set (see Cor. 2.4), and our main existence, stability, and sensitivity results
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are given in terms of a property satisfied by these sets (the property of being equal to {0}):

W(F ) = {v ≥ 0 : τv = −〈F (v) − F (0), v〉 ≥ 0, F (v) − F (0) + τvd ≥ 0}
Wq(H) = {v ≥ 0 : H(v) − H(0) ≥ 0, 〈H(v) − H(0), v〉 = 0, 〈H(0) + q, v〉 ≤ 0}
U(F ) = {v ≥ 0 : 〈F (v) − F (0), v〉 ≤ 0}
Uq(H) = {v ≥ 0 : 〈H(v) − H(0), v〉 = 0, 〈H(0) + q, v〉 ≤ 0}
V(F ) = R

n
+ ∩ [−F (Rn

+)]∗.

Two of these sets can be written by means of the set SOL(H−H(0)), termed complementary kernel of NCP(H).

Wq(H) = SOL(H − H(0)) ∩ {−H(0)− q}∗ and W−H(0)(H) = SOL(H − H(0)) (2.1)

and if τv = −〈F (v) − F (0), v〉 ≥ 0 as above, then

[v ∈ W(F ) and ||v||d = 1] =⇒ v ∈ SOL(F − F (0) + τvd). (2.2)

Proposition 2.2.
(a) if F − F (0) is homogeneous of degree γ > 0, then SOL(F − F (0))# = int SOL(F − F (0))∗. Moreover,

q ∈ int SOL(F − F (0))∗ iff Wq(F ) = {0};
(b) if FEAs(F ) 
= ∅, then V(F ) = {0}. The inverse implication holds if F is pseudomonotone;
(c) if F is copositive, then U−F (0)(F ) = U(F ). Moreover, F (0) + q ∈ U(F )# iff Uq(F ) = {0};
(d) if F is c-homogeneous, then SOL(F − F (0)) is a cone.

Proof. (a): The equality follows from Exercise 6.22 of [34] and the remainder is obvious.
(b): If x̄ ∈ FEAs(F ) and v ∈ V(F ), then 〈F (x̄), v〉 ≤ 0, a contradiction if v 
= 0. For the inverse implication see
Theorem 2.4.4 from [8].
(c): It is obvious.
(d): Let 0 
= x ∈ SOL(F − F (0)) be given. By hypothesis c(t||x||d)

c(||x||d) [F (x) − F (0)] = F (tx) − F (0) for all t > 0.

Multiplying F (x) − F (0) ≥ 0 and 〈F (x) − F (0), x〉 = 0 by c(t||x||d)
c(||x||d) and c(t||x||d)t

c(||x||d) respectively, we obtain that
tx ∈ SOL(F − F (0)) for all t > 0. �

Lemma 2.3 (Basic Lemma). Let {xk} be a sequence of solutions to (PVIPk) such that ‖xk‖d = σk and xk

σk
→ v.

(a) If each F k is c-homogeneous, then v ∈ W(F ) ∩ SOL(F − F (0) + τvd) ∩ Δd.
(i) If F is also a G(d)-function, then v ∈ SOL(F − F (0)) ∩ Δd;
(ii) if each F k = Hk + qk is also copositive and F (x) = H + q, then v ∈ Wq(H) ∩ Δd;

(b) if each F k is c-Moré, then v ∈ U(F ) ∩ Δd.
If each F k = Hk + qk is also copositive and F = H + q, then v ∈ Uq(H) ∩ Δd;

(c) if each F k is pseudomonotone, then v ∈ V(F ) ∩ Δd.

Proof. (a): By hypothesis F k(xk) − F k(0) = c(σk)[F k(xk

σk
) − F k(0)]. Replacing this in (PVIPk), dividing

by c(σk)σk, and taking limit for x = 0 and x = σk
y

‖y‖d
with 0 
= y ≥ 0 respectively, by the continuous

convergence of {F k} to F we obtain 〈F (v) − F (0), v〉 ≤ 0 and 〈F (v) − F (0), y〉 ≥ ‖y‖d〈F (v) − F (0), v〉 for
all y ≥ 0. By taking y = ei for i ∈ I, we get v ∈ W(F ) and by (2.2) we conclude that v ∈ SOL(F −F (0)+ τvd).
(i): If F ∈ G(d), then necessarily τv = 0.
(ii): If each F k = Hk + qk is copositive, then so too are Hk and H (see Prop. 1.6). Clearly, H ∈ G(d) and
by (i) we get τv = 0, thus, 0 ≤ v ⊥ H(v) − H(0) ≥ 0. By taking x = 0 in (PVIPk) and by the copositivity of
Hk we obtain 0 ≥ 〈Hk(xk)+ qk, xk〉 = 〈Hk(xk)−Hk(0), xk〉+ 〈Hk(0)+ qk, xk〉 ≥ 〈Hk(0)+ qk, xk〉. On dividing
by σk and taking limit we obtain 〈H(0) + q, v〉 ≤ 0.
(b): By hypothesis we have 〈F k(xk) − F k(0), xk〉 ≥ c(σk)〈F k(xk

σk
) − F k(0), xk〉. Replacing this inequality



SOME NEW EXISTENCE/SENSITIVITY/STABILITY RESULTS FOR NCP’S 751

in (PVIPk) for x = 0 we get 0 ≥ 〈F k(xk)−F k(0), xk〉+ 〈F k(0), xk〉 ≥ c(σk)〈F k(xk

σk
)−F k(0), xk〉+ 〈F k(0), xk〉.

On dividing by c(σk)σk and taking limit, by the continuous convergence of {F k} to F we get 〈F (v)−F (0), v〉 ≤ 0.
If each F k = Hk + qk is copositive, then we proceed similarly as in (a).

(c): If x ≥ 0 is arbitrary, then there exists kx ∈ N such that (PVIPk) holds for all k ≥ kx and by hypothesis
we get 〈F k(x), x − xk〉 ≥ 0. Dividing by σk and taking limit, by the continuous convergence of {F k} to F we
obtain 〈F (x), v〉 ≤ 0. �

We can characterize the boundedness of a nonempty set A ⊆ R
n by means of its asymptotic cone A∞ or its

d-normalized asymptotic set A∞
d as follows: A is bounded iff A∞ = {0} iff A∞

d = ∅ (see [2,11]). Therefore, for
studying the boundedness of the solution set to (NCP) we now obtain bounds for the asymptotic sets/cones
of this set. These bounds are related to those for affine variational inequality problems from [8,32] and for
multivalued complementarity problems from [11].

Corollary 2.4.
(a) For H being c-homogeneous:

⋃
q∈Rn SOL(H + q)∞ ⊆ SOL(H − H(0)).

If in addition, H is copositive, then SOL(H + q)∞ ⊆ Wq(H).
(b) For H being c-Moré:

⋃
q∈Rn SOL(H + q)∞d ⊆ U(H) ∩ Δd.

If in addition, H is copositive, then SOL(H + q)∞d ⊆ Uq(H) ∩ Δd.
(c) If F is pseudomonotone and SOL(F ) 
= ∅, then SOL(F )∞ = V(F ).

Proof. (a): Let q ∈ R
n be fixed and v ∈ SOL(H + q)∞. If v = 0, the assertion is trivial. If v 
= 0, there exists

{xk} ⊆ SOL(H + q) and tk ↓ 0 such that tkxk → v. Clearly, H(xk) − H(0) = c(||xk||d)[H( tkxk

||tkxk||d ) − H(0)].
By replacing this equality in H(xk) + q ≥ 0 and 〈H(xk) + q, xk〉 = 0, dividing by c(||xk||d) and c(||xk||d)||xk||d
respectively, and taking limit we obtain 0 ≤ v

||v||d ⊥ H( v
||v||d ) − H(0) ≥ 0. By Proposition 2.2(d) we conclude

that v ∈ SOL(H − H(0)).
If H is also copositive, from 0 = 〈H(xk) − H(0), xk〉 + 〈H(0) + q, xk〉 ≥ 〈H(0) + q, xk〉 we conclude that

〈H(0) + q, v〉 ≤ 0.
(b): Let q ∈ R

n be fixed and v ∈ SOL(H + q)∞d . There exists a sequence {xk} such that ||xk||d → +∞ and
xk

||xk||d → v. By setting σk := ||xk||d and since each xk is solution to (PVIPk) for F k = H + q for all k, by the
first part of (b) of the Basic Lemma for such F k, we conclude that v ∈ U(H) ∩ Δd.

If H is also copositive, then the second bound follows by using the last part of (b) of the Basic Lemma.
(c): If F is pseudomonotone, then it is well-known that (see Lem. 2.1 from [22])

SOL(F ) =
⋂
x≥0

{
x̄ ≥ 0 : 〈F (x), x − x̄〉 ≥ 0

}
. (2.3)

Since each right-hand set is closed and convex and SOL(F ) 
= ∅, by properties of asymptotic cones (see Props. 3.9
and 3.23 from [34]) we conclude that SOL(F )∞ =

⋂
x≥0{x̄ ≥ 0 : 〈F (x), x − x̄〉 ≥ 0}∞ = V(F ). �

3. Main existence results

In this section, we obtain coercive existence results for (NCP). To do this, in (PVIPk) we consider that
F k = F for all k, i.e., we approximate (VIP) by the following sequence of problems

find xk ∈ Dk : 〈F (xk), x − xk〉 ≥ 0 ∀x ∈ Dk. (VIPk)

We now recall an existence theorem for (VIP), which is related to this approximation (see Th. 4.2 from [25]).
We give the proof for reader’s convenience.

Proposition 3.1 (Hartman-Stampacchia). A necessary and sufficient condition that there exist a solution
to (VIP) is that there exists a number k such that ||xk||d < σk.
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Proof. If there exists a solution x to (VIP), then x is a solution to (VIPk) whenever ||x||d < σk.
If we suppose that ||xk||d < σk for some k, then xk is also a solution to (VIP). Indeed, given x ∈ R

n
+, we get

w = xk + ε(x − xk) ∈ Dk for ε > 0 sufficiently small. Thus, 0 ≤ 〈F (xk), w − xk〉 = ε〈F (xk), x − xk〉, and since
x is arbitrary we conclude that xk ∈ SOL(F ). �

From this proposition we conclude that all the sequences {xk} of solutions to (VIPk) satisfying ||xk||d = σk

for all k must be specially studied. We deal with such sequences by using the Basic Lemma. To this end, by
following the line of reasoning from [11] we give the next definition.

Definition 3.2. We denote by W the set of sequences {xk} in R
n
+, such that for each k ∈ N,

xk solves problem (VIPk) and ‖xk‖d = σk. (3.1)

We point out that the second requirement of (3.1) is verified if SOL(F ) is either empty or unbounded. Indeed,
if SOL(F ) = ∅ then ||xk||d = σk for all k by the above reasoning. If SOL(F ) is nonempty and unbounded, then
for any k there exists xk ∈ SOL(F ) such that ||xk||d ≥ k, and then we put σk = ||xk||d.

If W is an empty set, then SOL(F ) is nonempty and closed. The latter follows from the continuity of F .

The next result generalizes Theorem 3.8.6 from [3], which is a well-known existence theorem for copositive
matrices since q ∈ int SOL(M)∗ iff Wq(M) = {0} (see Prop. 2.2), and Theorem 1 from [12] for homogeneous of
degree γ > 0 functions.

Theorem 3.3. Let F be c-homogeneous.
(a) If W(F ) = {0}, then F ∈ Qb.
(b) If F = H + q is copositive, and Wq(H) = {0}, then SOL(F ) is nonempty and compact.

Proof. (a): Let q ∈ R
n be an arbitrary vector and suppose that there exists {xk} ∈ W for the function F + q.

There is a vector v such that up to subsequences xk

σk
→ v, and by (a) of the Basic Lemma for F k = F + q for

all k, we conclude that 0 
= v ∈ W(F + q) = W(F ), a contradiction. Thus, SOL(F + q) is nonempty and closed.
Its boundedness follows from Corollary 2.4(a). Therefore, F ∈ Qb since q was arbitrary.
(b): Suppose that there exists {xk} ∈ W . There is a vector v such that up to subsequences xk

σk
→ v. By (a) of

the Basic Lemma for F k = F for all k, we conclude that 0 
= v ∈ Wq(H), a contradiction. Thus, SOL(F ) is
nonempty and closed. Its boundedness follows from Corollary 2.4(a). �

As a consequence of this theorem we extend and generalize various coercive existence results from the lit-
erature: for generalized homogeneous functions (see [37]), for d-regular or strictly copositive functions being
homogeneous of degree γ > 0 (see [19] and [31] respectively), and for linear d-Garćıa functions (see [9]). To do
this, similarly as in [37], this time for F being c-homogeneous, we define the constants μ∗

inf and μ∗
sup as follows:

0 ≤ μ∗
inf = lim inf

||x||d→+∞
x≥0

|〈F (x), x〉|
||x||d c(||x||d) and μ∗

sup = lim sup
||x||d→+∞

x≥0

|〈F (x), x〉|
||x||d c(||x||d) < +∞.

Corollary 3.4. Let F be c-homogeneous. Then F ∈ Qb under any of the following conditions:
(a) the equation 〈F (x) − F (0), x〉 = −μ has no solutions (x, μ) ∈ Δd × [μ∗

inf , μ
∗
sup];

(b) F ∈ R(d) = G(d) ∩ R0.

Proof. (a): If 0 
= v ∈ W(F ), then 〈F (v) − F (0), v〉 ≤ 0. By hypothesis we may assume that ‖v‖d = 1. Since
μ∗

inf ≤ |〈F (v)−F (0), v〉| = −〈F (v)−F (0), v〉 ≤ μ∗
sup, we conclude that (v, 〈F (v)−F (0), v〉) solves the equation

in part (a), a contradiction. Thus, W(F ) = {0} and the result follows from Theorem 3.3.
(b): Let q ∈ R

n be an arbitrary vector and suppose that there exists {xk} ∈ W for the function F + q. There is
a vector v such that up to subsequences xk

σk
→ v. By (a) of the Basic Lemma for F k = F + q for all k, and since

F + q ∈ G(d) we get 0 
= v ∈ SOL(F − F (0)), a contradiction to F ∈ R0. Therefore, SOL(F + q) is nonempty
and closed. Its boundedness follows from Corollary 2.4(a). Thus, F ∈ Qb since q was arbitrary. �
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It is worth pointing out that part (a) holds if F is copositive and μ∗
inf > 0 whereas part (b) holds if F is

strictly copositive (see Ex. 1.3(e)). Moreover, as a consequence of this corollary we generalize Corollary 2.1
from [10] given for the linear complementarity problem.

Corollary 3.5. Let F be a c-homogeneous G(d)-function. It holds that: F ∈ Qb ⇐⇒ F ∈ R0 ⇐⇒ F ∈ R(d).

Proof. If F ∈ Qb, then by Proposition 2.2(d) we get SOL(F − F (0)) = {0}, thus, F ∈ R0 and F ∈ R(d) =
G(d) ∩ R0. If F ∈ R(d), then F ∈ R0 and by the above corollary we conclude that F ∈ Qb. �
Theorem 3.6. Let F be c-Moré.

(a) If U(F ) = {0}, then F ∈ Qb.
(b) If F = H + q is copositive, and Uq(H) = {0}, then SOL(F ) is nonempty and compact.

Proof. Proceed similarly as in the proof of Theorem 3.3, this time using (b) of the Basic Lemma and (b) of
Corollary 2.4. �

As a consequence of this theorem we deduce two coercive existence results from the literature for strongly
monotone functions (see [19]) and for strongly copositive functions (see [23]). We also extend a result for strictly
copositive functions satisfying the assumption of Ex. 1.3(c) (see [37]).

Corollary 3.7. Consider the following statements:
(a) F is strongly monotone;
(b) F is strongly copositive;
(c) F is c-Moré and strictly copositive;
(d) F ∈ Qb.

It holds that (a) =⇒ (b) =⇒ (c) =⇒ (d).

Proof. (a) ⇒ (b): It is obvious.
(b) ⇒ (c): Use Proposition 1.5(c).
(c) ⇒ (d): By hypothesis we have U(F ) = {0}. The result follows from Theorem 3.6(a). �

We next result summarizes some well-known coercive existence results concerning the pseudomonotone case.
Condition (a) appears in [24]. Condition (b) is called Crouzeix’s condition and appears in [4]. Condition (d)
is called Karamardian’s condition, appears in [23], and implies the nonemptiness and compactness of SOL(F )
without the pseudomonotonicity assumption. We give a proof by using our approach.

Theorem 3.8. Let F be pseudomonotone. The following four statements are equivalent:
(a) FEAs(F ) 
= ∅;
(b) V(F ) = {0};
(c) SOL(F ) is a nonempty compact convex set;
(d) there exists a compact convex set K ⊆ R

n
+ such that ∀x ∈ R

n
+ \ K ∃z ∈ K : 〈F (x), z − x〉 < 0.

Proof. (a)⇔(b): See Proposition 2.2(b).
(b)⇒(c): Suppose that there exists {xk} ∈ W . There is a vector v such that up to subsequences xk

σk
→ v.

By (c) of the Basic Lemma for F k = F for all k, we conclude that 0 
= v ∈ V(F ), a contradiction. Thus, SOL(F )
is nonempty and closed. Its boundedness and convexity follow from Corollary 2.4(c) and (2.3) respectively.
(b)⇐(c): It follows from Corollary 2.4(c).
(c)⇒(d): Take K = SOL(F ).
(d)⇒(c): By hypothesis W = ∅, thus, SOL(F ) is nonempty and closed. By (d) we also get that SOL(F ) ⊆ K. �
Corollary 3.9. If F is strictly monotone and FEA(F ) 
= ∅, then NCP(F) has a unique solution.

Proof. If 0 
= v ∈ V(F ), then v ≥ 0 and 〈F (x), v〉 ≤ 0 for all x ≥ 0. If x̄ ∈ FEA(F ), then 〈F (x̄), v〉 ≥ 0 and
hence 〈F (x̄), v〉 = 0. By hypothesis 〈F (x̄ + v)−F (x̄), (x̄ + v)− x̄〉 > 0, thus, 〈F (x̄ + v), v〉 > 0, a contradiction.
Therefore, V(F ) = {0} and SOL(F ) 
= ∅ by Theorem 3.8. For the uniqueness see Proposition 3.2 from [19]. �
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The nonemptiness of the solution set in the above corollary fails to hold if strict monotonicity is weakened
to mere monotonicity (see [29]).

4. Main sensitivity and stability results and bounds for the solution set

In this section we generalize some results from [3,9,15] where the copositive and pseudomonotone linear cases
are studied, and are similar to those from [11] where the multivalued case is studied. The result for c-Moré
functions have no analog for multifunctions in [11].

Theorem 4.1. If F̄ = H̄ + q̄ is c-homogeneous and Wq̄(H̄) = {0}, then there exists a neighborhood U of F̄
and a scalar r > 0 such that for all F = H + q in U being c-homogeneous, the following assertions hold:

(a) Wq(H) = {0};
if in addition, F is copositive then

(b) SOL(F ) is nonempty;
(c) ‖x‖d ≤ r for all x ∈ SOL(F ).

Proof. (a): Suppose on the contrary, that there exist {F k = Hk + qk} and {vk} such that D(F k, F̄ ) → 0
and 0 
= vk ∈ Wqk(Hk). By the c-homogeneity assumption we may assume that ‖vk‖d = 1 (see Eq. (2.1)
and Prop. 2.2(d)). Therefore, up to subsequences vk → v for some vector v. Moreover, since 0 ≤ vk ⊥
Hk(vk)−Hk(0) ≥ 0 and 〈Hk(0)+qk, vk〉 ≤ 0 for all k, by the continuous convergence of {F k} to F̄ we conclude
that 0 ≤ v ⊥ H̄(v) − H̄(0) ≥ 0 and 〈H̄(0) + q̄, v〉 ≤ 0, thus, 0 
= v ∈ Wq̄(H̄), a contradiction.
(b): Use Theorem 3.3 and (a).
(c): On the contrary suppose that there exist {F k = Hk+qk} and {xk} such that D(F k, F̄ ) → 0, xk ∈ SOL(F k),
and ||xk||d → +∞. Setting σk = ||xk||d, we deduce that xk

σk
→ v up to subsequences for some vector v. Clearly,

xk is a solution of (PVIPk) for F = F̄ such that ||xk||d = σk for all k, thus, we can apply (a) of the Basic
Lemma for F = F̄ and we obtain 0 
= v ∈ Wq̄(H̄), a contradiction. �

The next result asserts in particular that the class of Qb-functions is open in the set of copositive functions
from C(Rn

+; Rn)c. As far as we know, this result does not appear in the literature before.

Corollary 4.2. If F̄ ∈ Qb, then there exists a neighborhood U of F̄ such that F ∈ Qb for all F ∈ U being
copositive.

Proof. Since F̄ is Qb and c-homogeneous, then by Proposition 2.2(d) we conclude that SOL(F̄ − F̄ (0)) = {0}.
Therefore by (2.1) we get W−F̄ (0)(F̄ ) = {0} and from Theorem 4.1, there exists a neighborhood U of F̄ −
F̄ (0) such that W−F (0)(F ) = {0} for all F − F (0) ∈ U being c-homogeneous. Thus, SOL(F − F (0)) = {0}
and by definition F ∈ R0. If in addition, F is copositive, then F ∈ G(d) (see Ex. 1.3(e)) and F ∈ Qb by
Corollary 3.4. �
Remark 4.3. By proceeding similarly as in Theorem 1 from [13] and using the c-homogeneity and the contin-
uous convergence we can prove that the class of regular functions R = ∪d>0R(d) is open in C(Rn

+; Rn)c.

Theorem 4.4. If F̄ = H̄ + q̄ is c-Moré and Uq̄(H̄) = {0}, then there exists a neighborhood V of F̄ and a scalar
r > 0 such that for all F = H + q in V being copositive c-Moré, the following assertions hold:

(a) Uq(H) = {0};
(b) SOL(F ) is nonempty;
(c) ‖x‖d ≤ r for all x ∈ SOL(F ).

Proof. (a): Suppose on the contrary, that there exist {F k = Hk + qk} and {vk} such that D(F k, F̄ ) → 0
and 0 
= vk ∈ Uqk(Hk). We may assume that ‖vk‖d = 1. Indeed, since each Hk is c-Moré copositive
(see Rem. 1.2(a)) from 0 = 〈Hk(vk) − Hk(0), vk〉 ≥ c(||vk||d)||vk||d〈Hk( vk

||vk||d ) − Hk(0), vk

||vk||d 〉 ≥ 0 we get

〈Hk( vk

||vk||d ) − Hk(0), vk

||vk||d 〉 = 0. Moreover, 〈Hk(0) + qk, vk

||vk||d 〉 ≤ 0. Therefore, up to subsequences vk → v
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for some vector v and by the continuous convergence of {F k} to F̄ we conclude that 0 
= v ∈ Uq̄(H̄), a contra-
diction.
(b): Use Theorem 3.6 and (a).
(c): We proceed similarly as in the proof of part (c) of Theorem 4.1. If v is the vector of that proof, then by
applying (b) of the Basic Lemma for F = F̄ we obtain 0 
= v ∈ Uq̄(F̄ ), a contradiction. �
Theorem 4.5. If F̄ is pseudomonotone and V(F̄ ) = {0}, then there exists a neighborhood U of F̄ and a scalar
r > 0 such that for all F ∈ U the following assertions hold:

(a) V(F ) = {0};
if in addition, F is pseudomonotone then

(b) SOL(F ) is nonempty;
(c) ‖x‖d ≤ r for all x ∈ SOL(F ).

Proof. (a): Suppose on the contrary, that there exist {F k}, {vk} such that D(F k, F̄ ) → 0 and 0 
= vk ∈ V(F k).
We may assume that ‖vk‖d = 1. Therefore, up to subsequences vk → v for some vector v. Let us fix x ≥ 0, by
the choice of vk we have 〈F k(x), vk〉 ≤ 0. Taking limit and using the continuous convergence of {F k} to F̄ we
conclude that 〈F̄ (x), v〉 ≤ 0, and since x was arbitrary we get 0 
= v ∈ V(F̄ ), a contradiction.
(b): Use Theorem 3.8 and (a) above.
(c): We proceed similarly as in the proof of part (c) of Theorem 4.1. If v is the vector of that proof, then by
applying (c) of the Basic Lemma for F = F̄ we obtain 0 
= v ∈ V(F̄ ), a contradiction. �

We now establish a continuity property for the solution-set-mapping SOL associated to (NCP).

Theorem 4.6. The mapping SOL : C(Rn
+; Rn) ⇒ R

n is OSC at each F̄ .

Proof. Let {(F k, xk)} such that xk ∈ SOL(F k), D(F k, F̄ ) → 0 and xk → x. Therefore, 0 ≤ xk ⊥ F k(xk) ≥ 0.
Taking limit and by the continuous convergence of {F k} to F̄ we conclude that x ∈ SOL(F̄ ). �
Example 4.7. It is worth pointing out that in general the mapping SOL is not continuous. Indeed, we slightly
modify Example 2.2 from [36] and obtain that for

F̄ (x) =

⎧⎪⎨
⎪⎩

−4x + 1, x ∈ [0, 1
4 [;

0, x ∈ [14 , 3
4 [;

4x − 3, x ∈ [34 , +∞[;
and F k(x) =

⎧⎪⎨
⎪⎩

−4x + 1, x ∈ [0, 1
4 [;

1
kx − 1

4k , x ∈ [ 14 , 12k−1
16k−4 [;

4x − 3, x ∈ [12k−1
16k−4 , +∞[;

we have that SOL(F̄ ) = {0} ∪ [14 , 3
4 ], SOL(F k) = {0; 1

4}, and {F k} converges continuously to F̄ (see Th. 7.14
from [34]). However, there are no solutions xk in SOL(F k) such that xk → 3

4 , thus, SOL is not ISC at F̄ .

We now obtain some estimates for the solution set similar to those from [11] (where the multivalued case is
studied) and [28] (where the linear monotone case is studied).

Theorem 4.8.

(a) If F is c-homogeneous and MF < 0, then SOL(F ) ⊆
{
x ≥ 0 : c(||x||d) ≤ max(c(0), ||F (0)||

dmin·|MF |)
}

;

(b) if F is c-Moré and mF > 0, then SOL(F ) ⊆
{
x ≥ 0 : c(||x||d) ≤ max(c(0), ||F (0)||

dmin·mF
)
}

;

(c) if F is pseudomonotone and 0 
= x̄ ∈ FEAs(F ), then SOL(F ) ⊆
{

x ≥ 0 : ||x||1 ≤ 〈F (x̄),x̄〉
min1≤i≤n fi(x̄)

}
.

Proof. (a): Assume that MF < 0 and let 0 
= x ≥ 0. By Proposition 1.5(b) we get

〈F (x), x〉 = 〈F (x) − F (0), x〉 + 〈F (0), x〉 ≤ MF ||x||d c(||x||d) + ||F (0)|| · ||x||

and since ||x||d ≥ dmin · ||x|| we obtain 〈F (x), x〉 ≤ ||x||{MF c(||x||d)dmin + ||F (0)||}. If 0 
= x ∈ SOL(F ) then
MF c(||x||d)dmin + ||F (0)|| ≥ 0.
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(b): Assume that mF > 0 and let 0 
= x ≥ 0. By Proposition 1.5(a) we get

〈F (x), x〉 = 〈F (x) − F (0), x〉 + 〈F (0), x〉 ≥ mF ||x||d c(||x||d) − ||F (0)|| · ||x||

and since ||x||d ≥ dmin · ||x|| we obtain 〈F (x), x〉 ≥ ||x||{mF c(||x||d) dmin − ||F (0)||}. If 0 
= x ∈ SOL(F ) then
mF c(||x||d)dmin − ||F (0)|| ≤ 0.
(c): If x ∈ SOL(F ) then 〈F (x), x̄ − x〉 ≥ 0. By hypothesis 〈F (x̄), x̄ − x〉 ≥ 0, which in turn implies 〈F (x̄), x̄〉 ≥
〈F (x̄), x〉 ≥ min1≤i≤n fi(x̄)||x||1. The results holds since by hypothesis min1≤i≤n fi(x̄) > 0. �

It is worth pointing out that either the hypothesis of (b) or that of (c) implies that SOL(F ) is nonempty and
compact (see Prop. 1.5(e), Cor. 3.7 and Th. 3.8).

5. Piecewise affine case

In this section we study the (NCP) within the class of piecewise affine functions defined on R
n
+, which we

denote by A(Rn
+, Rn). This class in contained in C(Rn

+, Rn) (see [34]), thus, our results remain valid.
By proceeding similarly as in [3] we prove that under an homogeneity assumption, the solution-set-mapping

behaves as that for the (LCP) (see Cor. 5.5 below).

Firstly, we consider the solution-set-mapping Sol : R
n ⇒ R

n defined by Sol(q) := SOL(F̄ + q) for F̄ being a
fixed function from A(Rn

+, Rn).

Proposition 5.1.

(a) There exists λ > 0 such that Sol is locally UL(λ) at each q̄ ∈ R
n, i.e., there exists a neighborhood U of q̄

such that Sol(q) ⊆ Sol(q̄) + λ‖q − q̄‖B for all q ∈ U ;
(b) if Sol(q̄) is bounded, then Sol is usc at q̄. Moreover, there exists a constant r > 0 and a neighborhood U

of q̄ such that for all q ∈ U it holds that ||x|| ≤ r for all x ∈ Sol(q).

Proof. (a): It is sufficient to prove that Sol is piecewise polyhedral since by Robinson’s result (see [33]) a piecewise
polyhedral multifunction is locally UL(λ) for some λ > 0. Indeed, gph F̄ =

⋃m
i=1 Pi where each Pi ⊆ R

n ×R
n is

a polyhedral set. We define the set Σ =
{
(q, x, y) : x ≥ 0, y = F̄ (x), y + q ≥ 0, 〈y + q, x〉 = 0

}
. If J̄ = I \J , then

Σ =
⋃m

i=1

⋃
J⊆I Xi,J where Xi,J := {(q, x, y) : (x, y) ∈ Pi, (y + q)J = 0, (y + q)J̄ ≥ 0, xJ̄ = 0} is a polyhedral

set and hence Σ is piecewise polyhedral. If Π is the orthogonal projection defined by Π(q, x, y) := (q, x) then
gph Sol = Π(Σ). Therefore, gph Sol is a finite union of polyhedral sets.
(b): We proceed similarly as in Corollary 7.2.3 from [3]. If Sol(q̄) is empty, so is Sol(q) for q sufficiently close to q̄
and the result holds vacuously. If Sol(q̄) is nonempty, then since it is bounded and closed there exists an open set
V = r int B with r > 0 such that by restricting U from (a) if necessary, we get Sol(q) ⊆ Sol(q̄) + λ||q − q̄||B ⊆ V
for all q ∈ U . Thus, Sol is usc at q̄ and Sol(q) ⊆ rB for all q ∈ U . �

Remark 5.2. (a) Part (a) of the above proposition implies that NCP(F̄ ) is semistable, i.e., for every open
set U containing SOL(F̄ ), there exist scalars μ, ε > 0 such that for every continuous function F satisfying
ω = supx∈R

n
+∩ clU ||F (x) − F̄ (x)|| < ε, it holds that SOL(F ) ∩ U ⊆ SOL(F̄ ) + μωB. In fact, NCP (F̄ ) is

semistable iff Sol is locally UL(λ) at 0 (see Prop. 5.5.5 from [8]).
(b) If F̄ is linear and Sol(q) 
= ∅ for all q ∈ R

n, then Sol is Lipschitzian iff Sol is single-valued (see [17]).
(c) Part (a) of the above proposition implies that Sol is calm at every q̄ ∈ dom Sol (see [34]). Moreover, since
F̄ ∈ A(Rn

+, Rn) the set domSol is closed (see Prop. 3 from [14]).

Secondly, we study the solution-set-mapping SOL : A(Rn
+, Rn)c ⇒ R

n defined on the set of c-homogeneous
piecewise affine functions on R

n
+. To this end, we shall employ the equivalent metric Do.
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Theorem 5.3. Let c be nondecreasing. If F̄ = H̄ + q̄ ∈ A(Rn
+; Rn)c and Wq̄(H̄) = {0}, then there exist

scalars r, μ > 0 and a neighborhood V of F̄ in (A(Rn
+; Rn)c, Do) such that for all F = H + q ∈ V being

copositive, the following assertions hold:

(a) SOL(F ) is nonempty;
(b) ‖x‖d ≤ r for all x ∈ SOL(F );
(c) SOL(F ) ⊆ SOL(F̄ ) + μ Do(F, F̄ ) B.

Proof. (a)-(b): By Theorem 4.1 there exists a neighborhood U of F̄ such that parts (a) and (b) hold in U .
By (b) of Proposition 1.8 the same holds in a neighborhood V of F̄ on (A(Rn

+; Rn)c, Do).
(c): We proceed similarly as in Theorem 7.5.1 from [3]. Let F ∈ V be copositive and x ∈ SOL(F ). Therefore,
0 ≤ x ⊥ F (x) ≥ 0 and ‖x‖d ≤ r by (b). For p = F (x)− F̄ (x) we have 0 ≤ x ⊥ F̄ (x) + p ≥ 0, thus, x ∈ Sol(p) =
SOL(F̄ +p). By Proposition 1.8(a) and since c is nondecreasing we have ||p||∞ ≤ c(r)Do(F, F̄ )+||F (0)−F̄ (0)||∞,
thus, p can be made arbitrarily close to 0 by restricting V if necessary and by Proposition 5.1 we conclude that
there exists λ > 0 such that Sol(p) ⊆ Sol(0) + λ‖p‖B. Since Sol(0) = SOL(F̄ ) and ||p|| ≤ √

n||p||∞ we conclude
that Sol(p) ⊆ SOL(F̄ ) + λ

√
n [ c(r)Do(F, F̄ ) + ||F (0)− F̄ (0)||∞] B, thus, x is in the right-hand side set. Since x

was arbitrary, then part (c) holds for μ = λ
√

n max{1, c(r)}. �

Remark 5.4. Under the hypotheses of the above theorem and as a consequence of it, we conclude that the
following properties hold within the class of copositive mappings from A(Rn

+; Rn)c:
(a) There exists μ > 0 such that for every x ∈ SOL(F ) for F close to F̄ , it holds that d(x, SOL(F̄ )) ≤ μDo(F, F̄ ).
This is the so-called local error bound property and is known to be equivalent to part (c) of the theorem (see [17]).
(b) For every ε > 0 there exists δ > 0 such that SOL(F )∩(SOL(F̄ )+εB) 
= ∅ for every F satisfying Do(F, F̄ ) < δ.
This property is called stability of NCP(F̄ ) and generalizes Corollary 6 from [16] valid for the affine case.

For (LCP) it is common to denote by SOL(q, M) and FEAs(q, M) its solution and strictly feasibility sets
respectively. As a consequence of the preceding theorem we deduce Theorem 7.5.1 from [3].

Corollary 5.5. If M̄ ∈ R
n×n and q̄ ∈ int SOL(0, M̄)∗, then there exist scalars ε, r, μ > 0, such that for all q

and M being copositive satisfying ||M − M̄ || + ||q − q̄|| < ε, the following statements hold:

(a) SOL(q, M) is nonempty;
(b) ‖x‖ ≤ r for all x ∈ SOL(q, M);
(c) SOL(q, M) ⊆ SOL(q̄, M̄) + μ

(||M − M̄ || + ‖q − q̄‖)B.

Proof. By Example 1.3 and Proposition 2.2(a) F (x) = Mx + q and F̄ (x) = M̄x + q̄ satisfy the hypotheses of
Theorem 5.3 for any d > 0 and c(λ) = λ. Moreover, the metric Do(F, F̄ ) = ||M − M̄ ||d,∞ + ||q − q̄||∞ where
|| · ||d,∞ is the matrix norm induced by || · ||d and || · ||∞ is equivalent to ||M − M̄ || + ||q − q̄||. �

The above corollary is related to several characterizations of bounded solutions for copositive-plus matrices
(see [6], Th. 2 of [27] and Cor. 7.5.2 of [3]). Let M̄ be copositive-plus i.e., 〈M̄x, x〉 ≥ 0 for all x ≥ 0 and
[ x ≥ 0, 〈M̄x, x〉 = 0 ⇒ (M̄ + M̄�)x = 0 ]. The following equivalences hold: SOL(q̄, M̄) 
= ∅ and bounded
iff q̄ ∈ int SOL(0, M̄)∗ iff FEAs(q̄, M̄) 
= ∅ (see Cor. 6.3 of [9]) iff there exists a scalar ε > 0 such that
SOL(q, M) 
= ∅ for all q and M satisfying ||M − M̄ || + ||q − q̄|| < ε iff there exist scalars ε, r > 0 such that
SOL(q, M) 
= ∅ for all q and M copositive satisfying ||M − M̄ || + ||q − q̄|| < ε, and furthermore ‖x‖ ≤ r for all
x ∈ SOL(q, M).
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