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A CLASS OF MINIMUM PRINCIPLES FOR CHARACTERIZING
THE TRAJECTORIES AND THE RELAXATION OF DISSIPATIVE SYSTEMS
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Abstract. This work is concerned with the reformulation of evolutionary problems in a weak form
enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is ac-
complished by expressing the evolutionary problem in variational form, i.e., by identifying a functional
whose minimizers represent entire trajectories of the system. The particular class of functionals under
consideration is derived by first defining a sequence of time-discretized minimum problems and subse-
quently formally passing to the limit of continuous time. The resulting functionals may be regarded
as a weighted dissipation-energy functional with a weight decaying with a rate 1/ε. The corresponding
Euler-Lagrange equation leads to an elliptic regularization of the original evolutionary problem. The
Γ-limit of these functionals for ε → 0 is highly degenerate and provides limited information regarding
the limiting trajectories of the system. Instead we seek to characterize the minimizing trajectories
directly. The special class of problems characterized by a rate-independent dissipation functional is
amenable to a particularly illuminating analysis. For these systems it is possible to derive a priori
bounds that are independent of the regularizing parameter, whence it is possible to extract convergent
subsequences and find the limiting trajectories. Under general assumptions on the functionals, we show
that all such limits satisfy the energetic formulation (S) & (E) for rate-independent systems. More-
over, we show that the accumulation points of the regularized solutions solve the associated limiting
energetic formulation.
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1. Introduction

The formation of microstructure in quasi-static problems and its connection with non-attainment has re-
ceived considerable attention, particularly following the seminal paper of Ball and James [3]. A vast body of
mathematical literature exits at present that makes that connection sharp. The evolution of microstructure
is a somewhat more complex problem whose systematic study is comparatively less advanced. A fundamental
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question concerns whether entire dissipative processes involving microstructure evolution can be given a vari-
ational characterization as solutions of a minimum problem. The present paucity of such minimum principles
constitutes a severe impediment to the application of modern tools of the calculus of variations to evolutionary
problems.

In their classical formulation, the class of evolutionary problems under consideration here take place in a
Banach space Y and their strong form is the doubly nonlinear differential inclusion (cf. [8,34])

0 ∈ ∂Ψ(u̇(t)) + DE(t, u(t)), (1.1a)

u(0) = u0, (1.1b)

where Ψ : Y → R∞ := R∪{∞} is a convex dissipation potential; E : Y → R∞ is an energy function; ∂Ψ is the
subdifferential of Ψ, representing the system of dissipative forces; DE is the Fréchet derivative of E , representing
the conservative force system; and time t varies in the interval [0, T ]. Equation (1.1a) establishes a balance
between dissipative forces and conservative forces, and the trajectory u(t) of the system is the result of this
balance and of the initial condition (1.1b). We regard (1.1) as a model problem furnishing a convenient illus-
tration of the basic strategy proposed in this work. As a model problem, (1.1) is general enough to describe,
e.g., the quasistatic viscoelasticity of solids under the assumption of linearized kinematics; heat conduction;
viscous drag on a solid immersed in a Stokes’ flow; and other cases of interest. However, it bears emphasis that
the basic strategy for formulating variational principles for trajectories developed here is applicable to more
general dissipative systems, including systems with Newtonian viscosity and finite-deformation viscoplasticity
(cf., e.g., [45] for examples). However, these extensions entail a certain degree of added complexity, e.g., in
terms of geometrical mechanics (cf., e.g., [30]), and will not be pursued here in the interest of simplicity.

The aim of this paper is to reformulate the evolutionary problem (1.1) in a weaker form enabling the consid-
eration of systems where E is not differentiable or not even lower semi-continuous, thus allowing for solutions
that may exhibit evolving microstructures. This reformulation is accomplished by expressing (1.1) in variational
form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. A number of
variational principles have been proposed for characterizing entire trajectories of dissipative systems, including
the Brézis-Ekeland variational principle ([5], see also [16,40], Th. 8.93), Gurtin’s variational principle for linear
viscoelasticity ([18,19]), and others. An obvious – albeit contrived, as it unnaturally doubles the order of the
problem – alternative variational characterization of trajectories is to minimize an L2-norm of the residual of
(1.1a). This multiplicity of proposals begs the question of what constitutes a physically and mathematically
meaningful variational characterization, if any, of the trajectories of dissipative systems.

In this work, we investigate a possible answer to this question, which builds upon recent work on time-
discretized incremental variational principles for dissipative systems. It is now widely appreciated that a carefully
crafted time discretization of evolutionary problems may result in a sequence of minimum problems characteriz-
ing the successive states of the system. (e.g., [2,6,9,10,20–23,29,33,35,37–39,41,45]). This sequence of minimum
problems must be solved causally: the first problem propagates the known initial conditions; the second prob-
lem propagates the solution of the first problem; and so on. Instead of this time-stepping solution procedure,
we proceed to combine all the incremental functionals under a single functional for the entire trajectory by
recourse to the notion of Pareto optimality of multi-objective optimization problems (cf., e.g., [7]). Specifically,
the resulting functional for the – still time-discretized – trajectories is constructed as a weighted sum of all the
incremental functionals. The weights applied to the individual incremental functionals are known as Pareto
weights. In this context, the effect of causality is to introduce a strict ordering in the set of Pareto weights
ensuring that the first incremental problem is accorded disproportionately higher priority over the second, the
second over the third, and so on. This is accomplished by introducing a sequence of Pareto weights, parameter-
ized by a small parameter ε, with the property that the ratio between successive weights becomes vanishingly
small as ε→ 0. The last step in the derivation of the trajectory-wise functional is to formally pass to the limit
of continuous time. In this limit, the discrete Pareto weights are replaced by a time-dependent Pareto weighting
function. For example, for a particular choice of Pareto weighting function of exponential form, the resulting
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minimum problem is

Iε(u) = e−T/εE(T, u(T )) +
∫ T

0

e−t/ε

[
Ψ(u̇) +

1
ε
E(t, u)

]
dt. (1.2)

We call Iε a weighted dissipation-energy functional.
Under conditions of sufficient smoothness, the Euler-Lagrange equations of this functional are

DΨ(u̇) + DE(t, u) − εD2Ψ(u̇)ü = 0, (1.3a)

u(0) = u0, (1.3b)

DΨ(u̇(T )) + DE(T, u(T )) = 0, (1.3c)

which reveals that the functional (1.2) defines an elliptic regularization of the classical problem (1.1). Under an
additional requirement of stability, the classical problem (1.1) is finally replaced by the minimum problem

inf
u∈Y

Iε(u) (1.4)

where Y represents some suitable space of paths u : [0, T ] → Y . This completes the reformulation of the
evolutionary problem (1.1) as a minimum problem for trajectories.

This reformulation in terms of weighted dissipation-energy functionals opens the way for the application of
the tools of modern calculus of variations to evolutionary problems. Of particular interest is the existence of
trajectories for the regularized problem (1.4), and its causal limit as ε→ 0. We are specifically interested in the
case in which E and hence Iε are not lower semi-continuous and, therefore, the infimum of Iε is not attained
in general. A natural extension of this program is to consider sequences of dissipation and energy functionals,
Ψk and Ek, respectively, arising as a result of approximation, perturbation, or other modifications of the base
functionals. In this case, we become interested in understanding the joint limit of ε→ 0 and k → ∞. A natural
choice of topology for understanding these limits is the topology of Γ-convergence (e.g., [11,12]). Unfortunately,
we find that the Γ-limits of Iε are highly degenerate and provide limited information regarding the limiting
trajectories of the system. Therefore, we instead attempt to characterize the minimizers directly.

A class of problems that is amenable to effective analysis concerns rate-independent systems for which the
dissipation potential Ψ is homogeneous of degree 1. A striking first property of rate-independent problems is
that all minimizers uε of Iε satisfy the energy balance

E(t, u(t)) +
∫ t

s

Ψ(u̇(τ))dτ = E(s, u(s)) +
∫ t

s

∂τE(τ, u(τ))dτ,

independently of the value of ε. (In Sect. 4.2 we replace
∫ t

s Ψ(u̇(τ))dτ by the more general version
∫ t

s Ψ(du) that
holds for BV functions.) Under suitable coercivity assumptions it is then possible to derive a priori bounds for
uε which likewise are independent of ε, with the result that it is possible to extract convergent subsequences
and find limiting functions u. Under very general assumptions we show that all such limits satisfy the energetic
formulation for rate-independent systems of Mielke et al. ([15,26,33–35] and the survey [29]), i.e., they satisfy
the stability condition (S) and the energy balance (E). Moreover, we show that if (Ψk)k∈N continuously converges
to Ψ and Ek Γ-converges to E in the weak topology of a Banach space, then the accumulation points of the
family (uε,k)ε>0,k∈N for ε, 1/k → 0 solve the associated limiting energetic formulation. Related relaxations
and Γ-limits for rate-independent systems are treated in [17,24,28,32,36,44] by considering the sequence of
incremental problems. In the latter works, convergence of the time-incremental solutions associated with the
Ek and Ψk to a solution of the limit problem is established under conditions similar to those considered here.

2. Formal derivation of the variational principle for trajectories

A common device for reducing evolutionary problems of the form (1.1) to a sequence of variational problems
is time discretization (e.g., [2,26,35,38,45]). Specifically, suppose that we are given the state u0 of the system
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at time t0 = 0 and wish to approximate the solution un at times tn = n�t, n = 1, . . . , N . A sequence of
minimum problems that delivers consistent approximations to the solution of the continuous-time evolutionary
problem (1.1) is [38]

inf
un+1∈Y

Fn+1(un+1;un), n = 0, . . . , N − 1, (2.1)

where

Fn+1(un+1;un) = �tΨ
(
un+1 − un

�t
)

+ E(tn+1, un+1) − E(tn, un)

is an incremental functional that combines energy and kinetics. In addition, in (2.1) it is tacitly understood
that the problems are solved causally: problem n = 0 is solved first with initial conditions u0 in order to
computed u1; subsequently, problem n = 1 is solved to compute u2, taking the solution u1 of the preceding
problem as initial condition; and so on. We note that the datum −E(tn, un) is added to (2.1) so that kinetic
and energy terms are of the same order in �t.

We wish instead to collect the sequence (2.1) of incremental problems into a single minimum problem for
the entire trajectory u = {u1, . . . , uN}. In the theory of optimization, a standard device for combining multiple
objective functions is supplied by the concept of Pareto optimality (cf., e.g., [7]). In this spirit, a candidate
functional on trajectories is

Ĩ(u;λ) =
N−1∑
n=0

λn+1Fn+1(un+1;un)

where λ = {λ1, . . . , λN} are positive Pareto weights. However, it order to ensure causality it is necessary to
choose the weights in such a way that the minimization of the single functional I(u;λ) with respect to the entire
trajectory u is equivalent to the sequential solution of the incremental problems (2.1). This is accomplished
by introducing the ordering: λ1 � λ2 � . . . , which accords disproportionately larger importance to the first
incremental problem relative to the second; to the second incremental problem relative to the third, and so
on. More specifically, we may accomplish this causal ordering by considering a sequence of positive weights
λε

1 > λε
2 > . . . parameterized by a real parameter ε ≥ 0 and such that

lim
ε→0

λε
n+1

λε
n

= 0. (2.2)

Inserting these weights into I(u;λ) gives

Ĩ(u;λε) =
N−1∑
n=0

λε
n+1

{
Ψ

(
un+1 − un

�t
)

+
E(tn+1, un+1) − E(tn, un)

�t
}
�t. (2.3)

Suppose, in addition, that there is a function λε > 0 such that

λε
n = λε(tn). (2.4)

Then, causality requires λε be monotonically decreasing, and the limiting condition (2.2) requires that

lim
ε→0

λε(b)
λε(a)

= 0, ∀a, b ∈ [0, T ], a < b. (2.5)

Inserting (2.4) into (2.3) we obtain

Ĩ(u;λε) =
N−1∑
n=0

λε(tn+1)
{

Ψ
(
un+1 − un

�t
)

+
E(tn+1, un+1) − E(tn, un)

�t
}
�t.
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This functional may be regarded as a time discretization of the continuous-time functional

Ĩ(u;λε) =
∫ T

0

λε

[
Ψ(u̇) +

d
dt

E(t, u)
]
dt.

Alternatively, an integration by parts gives the functional in the from

Ĩ(u;λε) = λε(T )E(T, u(T ))− λε(0)E(0, u(0)) +
∫ T

0

[
λεΨ(u̇) − λ̇εE(t, u)

]
dt. (2.6)

Given sufficient smoothness, the stationarity condition for Ĩ(u;λε) with prescribed initial condition u(0) = u0

is

δĨ(u;λε) = λε(T )DE(T, u(T ))v(T ) +
∫ T

0

[
λεDΨ(u̇)v̇ − λ̇εDE(t, u)v

]
dt = 0,

where the variations v can be taken, e.g., to be smooth and have compact support within the interval (0, T ].
An integration by parts further gives

δĨ(u;λε) = λε(T )
[
DΨ(u̇(T )) + DE(T, u(T ))

]
v(T ) +

∫ T

0

[
− d

dt
(
λεDΨ(u̇)

) − λ̇εDE(t, u)
]
v dt = 0

and the corresponding Euler-Lagrange equations follow as

λε(t)D2Ψ(u̇)ü + λ̇ε(t)[DΨ(u̇) + DE(t, u)] = 0, (2.7a)

u(0) = u0, (2.7b)

DΨ(u̇(T )) + DE(T, u(T )) = 0. (2.7c)

We assume that λ̇ε/λε ↓ −∞ uniformly on [0, T ], which implies (2.5), and thus (2.7) may be regarded as an
elliptic regularization of the evolutionary problem (1.1). An admissible and particularly simple choice of causal
weights is obtained by assuming that

λ̇ε(t)
λε(t)

= −1/ε,

which gives
λε(t) = e−t/ε, (2.8)

where, for definiteness, we have set λε(0) = 1. For this particular choice of weights, the functional (2.6) becomes

Ĩε(u) = Iε(u) − E(0, u(0)) (2.9)

with

Iε(u) = e−T/εE(T, u(T )) +
∫ T

0

e−t/ε
[
Ψ(u̇) +

1
ε
E(t, u)

]
dt.

Since u(0) = u0 is a given initial datum, Ĩε differs from Iε by an inconsequential additive constant. For definite-
ness, henceforth we choose to work with the functional Iε and call it the weighted dissipation-energy functional.
The corresponding Euler-Lagrange equations (2.7) reduce to

− εD2Ψ(u̇)ü+ DΨ(u̇) + DE(t, u) = 0, (2.10a)

u(0) = u0, (2.10b)

DΨ(u̇(T )) + DE(T, u(T )) = 0, (2.10c)
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whence the elliptic character of the regularization (2.10a) is particularly apparent.
We now may regard the one-parameter family of minimum problems:

inf
u∈Y, u(0)=u0

Iε(u), (2.11)

where Y is some suitable space of trajectories u : [0, T ] → Y , as a continuous-time version of the sequence (2.1)
of incremental problems. In particular, one would expect that the limit of �t→ 0 of (2.1) and the limit of ε→ 0
of (2.11) characterize the same trajectories, and that these trajectories satisfy (1.1) in some appropriate sense.
Establishing this connection rigorously is beyond the scope of this paper. Instead, we shall simply postulate
(2.11) as the fundamental physical principle of interest and proceed to elucidate its properties and behavior in
the strict causal limit of ε → 0. A partial justification is obtained from the analysis of the examples discussed
in the following section.

3. Three illustrative examples

The following examples illuminate the connections between the minimizers uε of the weighted dissipation-
energy functional Iε and the solution u of the original problem (1.1).

3.1. A scalar viscous example

As a prototypical double-well potential we consider the tri-quadratic energy function

Ftq(u) =

⎧⎪⎪⎨⎪⎪⎩
1
2 (u+1)2 for u ≤ − 1

2 ,

1
4 − 1

2u
2 for |u| ≤ 1

2 ,

1
2 (u−1)2 for u ≥ 1

2 ,

(3.1)

and the associated evolutionary problem

u̇+ F ′
tq(u) − δ = 0,

u(0) = −1,

with δ ∈ (1/2, 1). This is a gradient flow for the potential E : u �→ Ftq(u)− δu; and since F ′
tq is piecewise linear,

it is possible to calculate the exact solution u. This solution is strictly monotone and for t→ ∞ it converges to
the unique steady state u = 1 + δ. We additionally fix T such that u(T ) = 1. The weighted dissipation-energy
functional (2.9) for uε : [0, T ] → R takes the form

Iε(u) = e−T/εE(u(T )) +
∫ T

0

e−t/ε
(1

2
u̇2 +

1
ε

(
Ftq(u) − δu

))
dt

and the associated Euler-Lagrange equations (1.3) reduce to

− εü+ u̇+ F ′
tq(u) − δ = 0,

u(0) = −1,

u′(T ) + F ′
tq(u(T )) − δ = 0. (3.2)

This problem can conveniently be analyzed in the (u, u̇) phase plane, cf. Figure 1. The phase portrait follows
readily from the piecewise linear structure of (3.2). Thus, the region u ≤ −1/2 follows from the identity
−εü + u̇ + u + 1 − δ = 0 and corresponds to a linear saddle at (u, u̇) = (δ−1, 0), which is outside the domain
u ≤ −1/2. Similarly, the region |u| ≤ 1/2 is governed by the identity −εü+ u̇ − u− δ = 0, which corresponds
to a the source point at (−δ, 0), again outside the domain. For u ≥ 1/2 we again have a linear saddle,
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Figure 1. (a) Orbit for ε = 0. (b) Orbit for ε > 0 and three invariant straight lines.

now located inside the domain at (1 + δ, 0). A closer analysis of the invariant manifolds associated with the
three fixed points, including those which are not in the correct domains, shows that any solution uε satisfying
(3.2) has to stay ε-close to the graph u̇ = δ − F ′

tq(u).

3.2. A scalar rate-independent problem

Rate-independent systems are in sharp contrast to systems with viscosity in that the latter possess an intrinsic
time scale of viscous relaxation, whereas the former lack a time-scale and can react instantaneously via jumps.
As a simple illustrative example we consider the weighted dissipation-energy functional

Iε(u) = e−T/εE(T, u(T )) +
∫ T

0
e−t/ε

(
ρ|u̇(t)| + 1

εE
(
t, u(t)

))
dt,

with E(t, u) = Ftq(u(t))−�(t)u(t),

with ρ ∈ (0, 1), u : [0, T ] → R and � : [0, T ] → R.
The problem is now nonsmooth, because the dissipation function Ψ(v) = ρ|v|, while convex, is not differen-

tiable at the origin. We have ∂Ψ(v) = ρ Sign(v), where

Sign(v) = {−1} for v ∈ [−∞, 0),
Sign(0) = [−1, 1],
Sign(v) = {1} for v ∈ (0,∞],

is the multi-valued signum function, and the Euler-Lagrange equation is given by [1]

s(t) ∈ ρ Sign(u̇(t)),

− εṡ(t) + s(t) + F ′
tq(u(t)) = �(t), a.e. in [0, T ], (3.3)

where we assume that u ∈ BV([0, T ]) and s ∈ W1,1([0, T ]). The first of these equations tells us that ± u̇ > 0
implies s = ± ρ. Hence, multiplying the second equation by u̇ we obtain

ρ|u̇| + F ′
tq(u)u̇ = �(t)u̇. (3.4)

Integration over time gives the energy balance

Ftq(u(t)) − �(t)u(t) +
∫ t

0

ρ|u̇(t)|dt = Ftq(u(0)) − �(0)u(0) −
∫ t

0

�̇(t)u(s)ds.
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u(t)
2

−1
63
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(a)
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F ′
tq−ρ

F ′
tq+ρ

(b)

Figure 2. (a) u(t) (full line with jumps) and �(t) (dashed line) as functions of t. (b) Hysteretic
behavior with jumps in the (u, �)-plane.

Surprisingly, this equation is independent of ε, which is a general feature of the rate-independent case, see (4.4)
and Proposition 4.1. In the scalar case it is easy to construct the solution from energy balance. At points where
u is differentiable (3.4) together with s ∈ Sign(u̇) provide the differential inclusion

0 ∈ ρ Sign(u̇) + F ′
tq(u) − �(t).

In addition, we have the jump condition

Ftq(u(t+0)) − �(t)u(t+0) + ρ
∣∣u(t+0)−u(t−0)

∣∣ = Ftq(u(t−0)) − �(t)u(t−0).

In the special case �(t) = min{t−1, 5−t} on the interval [0, 8] and u(0) = −2 we obtain the solution

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2 for t ∈ [0, ρ],
t− ρ− 2 for t ∈ [ρ, 1+ρ),
t− ρ for t ∈ (1+ρ, 3],
3 − ρ for t ∈ [3, 3+2ρ],

6 − t+ ρ for t ∈ [3+3ρ, 5+ρ),
4 − t+ ρ for t ∈ (5+ρ, 8].

This is also the solution of the global (S) & (E) energetic formulation discussed subsequently.

3.3. Linear parabolic problems

On the Hilbert space H the linear evolutionary problem

u̇+Au = �(t),

u(0) = u0, (3.5)

defines an abstract parabolic problem when A : D(A) → H is self-adjoint and positive definite, i.e., 〈Av, v〉 ≥
α‖v‖2 with α > 0. For s ≥ 0 we set Xs = D(As/2) which is again a Hilbert space when equipped with the
graph norm. For s < 0 we let Xs = X∗

−s, the dual of X−s. We will use the well-known fact, that the unique
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solution u of (3.5) satisfies the estimate (see e.g., [42])

‖u‖L2([0,T ],X3) + ‖u̇‖L2([0,T ],X1) + ‖ü‖L2([0,T ],X−1) ≤ C
(
‖�‖L2([0,T ],X0) + ‖�̇‖L2([0,T ],X−1) + ‖u0‖X2

)
. (3.6)

Next we consider the associated minimization problem for

Iε(u) = e−T/εE(T, u(T )) +
∫ T

0 e−t/ε
(

1
2 〈u̇, u̇〉 + 1

ε E(t, u)
)
dt,

with E(t, u) = 1
2 〈Au, u〉 − 〈�(t), u〉,

where 〈·, ·〉 denotes the scalar product in H = X0. The corresponding Euler-Lagrange equation is

− εü+ u̇+Au = �(t),

u(0) = u0,

u̇(T ) +Au(T ) = �(T ). (3.7)

In [25], Chapter 6, this equation is called the elliptic regularization of (3.5). It is shown there that (3.7) has
a unique solution which satisfies similar estimates to those given for u in (3.6). Let u∗ and uε be the unique
solutions of (3.5) and (3.7), then the estimate

∥∥u∗ − uε

∥∥
L2((0,T ),X0)

≤ ε

α
‖ü∗‖L2((0,T ),X−1) (3.8)

holds, which again shows that the weighted dissipation-energy functional Iε is useful to construct approximate
solutions to (3.5). For the proof of this result, we define the difference w = uε − u∗ which satisfies the problem

− εẅ + ẇ +Aw = εü∗, (3.9a)

w(0) = 0, (3.9b)

ẇ(T ) +Aw(T ) = 0. (3.9c)

We begin by noting that ‖ü∗‖L2([0,T ],X−1) is finite, see (3.6). Next we set

ρ(t) =
1
2
〈w,w〉 =

1
2
‖w‖2

X0

and multiply (3.9a) by w to obtain

αρ+
ε2

2α
‖ü‖2

X−1
≥ ε‖ü∗‖X−1‖w‖X1 ≥ 〈εü∗, w〉 = −ερ̈+ ε〈ẇ, ẇ〉 + ρ̇+ 〈Aw,w〉 ≥ −ερ̈+ ρ̇+ 2αρ.

Using the boundary conditions (3.9b) and (3.9c) for w we find the differential estimate

− ερ̈+ ρ̇+ αρ ≤ ε2

2α
‖ü‖2

X−1
, (3.10a)

ρ(0) = ρ̇(0) = 0, (3.10b)

ρ(T ) ≥ 0, ρ̇(T ) = 〈w(T ), ẇ(T )〉 = −〈Aw(T ), w(T )〉 ≤ 0. (3.10c)
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Integrating (3.10a) over [0, T ] we find the desired result (3.8):

α

2

∥∥uε − u∗
∥∥2

L2((0,T ),X0)
= α

∫ T

0

ρ(t)dt

≤
∫ T

0

ε2

2α
‖ü∗(s)‖2

X−1
dt+ ε

(
ρ̇(T ) − ρ̇(0)

) − (
ρ(T ) − ρ(0)

) ≤ ε2

2α
‖ü∗‖2

L2((0,T ),X−1),

where the last estimate used the boundary conditions (3.10b) and (3.10c).

4. Abstract results for rate-independent problems

The time-rescaling invariance of rate-independent systems make them special. In particular, the minimizers
are allowed to have jumps, which is not possible if the dissipation functional Ψ has superlinear growth.

4.1. The abstract assumptions

We start by formulating the problem precisely in a separable, reflexive Banach space X that is compactly
embedded into the larger Banach space Z. In continuum mechanical applications, typical choices for the
spaces X and Z are X = Wk,p(Ω), k ∈ N, and Z = L1(Ω), respectively, cf. [26,33].

In this section the general assumptions on Ψ and E are the following. The dissipation potential Ψ is convex,
1-homogeneous and lower semi-continuous on X . Moreover, it is coercive in Z, i.e.,

∃ c > 0 ∀ v ∈ X : Ψ(v) ≥ c‖v‖Z. (4.1)

For the energy-storage functional E : [0, T ] ×X → R∞ we assume that it is weakly lower semi-continuous and
satisfies the coercivity

∃α, c, C > 0 ∀ (t, u) ∈ [0, T ]×X : E(t, u) ≥ c‖u‖α
X − C. (4.2)

We additionally assume that t �→ E(t, u) is differentiable whenever E(t, u) <∞, namely,

∃ cE1 , cE0 > 0 ∀ (t, u) ∈ [0, T ]×X : |∂tE(t, u)| ≤ cE1
(E(t, u)+ cE0

)
. (4.3)

This type of control of power of the external loading was first introduced in [15,29] and proves very useful for
obtaining a priori bounds, see below.

4.2. The energy balance and a priori bounds

It is shown in [34] (see also [31]) that under suitable assumptions any absolutely continuous solution u of the
rate-independent differential inclusion (1.1) satisfies the energy balance

E(t, u(t)) +
∫

[0,t]

Ψ(du) −
∫ t

0

∂sE(s, u(s))ds = C for all t ∈ [0, T ], (4.4)

where C = E(0, u(0)). As in [26,34,35] we will deal with BV functions that are defined everywhere. For non-
increasing and positive a ∈ C([0, T ],R), an interval J ⊂ [0, T ] and u ∈ BV([0, T ], Z) we use the BV notation∫

J

a(s)Ψ(du) = sup
{ N∑

j=1

a(sj)Ψ(u(sj)−u(sj−1))
∣∣∣ N ∈ N, s0, sN ∈ J, s0<s1< · · ·<sN−1<sN

}
. (4.5)

Note that it is important here, to distinguish the case where the boundary points of J are included into J
or not. Moreover, the supremum definition is only suitable for nondecreasing and positive a, as in this case



504 A. MIELKE AND M. ORTIZ

the approximating sums on the right-hand side of (4.5) behaves monotonous under refining the partition. For
general a ∈ C([0, T ],R) one has to proceed as for the Riemann-Stieltjes integral and replace the supremum by
a limit for the fineness of the partition going to 0.

The weighted dissipation-energy functional Iε is now written as

Iε(u) = e−T/εE(T, u(T )) +
∫

[0,T ]

e−t/εΨ(du) +
∫ T

0

e−t/ε

ε
E(t, u(t))dt.

A surprising fact is that the energy balance (4.4), which is independent of ε, holds for all minimizers of Iε.

Proposition 4.1. Let Ψ and E satisfy the assumptions of Section 4.1. If u∗ is a minimizer of Iε under the
constraint u(0) = u0, then u∗ satisfies the energy balance (4.4) for almost all t ∈ [0, T ]. If additionally, the
initial condition u0 satisfies the stability condition

∀ ũ ∈ X : E(0, u0) ≤ E(0, ũ) + Ψ(ũ−u0), (4.6)

then the energy balance (4.4) holds with C = E(0, u0).

Proof. We compare the energy of u with that of rescaled functions ũ. For this, choose an increasing diffeomor-
phism β : [0, T ] → [0, T ] (i.e., β(0) = 0 and β(T ) = T ) and define t = β(s) as well as ũ via u∗(s) = ũ(β(s)).
Using the transformation rule for integrals with dt = β̇(s)ds and dũ|t=β(s) = du∗|s we may express Iε(ũ) in
terms of u∗ again and find

Iε(ũ) − e−T/εE(T, u∗(T )) =
∫

[0,T ]

e−t/εΨ(dũ) +
∫ T

0

e−t/ε

ε
E(t, ũ(t))dt

=
∫

[0,T ]

e−β(s)/εΨ(du∗) +
∫ T

0

e−β(s)/ε

ε
β̇(s) E(β(s), u∗(s))ds.

With ρ ∈ C∞
c ((0, T )) we choose β via e−β(s)/ε − e−s/ε = δρ(s), where 0 < δ � 1. This leads to the expansion

β(s) = s− εδρ(s)es/ε +O(δ2). Since u∗ is a minimizer we have

0 ≤ Iε(ũ) − Iε(u∗)

=
∫

[0,T ]

(
e−β(s)/ε − e−s/ε

)
Ψ(du∗) +

∫ T

0

1
ε

(
e−β(s)/εβ̇(s)E(β(s), u∗(s)) − e−s/εE(s, u∗(s))

)
ds.

Using β̇
ε e−β/ε = 1

ε e−s/ε − δρ̇, dividing by δ > 0 and taking the limit δ ↘ 0 we obtain

0 ≤
∫ T

0

ρ(s)Ψ(du∗) +
∫ T

0

( − ρ(s)∂sE(s, u∗(s)) − ρ̇(s)E(s, u∗(s))
)
ds.

Since ρ ∈ C∞
c ((0, T )) is arbitrary, the almost everywhere validity of the energy balance (4.4) follows from the

lemma of Du Bois-Reymond.
Finally we assume that the stability condition (4.6) holds. We let e(t) = E(t, u∗(t)), Δ(t) =

∫
[0,t] Ψ(du∗) and

w(t) =
∫ t

0
∂sE(s, u∗(s))ds, then the energy balance reads e(t)+Δ(t)−w(t) = C, where Δ is monotone and hence

in BV([0, T ]) and w ∈ W1,∞([0, T ]) (by using (4.3)). Hence, we may define Δ+0 = lim0<t→0 Δ(t) = Ψ(u+0−u0),
where u+0 = lim0<t→0 u(t), which exists in Z as

∫
(0,t]

Ψ(du) → 0 for t → 0. Setting e+0 = lim0<t→0 e(t) =
C − Δ+0 we find by weak lower semi-continuity of E that E(0, u+0) ≤ e+0. Using the stability condition (4.6)
this provides

E(0, u0) ≤ E(0, u+0) + Ψ(u+0−u0) ≤ e+0 + Δ+0 = C.
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For the opposite estimate we use that u∗ minimizes. For κ ∈ (0, T ) let uκ(t) = u0 for t ∈ [0, κ) and u∗(t)
otherwise. Using the (almost everywhere) energy balance for u∗ gives

0 ≤ Iε(uκ) − Iε(u∗)

= e−κ/εΨ(u∗(κ)− u0) −
∫

[0,κ]

e−t/εΨ(du∗) +
∫ κ

0

e−t/ε

ε

(E(t, u0) − C −w(t)+ Δ(t)
)
dt

= e−κ/ε
(
Ψ(u∗(κ)− u0) −

∫
[0,κ]

Ψ(du∗) +
∫ κ

0

e−t/ε

ε

(E(0, u0) − C + o(1)t→0

)
dt,

where the last step used a cancellation occurring after integration by parts of
∫ κ

0
e−t/ε

ε Δ(t)dt with Δ(t) =∫
[0,t]

Ψ(du∗). Since the first term in the last equation is non-positive, we conclude the desired result E(0, u0) ≥ C

by making κ sufficiently small. �
It is remarkable that the energy balance (4.4) holds exactly for the minimizers uε of Iε, despite their depen-

dence on ε. For the subsequent analysis we always assume that the stability condition (4.6) holds for the initial
condition u0. Then, the minimizers satisfy useful energetic a priori estimates, namely

E(t, u(t)) + cE0 ≤
(
E(0, u(0)) + cE0

)
ecE

1 t (4.7a)∫
[0,t]

Ψ(du) ≤
(
E(0, u(0)) + cE0

)
ecE

1 t. (4.7b)

These estimates holds for any function u : [0, T ] → Z satisfying the energy balance (4.4), which implicitly
means that t �→ ∂tE(t, u(t)) is measurable. (At this point, we need not assume measurability of t �→ u(t) ∈ X ,
see [13,29].) Writing e(t) = E(t, u(t)) again, the first is obtained by inserting (4.3) into the energy balance (4.4)
and neglecting the dissipation, namely e(t) ≤ e(0) +

∫ t

0 c
E
1

(
e(s)+cE0

)
ds. Adding cE0 on both sides and using

Gronwall’s lemma the estimate (4.7a) is established. Now using the energy balance once again the dissipation
can be estimated via ∫

[0,t]

Ψ(du) ≤ e(0) − e(t) +
∫ t

0

cE1
(E(s, u(s))+cE0

)
ds

≤ e(0) − e(t) +
∫ t

0

cE1
(
e(0)+cE0

)
ecE

1 s
)
ds

= e(0) − e(t) +
(
e(0)+cE0

)(
ecE

1 t−1
) ≤ (

e(0)+cE0
)
ecE

1 t.

The energetic a priori estimates (4.7) and the coercivity assumptions (4.1) and (4.2) imply that all minimizers u
of Iε satisfy ε-independent a priori bounds:

‖u‖L∞([0,T ],X) ≤ C1 and
∫

[0,T ]

‖du‖Z ≤ C2. (4.8)

These bounds suggest defining the weighted dissipation-energy functional Iε on the Banach space

Y := L∞([0, T ], X)∩ BV([0, T ], Z),

despite the lack of equi-coercivity of the sequence Iε in this space. In fact, owing to the exponential weight the
bound Iε(u) ≤ C results in the very weak a priori estimates

‖u‖α
Lα([0,T ],X) ≤ C

eT/ε

ε
and

∫
[0,T ]

‖du‖Z ≤ CeT/ε.
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Only for minimizers we obtain the much better estimates (4.7) and hence (4.8) that are independent of ε.

It is interesting to contrast the preceding results with the case of a general dissipation functional. Thus,
suppose that Iε(u) =

∫ T

0 e−t/ε
(
Ψ(u, u̇) + 1

εE(t, u)
)
dt, where Ψ is additionally allowed to depend on u, but still

v �→ Ψ(u, v) is convex for each u. Moreover, assume Ψ to be smooth. The corresponding Euler-Lagrange
equation is

−ε d
dt

(
∂vΨ(u, u̇)

)
+ ε∂uΨ(u, u̇) − ∂vΨ(u, u̇) + ∂uE(t, u) = 0.

Defining E(t) = E(t, u) − εR(u, u̇) with

R(u, v) = ∂vΨ(u, v)[v] − Ψ(u, v) =
∫ 1

θ=0

θD2Ψ(u, θv)[v, v]dθ ≥ 0

(by convexity) we easily find the identity d
dtE = ∂tE(t, u)−∂vΨ(u, u̇)[u̇], which in turn gives the energy balance

E(t, u(t)) − εR(u(t), u̇(t)) +
∫ t

s

∂vΨ(u(τ), u̇(τ))[u̇(τ)]dτ = E(s, u(s)) − εR(u(s), u̇(s)) +
∫ t

s

∂τE(τ, u(τ))ds.

In the rate-independent case we have R(u, v) = 0 and ∂vΨ(u, v)[v] = Ψ(u, v), which returns the energy balance
from above. In the rate-dependent case we may write Ψ̂(u, v) = ∂vΨ(u, v)[v] and assume cΨ1 Ψ̂(u, v) ≤ R(u, v) ≤
cΨ2 Ψ̂(u, v), which holds with c1 = c2 = p−1

p for Ψ(u, v) = ‖v‖p
Lp . Let ẽ(t) = E(t, u(t))+cE0 −εR(u(t), u̇(t)) and

ψ(t) = Ψ̂(u(t), u̇(t)). Then, for 0 ≤ s < t ≤ T we have the estimate

ẽ(t) + (1−εcE1 cΨ2 )
∫ t

s

ψ(τ)dτ ≤ ẽ(s) +
∫ t

s

cE1 ẽ(τ)dτ.

Thus, for ε ≤ 1/(cE1 c
Ψ
2 ) Gronwall’s lemma and ψ ≥ 0 give ẽ(t) ≤ ecE

1 (t−s)ẽ(s). Inserting this into the integral
on the right-hand side we obtain an estimate in terms of ẽ(s) alone. However, it is not clear how the boundary
condition at t = T can be used to derive a priori bounds for E(t, u(t)) and for

∫
[0,T ]

Ψ(du) which are independent
of ε.

4.3. Convergence to energetic solutions

As already noted, a central objective of the analysis is to ascertain the strict causal limit ε→ 0. Unfortunately,
the Γ-convergence machinery fails to deliver useful results. Under suitable continuity assumptions an easy
calculation gives

Γ-lim
ε→0

Iε(u) = Ψ
(

lim
s↘0

u(s) − u(0)
)

+ E(0, lim
s↘0

u(s)).

This limit supplies scant information regarding the limiting trajectories, namely, whether a jump point u(0+0) =
lims↘0 u(s) minimizes energy plus dissipation from u(0). By contrast, by virtue of the a priori estimates (4.7)
or (4.8), the minimizers uε of Iε are well-behaved and we are able to extract convergent subsequences.

We regard the weighted dissipation-energy functionals Iε to be defined in the space

Y = L∞([0, T ], X) ∩ BV([0, T ], Z),

and we let Y
⇀ denote weak* convergence in this space, namely,

uk
Y
⇀ u

def⇐⇒

⎧⎪⎪⎨⎪⎪⎩
sup
k∈N

∫
[0,T ] ‖duk‖Z <∞ and

∀w ∈ L1([0, T ], X∗):∫ T

0 〈uk(t), w(t)〉Xdt→ ∫ T

0 〈u(t), w(t)〉Xdt.

(4.9)
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The supremum condition for the sequence is motivated by the a priori estimates (4.8), which are valid for
minimizers of Iε. Under the additional assumption that the reflexive space X is compactly embedded into Z
the convergence in Y implies in fact pointwise convergence almost everywhere, namely if uk

Y
⇀ u, then

For a.e. t ∈ [0, T ]: uk(t) → u(t) in Z and uk(t) ⇀ u(t) in X. (4.10)

In fact, to see this, we employ Helly’s selection principle (cf. [26,35]) to find a subsequence (ukn)n∈N that
converges for all t ∈ [0, T ] to a limit ũ(t) strongly in Z and hence weakly in X . However, since the limit
function ũ must be equal to u almost everywhere, we conclude the convergence of the whole sequence by the
usual contradiction argument.

The following result is a first special case of Theorem 4.4 for constant sequences Ψk = Ψ and Ek = E .

Theorem 4.2. If X, Z, Ψ and E satisfy the assumptions of Section 4.1, then any family (uε)ε∈(0,1) of minimizers
for the family Iε is weakly precompact in Y. Moreover, any limit point u ∈ Y obtained for ε → 0 is a solution
of the energetic formulation, i.e., for each t ∈ [0, T ] we have stability (S) and energy balance (E):

(S) ∀ y ∈ X : E(t, u(t)) ≤ E(t, y) + Ψ(y−u(t)),
(E) E(t, u(t)) +

∫
[0,t] Ψ(du) = E(0, u(0)) +

∫ t

0 ∂sE(s, u(s))ds. (4.11)

This theorem shows that, under natural assumptions, all possible limit points are energetic solutions, i.e.,
solutions of the energetic formulation (4.11) of the rate-independent problem associated with Ψ and E .

4.4. Relaxation

Next we consider the case of sequences of Ψk, k ∈ N, of dissipation functionals as well as sequences of energy
functionals Ek, k ∈ N, with properties as in the foregoing except for the lower semi-continuity of the Ek(t, ·).
The sequences (Ψk)k∈N and (Ek)k∈N in turn define the sequence of weighted dissipation-energy functionals

Ik
ε (u) = e−T/εEk(T, u(T )) +

∫
[0,T ]

e−t/ε Ψk(du) +
∫ T

0

e−t/ε

ε
Ek(t, u(t))dt.

Such sequences may occur in several contexts, including: numerical approximations; penalty formulations of
side conditions or constraints; singular perturbations such as occurring in sharp-interface models; and others.
A particular case of interest is the constant sequence Ψk = Ψ and Ek = E considered in Section 4.3. In this case,
the Γ-limit of Ek coincides the relaxation with its lower semi-continuous envelop, or relaxation, in the sense of
the direct method of the calculus of variations (cf., e.g., [11,12]).

We work in a reflexive Banach space X and denote by ⇀ and → weak and strong convergence, respectively.
Our assumptions on the sequences (Ψk)k∈N and (Ek)k∈N and their limits Ψ and E , respectively, are the following:

(A1) Weak continuous convergence of Ψk:

vk ⇀ v =⇒ Ψk(vk) → Ψ(v). (4.12)

(A2) Weak Γ-convergence of Ek:

Ek(t, ·) Γ−→ E(t, ·), i.e.
(i) uk ⇀ u =⇒ lim infk→∞ Ek(t, uk) ≥ E(t, u),
(ii) ∀ (t, u) ∃ ũk with ũk ⇀ u : Ek(t, ũk) → E(t, u).

(4.13)

The sequence (ũk)k∈N is called a recovery sequence for u. In addition we assume that for each r > 0
there exists R > 0 such that for all (t, u) with ‖u‖X ≤ r the recovery sequence ũk can be chosen such
that ‖ũk‖X ≤ R.
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(A3) Energetic weak continuity of the power of external forces ∂tEk:

uk ⇀ u
Ek(t, uk) → E(t, u)

}
=⇒ ∂tEk(t, uk) → ∂tE(t, u). (4.14)

In [15,29] it is shown that (4.14) is a reasonable assumption in many applications, including finite-strain elasticity
and plasticity. We also refer to [17,24,32,36] for related relaxations and Γ-limits in the rate-independent setting
based on similar assumptions.

Theorem 4.3. Let X be a separable, reflexive Banach space and let the assumptions (4.1), (4.2), and (4.3)
hold uniformly in k ∈ N and let (A1) to (A3) be satisfied. Then, for each ε > 0 the weighted dissipation-energy
functional Iε : Y → R∞ defined by

Iε(u) = e−T/εE(T, u(T )) +
∫

[0,T ]

e−t/εΨ(du) +
∫ T

0

1
ε
e−t/εE(t, u(t))dt (4.15)

is the Γ-limit of (Ik
ε )k∈N with respect to weak* convergence in Y.

Proof. ad (i) Lower semicontinuity:
Choose any u ∈ Y and an arbitrary sequence (uk) in Y with uk

Y
⇀ u. Let β = lim infk→∞ Ik

ε (uk). Then we
have to show that α = Iε(u) ≤ β. For β = ∞ nothing is to be shown, whence we take β <∞ and may assume
Ik

ε (uk) ≤ β+1. After extracting a subsequence if necessary (cf. (4.10)) we may assume that

∀ t ∈ [0, T ] : uk(t) ⇀ u(t) in X. (4.16)

Using (4.12) for any finite partition 0 ≤ s0 < s1 < · · · < sN−1 < sN ≤ T we obtain

N∑
j=1

esj/εΨk(uk(sj)−uk(sj−1))
k→∞−→

N∑
j=1

esj/εΨ(u(sj)−u(sj−1)).

The right-hand side can be made larger than
∫
[0,T ] e

−t/εΨ(du) − δ for any δ > 0. Hence, there exists k0 such
that the left-hand side is larger than

∫
[0,T ] e

−t/εΨ(du)−2δ for all k ≥ k0. Taking the supremum on the left-hand
side gives

∫
[0,T ]

e−t/εΨk(duk) ≥ ∫
[0,T ]

e−t/εΨ(du) − 2δ for k ≥ k0. Since δ > 0 is arbitrary we obtain

lim inf
k→∞

∫
[0,T ]

e−t/εΨk(duk) ≥
∫

[0,T ]

e−t/εΨ(du). (4.17)

Now we estimate the stored energy. Using (4.16) and part (i) of (4.13) gives E(t, u(t)) ≤ lim infk→∞ Ek(t, uk(t))
for all t ∈ [0, T ]. Now, (4.3) implies Ek(t, u) ≥ −cE0 , and Fatou’s Lemma yields∫ T

0

e−t/εE(t, u(t))dt ≤
∫ T

0

e−t/ε lim inf
k→∞

Ek(t, uk(t))dt

Fatou≤ lim inf
k→∞

∫ T

0

e−t/εEk(t, uk(t))dt.

Adding this inequality to (4.17) we obtain the desired assertion Iε(u) ≤ lim infk→∞ Ik
ε (uk).

ad (ii) Recovery sequence:
First we note that on bounded sets of Y the weak* topology defined in (4.9) is metrizable, since the predual

L1([0, T ], X∗) is separable. We denote such a metric by dY.



MINIMUM PRINCIPLES FOR DISSIPATIVE SYSTEMS 509

We fix any u ∈ Y, and without loss of generality we may assume α = Iε(u) < ∞. From [13] we know
for each u ∈ Y there exists a sequences of partitions 0 ≤ sn

0 < sn
1 < · · · < sn

Nn−1 < sn
Nn

≤ T with Φn =
max{sn

j − sn
j−1 | j = 1, . . . , Nn} → 0 such that the sequence of piecewise constant interpolants Un ∈ Y with

Un(t) = u(sn
j ) for t ∈ (sn

j−1, s
n
j ], j = 1, . . . , Nn,

Un(t) = u(sn
0 ) for t ∈ [0, sn

0 ], U(t) = u(sn
Nn

) for t ∈ (sn
Nn
, T ],

satisfies
ρn :=

∣∣Iε(u) − Iε(Un)
∣∣ → 0 and

∥∥u− Un‖L1((0,T ),X) → 0.
We note that Iε(Un) is a Riemann-Stieltjes sum arising by approximation of the integral Iε(u) by step functions.
Clearly we also have rn = dY(u, Un) → 0.

Now we fix n ∈ N. According to part (ii) of (4.13) all u(sn
j ), j = 0, . . . , Nn, have a recovery sequence

(ũn,j
k )k∈N for E(sn

j , ·), i.e.,

ũn,j
k

k→∞
⇀ u(sn

j ) in X and Ek(sn
j , ũ

n,j
k ) k→∞→ E(sn

j , u(sn
j )).

Again we define the associated piecewise interpolants ũn,k ∈ Y via

ũn,k(t) = ũn,j
k for t ∈ (sn

j−1, s
n
j ], j = 1, . . . , Nn,

ũn,k(t) = un,j
0 for t ∈ [0, sn

0 ], ũn,k(t) = un,j
Nn

for t ∈ (sn
Nn
, T ].

By construction and using (4.12) we conclude, for each fixed n ∈ N,

ρ̃n,k =
∣∣Ik

ε (ũn,k) − Iε(Un)
∣∣ → 0 and r̃n,k = dY(ũn,k, Un) → 0 for k → ∞.

For the latter statement we use (A2) to conclude that all ũn,k, n, k ∈ N, lie in a bounded set of Y, where dY

provides the weak topology.
Now let K0 = 1 and for n ∈ N choose Kn > Kn−1 such that ρ̃n,k, r̃n,k ≤ 1/n for all k ≥ Kn. Then, define

ñ(k) such that ñ(k) = m for Km ≤ k < Km+1 and set ûk = ũñ(k),k ∈ Y. Then, ñ(k) → ∞ for k → ∞ and

dY(ûk, u) ≤ dY(ũñ(k),k, Uñ(k)) + dY(Uñ(k), u)

≤ r̃ñ(k),k + rñ(k) ≤ 1/ñ(k) + rñ(k) → 0 for k → ∞.

Moreover, for the functional Iε we obtain similarly∣∣Iε(u) − Ik
ε (ûk)

∣∣ ≤ ρ̃ñ(k),k + ρñ(k) ≤ 1/ñ(k) + rñ(k) → 0 for k → ∞.

This proves that (ûk)k∈N is a recovery sequence. �

4.5. Joint limit ε → 0 and k → ∞
The question now naturally arises as to whether the joint limit of ε→ 0 and k → ∞, corresponding to simul-

taneously enforcing strict causality and relaxing the weighted dissipation-energy functionals, is well behaved.
Again we note that Γ-convergence returns trivial functionals that control u(0) and u(0 +0) = lims↘0 u(s) only.
This difficulty notwithstanding, next we show that the minimizers uε,k of Ik

ε are well behaved and each of their
accumulation point satisfies a rate-independent problem, namely the energetic formulation associated with the
limits Ψ and E .

Theorem 4.4. Let the assumptions of Section 4.1 hold uniformly in k ∈ N and let (A1) to (A3) (see (4.12)–
(4.14)) be satisfied. Then, any family (uε,k)ε>0,k∈N of minimizers for the family Ik

ε is weakly precompact in Y.
Moreover, any limit point u ∈ Y obtained for (ε, 1/k) → (0, 0) is a solution of the energetic formulation for the
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limit dissipation Ψ and the limit energy E, i.e., for each t ∈ [0, T ] we have stability (S) and energy balance (E)
as defined in (4.11). Moreover, the convergent subsequence (uεl,kl

)l∈N can be chosen such that additionally the
convergence

Ekl
(t, uεl,kl

(t)) → E(t, u(t)) and
∫

[r,t]

Ψkl
(duεl,kl

) →
∫

[r,t]

Ψ(du) (4.18)

holds for all 0 ≤ r ≤ t ≤ T .

Proof. (Compactness and limit points). The uniform bounds on Ψk and Ek show that the minimizers uε,k satisfy
the uniform a priori bounds

‖uε,k‖L∞((0,T ),X) +
∫

[0,T ]

‖du‖Z ≤ C.

Now, Helly’s selection principle is applicable and provides a subsequence which converges for each t ∈ [0, T ]
weakly in X and strongly in Z. Together with the a priori bound in L∞((0, T ), X) this shows that the sequence
also converges in Y.

ad (S): To establish stability, we consider a subsequence such that uεl,kl
(t∗) ⇀ u(t∗) in X . We have to show

that u(t∗) is stable, i.e.,

(S) ∀ ũ ∈ X : E(t∗, u(t∗)) ≤ E(t∗, ũ) + Ψ(ũ−u(t∗)). (4.19)

By the definition of Γ-limit, there exists a recovery sequence ûl such that ûl ⇀ ũ and Ekl
(t∗, ûl) → E(t∗, ũ).

Hence, we define the comparison functions

ũεl,kl
(t) =

{
uεl,kl

(t) for t ≤ t∗,
ûl for t > t∗.

Now assume t∗ < T . Since uεl,kl
minimizes Ikl

εl
we have

0 ≤ et∗/εl

(
Ikl

εl
(ũεl,kl

) − Ikl
εl

(uεl,kl
)
)

= g̃l − gl where

gl =
∫

[t∗,T ]

e(t∗−t)/εlΨkl
(duεl,kl

) +
∫ T

t∗
e(t∗−t)/εl

1
εl
Ekl

(t, uεl,kl
(t))dt and

g̃l =
∫

[t∗,T ]

e(t∗−t)/εlΨkl
(dũεl,kl

) +
∫ T

t∗
e(t∗−t)/εl

1
εl
Ekl

(t, ũεl,kl
(t))dt,

where we have neglected the boundary terms at t = T , since they disappear in the limit εl → 0. The limit
l → ∞ of g̃l is readily obtained, since ũεl,kl

(t) is constant for t > t∗. We find

lim
l→∞

g̃l = lim
l→∞

Ψkl
(ûl−uεl,kl

(t∗)) + lim
l→∞

Ekl
(t∗, ûl) = Ψ(ũ−u(t∗)) + E(t∗, ũ), (4.20)

where we used the weak continuous convergence (4.12) for Ψk. To calculate the limit of gl we use the fact that
uε,k minimizes Ik

ε and hence satisfies the energy balance (4.4). Moreover, we employ the integration by parts
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formula for the BV function t �→ ∫ t

t∗
Ψkl

(duεl,kl
) and the smooth function t �→ e(t∗−t)/εl to obtain

gl =
∫

[t∗,T ]

e(t∗−t)/εlΨkl
(duεl,kl

) −
∫ T

t∗
e(t∗−t)/εl

∫
[t∗,t]

Ψkl
(duεl,kl

)dt

+
∫ T

t∗
e(t∗−t)/εl

1
εl

(
E(t∗, uεl,kl

(t∗)) +
∫ t

t∗
∂sEkl

(s, uεl,kl
(s))ds

)
dt

=
[
e(t∗−t)/εl

∫
[t∗,t]

Ψkl
(duεl,kl

)
]∣∣∣t=T

t=t∗

+ Ekl
(t∗, uεl,kl

(t∗))
(
1−e(t∗−T )/εl

)
+

∫ T

t∗
e(t∗−t)/εl

1
εl
O((t−t∗))dt.

Hence, we find lim inf l→∞ gl = lim inf l→∞ Ekl
(t∗, uεl,kl

(t∗)) ≥ E(t∗, u(t∗)). Moreover, g̃l ≥ gl implies liml→∞ g̃l ≥
liml→∞ gl, and, together with (4.20), the desired stability (S) is established in the case t∗ < T .

For the case t∗ = T , we simply observe that Ikl
εl

takes the form

Ikl
εl

(u) = Jl(u) + e−T/ε
(
Ψkl

(u(T )−u(T−0)) + Ekl
(T, u(T ))

)
where Jl(u) =

∫
[0,T )

e−t/εΨkl
(du) +

∫ T

0

e−t/εEkl
(t, u(t))dt.

As above we may now compare ukl,εl
with ũkl,εl

, which is identical to ukl,εl
on [0, T ) and equals ûl at t = T ,

where ûl is a recovery sequence for E(T, ũ). With u−0
l = ukl,εl

(T−0) and ul = ukl,εl
(T ) we find

0 ≤ eT/ε
(Ikl

εl
(ũ)−Ikl

εl
(u)

)
=

(
Ψkl

(ûl−u−0
l ) + Ekl

(T, ûl)
) − (

Ψkl
(ul−u−0

l ) + Ekl
(T, ul)

)
≤ Ekl

(T, ûl) − Ekl
(T, ul) + Ψkl

(ûl−ul),

where we used the triangle inequality for the last estimate. We conclude by passing to the limit l → ∞ and find

E(T, u(T )) ≤ lim inf
l→∞

Ekl
(T, ul) ≤ lim

l→∞
Ekl

(T, ûl)+Ψkl
(ûl−ul) = E(T, ũ)+Ψ(ũ−u(T )).

ad (E): For the upper energy estimate we first show that we also have convergence of the energies. By Γ-
convergence we have E(t, u(t)) ≤ lim inf l→∞ Ekl

(t, uεl,kl
(t)), since uεl,kl

(t) ⇀ u(t). Since each uεl,kl
(t) is stable

we also have
Ekl

(t, uεl,kl
(t)) ≤ Ekl

(t, ũl) + Ψkl
(ũl−uεl,kl

(t))
for any ũl. According to (4.13) there exists a recovery sequence with ũl ⇀ u(t) and Ekl

(t, ũl) → E(t, u(t)).
Invoking the weak continuous convergence of Ψk, the lower estimate lim inf l→∞ Ekl

(t, uεl,kl
(t)) ≤ E(t, u(t)) + 0

is established and we conclude the convergence of energies as stated in (4.18). For each l ∈ N the energy balance
for uεl,kl

holds, namely for 0 ≤ r < t ≤ T we have

Ekl
(t, uεl,kl

(t)) +
∫

[r,t]

Ψkl
(duεl,kl

) = Ekl
(r, uεl,kl

(r)) +
∫ t

r

∂sEkl
(s, uεl,kl

(s))ds. (4.21)

Taking the limit l → ∞ we use energy convergence of (4.18) and condition (4.14) and see that the first, the third
and the fourth term in the above equation converge while the second is lower semicontinuous (see the proof
of (4.17), which is based on (4.13)). Hence, the upper energy estimate holds:

E(t, u(t)) +
∫

[r,t]

Ψ(du) ≤ E(r, u(r)) +
∫ t

r

∂sE(s, u(s))ds.
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Finally using [29], Proposition 5.7, it is shown that stability of u implies the lower energy estimate E(t, u(t)) +∫ t

r Ψ(du) ≥ E(r, u(r)) +
∫ t

r ∂sE(s, u(s))ds. Hence, the limit process u satisfies the energy balance. Moreover,
the convergence of the dissipation in (4.18) follows by taking the limit in (4.21). �

This theorem has the drawback that exact minimizers uε,k are required. However, often it is desirable to
work with quasi-minimizers, which conveniently allows for a certain latitude relative to full minimization. For
instance, this additional latitude is especially useful when the functionals Ek or Ψk are not lower-semicontinuous
and existence of minimizers cannot established. It would appear possible to generalize the preceding theorem
to such situations by a judicious choice of the notion of quasi-minimizer. Firstly, we must be able to obtain an
approximate version of the energy balance resulting in a priori bounds independent of ε and k. However, under
these conditions it is no longer sufficient to bring Ik

ε (u) close to infv∈Y Ik
ε (v), but instead such closeness must

be ensured on each subinterval [t∗, T ]. We refer to [36] where a similar concept of approximate solutions for the
time-incremental problem is developed.

5. Two examples of relaxation

We conclude with two illustrative examples for which the relaxation of Iε can be ascertained explicitly.

5.1. A viscous example

We begin by considering the simple problem on X = L2(Ω) with Ω = (0, 1) ⊂ R and

E(t, y) =
∫

Ω

Ftq(y(x))−�(t, x)y(x)dx where � ∈ C0([0, T ] × Ω).

Here Ftq is the tri-quadratic potential introduced in (3.1) and � is a general loading. The dissipation functional
will the defined by the L2 norm via Ψ(v) =

∫
Ω

1
2v(x)

2dx. Hence, the weighted dissipation-energy functional to
be investigated is

Iε(y) =
∫

ΩT

e−t/ε
(1

2
∂ty

2 +
1
ε
(Ftq(y)−�(t, x)y)

)
dxdt,

where ΩT = [0, T ]× Ω. Note that Y = L2([0, T ], X) = L2(ΩT ). The Euler-Lagrange equations of Iε are

−ε∂2
t y + ∂ty + F ′

tq(y) − �(t, x) = 0, y(0, x) = y0(x), ∂ty(T, x) = 0,

which is a singularly perturbed problem. The special problem with the functional Iε is that it is nonconvex in
the variable y. It has some regularizing term through |∂ty

2|, but there is no term controlling the oscillations
in x. We compare the relaxation of Iε with the naive convexification Icvx

ε : Y → R with

Icvx
ε (u) =

∫
ΩT

e−t/ε
(1

2
∂tu

2 +
1
ε
(Fcvx(u)−�u)

)
dxdt,

where

Fcvx(u) =
{
Ftq(u) for |u| ≥ 1,

0 for |u| ≤ 1.

Theorem 5.1. Let Irelax
ε be the relaxation of Iε on Y, i.e.,

Irelax
ε (u) := inf

{
lim inf
k→∞

Iε(uk)
∣∣∣ uk ⇀ u in Y

}
.

Then, for each ε > 0 we have Iε > Irelax
ε , i.e., there exists u with Iε(u) > Irelax

ε (u). Moreover, if � �≡ 0, then
Irelax

ε > Icvx
ε .
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Proof. For simplicity, we omit ε, which is fixed throughout the proof. We first show that Irelax is different
from I. Consider any sequence un for which ∂tun ≡ 0, |un(x)| = 1 a.e., and un ⇀ 0 in Y. Then, I(yn) → 0
but I(0) = 1−e−T/ε > 0. This shows that I is not lower semi-continuous and hence I > Irelax. To prove that
Irelax is not identical to Icvx, we minimize I and Icvx under the constraint y(0) = w ∈ X , namely

J(w) = inf{I(u) | u ∈ Y, u(0) = w} and

Jcvx(w) = inf{Icvx(u) | u ∈ Y, u(0) = w}.
Since in both functionals there is no coupling between different values of x ∈ Ω, we obtain functions
j, jcvx : Ω × R → R such that

J(w) =
∫

Ω

j(x,w(x))dx and Jcvx(w) =
∫

Ω

jcvx(x,w(x))dx with

j(x,w) = inf

{∫ T

0

e−t/ε
(1
2
ż2+

1
ε
[Ftq(z)−�(t, x)z]dt

∣∣∣ z ∈ H1(0, T ), z(0) = w

}

and similarly for jcvx(x,w) where Ftq is simply replaced by Fcvx. Clearly the convexity of Fcvx implies convexity
of Jcvx and of jcvx. Because of Ftq(w) > Fcvx(w) for w ∈ (−1, 1) we have j(x,w) > jcvx(x,w) for all x ∈ Ω and
all w ∈ (−1, 1). We claim that the convexification j∗∗(x, ·) of j(x, ·) lies strictly above jcxv(x, ·) unless � ≡ 0.
To obtain a contradiction we assume j∗∗(x, ·) ≡ jcxv(x, ·). Hence, j(x, ·) lies strictly above its convexification
j∗∗(x, ·) and thus the convexification j∗∗ must be affine for w ∈ [−1, 1]. From j∗∗ = jcvx we conclude that jcvx

must be affine on [−1, 1] as well. Taking into account the Euler-Lagrange equation −εz̈ + ż + F ′
cvx(z) = �(t, x)

with the boundary conditions z(0) = w and ż(T ) = 0, this can only be possible if � ≡ 0. Thus, we know that
there exists w ∈ X , such that Jcvx(w) < J∗∗(w). It is now easy to construct a sequence (wn)n∈N with wn ⇀ w
in X , such that J(wn) → J∗∗(w). Define now u ∈ Y such that u(0) = w and Icvx(u) = Jcvx(w). Moreover,
let (un)n∈N be any sequence of functions such that un ⇀ u in Y and lim infn→∞ I(un) = Irelax(u). Then,
I(un) ≤ C implies a uniform bound on un in H1([0, T ], X). Hence, the mapping un �→ un(0) ∈ X is bounded
and, thus, weakly continuous. We conclude un(0) ⇀ u(0) = w in X and, moreover, lim infn→∞ I(un) ≥
lim infn→∞ J(wn) ≥ J∗∗(w). This implies Irelax(u) ≥ J∗∗(w) > Jcvx(w) = Icvx(u), which is the desired
result. �

It would be interesting to consider Young-measure relaxations instead of the simple relaxation in the weak
topology just considered. In particular, it should be possible to derive a transport equation for Young measures
in the spirit of [4,14,27,28,43].

5.2. A rate-independent example

The second example has a similar structure but is formulated in the rate-independent setting:

0 ∈ κ Sign(∂tu(t, x)) + F ′
tq(u(t, x)) − �(t, x) for (t, x) ∈ ΩT . (5.1)

The energetic formulation based on the stability condition (S) and the energy balance (E) (cf. [29,34,35]) takes
the form:

(S) ∀ ŷ ∈ Y : E(t, u(t)) ≤ E(t, û) + κ‖û−u(t)‖L1(Ω),

(E) E(t, u(t)) +
∫
[0,t]

κ‖du‖L1(Ω) = E(0, u(0)) − ∫
Ωt
�̇(s, x)u(s, x)dxds,

which must hold for all t ∈ [0, T ]. In general, this problem does not have a strong solution, and a question of
central interest concerns the precise manner in which the potential barrier at u ∈ [−1/2, 1/2] is overcome. We
consider the weighted dissipation-energy functional

Iε(u) =
∫

[0,T ]

e−t/εκ‖du‖L1(Ω) +
∫

ΩT

e−t/ε

ε

(
Ftq(u(t, x))−�(t, x)u(t, x))

)
dxdt,
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with a fixed � ∈ C1([0, T ] × Ω). Owing to the non-smooth character of the problem, the corresponding Euler-
Lagrange equations take the form of a differential inclusion. Next we show that the relaxation of the functional
follows readily in the space

Y = L2(ΩT ) ∩ BV([0, T ],L1(Ω)),
where, as before, ΩT = [0, T ]× Ω.

Theorem 5.2. The relaxation of Iε : Y → R equipped with the weak topology of L2(ΩT ) is given by the
convexification

Icvx
ε (u) =

∫
[0,T ]

e−t/εκ‖du‖L1(Ω)

+
∫

ΩT

e−t/ε

ε

(
Fcvx(y(t, x))−�(t, x)y(t, x))

)
dxdt.

Proof. Again we omit the index ε and for simplicity we assume that Ω = (a, b) ⊂ R. We trivially have
Irelax ≥ Icvx since Icvx is convex and lower semi-continuous. To show the reverse estimate, we have to
construct for each y ∈ Y a recovery sequence (un)n with

un ⇀ u in L2(ΩT ) and lim inf
n→∞ I(un) ≤ Icvx(u).

By considering small representative volume elements x0+δ[0, 1) ⊂ Ω, introducing the variable ξ = (x−x0)/δ ∈
[0, 1) and taking the limit δ → 0, we find that it suffices to consider the case that the limit function u ∈ Y is
independent of x. Thus, we assume that u(t, x) = z(t) with z ∈ BV([0, T ]; R). Moreover, we need to find one
function ũ ∈ L2([0, T ]×[0, 1)) with

∀ t ∈ [0, T ] :
∫ 1

0
ũ(t, ξ)dξ = z(t) and

Ix0(ũ) ≤ ∫
[0,T ]

e−t/εκ|dz| + ∫ T

0
e−t/ε

ε

(
Fcvx(z(t)) − �(t, x0)z(t)

)
dt,

where

Ix0(ũ) =
∫
[0,T ] e

−t/εκ‖dũ‖L1([0,1))

+
∫ T

0

∫ 1

0
e−t/ε

ε

(
Ftq(ũ(t, ξ)) − �(t, x0)ũ(t, ξ)

)
dξ dt.

It is easy to verify that the following function ũ satisfies both conditions:

ũ(t, ξ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z(t) for (t, ξ) with z(t) ≤ −1,

−1 for (t, ξ) with 0 ≤ ξ ≤ (1−z(t))/2 ≤ 1,

+1 for (t, ξ) with 0 ≤ (1−z(t))/2 < ξ ≤ 1,

z(t) for (t, ξ) with z(t) ≥ 1.

Note that ũ does not take values in (−1, 1) where Ftq is larger than Fcvx. Weak convergence is obtained by
rescaling the above construction into the interval [x0, x0+δ), and the result follows. �

Thus, we may use the regularized functional to obtain a regularization of the rate-independent evolutionary
problem (5.1). It is obtained simply by replacing F by Fcvx:

0 ∈ κ Sign(∂ty(t, x)) + F ′
cvx(y(t, x)) − �(t, x) for (t, x) ∈ ΩT . (5.2)

Note that this problem is exactly the same that is obtained by solving the global minimization problem (S) & (E),
which always has solutions. To see this, just solve the problem for each value of x separately. Each of the
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solutions obtained in this way also solves the relaxed problem (5.2). This relaxed problem admits solutions
that may be mechanically unimportant, but they are nevertheless needed mathematically to make the set of
solutions weakly closed.
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