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LOWER SEMICONTINUITY AND RELAXATION RESULTS IN BV
FOR INTEGRAL FUNCTIONALS WITH BV INTEGRANDS
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Abstract. New L1-lower semicontinuity and relaxation results for integral functionals defined in
BV(Ω) are proved, under a very weak dependence of the integrand with respect to the spatial variable x.
More precisely, only the lower semicontinuity in the sense of the 1-capacity is assumed in order to
obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower
approximate limit of the integrand, if it is BV with respect to x. Under this further BV dependence,
a representation formula for the relaxed functional is also obtained.
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1. Introduction

In this paper we study the L1-lower semicontinuity and relaxation of an integral functional of the type

F (u) =
∫

Ω

f(x, u(x),∇u(x)) dx,

where u is a scalar function from W 1,1(Ω), and of its BV counterpart

F(u) =
∫

Ω

f(x, u,∇u)dx+
∫

Ω

f∞
(
x, ũ,

Dcu

|Dcu|
)

d|Dcu| +
∫
Ju∩Ω

dHN−1

∫ u+(x)

u−(x)

f∞(x, s, νu(x))ds.

In recent years there has been a renewed interest in these topics since many authors [2,3,13–15,19,22–26] have
studied the lower semicontinuity and relaxation of F and F with the aim of lessening the regularity assumptions
on f with respect to x.

In searching weaker conditions on f which still guarantee the lower semicontinuity essentially two kinds of
assumptions are considered in the above papers (beside the usual requirements that f(x, s, ξ) is convex in ξ and
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continuous in s). Either f is assumed to be lower semicontinuous in x, uniformly with respect to (s, ξ) (see e.g.
[19,23]), or f is assumed to be weakly differentiable (see [13,14,22,25]) or even BV in x (see [15]).

In this paper we address the lower semicontinuity and relaxation issues under different assumptions on f .
To illustrate them let us consider the model case where f(x, ξ) = a(x)p(ξ) and p : R

N → [0,+∞) is a convex
function. As a consequence of an approximation result due to Dal Maso (see [11]) and of a recent lower
semicontinuity theorem proved in [14], we obtain that if a : Ω → [0,+∞) is lower semicontinuous in the sense
of 1-capacity (see Sect. 2.3), then F is L1-lower semicontinuous in BV(Ω). As far as we know, this is the first
result of this kind where capacity plays a role as an assumption on the integrand. Moreover, Theorem 3.1 is an
extension of the result proved in [19], which requires a to be lower semicontinuity in the classical sense. Notice
also that if a is a BV function, then it can be proved that its lower approximate limit a− is lower semicontinuous
in the sense of 1-capacity. Thus our result implies immediately those proved for instance in [14,25] or in [15]
where a is assumed to be in W 1,1(Ω) or in BV(Ω), respectively.

The assumption that a is a BV function is also a key point in finding the relaxed functional with respect to
L1-convergence of

u ∈W 1,1(Ω) �→
∫

Ω

a(x)p(∇u(x)) dx. (1.1)

In fact, as stated in the first part of Theorem 1.1 below, we have that if a ∈ BV(Ω), the relaxed functional
of (1.1) in BV(Ω) is given by∫

Ω

a(x)p(∇u)dx +
∫

Ω

a−(x)p∞
(
Dcu

|Dcu|
)

d|Dcu| +
∫
Ju∩Ω

(u+−u−)a−(x)p∞(νu(x))dHN−1. (1.2)

Notice that the lower semicontinuity result and the representation formula for the relaxed functional of (1.1) are
obtained under different assumptions on a. This is not the case when dealing with one dimensional functionals.
In fact, it can be proved as a consequence of Example 2 in [6] that, given any Borel function a, the functional∫

Ω

a(x)p(u′)dx+
∫

Ω

a(x)p∞
(
Dcu

|Dcu|
)

d|Dcu| +
∑

x∈Ju∩Ω

a(x)p∞(u(x+)−u(x−)) (1.3)

is L1-lower semicontinuous on BV if and only if a is lower semicontinuous and that the relaxed functional
of (1.1) is represented by (1.3) with a replaced by its lower semicontinuous envelope.

However, in higher dimension things are more complicate. Indeed, examples can be given of functionals of
the type (1.1) whose relaxed functional is given by a functional of the type F where the integrand f is not the
product of two functions of x and ξ (see [1], Sect. 8).

In the case of a general integrand f our Theorem 3.4 states that a (uniform) lower semicontinuity of f in
the sense of 1-capacity is still sufficient for the functional F to be lower semicontinuous. This result is obtained
by combining in a delicate way two different approximation techniques: the first one was developed in [11],
Section 1, in the context of capacity theory and the second one was introduced in [23] to approximate lower
semicontinuous integrands, convex in the last variable.

On the other side, as in the model case, the BV dependence of f with respect to x turns out to guarantee
that the relaxed functional F of F is less than or equal to F , provided that we choose (f∞)− as representative
of f∞ in F . Notice in fact that the values of F are clearly affected by the choice of such representative. We
remark that this choice makes the proof of inequality F ≤ F quite difficult. In fact, up to now, this inequality
has been always proved under the assumption that f∞ were upper semicontinuous with respect to x (see e.g.
[2,3,19]).

The inequality F ≤ F is proved in Theorem 4.2, where the case of an integrand f depending only on (x, ξ)
is considered. Even in this case the proof of this inequality requires a very delicate adaptation of the blow-up
argument of Fonseca-Müller [20,21]. In fact the situation studied here is complicated by the interaction between
the jump set of u and the jump sets of the BV functions f∞(·, ξ) as ξ varies in R

N . Dealing with this difficulty
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requires some new technical ideas (see the discussion before Prop. 4.4), which at the moment do not seem to
work when also a dependence on s is allowed.

Combining the inequality F ≤ F with the lower semicontinuity result given in Theorem 3.4 one then gets
that F coincides with F .

The following relaxation result is a consequence of Theorems 3.6 and 4.2. This is not the most general one
which can be derived by the combinations of these two theorems, but still covers some significant and interesting
examples which were not included in the relaxation results so far available in the literature.

Theorem 1.1. Let f : Ω × R
N → [0,+∞) be a Borel function such that f(x, ·) is convex for every x ∈ Ω and,

for every ξ ∈ R
N , f(·, ξ), (f−)∞(·, ξ) belong to BV(Ω). Moreover, assume that there exists Λ > 0 such that

0 ≤ f(x, ξ) ≤ Λ(1 + |ξ|) for all (x, ξ) ∈ Ω × R
N ,

and that at least one of the following three conditions holds:

f(x, ξ) can be splitted as a product of two functions depending on x and ξ separately; (1.4)

{
f(x, ·) is positively 1-homogeneous and

f−(x, ξ) > 0 for all (x, ξ) ∈ (Ω \N0) × (RN \ {0}), where HN−1(N0) = 0.
(1.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
There exists a convex and demicoercive function Ψ : R

N → [0,+∞) such that

Ψ(ξ) ≤ f(x, ξ) for all (x, ξ) ∈ Ω × R
N ;

for every ξ ∈ R
N there exists Nξ ⊂ Ω such that HN−1(Nξ) = 0 and

(f−)∞(x, ξ) =
(
(f−)∞

)− (x, ξ) for all x ∈ Ω \Nξ.

(1.6)

Then, the relaxed functional F (u) is given by∫
Ω

f(x,∇u)dx+
∫

Ω

(f−)∞
(
x,

Dcu

|Dcu|
)

d|Dcu| +
∫
Ju∩Ω

[u+(x)−u−(x)](f−)∞(x, νu(x))dHN−1. (1.7)

A few remarks are in order. First, observe that if f(x, ξ) = a(x)p(ξ), the assumptions of the above theorem
are clearly satisfied whenever a is a bounded function in BV(Ω) and p is a convex function with linear growth,
such that f ≥ 0. Similarly, if (1.5) is in force, then also f−(x, ·) is 1-homogeneous for all x, therefore in order
to apply Theorem 1.1 it is enough to assume that f(·, ξ) ∈ BV(Ω) for all ξ. Notice also that the representation
formula (1.7) for the relaxed functional F (u) reduces, in the first case, to (1.2) and, in the second case, to∫

Ω

f(x,∇u) dx+
∫

Ω

f−
(
x,

Dcu

|Dcu|
)

d|Dcu| +
∫
Ju∩Ω

[u+(x)−u−(x)]f−(x, νu(x)) dHN−1.

On the other hand, for a general integrand it is not necessarily true that (f−)∞(·, ξ) and ((f−)∞)− (·, ξ) coincide
HN−1-a.e. in Ω, as shown in [10], Example 4.4. In that case functional (1.7) is still lower semicontinuous in
BV(Ω) but it is strictly smaller than F (u), which in turn is represented by a similar formula, with (f−)∞

replaced by ((f−)∞)−.

2. Notation and preliminaries

2.1. Notation

Throughout the paper N > 1 is a fixed integer and the letter c denotes a strictly positive constant, whose
value may change from line to line.
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Given x0 ∈ R
N and ρ > 0, Bρ(x0) denotes the ball in R

N centered in x0 with radius ρ.
Let Ω be an open subset of R

N . We denote by A(Ω) the family of all open subsets A of Ω and by B(Ω) the
σ-algebra of all Borel subsets B of Ω.

Set LN the Lebesgue measure on R
N and HN−1 the Hausdorff measure of dimension (N − 1) on R

N .
If g ∈ L1

loc(Ω) and x ∈ Ω, the precise representative of g at x is defined as the unique value g̃(x) ∈ R such
that

lim
�→0+

1
�N

∫
B�(x)

|g(y) − g̃(x)| dx = 0. (2.1)

The set of points in Ω where the precise representative of x is not defined is called the approximate singular set
of g and denoted by Sg. If g(x) = g̃(x), we say that g is approximately continuous at x.

The space BV(Ω) is defined as the space of those functions g : Ω → R belonging to L1(Ω) whose distributional
gradient Dg is an R

N -valued Radon measure with finite total variation |Dg|(Ω).
We recall the usual decomposition

Dg = ∇g LN +Dcg + (g+ − g−)νgHN−1
Jg,

where ∇g is the Radon-Nikodým derivative of Dg with respect to the Lebesgue measure and Dcg is the Cantor
part of Dg. Moreover, for HN−1-a.e. x0 ∈ Sg there exist a unit vector νg(x0) and two numbers g−(x0) < g+(x0)
such that

lim
�→0+

1
�N

∫
B±

� (x0,νg(x0))

|g(x) − g±(x0)| dx = 0, (2.2)

where, for any ν ∈ SN−1, B±
� (x0, ν) = {x ∈ B�(x0) : 〈x − x0, ν〉 ≷ 0}. The set of points x ∈ Sg where

−∞ < g−(x) < g+(x) < +∞ and (2.2) holds is called the jump set of g and it is denoted by Jg.
For a general survey on BV functions we refer to [4].

2.2. Slicing of BV functions. Traces

Given a direction ν ∈ SN−1, every point x ∈ R
N can be decomposed as x = (x⊥ν , xν), with xν = 〈x, ν〉 and

x⊥ν = x− xνν. By πν⊥ we denote the projection of R
N onto the plane through the origin orthogonal to ν. If E

is a given subset of R
N , we set Ex⊥

ν
= {xν ∈ R : (x⊥ν , xν) ∈ E}. Similarly, if g : R

N → R is a given function, for
every x⊥ν ∈ R

N−1, we denote by gx⊥
ν

the restriction of the function g to R; i.e., the function xν ∈ R �→ g(x⊥ν , xν).

Lemma 2.1 (see [4], Th. 3.108). Let g ∈ BV(Ω) be a given function and ν ∈ SN−1 be a given direction. Then,
for HN−1-almost every x⊥ν ∈ πν⊥(Ω), gx⊥

ν
belongs to BV(Ωx⊥

ν
),

Jg
x⊥

ν
= (Jg)x⊥

ν
,

(g̃)x⊥
ν

is continuous in Ω\(Jg)x⊥
ν

and 〈ν, νg(x⊥ν , xν)〉 = 0 for every xν ∈ (Jg)x⊥
ν
. Moreover, for any xν ∈ (Jg)x⊥

ν
,

g±
x⊥

ν
(xν) = lim

zν→xν
±
g̃(x⊥ν , zν) if 〈ν, νg(x⊥ν , xν)〉 > 0,

g±
x⊥

ν
(xν) = lim

zν→xν
∓
g̃(x⊥ν , zν) if 〈ν, νg(x⊥ν , xν)〉 < 0.

Let Γ be a (N−1)-dimensional manifold of class C1 in R
N , oriented by a map νΓ : Γ → SN−1. Next theorem,

which actually holds in a much more general setting (see, e.g. [4], Ths. 3.77 and 3.86), states that any BV
function defined in a neighborhood of Γ has traces on both sides of Γ.
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Theorem 2.2. Let Ω be an open set and Γ ⊂ Ω a C1 manifold oriented by νΓ. Then, if g ∈ BV(Ω), there exist
g±Γ ∈ L1(Γ,HN−1) such that, for HN−1-a.e. x0 ∈ Γ,

lim
�→0+

1
�N

∫
B±

� (x0,νΓ(x0))

|g(x) − g±Γ (x0)| dx = 0. (2.3)

Remark 2.3. Notice that, since g±Γ ∈ L1(Γ,HN−1), then HN−1-a.e. x0 ∈ Γ is a Lebesgue point for g±Γ .
Therefore, for such a point we have

lim
�→0

1
�N−1

∫
Γ∩B�(x0)

|g±Γ (x) − g±Γ (x0)| dHN−1(x) = 0. (2.4)

Remark 2.4. Notice that from definition (2.1) and Theorem 2.2 it follows immediately that g±Γ (x) = g̃(x)
for HN−1-a.e. x ∈ Γ \ Jg. Moreover, since νΓ(x) = ± νg(x) for HN−1-a.e. x ∈ Γ ∩ Jg (see [4], Th. 3.78 and
Rem. 2.87), from (2.2) and (2.3) we have g±Γ (x) = g±(x) for HN−1-a.e. x ∈ Γ∩Jg such that νΓ(x) = νg(x) and
g±Γ (x) = g∓(x) if νΓ(x) = −νg(x).

Let us assume that the manifold Γ splits Ω in two disjoint open subsets Ω± and, just to fix the ideas, that
νΓ points toward Ω+. Then, for every point x0 ∈ Γ for which (2.3) holds, we have (see [4], Rem. 3.85):

lim
�→0+

1
�N

∫
Ω±∩B�(x0)

|g(x) − g±Γ (x0)| dx = 0. (2.5)

2.3. Capacity

Given an open set A ⊂ R
N , the 1-capacity of A is defined by setting

C1(A) := inf
{∫

RN

|Dϕ| dx : ϕ ∈W 1,1(RN ), ϕ ≥ 1 LN -a.e. on A
}
.

Then, the 1-capacity of an arbitrary set B ⊂ R
N is given by

C1(B) := inf{C1(A) : A ⊇ B, U open}.

It is well known that capacities and Hausdorff measure are closely related. In particular, we have that for every
Borel set B ⊂ R

N

C1(B) = 0 ⇐⇒ HN−1(B) = 0.

Definition 2.5. Let B ⊂ R
N be a Borel set with C1(B) < +∞. Given ε > 0, we call capacitary ε-quasi-potential

(or simply capacitary quasi-potential) of B a function ϕε ∈ W 1,1(RN ), such that 0 ≤ ϕ̃ε ≤ 1 HN−1-a.e. in R
N ,

ϕ̃ε = 1 HN−1-a.e. in B and ∫
RN

|Dϕε| dx ≤ C1(B) + ε.

We recall that a function g : R
N → R is said C1-quasi continuous if for every ε > 0 there exists an open

set A, with C1(A) < ε, such that g|Ac is continuous on Ac; C1-quasi lower semicontinuous and C1-quasi upper
semicontinuous functions are defined similarly.

It is well known that if g is a W 1,1-function, then its precise representative g̃ is C1-quasi continuous (see [18],
Sects. 9 and 10). Moreover, to every BV-function g, it is possible to associate a C1-quasi lower semicontinuous
and a C1-quasi upper semicontinuous representative, as stated by the following theorem (see [9], Th. 2.5).

Theorem 2.6. For every function g ∈ BV(Ω), the approximate upper limit g+ and the approximate lower
limit g− are C1-quasi upper semicontinuous and C1-quasi lower semicontinuous, respectively.
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In particular, if B is a Borel subset of R
N with finite perimeter, then χ−

B is C1-quasi lower semicontinuous
and χ+

B is C1-quasi upper semicontinuous.
Finally we recall the following approximation result, due to Dal Maso (see [11], Lem. 1.5 and Sect. 6).

Lemma 2.7. Let g : R
N → [0,+∞) be a C1-quasi lower semicontinuous function. Then there exists an

increasing sequence of nonnegative functions {gh} ⊆W 1,1(RN ) such that, for every h ∈ N, gh is approximately
continuous HN−1-almost everywhere in R

N and gh(x) → g(x), when h→ +∞, for HN−1-almost every x ∈ R
N .

2.4. Demicoercive functions

Definition 2.8. We say that a function g : R
N → [0,+∞) is demicoercive if there exist a vector v ∈ R

N and
two constants a > 0, b ≥ 0 such that

a|ξ| ≤ g(ξ) + 〈v, ξ〉 + b for all ξ ∈ R
N .

It is not difficult to check that coercive or strictly convex functions are demicoercive. Moreover, if g satisfies

lim
|ξ|→+∞

g(ξ) = +∞,

then it is demicoercive, too.
For other properties of demicoercive functions see [5,24,26].

2.5. The integrand f and its recession function

Let f : Ω × R × R
N → [0,+∞) be a Borel function. If f is convex with respect to the last variable, the

recession function of f is defined for all (x, s, ξ) ∈ Ω × R × R
N by setting

f∞(x, s, ξ) = lim
t→+∞

f(x, s, tξ)
t

= sup
t>0

f(x, s, tξ) − f(x, s, 0)
t

·

Notice that, since the function t �→ f(x,s,tξ)−f(x,s,0)
t is increasing, the above limit always exists. Moreover it is

easily checked that f∞ is a Borel function, positively 1-homogeneous and convex in the last variable, and that

f(x, s, tξ)
t

≤ f∞(x, s, ξ) +
f(x, s, 0)

t
for all t > 0. (2.6)

In the sequel, we shall often assume that the Borel function f satisfies the following conditions

f(x, s, ·) is convex for every (x, s) ∈ Ω × R ; (2.7)
0 ≤ f(x, s, ξ) ≤ Λ(1 + |ξ|) for every (x, s, ξ) ∈ Ω × R × R

N , (2.8)

for some positive constant Λ. Note that (2.7) and (2.8) imply that f is Lipschitz continuous in the last variable,
uniformly with respect to (x, s) ∈ Ω × R. Moreover, from these assumptions, it follows that

0 ≤ f∞(x, s, ξ) ≤ Λ|ξ| for every (x, s, ξ) ∈ Ω × R × R
N . (2.9)

Finally, since f∞ is convex with respect to ξ, by (2.9) it follows that f∞ is Lipschitz continuous in the last
variable, uniformly with respect to (x, s) ∈ Ω × R

N .
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2.6. Setting of the problem and preliminary results

For every A ∈ A(Ω) and every u ∈ BV(Ω), we set

F (u,A) =

⎧⎨⎩
∫
A

f(x, u,∇u) dx if u ∈W 1,1(Ω)

+∞ if u ∈ BV(Ω) \W 1,1(Ω).
(2.10)

Our aim is to prove an integral representation theorem for the relaxation F of F , with respect to the L1-topology,
which is defined as the the greatest L1-lower semicontinuous functional less than or equal to F . Namely, for
every A ∈ A(Ω),

F (u,A) := inf
{

lim inf
n→+∞ F (un, A) : un ∈W 1,1(Ω), un → u in L1(Ω)

}
.

For the properties of the relaxation we refer to [8,12,16,17].
For every A ∈ A(Ω), let us define the functional Ff (·, A) : BV(Ω) → [0,+∞) by setting

Ff (u,A) =
∫
A

f(x, u,∇u)dx+
∫
A

f∞
(
x, ũ,

Dcu

|Dcu|
)
d|Dcu| +

∫
Ju∩A

dHN−1

∫ u+(x)

u−(x)

f∞(x, s, νu)ds. (2.11)

We shall often drop the subscript f (if no confusion arises) and write F(u) in place of Ff (u,Ω).

The following two lower semicontinuity results will be useful in the sequel. The first one is an appropriate
version of Theorem 1.1 in [14].

Theorem 2.9. Let f : Ω × R × R
N → [0,+∞) be a locally bounded Borel function, continuous with respect to

s and convex in ξ, satisfying the following assumptions:

f(·, s, ξ) ∈W 1,1(Ω) for all (s, ξ) ∈ R × R
N ;

there exists a Borel set N0 ⊂ Ω, with HN−1(N0) = 0, such that

f(·, s, ξ) is approximately continuous in Ω \N0 for all (s, ξ) ∈ R × R
N ; (2.12)

for every bounded set B ⊂ R × R
N there exists L(B) > 0 such that∫
Ω

|∇xf(x, s, ξ)| dx < L(B) for all (s, ξ) ∈ B.

Then, the functional Ff (·,Ω) defined in (2.11) is L1-lower semicontinuous in BV(Ω).

Remark 2.10. Notice that assumption (2.12) may seem redundant, since every W 1,1-function admits a
HN−1-a.e. approximately continuous representative. Moreover, the functional in (2.10) is clearly not affected
by the choice of the representative. However, the functional (2.11) does depend on the particular representative
chosen and it could be not lower semicontinuous for a different choice of it.

Notice that if f, gk : R
N → [0,+∞) are convex functions such that f = supk gk, then from (2.6) we easily

get that f∞(ξ) = supk g∞k (ξ) for all ξ. This observation, combined with the argument used in the proof of
Theorem 1.1 in [22] yields easily next result, which states that if f is the supremum of a sequence of nonnegative
integrands gk such that Fgk

is L1-lower semicontinuous, then also Ff is lower semicontinuous.



LOWER SEMICONTINUITY AND RELAXATION RESULTS ... 463

Lemma 2.11. Let f, gk : Ω × R × R
N → [0,+∞), k ∈ N, be Borel functions, convex in the last variable and

such that
f(x, s, ξ) = sup

k∈N

gk(x, s, ξ) for all (x, s, ξ) ∈ (Ω \N0) × R × R
N ,

where N0 ⊂ Ω is a Borel set with HN−1(N0) = 0. If the functionals Fgk
(·,Ω) are L1-lower semicontinuous in

BV(Ω), then Ff (·,Ω) is L1-lower semicontinuous in BV(Ω), too.

3. The lower semicontinuity results

In this section we prove two lower semicontinuity theorems under very weak differentiability assumptions on f
with respect to the spatial variable x. To this aim, we need some approximation result of such an integrand
with more regular functions.

First, we consider the special case of integrands which are split as a product of a BV function in x times
a function depending on (s, ξ). In this case, the lower semicontinuity result is a simple consequence of the
approximation Lemma 2.7. For the general case, we need to establish a suitable approximation result (see
Lem. 3.3 below), which is very much in the spirit of the approximation result proved in [23].

3.1. The case of separated variables

Next result is immediately obtained from Lemma 2.7 and Theorem 2.9, via Lemma 2.11.

Theorem 3.1. Let a : Ω → [0,+∞) be a locally bounded C1-quasi lower semicontinuous function. Let p :
R × R

N → [0,+∞) be a continuous function, convex with respect to the last variable. Then, the functional

F(u) =
∫

Ω

a(x)p(u,∇u)dx +
∫

Ω

a(x)p∞
(
ũ,
Dcu

Dcu|
)
|Dcu| +

∫
Ju∩Ω

a(x)dHN−1

∫ u+(x)

u−(x)

p∞(s, νu)ds

is L1-lower semicontinuous on BV(Ω).

3.2. The general case

We start with a variant of Lemma 9.2 of [19] which can be proved with exactly the same argument. Therefore,
we omit its simple proof.

Lemma 3.2. Let X be a σ-compact metric space and G a family of lower semicontinuous functions g : X → R.
Then, there exist a finite or countable subset G′ ⊂ G such that

sup
g∈G′

g(x) = sup
g∈G

g(x) for all x ∈ X.

Next result is essentially contained in [23], Lemma 8 (c). However, we give here the proof for the sake of
completeness.

Lemma 3.3. Let X be a σ-compact subset of R
d and f : X × R

N → [0,+∞) a function such that f(z, ·) is
convex for all z ∈ X. Let us assume also that for all z0 ∈ X and ε > 0, there exists δ > 0 such that

f(z0, ξ) ≤ f(z, ξ) + ε(1 + f(z, ξ)) for all (z, ξ) ∈ X × R
N such that |z − z0| < δ. (3.1)

Then, there exist {ak} ⊂ C∞
0 (Rd) and {ψk} ⊂ C∞(RN ) such that, for all k ∈ N, 0 ≤ ak ≤ 1, ψk is a convex

function satisfying
0 ≤ ψk(ξ) ≤ Λk(1 + |ξ|) for all ξ ∈ R

N , (3.2)
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for some Λk > 0, and

f(z, ξ) = sup
k∈N

ak(z)ψk(ξ) for all (z, ξ) ∈ X × R
N .

Proof. We start by noticing that if X = R
d and f , in addition to our assumptions, is also lower semicontinuous

in (z, ξ), then the assertion follows from [23], Lemma 8 (c). Thus, our task is to show that we may always
reduce to this case.

To this aim, let us set h = f + 1 and notice that from (3.1) it follows easily that

for all z0 ∈ X and ε > 0 there exists δ > 0 such that

(1 − ε)h(z0, ξ) ≤ h(z, ξ) for all (z, ξ) ∈ X × R
N such that |z − z0| < δ.

(3.3)

Then, we argue as in the proof of Proposition 9.3 in [19]. Let us denote by G the family of all continuous functions
g : R

d × R
N → [0,+∞), convex with respect to the last variable, and satisfying the following conditions:

(i) g(z, ξ) ≤ h(z, ξ) for all (z, ξ) ∈ X × R
N ;

(ii) g satisfies (3.3) in R
d × R

N ;
(iii) 0 ≤ g(z, ξ) ≤ Λ(1 + |ξ|) for all (z, ξ) ∈ R

d × R
N , for some Λ > 0.

Let us now fix z0 ∈ X , ε > 0, and let δ > 0 be such that (3.3) holds. Then, we choose a ∈ C1
0 (Bδ(z0)) such that

0 ≤ a ≤ 1, a(z0) = 1, and take a sequence of convex functions ψj : R
n → [0,+∞) satisfying (3.2) and such that

supj ψj = h(z0, ·). Clearly, the functions gj(z, ξ) = (1 − ε)a(z)ψj(ξ) satisfy (i), (ii), (iii), and, by construction,
supj gj(z0, ξ)=(1 − ε)h(z0, ξ) for all ξ ∈ R

N . Therefore, we may conclude that

sup
g∈G

g(z, ξ) ≥ h(z, ξ) for all (z, ξ) ∈ X × R
N . (3.4)

Since the opposite inequality follows immediately from (i), we get that in (3.4) the equality holds. Thus, using
Lemma 3.2 we may conclude that there exists a sequence {gn} ⊂ G such that

sup
n∈N

gn(z, ξ) = h(z, ξ) for all (z, ξ) ∈ X × R
N .

Setting now fn = max{gn − 1, 0}, the functions fn are continuous in R
d × R

N , convex in the last variable
and satisfy (iii) for suitable positive constants Λn. Moreover it can be easily checked that each function fn
satisfy (3.1) in R

d × R
N and, by construction,

sup
n∈N

fn(z, ξ) = f(z, ξ) for all (z, ξ) ∈ X × R
N .

The assertion then follows immediately by applying the approximation result stated in Lemma 8 (c) in [23] to
each function fn. �

Next theorem is the main L1-lower semicontinuity result of the paper. It is established without any hypothesis
of coercivity or continuity with respect to x. More precisely, we assume only a C1-quasi lower semicontinuity
with respect to the spatial variable, with a suitable uniformity condition (see (3.5) below). On the other
hand, we have to impose the growth assumption (2.8) which may appear not natural in the context of the
lower semicontinuity. Notice however that this is not a big issue in view of the application of Theorem 3.4 to
BV-relaxation.

Theorem 3.4. Let f : Ω × R × R
N → [0,+∞) be a Borel function such that f(x, s, ·) is convex for every

(x, s) ∈ Ω × R and f(x, ·, ξ) is continuous for every (x, ξ) ∈ Ω × R
N , satisfying (2.8). Moreover, assume that
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for any h ∈ N there exists an open set Ah ⊂ Ω, with C1(Ah) < 1/h, such that for every (x0, s0) ∈ (Ω \Ah) × R

and every ε > 0, there exists δ > 0 such that

f(x0, s0, ξ) ≤ f(x, s, ξ) + ε(1 + f(x, s, ξ)) (3.5)

for all (x, s, ξ) ∈ (Ω\Ah)×R×R
N such that |x−x0|+ |s− s0| < δ. Then, the functional F : BV(Ω) → [0,+∞)

defined in (2.11) is L1-lower semicontinuous on BV(Ω).

Proof. Without loss of generality, we may assume that the sequence {Ah} is such that Ah+1 ⊂ Ah for all h ∈ N.
Therefore, setting A = ∩hAh, we have C1(A) = HN−1(A) = 0.

For any h, recalling assumptions (3.5) and (2.8), we may apply Lemma 3.3 to the function f , with X = Ω\Ah,
thus getting for any h a sequence of functions ahk ∈ C∞

0 (RN × R), with 0 ≤ ahk ≤ 1, and a sequence of convex
functions ψhk ∈ C∞(RN ) satisfying for all k ∈ N

0 ≤ ψhk (ξ) ≤ Λ(1 + |ξ|) for all ξ ∈ R
N , (3.6)

where Λ is the same constant appearing in (2.8), and such that

f(x, s, ξ) = sup
k∈N

ahk(x, s)ψ
h
k (ξ) for all (x, s, ξ) ∈ (Ω \Ah) × R × R

N . (3.7)

Now, for every h ∈ N, let ϕh ∈ W 1,1(RN ) be a capacitary quasi-potential of Ah. More precisely, let us assume
that there exists a Borel set Nh ⊂ R

N , with C1(Nh) = HN−1(Nh) = 0, such that 0 ≤ ϕ̃h(x) ≤ 1 for every
x ∈ R

N \Nh, ϕ̃h = 1 on Ah \Nh and ∫
RN

|∇ϕ̃h| dx ≤ C1(Ah) +
1
h
<

2
h
·

Let us now set, for all h, k ∈ N, α̃hk(x, s) = max{ahk(x, s) − ϕ̃h(x), 0} for all (x, s) ∈ (Ω \Nh) × R, α̃hk(x, s) = 0,
otherwise. We have that

0 ≤ α̃hk(x, s) ≤ 1, ahk(x, s) ≥ α̃hk(x, s) ≥ ahk(x, s) − ϕ̃h(x) for all (x, s) ∈ (Ω \Nh) × R. (3.8)

Moreover, setting N0 = ∪hNh, C1(N0) = HN−1(N0) = 0 and, for every h, k ∈ N, we have that

f(x, s, ξ) ≥ α̃hk(x, s)ψ
h
k (ξ) for all (x, s, ξ) ∈ (Ω \N0) × R × R

N . (3.9)

In fact, if x ∈ (Ω \ Ah) \N0, (3.9) follows from (3.7) and from the fact that ϕ̃h(x) ≥ 0, while, if x ∈ Ah \ N0,
(3.9) holds since ϕ̃h(x) = 1, hence α̃hk(x, s) = 0. Finally, we set for all h, k ∈ N

ghk (x, s, ξ) = α̃hk(x, s)ψ
h
k (ξ), gh(x, s, ξ) = sup

k∈N

ghk (x, s, ξ), fh(x, s, ξ) = sup
k∈N

ahk(x, s)ψ
h
k (ξ)

for all (x, s, ξ) ∈ Ω×R×R
N . Notice that each function ghk satisfies the assumptions of Theorem 2.9. Therefore,

the functionals Fgh
k
(·,Ω) are all L1-lower semicontinuous in BV(Ω), hence by Lemma 2.11 the same is true for

the functionals Fgh
(·,Ω), for any h ∈ N.

To prove the lower semicontinuity of Ff , let us take a sequence {uj} ⊂ BV(Ω) converging in L1(Ω) to
u ∈ BV(Ω). Let us fix h ∈ N and set

ψh(ξ) = sup
k∈N

ψhk (ξ) for all ξ ∈ R
N .
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From (3.9), (3.8) and (3.7), we then get that

lim inf
j→+∞

Ff (uj ,Ω) ≥ lim inf
j→+∞

Fgh
(uj ,Ω) ≥ Fgh

(u,Ω) ≥ Ffh
(u,Ω) −

∫
Ω

ϕ̃hψh(∇u) dx

−
∫

Ω

ϕ̃hψ
∞
h

( Dcu

|Dcu|
)

d|Dcu| −
∫
Ju∩Ω

dHN−1

∫ u+(x)

u−(x)

ϕ̃hψ
∞
h (νu) ds

≥ Ff(u,Ω \Ah) −
∫

Ω

ϕ̃hψh(∇u) dx−
∫

Ω

ϕ̃hψ
∞
h

( Dsu

|Dsu|
)

d|Dsu|.

Thus, recalling (3.6), we obtain

lim inf
j→+∞

Ff (uj ,Ω) ≥ Ff (u,Ω \Ah) − Λ
∫

Ω

ϕ̃h(1 + |∇u|) dx− Λ
∫

Ω

ϕ̃h d|Dsu|. (3.10)

Since ϕ̃h → 0 in W 1,1(RN ) as h → ∞, we have that, up to a subsequence, ϕ̃h(x) → 0 for HN−1-almost every
x ∈ R

N (see Prop. 1.2 in [11]). Therefore, letting h→ +∞ in (3.10) and recalling that Ah+1 ⊂ Ah for all h and
that HN−1(∩hAh) = 0, from the dominated convergence theorem we get that

lim inf
j→+∞

Ff(uj ,Ω) ≥ Ff (u,Ω),

thus proving the assertion. �
As an application of the previous theorem we are going to prove a fairly general lower semicontinuity result

for an integrand f depending only on x and ξ. To this aim, let us recall the following approximation result
proved in [24], Theorem 4.

Theorem 3.5. Let Ω be an open subset of R
N , f : Ω×R

N → [0,+∞) a function such for every x ∈ Ω, f(x, ·)
is convex and demicoercive. Let us set, for any ξ0 ∈ R

N ,

(Pξ0f) (x, ξ) = −1 + inf
λ>0

{
λ+ λf

(
x, ξ0 +

ξ − ξ0
λ

)}
for all (x, ξ) ∈ Ω × R

N . (3.11)

Then, for every x ∈ Ω, (Pξ0f)(x, ·) is convex and demicoercive and ξ �→ 1 + (Pξ0f)(x, ξ + ξ0) is a 1-positively
homogeneous function. Moreover

f(x, ξ) = sup
ξ0∈RN

(Pξ0f)(x, ξ) for all (x, ξ) ∈ Ω × R
N . (3.12)

Furthermore, if f is lower semicontinuous in Ω × R
N , then Pξ0f is lower semicontinuous, too.

Theorem 3.6. Let f : Ω × R
N → [0,+∞) be a locally bounded Borel function such that f(x, ·) is convex for

every x ∈ Ω and f(·, ξ) is C1-quasi lower semicontinuous for every ξ ∈ R
N . Moreover, assume that at least one

of the following two conditions holds:{
f(x, ·) is positively 1-homogeneous and

f(x, ξ) > 0 for all (x, ξ) ∈ (Ω \N0) × (RN \ {0}), where HN−1(N0) = 0;
(3.13){

f satisfies (2.8) and there exists Ψ : R
N → [0,+∞), convex and demicoercive,

such that Ψ(ξ) ≤ f(x, ξ) for all (x, ξ) ∈ Ω × R
N .

(3.14)

Then, the functional Ff is L1-lower semicontinuous on BV(Ω).
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Proof.
Step 1. Let us prove the assertion under the assumption (3.13). To this aim, notice that since f is locally
bounded in Ω × R

N and positively 1-homogeneous with respect to ξ, for any open set Ω′ ⊂⊂ Ω, there exists a
constant Λ′ such that

0 ≤ f(x, ξ) ≤ Λ′|ξ| for all (x, ξ) ∈ Ω′ × R
N .

This estimate, together with the convexity of f with respect to ξ immediately yields that

|f(x, ξ1) − f(x, ξ2)| ≤ cΛ′|ξ1 − ξ2| for all (x, ξ1), (x, ξ2) ∈ Ω′ × R
N , (3.15)

for some constant c depending only on the dimension N . Let us now fix h and a sequence {ξj} dense in R
N .

For all j there exists an open set Aj,h ⊂ Ω, Aj,h ⊃ N0, with C1(Aj,h) < 1/(h2j), such that f(·, ξj) is lower
semicontinuous in Ω \ Aj,h. Setting Ah = ∪jAj,h, Ah is open, C1(Ah) < 1/h, and making use of (3.15), one
easily gets that f is lower semicontinuous in (Ω′ \Ah) × R

N .
In order to prove that the functional Ff (·,Ω′) is L1-lower semicontinuous in BV(Ω′), by Theorem 3.4 it is

enough to show that, given h and x0 ∈ Ω′ \Ah, for all ε > 0 there exists δ > 0 such that

f(x0, ξ) ≤ (1 + ε)f(x, ξ) for all (x, ξ) ∈ (Ω′ \Ah) × R
N such that |x− x0| < δ.

To prove this, we argue by contradiction, assuming that there exist x0 ∈ Ω′ \Ah and ε0 > 0 such that for any
k ∈ N, there exist two sequences xk ∈ Ω′ \Ah, with |xk − x0| < 1/k, and ξk ∈ R

N such that

f(x0, ξk) > (1 + ε0)f(xk, ξk). (3.16)

Clearly, by the positive 1-homogeneity of f(x, ·), we may assume that |ξk| = 1, for every k ∈ N; hence, up to a
subsequence, there exists ξ0 ∈ SN−1 such that ξk → ξ0. Then, passing to the limit when k → +∞ in (3.16) and
using the lower semicontinuity of f and the continuity of f(x0, ·), we get that

f(x0, ξ0) = lim
k→+∞

f(x0, ξk) ≥ (1 + ε0) lim inf
k→+∞

f(xk, ξk) ≥ (1 + ε0)f(x0, ξ0).

Hence, f(x0, ξ0) = 0, which is a contradiction since x0 ∈ Ω \N0.
This proves that Ff (·,Ω′) is lower semicontinuous and, by letting Ω′ ↑ Ω, the lower semicontinuity of Ff (·,Ω)

follows.

Step 2. Assume that (3.14) holds. Since (2.8) is in force, arguing as in the previous step, we have that
for all h ∈ N, there exists an open set Ah ⊂ Ω, with C1(Ah) < 1/h, such that f is lower semicontinuous in
(Ω \Ah) × R

N .
For all ξ0 ∈ R

N , let us consider the function Pξ0f defined in (3.11). Since f is lower semicontinuous in
(Ω \ Ah) × R

N , from the last assertion of Theorem 3.5 (which actually holds also if Ω is replaced by any σ-
compact subset of R

N ) we have that Pξ0f is lower semicontinuous in (Ω \ Ah) × R
N for any h. Therefore,

recalling (3.12) and using Lemma 3.2, we get that for any h there exists a sequence {ξhk}k∈N ⊂ R
N such that

f(x, ξ) = sup
k∈N

(Pξh
k
f)(x, ξ) for all (x, ξ) ∈ (Ω \Ah) × R

N .

Thus, by relabelling the sequence {ξhk}(h,k)∈N×N, we may conclude that there exists a sequence {ξn}n∈N such
that

f(x, ξ) = sup
n∈N

(Pξnf)(x, ξ) for all (x, ξ) ∈ (Ω \A0) × R
N , (3.17)

where A0 = ∩hAh. Let us set, for all n,

Ψn(ξ) = (PξnΨ)(ξ + ξn) + 1 for all ξ ∈ R
N .
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Since, by Theorem 3.5 the functions Ψn are all demicoercive and positively 1-homogeneous, for every n there
exist an > 0 and vn ∈ R

N such that

an|ξ| ≤ Ψn(ξ) + 〈vn, ξ〉 for all ξ ∈ R
N .

Therefore, setting gn(x, ξ) = (Pξnf)(x, ξ + ξn) + 1, we may conclude that

an|ξ| ≤ gn(x, ξ) + 〈vn, ξ〉 for all (x, ξ) ∈ Ω × R
N . (3.18)

The functions ĝn(x, ξ) = gn(x, ξ) + 〈vn, ξ〉 are C1-quasi lower semicontinuous in x and positively homogeneous
in ξ and from (3.18) it is clear that they all satisfy (3.13). Therefore, from what we have proved in Step 1 we
may conclude that the functionals Fĝn

(·,Ω) are L1-lower semicontinuous in BV(Ω).
Let us now prove that also the functionals Fgn(·,Ω) are lower semicontinuous. To this aim, let us take a

sequence of functions uj ∈ BV(Ω) converging in L1(Ω) to u ∈ BV(Ω). Let us fix an open set Ω′ ⊂⊂ Ω and a
function ψ ∈ C1

0 (Ω), 0 ≤ ψ ≤ 1, such that ψ ≡ 1 in Ω′. We have, using the fact that gn, ψ ≥ 0, ψ ≡ 1 in Ω′,
and integrating by parts twice,

lim inf
j→+∞

Fgn(uj ,Ω) = lim inf
j→+∞

[
Fgn(uj ,Ω) +

∫
Ω

ψ〈vn, Duj〉 −
∫

Ω

ψ〈vn, Duj〉
]

≥ lim inf
j→+∞

[∫
Ω

ψgn

(
x,

Duj
|Duj|

)
|Duj | +

∫
Ω

ψ〈vn, Duj〉 −
∫

Ω

ψ〈vn, Duj〉
]

≥ lim inf
j→+∞

Fĝn
(uj,Ω′) + lim

j→+∞

∫
Ω

uj〈vn,∇ψ〉dx

≥ Fĝn
(u,Ω′) +

∫
Ω

u〈vn,∇ψ〉dx = Fĝn
(u,Ω′) −

∫
Ω

ψ〈vn, Du〉

= Fgn(u,Ω′) −
∫

Ω\Ω′
ψ〈vn, Du〉.

The lower semicontinuity of Fgn(·,Ω) follows by letting first ψ ↑ 1 and then Ω′ ↑ Ω.
Set now hn(x, ξ) = gn(x, ξ − ξn) and observe that h∞n (x, ξ) = gn(x, ξ) for all (x, ξ) ∈ Ω × R

N . Thus,

Fhn(u,Ω) = Fgn(u− 〈ξn, ·〉,Ω) for all u ∈ BV(Ω),

hence Fhn(·,Ω) is lower semicontinuous, too. This fact, thanks to (3.17) and to Lemma 2.11 immediately implies
the L1-lower semicontinuity of Ff+1(·,Ω), hence the assertion follows. �

4. Relaxation

This section is devoted to relaxation results.
The first one (Th. 4.1) concerns the case of separated variables, under the assumption of C1-quasi continuity

of the integrand with respect to x. This theorem improves the relaxation result obtained, under stronger
regularity assumptions, in [2]. Its proof is based on a Reshetnyak-type result which is a consequence of the
lower semicontinuity Theorem 3.1, and follows the same outlines as in [2].

On the other hand, in Sections 4.2 and 4.3 we consider the general case and prove in particular Theorem 1.1,
which is the main relaxation result of this paper. In that theorem we state the classical relaxation formula (1.7),
under the very weak assumption of BV dependence of the integrand with respect to x. As usual, this result
is attained, once we have proved the so-called “lim inf” and “lim sup” inequalities. Since the first one is a
consequence of the lower semicontinuity results contained in Section 3.2, it is sufficient to prove here only the
“lim sup” inequality (Th. 4.2). In order to achieve this result, we adapt the blow-up technique introduced by
Fonseca-Muller in [20] and [21] in the case of continuous integrands; however, in our case, this is a very delicate
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technical point. Indeed, the presence of jump discontinuities of the integrand, due to the assumption of BV
dependence in x, imposes a refined use of the trace properties of BV functions.

4.1. The case of separated variables under C1-quasi continuity assumption

Theorem 4.1. Let a : Ω → [0,+∞) be a bounded C1-quasi continuous function and let p : R × R
N → [0,+∞)

be a continuous function, convex in the last variable and such that

0 ≤ p(s, ξ) ≤ Λ(1 + |ξ|) for every (s, ξ) ∈ R × R
N , (4.1)

for some Λ > 0. Let F : BV(Ω) → [0,+∞] be the functional defined by

F (u) =

⎧⎨⎩
∫

Ω

a(x)p(u,∇u) dx if u ∈W 1,1(Ω)

+∞ if u ∈ BV(Ω) \W 1,1(Ω),
(4.2)

and F be the relaxation of F . Then, for every u ∈ BV(Ω),

F (u) =
∫

Ω

a(x)p(u,∇u) dx+
∫

Ω

a(x)p∞
(
ũ,

Dcu

|Dcu|
)
|Dcu| +

∫
Ju∩Ω

a(x) dHN−1

∫ u+(x)

u−(x)

p∞(s, νu) ds. (4.3)

Proof. Let us denote by F the functional on the right hand side of (4.3). Clearly, F ≤ F and, by Theorem 3.1,
it follows that F is L1-lower semicontinuous on BV(Ω), so that F ≤ F . Now we prove the opposite inequality.

Indeed, let u ∈ BV(Ω) and uh = u ∗ φh, where {φh} is a sequence of mollifiers. Then {uh} ⊂ W 1,1
loc (Ω).

Moreover, uh → u strongly in L1
loc(Ω) and

∫
A
|∇uh| dx → |Du|(A), for every A ⊂⊂ Ω, such that |Du|(A) = 0.

Denoting by G(uh) and G(u) the subgraphs of uh and u, respectively, by Theorems 1.8 and 1.10 in [27] and
Proposition 1.1 in [9] we have that

χG(uh) → χG(u) in L1
loc(Ω × R) and |α(uh)| (A× R) → |α(u)| (A× R),

where α(uh) = DχG(uh) and α(u) = DχG(u). Setting

p̂(s, ξ, τ) :=
{ −p(s,−ξ/τ)τ if τ < 0,
p∞(s, ξ) if τ = 0,

by Lemma 2.2 in [10], it follows that

lim
h→∞

F (uh, A) = lim
h→∞

F(uh, A) = lim
h→∞

∫
A×R

a(x) p̂
(
s,

α(uh)
|α(uh)| (x, s)

)
d|α(uh)|(x, s). (4.4)

Notice that by the classical Reshetnyak Theorem (see [28] or [4], Th. 2.39) we get

lim
h→∞

∫
A×R

p̂

(
s,
α(uh)
|α(uh)| (x, s)

)
d|α(uh)|(x, s) =

∫
A×R

p̂

(
s,

α(u)
|α(u)| (x, s)

)
d|α(u)|(x, s). (4.5)

Moreover by Theorem 3.1 we have

lim inf
h→∞

∫
A×R

B̃(x) p̂
(
s,

α(uh)
|α(uh)|

)
d|α(uh)| ≥

∫
A×R̃

B(x) p̂
(
s,
α(u)
|α(u)|

)
d|α(u)|, (4.6)
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where B̃(x) can be chosen either equal to a(x) or to λ− a(x) with λ = ess sup a(x). As a consequence of (4.5)
and (4.6) we have

lim
h→∞

∫
A×R

a(x) p̂
(
s,

α(uh)
|α(uh)|

)
d|α(uh)| =

∫
A×R

a(x) p̂
(
s,

α(u)
|α(u)|

)
d|α(u)| = F(u,A). (4.7)

Hence, from (4.7) and (4.4), it follows

F (u,A) ≤ lim inf
h→+∞

F (uh, A) = F(u,A) ≤ F(u).

By approximation we then have F (u) ≤ F(u) and the theorem is proven. �

4.2. The “lim sup” inequality in the general case

In this section we will assume that the integrand f does not depend on s.
Moreover, we will assume that the recession function f∞ : Ω × R

N → [0,+∞) satisfies

f∞(·, ξ) ∈ BV(Ω) for every ξ ∈ R
N , (4.8)

and that for every ξ ∈ R
N there exists Nξ ⊂ Ω, with HN−1(Nξ) = 0, such that

f∞(x, ξ) = (f∞)−(x, ξ) for all x ∈ Ω \Nξ. (4.9)

Theorem 4.2. Assume that f : Ω × R
N → R is a Borel function satisfying (2.7) and (2.8). Let F : BV(Ω) ×

A(Ω) → [0,+∞] be the functional defined in (2.10) and F be the relaxation of F . Assume also that (4.8) and
(4.9) hold. Then, F (u, ·) is the trace of a finite Radon measure on A(Ω), and, for every A ∈ A(Ω) and every
u ∈ BV(Ω),

F (u,A) ≤
∫
A

f(x,∇u)dx+
∫
A

f∞
(
x,

Dcu

|Dcu|
)
d|Dcu| +

∫
Ju∩A

[u+(x) − u−(x)]f∞(x, νu(x))dHN−1.

We start by observing that under the assumptions of Theorem 4.2 above it is well known that for any
u ∈ BV(Ω) the function F (u, ·) is the trace of a finite Radon measure on A(Ω) and that for all A ∈ A(Ω)

0 ≤ F (u,A) ≤ Λ(LN (A) + |Du|(A)).

Following [19], Proof of Theorem 1.3, we fix u ∈ BV(Ω) and consider the Radon-Nikodým derivatives of F (u, ·)
with respect to the Lebesgue measure LN , to the total variation of the Cantor measure |Dcu| and to the
Hausdorff measure HN−1
Su, respectively. In order to obtain Theorem 4.2, we will prove that

(L)
dF (u, ·)

dLN (x0) ≤ f(x0,∇u(x0)) for LN -almost every x0 ∈ Ω,

(C)
dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0,

Dcu

|Dcu| (x0)
)

for |Dcu|-almost every x0 ∈ Ω,

(J)
dF (u, ·)

dHN−1
Ju (x0) ≤ [u+(x0) − u−(x0)]f∞(x0, νu(x0)) for HN−1-almost every x0 ∈ Ju.

Inequality (L) is proven in [19], Theorem 1.3, part (i), under assumptions (2.7) and (2.8) alone, hence, we have
to prove (C) and (J). To this purpose let us define the following coercive functional associated to F by setting

F 1(u,A) := F (u,A) + |Du|(A).
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Proposition 4.3. Let f satisfy the assumptions of Theorem 4.2. Then, (C) holds; i.e., for every u ∈ BV(Ω),

dF (u, ·)
d|Dcu| (x0) ≤ f∞

(
x0,

Dcu

|Dcu|(x0)
)

for |Dcu|-almost every x0 ∈ Ω.

Proof. By Lemma 3.9 of [7] for |Dcu|-almost every x0 ∈ Ω, there exists a double indexed sequence {thε , uhε} such
that, for every h ∈ N,

thε → +∞, εthε → 0+, uhε → ũ(x0) as ε→ 0+, (4.10)

dF 1(u, ·)
d|Dcu| (x0) =

dF (u, ·)
d|Dcu| (x0) + 1

= lim
h→+∞

lim sup
ε→0+

inf{F 1(v,Qhν (x0, ε)) : v ∈ BV(Qhν (x0, ε)), v|∂Qh
ν (x0,ε) = uhε + 〈thε ν, x− x0〉}

hN−1εN thε
,

where ν =
Dcu

|Dcu|(x0), |ν| = 1, and Qhν (x0, ε) := x0 + εQhν , with

Qhν := Rν

(
(−h/2, h/2)N−1 × (−1/2, 1/2)

)
, (4.11)

and Rν denotes a rotation such that RνeN = ν.
Let N1 ⊆ Ω\Su, with |Dcu|(N1) = 0, be such that for every x0 ∈ (Ω\Su)\N1 (4.10) holds and all the limits

above exist and are finite.
Let D0 = {νj} be a countable dense subset of SN−1. Moreover, let N2 ⊆ Ω defined by

N2 :=
⋃
j∈N

[
Sf∞(·,νj) ∪Nνj

]
, (4.12)

where, for every νj ∈ D0, Sf∞(·,νj) is the approximate singular set of the BV-function f∞(·, νj) and Nνj is
defined as in (4.9) with ε = νj . Since, by Theorem 3.78 in [4], for every νj ∈ D0 the set Sf∞(·,νj) is σ-finite
with respect to HN−1, we obtain |Dcu|(N2) = 0 (see Th. 3.92 (c) in [4]).

Finally, set N0 = N1 ∪N2, where |Dcu|(N0) = 0 and choose x0 ∈ (Ω \ Su) \N0.
Then, taking into account (2.6), (2.8) and (4.10), we have

dF (u, ·)
d|Dcu| (x0) + 1 ≤ lim inf

h→+∞
lim sup
ε→0+

1
hN−1εN thε

F 1(uhε + 〈thεν, x− x0〉, Qhν (x0, ε))

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f(x, thεν)
thε

dx+ 1

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

(
f∞(x, ν) +

f(x, 0)
thε

)
dx+ 1

≤ lim inf
h→+∞

lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f∞(x, ν) dx + 1,

which implies
dF (u, ·)
d|Dcu| (x0) ≤ lim inf

h→+∞
lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f∞(x, ν) dx.

Hence, in order to conclude, it is enough to prove that for all h ∈ N

lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f∞(x, ν) dx ≤ f∞(x0, ν). (4.13)
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Let {νj} be a sequence of directions contained in D0 converging to ν. By using the Lipschitz continuity of
f∞(x, ·) and recalling that x0 ∈ Sf∞(·,νj)

, it follows that for every j ∈ N

lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f∞(x, ν) dx ≤ lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

f∞(x, νj) dx+ Λ lim sup
ε→0+

−
∫
Qh

ν (x0,ε)

|νj − ν| dx

= f∞(x0, νj) + Λ|νj − ν|.

Thus, letting j → +∞, (4.13) is proved. Hence, the assertion follows. �

Let us now describe the idea of the proof of (J) which is really the new point in the whole relaxation argument.
The main difficulty here, differently from the cases treated in [19] and [3], is due to the points where f∞ and
u both jump. To understand how we deal with this case, let us assume for simplicity that f(x, ξ) = a(x)p(ξ),
that a and u have the same jump set Γ and that Γ is a smooth manifold splitting Ω in two open sets Ω±.

As in [19], our proof is based on a blow-up argument at any point x0 ∈ Γ and on a formula which involves
the jump function wν taking the two values u±(x0) and jumping along the tangent plane to Γ at x0. However
this function would not work in our case. Instead, we have to replace it with the function wΓ jumping along
Γ itself. Moreover, in order to recover a−(x0) we need to approximate wΓ by a sequence of functions un such
that un = wΓ on Ω+ and smoothly interpolate between the two values u±(x0) on Ω−, if νa(x0) points toward
Ω+, and do the opposite if νa(x0) points toward Ω−. Further complications come to play if f cannot be split
as a product, if the jump set of f∞(·, ξ) varies with ξ and Γ is not a smooth manifold.

Proposition 4.4. Let f satisfy the assumptions of Theorem 4.2. Then, (J) holds; i.e., for every u ∈ BV(Ω),

dF (u, ·)
dHN−1
Ju (x0) ≤ [u+(x0) − u−(x0)]f∞(x0, νu(x0)) for HN−1-a.e. x0 ∈ Ju. (4.14)

Proof. Let u ∈ BV(Ω). Since Ju is a countably HN−1-rectifiable set, we have that Ju = (∪Kn) ∪ Ñ , where
HN−1(Ñ) = 0, Kn are disjoint compact sets and Kn ⊆ Γn, where, for every n ∈ N, Γn is the graph of a
C1-function. Moreover, by removing a set N1 ⊂ Ju of zero HN−1-measure, we may assume that if x ∈ Kn \N1

for some n, then νu(x) is orthogonal to the tangent plane to Γn at x.
To prove the assertion it is then enough to show that, for any n, (4.14) holds for HN−1-a.e. x ∈ Kn. To this

aim, we fix n and prove the assertion in Ju ∩ Γn. However, in order to simplify the notation, from now on we
drop the subscript n by writing Γ instead of Γn.

As in the proof of Proposition 4.3, let D0 denote a countable dense subset of SN−1. By Theorem 3.7 of [7],
for HN−1-almost every x0 ∈ Ju ∩ Γ we have

dF 1(u, ·)
dHN−1
Ju (x0) =

dF (u, ·)
dHN−1
Ju (x0) + |u+(x0) − u−(x0)| (4.15)

= lim sup
ε→0+

inf{F 1(v,Qν(x0, ε)) : v ∈ BV(Qν(x0, ε)), v|∂Qν (x0,ε) = wν}
εN−1

,

where ν = νu(x0), Qν(x0, ε) = x0 + εQν , Qν is defined as in (4.11) with h = 1, and wν is the jump function
which takes the value u+(x0) if 〈x− x0, ν〉 > 0 and u−(x0) if 〈x− x0, ν〉 ≤ 0.

Let N2 ⊂ Ju, with HN−1(N2) = 0, be such that for every x0 ∈ Ju \N2 (4.15) holds.
Let N3 ⊂ Ju, with HN−1(N3) = 0, be such that for every x0 ∈ (Ju ∩ Γ) \ N3 Theorem 2.2 holds, with g±Γ

replaced by
(
f∞(·, νj)

)±
Γ

, for every νj ∈ D0.
Let N4 ⊂ Ju, with HN−1(N4) = 0, be such that for every x0 ∈ (Ju ∩ Γ) \ N4 (2.4) and (2.5) hold, with g±Γ

replaced by
(
f∞(·, νj)

)±
Γ

, for every νj ∈ D0.
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Let us now set

N5 =
(⋃
j∈N

Sf∞(·,νj) \ Jf∞(·,νj)

)
∩ Γ.

Then HN−1(N5) = 0. Let N6 ⊂ Ju, with HN−1(N6) = 0, be such that for every x0 ∈ (Ju ∩ Jf∞(·,νj)
) \ N6,

νu(x0) = ±νf∞(·,νj)
(x0), for every νj ∈ D0. Finally, set N0 = N1 ∪ N2 ∪ N3 ∪ N4 ∪ N5 ∪ N6 ∪ N7, where

N7 = ∪νj∈D0Nνj and Nνj is defined as in (4.9). Clearly HN−1(N0) = 0.
Let us fix x0 ∈ (Ju∩Γ)\N0. For the sake of simplicity, we may assume x0 = 0. Since ν = νu(0) is orthogonal

to Γ at 0, let us orient Γ in such a way that νΓ(0) = νu(0). Denote by A an open neighborhood of the origin such
that Γ ∩ A coincides with the graph of a C1 function ψ : πν⊥(RN ) → R such that ψ(0) = 0 and ∇x⊥

ν
ψ(0) = 0

and A\Γ is the union of two open sets A±, where the signs ± are chosen so that, as in Remark 2.4, νΓ(0) points
toward A+.

Let {νj} be a sequence of directions contained in D0 converging to ν. Notice that for j sufficiently large
there exist C1 functions ψj : π

ν⊥
j

(RN ) → R such that Γ ∩ A coincides with the graph of ψj . Finally denote by

wΓ the jump function which takes the value u±(0) in A±.
Let us fix δ > 0; then (1 − δ)Qν ⊂ Qνj for all j sufficiently large. Let φ ∈ C∞

0 (Qν) be a cut-off function
such that φ(x) = 1 in (1 − δ)Qν and |∇φ| ≤ c/δ. For every ε > 0, set φε(x) = φ(xε ), so that |∇φε| ≤ c/εδ
and set wε,ν,Γ(x) = φε(x)wΓ(x) + (1 − φε(x))wν (x). We note that wε,ν,Γ satisfies the boundary condition
wε,ν,Γ|∂(εQν) = wν , so that, by (4.15), we obtain

dF 1(u, ·)
dHN−1
Ju (0) ≤ lim sup

ε→0+

[
F (wε,ν,Γ, εQν)

εN−1
+

|Dwε,ν,Γ|(εQν)
εN−1

]
· (4.16)

Clearly, for every ε > 0 and j ∈ N sufficiently large,

|Dwε,ν,Γ|(εQν)
εN−1

≤ 1
εN−1

[∫
εQν

|∇φε||wΓ−wν |dx+ |DwΓ|(εQν) + |Dwν |(εQν\ε(1−δ)Qν)
]

(4.17)

≤ c

εNδ

∫
εQν

|wΓ − wν | dx+
|u+ − u−|
εN−1

HN−1
(
Γ ∩ εQν

)
+ cδ

≤ c

εNδ

∫
εQ⊥

ν

|ψ(x⊥ν )| dx⊥ν +
|u+ − u−|
εN−1

∫
εQ⊥

ν

√
1 + |∇x⊥

ν
ψ(x⊥ν )|2 dx⊥ν + cδ

≤ c

δ
‖∇ψ‖L∞(εQ⊥

ν ) + |u+ − u−| −
∫
εQ⊥

ν

√
1 + |∇x⊥

ν
ψ(x⊥ν )|2 dx⊥ν + cδ,

where u+, u− stands for u+(0), u−(0), respectively, and Q⊥
ν = πν⊥(Qν). Letting ε → 0+ and recalling that

∇x⊥
ν
ψ(0) = 0, we obtain

lim sup
ε→0+

|Dwε,ν,Γ|(εQν)
εN−1

≤ |u+ − u−| + cδ. (4.18)

Let us now fix j ∈ N and assume, in order to fix the ideas, that 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) = νu(0). We
approximate wε,ν,Γ with the functions unε,ν,j(x) = φε(x)unε,j(x) + (1 − φε(x))unε,ν(x), where

unε,ν(x) :=

⎧⎪⎨⎪⎩
u+ if 〈x, ν〉 ≥ 0,
(u+ − u−)

n

ε
〈x, ν〉 + u+ if −ε/n ≤ 〈x, ν〉 ≤ 0,

u− if 〈x, ν〉 ≤ −ε/n,
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and

unε,j(x) :=

⎧⎪⎨⎪⎩
u+ if xνj ≥ ψj(x⊥νj

),

(u+ − u−)
n

ε
[xνj − ψj(x⊥νj

)] + u+ if ψj(x⊥νj
) − ε/n ≤ xνj ≤ ψj(x⊥νj

),

u− if xνj ≤ ψj(x⊥νj
) − ε/n.

(4.19)

It will be clear from the rest of the proof that, when 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) = −νu(0), the argument
below still works if we define

unε,j(x) :=

⎧⎪⎨⎪⎩
u+ if xνj ≥ ψj(x⊥νj

) + ε/n,

(u+ − u−)
n

ε
[xνj − ψj(x⊥νj

)] + u− if ψj(x⊥νj
) ≤ xνj ≤ ψj(x⊥νj

) + ε/n,

u− if xνj ≤ ψj(x⊥νj
)

(4.20)

and that, when 0 ∈ Ω \ Sf∞(·,νj), any of the two possible choices (4.19), (4.20) would make the argument work.
Notice, however, that in all three cases in the definition of unε,ν remains unchanged.

The functions unε,ν , u
n
ε,j belong to W 1,1(εQν) and ‖unε,ν − wν‖L1(εQν) → 0, ‖unε,j − wΓ‖L1(εQν ) → 0, hence

‖unε,ν,j − wε,ν,Γ‖L1(εQν) → 0, as n → +∞. Therefore, by the lower semicontinuity of F , (2.8), (2.6), we have
that for all ε > 0 and j sufficiently large,

F (wε,ν,Γ, εQν)
εN−1

≤ lim inf
n→+∞

1
εN−1

∫
εQν

f(x,∇unε,ν,j) dx

≤ lim inf
n→+∞

1
εN−1

[∫
ε(1−δ)Qν

f(x,∇unε,j) dx+ Λ
∫
εQν

[
|∇φε||unε,j−unε,ν| + 1

]
dx

+ Λ
∫
εQν\ε(1−δ)Qν

(
φε|∇unε,j | + (1 − φε)|∇unε,ν |

)
dx

]

≤ lim inf
n→+∞

[
−
∫
εQνj

εf(x,∇unε,j) dx+
c

δ
−
∫
εQν

|unε,j−unε,ν| dx
]

+ cε+ cδ

≤ lim inf
n→+∞−

∫
εQνj

[
f∞(x, ε∇unε,j) + εf(x, 0)

]
dx+

c

δ
−
∫
εQν

|wΓ − wν | dx+ cε+ cδ

≤ lim inf
n→+∞−

∫
εQνj

f∞(x, ε∇unε,j) dx+
c

δ
‖∇x⊥

ν
ψ‖L∞(εQ⊥

ν ) + cε+ cδ,

where the last inequality −∫
εQν

|wΓ − wν | dx ≤ c‖∇x⊥
ν
ψ‖L∞(εQν ) is obtained as in (4.17). Letting ε → 0+, we

obtain

lim sup
ε→0+

F (wε,ν,Γ, εQν)
εN−1

≤ lim sup
ε→0+

lim inf
n→+∞−

∫
εQνj

f∞(x, ε∇unε,j) dx+ cδ, (4.21)



LOWER SEMICONTINUITY AND RELAXATION RESULTS ... 475

where we have used the equality ∇x⊥
ν
ψ(0) = 0. Moreover, by the Lipschitz continuity of f∞(x, ·), we get, setting

ψ̂j(x) = ψj(x− 〈x, νj〉νj),

lim sup
ε→0+

lim inf
n→+∞−

∫
εQνj

f∞(x, ε∇unε,j) dx (4.22)

≤ (u+−u−) lim sup
ε→0+

lim inf
n→+∞−

∫
εQ⊥

νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj−(∇xψ̂j)(x⊥νj
, xνj ))dxνj

]
dx⊥νj

≤ (u+ − u−) lim sup
ε→0+

lim inf
n→+∞ −

∫
εQ⊥

νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj

]
dx⊥νj

+ c lim sup
ε→0+

−
∫
εQ⊥

νj

|∇x⊥
νj
ψj(x⊥νj

)| dx⊥νj

≤ (u+ − u−) lim sup
ε→0+

lim inf
n→+∞ −

∫
εQ⊥

νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj

]
dx⊥νj

+ c lim sup
ε→0+

‖∇x⊥
νj
ψj‖L∞(εQ⊥

νj
)

≤ (u+−u−) lim sup
ε→0+

lim inf
n→+∞−

∫
εQ⊥

νj

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj)dxνj

]
dx⊥νj

+ c|∇x⊥
νj
ψj(0)|,

where Q⊥
νj

= πν⊥
j

(Qνj ). Notice that, by Lemma 2.1 we have that, for HN−1-a.e. x⊥νj
∈ εQ⊥

νj
,

lim
n→+∞

n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj

=

⎧⎪⎨⎪⎩
f̃∞(x⊥νj

, ψj(x⊥νj
), νj) if (x⊥νj

, ψj(x⊥νj
))∈Ω\Jf∞(·,νj)

(f∞)−(x⊥νj
, ψj(x⊥νj

), νj) if (x⊥νj
, ψj(x⊥νj

))∈Jf∞(·,νj), 〈νj , νf∞(·,νj)(x
⊥
νj
, ψj(x⊥νj

))〉 > 0
(f∞)+(x⊥νj

, ψj(x⊥νj
), νj) if (x⊥νj

, ψj(x⊥νj
))∈Jf∞(·,νj), 〈νj , νf∞(·,νj)(x

⊥
νj
, ψj(x⊥νj

))〉 < 0.

In any case, (2.3) and the assumption that ν and νΓ(x) have the same orientation, yield

lim
n→+∞

n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj =
(
f∞(·, νj)

)−
Γ

(x⊥νj
, ψj(x⊥νj

)),

for HN−1-a.e. x⊥νj
∈ εQ⊥

νj
. Therefore, by the dominated convergence theorem, we get

lim sup
ε→0+

lim inf
n→+∞−

∫
εQ⊥

νj

(u+ − u−)

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj

]
dx⊥νj

(4.23)

= lim sup
ε→0+

−
∫
εQ⊥

νj

(u+ − u−) lim
n→+∞

[
n

ε

∫ ψj(x
⊥
νj

)

ψj(x⊥
νj

)−ε/n
f∞(x⊥νj

, xνj , νj) dxνj

]
dx⊥νj

= lim sup
ε→0+

−
∫
εQ⊥

νj

(u+ − u−)
(
f∞(·, νj)

)−
Γ

(x⊥νj
, ψj(x⊥νj

)) dx⊥νj
.
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Recalling that Γ ∩ εQνj can be parametrized by
(
x⊥νj

, ψj(x⊥νj
)
)
, x⊥νj

∈ εQ⊥
νj

, that 0 is a Lebesgue point for(
f∞(·, νj)

)−
Γ

, that 0 ∈ Jf∞(·,νj) and νf∞(·,νj)(0) = νu(0) = νΓ(0), we obtain, recalling (2.2) and (2.3),

lim sup
ε→0+

−
∫
εQ⊥

νj

(u+ − u−)
(
f∞(·, νj)

)−
Γ

(x⊥νj
, ψj(x⊥νj

)) dx⊥νj
(4.24)

= lim sup
ε→0+

1
εN−1

∫
εQ⊥

νj

(u+ − u−)

⎡⎣(f∞(·, νj)
)−
Γ

(x⊥νj
, ψj(x⊥νj

))√
1 + |∇x⊥

νj
ψj |2

√
1 + |∇x⊥

νj
ψj |2

⎤⎦dx⊥νj

= lim
ε→0+

(
−
∫
εQ⊥

νj

√
1 + |∇x⊥

νj
ψj |2dx⊥νj

)⎛⎝−
∫

Γ∩εQνj

(u+−u−)

(
f∞(·, νj)

)−
Γ

(x)√
1 + |∇x⊥

νj
ψj |2

dHN−1(x)

⎞⎠
=
(√

1 + |∇x⊥
νj
ψj(0)|2

)⎛⎝(u+ − u−)

(
f∞(·, νj)

)−
Γ

(0)√
1 + |∇x⊥

νj
ψj(0)|2

⎞⎠
= (u+ − u−)(f∞)−(0, νj) = (u+ − u−)f∞(0, νj),

where the last equality follows from the fact that 0 ∈ ∪jNνj and each Nνj is defined as in (4.9).
By (4.15), (4.16), (4.18), (4.21)–(4.24), we obtain

dF (u, ·)
dHN−1
Ju (0) + |u+ − u−| ≤ (u+ − u−)f∞(0, νj) + c|∇x⊥

νj
ψj(0)| + cδ + |u+ − u−|.

Therefore, taking into account the Lipschitz continuity of f∞ with respect to the last variable and recalling
that ∇x⊥

νj
ψj(0) → ∇x⊥

ν
ψ(0) = 0, letting first j → +∞ and then δ → 0+, we get

dF (u, ·)
dHN−1
Ju (0) + |u+ − u−| ≤ (u+ − u−)f∞(0, νu) + |u+ − u−|.

Hence, the assertion follows. �

We are now in position to give the proof of Theorem 4.2.

Proof of Theorem 4.2. Taking into account [19], Theorem 1.3, part (i), and Propositions 4.3 and 4.4, we obtain
the assertion for any function u ∈ BV(Ω) and any A ∈ A(Ω). �

4.3. The proof of the relaxation result

Thanks to the results obtained in previous sections, we are now able to give the proof of the relaxation
Theorem 1.1.

Proof of Theorem 1.1. Let us start by observing that since for every ξ ∈ R
N the functions f(·, ξ) and f−(·, ξ)

agree LN -a.e. in Ω, then it is easily checked that for every summable function z : Ω → R
N

∫
Ω

f(x, z(x)) dx =
∫

Ω

f−(x, z(x)) dx.

Therefore, denoting by F the functional in (1.7), we may replace f by f− in the first integral without affecting
the value of the functional.
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By Theorem 2.6 f−(·, ξ) is C1-quasi lower semicontinuous for all ξ. Therefore inequality F (u) ≥ F(u) follows
at once by applying Theorem 3.1 to a−(x)p(ξ) (if (1.4) holds) or Theorem 3.6 to f−(x, ξ) (if (1.5) or (1.6) are
in force).

The opposite inequality F(u) ≥ F (u) follows by applying Theorem 4.2 to f− and observing that (4.9) is
always satisfied if (1.4) or (1.5) holds. �
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