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HOW TO STATE NECESSARY OPTIMALITY CONDITIONS FOR CONTROL
PROBLEMS WITH DEVIATING ARGUMENTS?
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1

Abstract. The aim of this paper is to give a general idea to state optimality conditions of control
problems in the following form:

inf
(u, v) ∈ Uad

∫ 1

0

f
(
t, u(θv(t)), u′(t), v(t)

)
dt, (1)

where Uad is a set of admissible controls and θv is the solution of the following equation:

⎧⎨
⎩

dθ(t)

dt
= g(t, θ(t), v(t)), t ∈ [0, 1]

θ(0) = θ0, θ(t) ∈ [0, 1] ∀t.
(2)

The results are nonlocal and new.
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1. Introduction

A large class of physical problems deals with finding extrema of functional J defined on some functional
subspace W of classical one like Sobolev space and which has the following form:

J(u) =
∫ 1

0

f (x, u(θ(x)), u′(ϕ(x))) dx, (3)

where θ(.) and ϕ(.) are functions which satisfy, for instance, θ([0, 1]) = [0, 1], ϕ([0, 1]) = [0, 1]. We call θ(.)
and ϕ(.) deviations or deviating functions. The goal is to find a function u : [0, 1] −→ R belonging to W and
minimizing J(.). We denote this problem by:

inf
[
J(u)/u ∈W

]
. (4)
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Such problems have been studied by many people: for instance we can see [5,9,11,17] and references of these
works. If a solution ū of (4) exists, then we can ask the following natural question: how to establish Euler-
Lagrange equation of (4)? We use this terminology by analogy with the classical one.

From [5,9,11], it is easy to see that necessary optimality conditions for (4) cannot be obtained in an easy way
as the classical case. Let us denote by (x, η, ξ) the respectives arguments of f . In [5] under suitable assumptions,
the authors state the following functional differential equation:

[∫ 1

0

σθ(x, t)
∂f

∂η
(x, ū(θ(x)), ū′(ϕ(x))) dx

]
− d

dt

[∫ 1

0

σϕ(x, t)
∂f

∂ξ
(x, ū(θ(x)), ū′(ϕ(x))) dx

]
= 0, (5)

where W is a functional space of absolutely continuous functions with the derivatives in a Lebesgue space, ū a
solution of (4) and the functions σθ(., .) and σϕ(., .) are defined by:

σθ(x, t) =
{

1 if θ(x) ∈ [t, 1]
0 if not.

Similar notation is used for ϕ(.), with ϕ satisfying the following condition: (�) for any measurable subset e of
[0, 1] such that | e | = 0 we have | ϕ−1(e) | = 0, where | e | stands for Lebesgue measure of e. Let us point
out that in (5) all the arguments ū(θ(.)), ū′(ϕ(.)) are in the average form: (5) is not local – it is a functional
differential equation – and seems to be far away from the classical Euler equation. In our approach we propose
a general idea to state necessary conditions of optimality for a large class of problems. Our method applied to
problem (4) gives the following nonlocal ordinary differential equation:

∂

∂η

〈
νθ

t , f(., ū(t), ū′(ϕ(.)))
〉

+
∑
i∈I

δti

∫
{θ=ti}

∂f

∂η
(s, ū(θ(s)), ū′(ϕ(s))) ds− d

dt

[
∂

∂ξ

〈
µϕ

t , f(., ū(θ(.)), ū′(t))
〉]

= 0,

(6)
in the distribution space D′

t(0, 1). The measures νθ
t and µϕ

t stand for two counting measures defined from,
respectively, the deviations θ(.) and ϕ(.) and δti stands for Dirac measure at ti. I is a subset of N, possibly
empty and the real numbers ti verify:

| {s ∈ [0, 1]/θ(s) = ti} |> 0 ∀i ∈ I.

Let us point out that in (6) there are some arguments which are not in average form: ū(.) and ū′(.). The singular
character expressed by the Dirac measure is absent from the previous works. The method used in [5] is based
on a formal abstract framework given in [2] – cf. also [3]. Our method uses a completely different argument: a
desintegration result which is presented in general framework in [1]. For any ξ = (ξ1, . . . , ξn) ∈ R

N , N ≥ 1, let

us set | ξ |=
√∑N

i=1 ξ
2
i . Let us remark that a growth condition like the following:

a | ξ |p +b ≤ f(x, η, ξ), p > 1

does not imply in general that a solution ū of (4) belongs to W 1,p(0, 1). Actually ū belongs to W 1,q(0, 1) for
some q such that 1 ≤ q < p.

In this work we also establish some regularity results for ū like for instance the following: ū′ ∈ Lp(0, 1) or ū′ ∈
L∞(0, 1). There are phenomena with memory effect. They are well known in the field of sciences and math-
ematical engineering. Besides, the intervention of these phenomena in economics, finance and environmental
science is new and important. At time t the value of the control solution of such phenomena depends to its
value at time s for any s < t – cf. for instance [1,5,8,9,11,12,16]. For such problems the goal is to optimize, for
instance some functional like

J(u, v) =
∫ 1

0

f1 (t, u(θv(t)), v(t)) dt,
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where the control (u,v) is submitted to some constraints such that (u, v) belongs to some admissible control
subset Uad of some functional space and⎧⎨

⎩
dθv(t)

dt
= g(t, θv(t), v(t)), t ∈ [0, 1]

θv(0) = θ0, 0 ≤ θ0 ≤ 1, θ(t) ∈ [0, 1] for a.e. t ∈ [0, 1].
(7)

Applied to this example our method gives the following result: Let (ū, v̄) be the optimal solution of our problem.
Then (ū, v̄) satisfies an integrodifferential system having Dirac measures – cf. Sections 5.1 and 5.2. Finally in
Section 6 we deal with the study of a financial market problem: the model of Jouini, Koel and Touzi [9,10]. As
far as we know this problem is new by the fact that the delay function θ(.) is an unknown parameter governed
by a differential equation. It is a control problem – cf. also [7]. We show that the Euler-Lagrange equation is
an integrodifferential one. In a regular framework, applied to this model, our result is more explicit than the
result established in [9].

Let us point out that all the results of this work are valid in the framework where the state of the system
and the control are in R

N , N ≥ 1. For convenience and to simplify the notations, our result is established in
the case where N = 1.

2. Euler-Lagrange equation of problem (4)

In the sequel we need to extend a result of [6]: Theorem 1, p. 96.

Proposition 2.1. Let f and g be such that f ∈ W 1,p(0, 1) and g ∈ Lq(0, 1), with 1
p + 1

q = 1, p ≥ 1. We suppose
g(x) ≥ 0 for a.e. x. Then we have the following formula:

I =
∫ 1

0

g(x) | f ′(x) | dx =
∫ +∞

0

( ∑
x∈∂�Ey

g(x)
)
dy,

where Ey = {t ∈ [0, 1]/f(t) > y} and ∂�Ey stands for the reduced boundary of the level set of Ey.

Remark 2.1. For the definition of the reduced boundary of the level set Ey, we refer to [6], p. 194.

Proof of Proposition 2.1. Let g̃ be such that g̃ ∈ Lq(0, 1), g̃(x) = g(x) for a.e. x and g̃(x) ≥ 0 ∀x. It suffices
to prove the result for g̃. For a.e. y in [0, 1] let us set σ(t) = H0(∂� {t/f(t) > y}), where H0 stands for
0-dimensional Haussdorf measure. Since f belongs to W 1,p(0, 1), then we have for a.e. y σ(y) < +∞. Let us
set E = {y/σ(y) = +∞}. We have | E |= 0. Setting F = R

+ \ E, we have ∀y ∈ F , σ(y) < +∞. For any k ∈ N

and for any x ∈ [0, 1] let us set g̃k(x) = inf {k, g̃(x)}. Then g̃k(.) belongs to L∞(0, 1) and we have

∫ 1

0

g̃(x) | f ′(x) | dx ≥ Ik =
∫ 1

0

g̃k(x) | f ′(x) | dx =
∫ +∞

0

( ∑
x∈∂�Ey

g̃k(x)
)
dy.

For any k ∈ N and for any y let us set ψk(y) =
∑

x∈∂�Ey
g̃k(x), the sequence k �→ ψk(.) is an increasing sequence

of functions; thus by the monotonous convergence theorem, we obtain:

∫ +∞

0

ψk(y)dy −→
∫ +∞

0

sup
k
ψk(y)dy ≤

∫ 1

0

| f ′(x) | g̃(x)dx.

Then let us consider the following function:

ψ : R
+ −→ R

+ ∪ {+∞} , y −→ ψ(y) =
∑

x∈∂�Ey

g̃(x),
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and let us set G = {y/ψ(y) = +∞}. Let us show that sup
k
ψk(y) = ψ(y) for a.e. y. It is enough to show

that | G ∩ F |= 0. For this let us set H = {y/ψ(y) <∞}. Thus we have H = R
+ \ G and H = F ∩ H =

{y/ψ(y) <∞}.
For any y ∈ H , we have ψ(y) ≥ ψk(y). Let k0 ∈ N be such that k0 > ψ(y). Then we have

∀k ≥ k0, ψk(y) = ψk0(y)

i.e.
for any k ≥ k0, ψ(y) ≥ ψk(y) = ψk0(y) ∀y ∈ H. (8)

Since the cardinal #(∂�Ey) is finite we have

g̃k0(x) = g̃(x) ∀x ∈ ∂�Ey. (9)

(8) and (9) allow us to obtain
ψ(y) = sup

k
ψk(y) = lim

k
ψk(y) = ψk0(y). (10)

So we have finally
∀y ∈ H, ψ(y) = sup

k
ψk(y). (11)

Let now y belonging to F ∩ G, then we have:
∑

x∈∂�Ey
g̃(x) = +∞, g̃(x) ≥ 0 ∀x ∈ ∂�Ey, #(∂�Ey) < +∞. So

there exists x0 ∈ ∂�Ey such that g̃(x0) = +∞. Hence we obtain

∀k ≥ k0, g̃k(x0) = k. (12)

It follows that
k = g̃k(x0) ≤ ψk(y) =

∑
x∈∂�Ey

g̃k(x) ≤
∑

x∈∂�Ey

g̃(x) = ψ(y) = +∞,

i.e. limk→+∞ ψk(y) = +∞. Hence for any y belonging to F ∩ G we have lim
k→+∞

ψk(y) = +∞. So ∀y ∈
F ∩G, sup

k
ψk(y) = +∞. As we have

∫ +∞

0

sup
k
ψk(y)dy ≤

∫ 1

0

g̃(x) | f ′(x) | dx < +∞,

it follows that sup
k
ψk(y) < +∞ for a.e. y i.e. | F ∩G |= 0. And it follows sup

k
ψk(y) = ψ(y) for a.e. y. Finally

we have ∫ 1

0

g̃k(x) | f ′(x) | dx =
∫ +∞

0

ψk(y)dy. (13)

Passing to the limit in (13) as k goes to infinity, we obtain

∫ 1

0

g̃(x) | f ′(x) | dx =
∫ +∞

0

ψ(y)dy =
∫ +∞

0

⎛
⎝ ∑

x∈∂�Ey

g̃(x)

⎞
⎠ dy. �

Remark 2.2. The result is still true for scalar functions u : Ω −→ R, Ω ⊂ R
n with n > 1.

As a consequence of Proposition 2.1, it follows:

Proposition 2.2. Let q be such that 1 ≤ q < +∞ and let the following assumptions hold:
(i) θ : [0, 1] −→ R is an absolutely continuous function such that | θ′(.) | belongs to Lq(0, 1);
(ii) g belongs to Lq′

(0, 1), with 1
q + 1

q′ = 1.
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Then we have:

I =

∫ 1

0

g(x) | θ′(x) | dx =

∫
R

h(x) | θ′(x) | dx =

∫
R

⎛
⎝ ∑

t∈θ−1(y)

g(t)

⎞
⎠ dy, (14)

where h = gX[0,1], and for any measurable subset E of [0, 1] XE stands for the characteristic function of E.

Remark 2.3. The formula (14) is established in [6] under the assumptions that g ∈ L1(0, 1) and θ is a Lipschitz
function. The proof of [6] adapts to prove Proposition 2.2, using Proposition 2.1.

The Proposition 3 of [6], p. 119, is still valid under the following assumptions:
(i) θ : [0, 1] −→ R is an absolutely continuous function such that:

| θ′(.) |∈ Lq(0, 1), | θ′(x) |≥ θ0 a.e. x ∈ (0, 1) where θ0 is a positive constant;

(ii) g belongs to Lq′
(0, 1), with 1

q + 1
q′ = 1.

Indeed, applying Proposition 2.2 we obtain:

∫
{x/θ(x)>t}

g(x)dx =
∫
{x/θ(x>t}

X[0,1](x)g(x)dx =
∫ +∞

t

⎛
⎝ ∑

x∈θ−1(s)

X[0,1](x)
g(x)

| θ′(x) |

⎞
⎠ ds

=
∫ +∞

t

⎛
⎝ ∑

x∈θ−1(s)

g(x)
| θ′(x) |

⎞
⎠ ds.

And clearly it follows:
d
dt

[∫
{x/θ(x)>t}

g(x)dx

]
= −

∑
x∈θ−1(t)

g(x)
| θ′(x) |

which is established in [6].

Proposition 2.3. Let r and q be such that 1 ≤ r, q < +∞ and let the following assumptions hold:
(i) θ : [0, 1] −→ R is an absolutely continuous function such that:

| θ′(.) |∈ Lr(0, 1),
1

| θ′(.) | ∈ Lδ(0, 1);

(ii) f ∈ Lq(0, 1), with 1
δ = 1 − (1

r + 1
q ).

Then we have: ∫ 1

0

| f(x) | dx =

∫
R

⎡
⎣ ∑

x∈θ−1(s)

| f(x) |
| θ′(x) |

⎤
⎦ ds (15)

F (t) =

∫
{x/θ(x)>t}

| f(x) | dx =

∫ ∞

t

⎡
⎣ ∑

x∈θ−1(s)

| f(x) |
| θ′(x) |

⎤
⎦ ds (16)

dF (t)
dt

= −
∑

x∈θ−1(t)

| f(x) |
| θ′(x) | a.e. t ∈ R. (17)

Remark 2.4.
(1) By (15) the derivative dF (t)

dt belongs to L1(R). So it is also the distributional derivative of F .
(2) Under the same assumptions as in Proposition 2.3 the result is also valid for F (t) =

∫
{x/θ(x)>t} f(x)dx.
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Proof of Proposition 2.3. We can assume that f is positive, since we could otherwise consider f+(.) = sup(0, f(.))
and f−(.) = sup(0,−f(.)) instead of f . We have:

I =
∫ 1

0

f(x)dx =
∫

R

X[0,1](x)f(x)dx =
∫

R

X[0,1](x)
f(x)

| θ′(x) | | θ
′(x) | dx.

Since 1
|θ′(.)| belongs to Lδ(0, 1) and f belongs to Lq(0, 1), by Hölder the function f(.)

|θ′(.)| belongs to Lµ(0, 1) with
1
µ = 1

δ + 1
q . Since 1

δ = 1 − (1
r + 1

q ) we have 1
µ + 1

r = 1. Using Proposition 2.2 we obtain (15):

I =
∫

R

⎡
⎣ ∑

x∈θ−1(s)

f(x)
| θ′(x) |

⎤
⎦ds.

Using the same arguments as in the proof of (15), we obtain (16):

F (t) =
∫
{x/θ(x)>t}

| f(x) | dx =
∫ ∞

t

⎡
⎣ ∑

x∈θ−1(s)

| f(x) |
| θ′(x) |

⎤
⎦ds.

The formula (17) follows from (16). �

The following question is natural. Let us consider the function F (t) =
∫
{x/θ(x)>t} f(x)dx. Under what

conditions the following function:
dF (t)

dt
= −

∑
x∈θ−1(t)

f(x)
| θ′(x) |

belongs to Lλ(0, 1) for some suitable real number λ such that 1 ≤ λ ≤ q?
Proposition 2.4 will allow us to answer to this important question.
Before considering Proposition 2.4, let us recall the following classical result.

Lemma 2.1. Let (ai)k
i=1 be a finite sequence of real numbers and λ be a real number such that λ ≥ 1. Then

we have (
k∑

i=1

| ai |
)λ

≤ kλ−1
k∑

i=1

| ai |λ .

Proposition 2.4. Let ρ and q be such that 1 ≤ ρ, q < +∞ and let the following assumptions hold:
(i) θ : [0, 1] −→ R is an absolutely continuous function such that: | θ′(.) | belongs to Lρ(0, 1), 1

|θ′(.)| belongs
to Lµ(0, 1) and there exists a positive constant C0 such that card(θ−1(s)) ≤ C0 for a.e. s;

(ii) f belongs to Lq(0, 1), with 1
ρ + 1

q + 1
µ ≤ 1,

then we have:
dF (s)

ds
= k(s) = −

∑
x∈θ−1(s)

f(x)
| θ′(x) | belongs to Lλ(0, 1),

where

λ =
(ρ− 1)qµ
ρ(q + µ)

, 1 ≤ λ ≤ q

and

F (s) =
∫ ∞

s

[ ∑
x∈θ−1(t)

f(x)
| θ′(x) |

]
dt.
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Proof. Considering Proposition 2.3 it is enough to show that | k(.) |λ belongs to L1(0, 1). We have:

| k(s) |λ=
∣∣∣ ∑

x∈θ−1(s)

f(x)
| θ′(x) |

∣∣∣λ for a.e. s.

Using Lemma 2.1 and the fact that card(θ−1(s)) ≤ C0 for a.e. s we obtain:

| k(.) |λ≤ C
∑

x∈θ−1(s)

[ | f(x) |λ
| θ′(x) |λ−1

1
| θ′(x) |

]
for a.e. s,

where C is a suitable constant depending on C0 and on λ. Let us set

m(x) =
| f(x) |λ

| θ′(x) |λ−1
for a.e. x. (18)

Then we have:

| k(.) |λ≤ C
∑

x∈θ−1(s)

m(x)
| θ′(x) | for a.e. s. (19)

Let us write: ∫ 1

0

m(x)dx =
∫ 1

0

m(x)
| θ′(x) | | θ

′(x) | dx. (20)

In order to apply Proposition 2.2 to the left hand side of the equality (20), it is enough to choose λ such that
the function |f(x)|λ

|θ′(x)|λ belongs to Lρ′
(0, 1) with 1

ρ + 1
ρ′ = 1. Hence |f(x)|

|θ′(x)| belongs to Lλρ′
(0, 1), where 1

q + 1
µ = 1

λρ′

i.e. ρ′

q + ρ′

µ = 1
λ . Since ρ′ = ρ

ρ−1 , we have:

λ =
(ρ− 1)qµ
ρ(µ+ q)

· (21)

It is easy to see that λ ≤ q. Let us show that λ ≥ 1. Since λ = (ρ−1)qµ
ρ(µ+q) , it is enough to show (ρ−1)qµ

ρ(µ+q) ≥ 1
which can write 1

ρ + 1
q + 1

µ ≤ 1. It is indeed the case by assumption. Therefore we have 1 ≤ λ ≤ q. Moreover
from (21) we obtain:

1
ρ

+
λ

µ
+
λ

q
= 1.

Under the condition (21) and using (19), we obtain:

∫ 1

0

| k(s) |λ ds ≤ C

∫
R

∑
x∈θ−1(s)

m(x)
| θ′(x) |ds =

∫ 1

0

m(x)dx <∞,

i.e.

k(s) =
d
ds

∫ ∞

s

⎡
⎣ ∑

x∈θ−1(t)

f(x)
| θ′(x) |

⎤
⎦dt ∈ Lλ(0, 1). �
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Remark 2.5.
(1) If 1

ρ + 1
µ + 1

q = 1, then we have λ = 1.
(2) If | θ′ | and 1

|θ′| belong to L∞(0, 1), then λ = q. It is the case when θ satifies the following assumption:
0 < θ0 ≤| θ′(x) |≤ k for a.e. x.

Corollary 2.1. Let q and ν be such that 1 ≤ q < +∞, 1 ≤ ν < +∞ and let the following assumptions hold:

(i) θ : [0, 1] −→ R is an absolutely continuous function such that:

| θ′(.) |∈ Lρ(0, 1),
1

| θ′(.) | ∈ Lµ(0, 1), µ ≥ 1;

(ii) card(θ−1(s)) ∈ Lν(R), ν ≥ 1;
(iii) f ∈ Lq(0, 1);

(iv)
1
ρ

+
1
q

+
1
µ
≤ 1;

(v)
1
µ

+
1
ν

+
1
ρ

+
1
q
− 1
ν

(
1
q

+
1
µ

+
1
ρ
) ≤ 1.

Then the function

k(s) =
dF (s)

ds
= −

∑
x∈θ−1(s)

f(x)
| θ′(x) | belongs to LΛ(0, 1),

where

Λ =
qµν(ρ− 1)

(ρ− 1)qµ+ νρ(µ+ q) − ρ(µ+ q)
and F (s) =

∫
{x/θ(x)>s}

f(x)dx.

Proof. Let λ ≥ 1 be some real number to be determined later. By Lemma 2.1, we have:

| k(s) |λ≤
[
card(θ−1(s))

]λ−1 ∑
x∈θ−1(s)

m(x)
| θ′(x) | ,

where m(x) =
| f(x) |

| θ′(x) |λ−1
for a.e. x. Hence we obtain

(
| k(s) |

[card(θ−1(s))]
λ−1

λ

)λ

≤
∑

x∈θ−1(s)

m(x)
| θ′(x) | ·

Using Proposition 2.4 we see that the function h(s) = |k(s)|
[card(θ−1(s))]

λ−1
λ

belongs to Lλ(0, 1), where λ is given by:

λ =
(ρ− 1)qµ
ρ(µ+ q)

, (22)

which satisfies λ ≥ 1 by (iv). Since card(θ−1(.)) belongs to Lν(R), we have

[
card(θ−1(s))

] λ−1
λ ∈ L

νλ
λ−1 (0, 1).

Therefore the function | k(s) |= h(s)[card(θ−1(s))]
λ−1

λ belongs to LΛ(0, 1), with Λ satisfying the following
equality:

1
Λ

=
1
λ

+
λ− 1
νλ

· (23)
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The relations (22) and (23) give

Λ =
qµν(ρ− 1)

(ρ− 1)qµ+ νρ(µ+ q) − ρ(µ+ q)
·

By assumption (v), we show that Λ ≥ 1. Indeed, to show that Λ ≥ 1, it is enough to prove that:

(ρ− 1)qµ+ νρ(µ+ q) − ρ(µ+ q)
qµν(ρ− 1)

≤ 1,

i.e.
1
µ

+
1
ν

+
1
ρ

+
1
q
− 1
ν

(
1
q

+
1
µ

+
1
ρ

)
≤ 1.

It is indeed the case by assumption. Hence Λ ≥ 1. �

Remark 2.6.

(1) If 1
ρ + 1

µ + 1
q = 1, then λ = 1 and by equation (23) we obtain Λ = 1.

(2) If | θ′ | and 1
|θ′| belong to L∞(0, 1), then λ = q and by equation (23) we obtain Λ = qν

ν+q−1 =[
1
q + 1

qν − 1
ν

]−1

.

(3) If ν = +∞, then Λ = λ = (ρ−1)qµ
ρ(µ+q) from Proposition 2.4.

Let us now establish the Euler-Lagrange equation of the problem (4) where the functional space is the
following one:

W =
{
v ∈ L1(0, 1)/v′ ∈ Lp

(
(0, 1),

dµϕ

dm

)
, v(0) = v(1) = 0

}
, (24)

v′ stands for the distributional derivative of v and dµϕ

dm is the Radon-Nikodym derivative of the measure µϕ

defined by: for any measurable e ⊂ [0, 1], µϕ(e) =| ϕ−1(e) |. Let us recall that the problem (4) has a solution in
W ⊂W 1,q

0 (0, 1) if we assume the following [15]: There exists two positive real numbers β and q, 1 ≤ β < q < p,
such that dµϕ

dm satifies: dµϕ

dm ∈ L
q

q−β (0, 1) and (dµϕ

dm )−1 ∈ L
q

p−q (0, 1). (See also [4] for an approach slightly
different.)

In order to establish Euler-Lagrange equation of the problem (4), we need the following assumptions. Let f
be a function such that f : (x, η, ξ) ∈ [0, 1]×R

N ×R
N −→ f(x, η, ξ) ∈ R, differentiable with respect to the two

last arguments (η, ξ) for a.e. x, convex with respect to ξ.
All the results of this work are obtained for N ≥ 1. To simplify we present our ideas in the case N = 1. Let

the following assumptions hold:

⎧⎪⎨
⎪⎩
a1 | ξ |p + b1 ≤ f(x, η, ξ) ≤ a2 | ξ |p + b2, ai > 0, i = 1, 2, p > 1∣∣∣∣∂f∂η (x, η, ξ)

∣∣∣∣,
∣∣∣∣∂f∂ξ (x, η, ξ)

∣∣∣∣ ≤ a3 | ξ |p−1 + b3, a3 > 0.
(25)

For simplicity of the notations, let the deviations θ(.) and ϕ(.) be such that θ([0, 1]) = [0, 1] and ϕ([0, 1]) = [0, 1]
with θ(.) and ϕ(.) absolutely continuous. As the function t �→| {s ∈ [0, 1]/θ(s) > t} | is decreasing, there exists
a family of real numbers (ti)i∈I ⊂ [0, 1], with I empty, finite or countable such that:

| {s ∈ [0, 1]/θ(s) = ti} | > 0, ∀i ∈ I. (26)
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Let us also assume ⎧⎪⎪⎨
⎪⎪⎩

| θ′(.) |∈ Lρ(0, 1), Xθ(.)
|θ′(.)| ∈ Lµ(0, 1), card(θ−1(.)) ∈ Lν(0, 1)

with 1
ρ + 1

p′ + 1
µ ≤ 1, 1

µ + 1
ν + 1

ρ + 1
p′ − 1

ν ( 1
p′ + 1

µ + 1
ρ ) ≤ 1,

1
p + 1

p′ = 1,

(27)

where
Xθ(.) = XE(.) with E = {s ∈ [0, 1]/θ(s) �= ti ∀i ∈ I} ,{ | ϕ′(.) |∈ Lρ′

(0, 1), 1
|ϕ′(.)| ∈ Lµ′

(0, 1), card(ϕ−1(.)) ∈ Lν′
(0, 1)

with 1
ρ′ + 1

p′ + 1
µ′ ≤ 1, 1

µ′ + 1
ν′ + 1

ρ′ + 1
p′ − 1

ν′ ( 1
p′ + 1

µ′ + 1
ρ′ ) ≤ 1.

(28)

The deviation ϕ(.) satisfies the following: (29)
For any measurable e ⊂ [0, 1] such that | e |= 0, we have | ϕ−1(e) |= 0.

Theorem 2.1. Under the assumptions hypeul1), (27), (28) and (29) every solution u ∈ W of the problem (4)
satisfies the following equation:

∂

∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

+
∑
i∈I

δti

∫
{θ=ti}

∂f

∂η
(s, u ◦ θ(s), u′ ◦ ϕ(s))ds− d

dt

[ ∂
∂ξ

〈
µϕ

t , f(., u ◦ θ(.), u′(t)
〉]

= 0,

in Dt
′(0, 1), (30)

with the short notation {θ = ti} = {s ∈ [0, 1]/θ(s) = ti}, and νθ
t and µϕ

t stand for two counting measures defined
respectively by:

for a.e. t
〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

=
∑

x∈θ−1(t)

Xθ(x)
f(x, u(t), u′ ◦ ϕ(x))

| θ′(x) |
and

for a.e. t
〈
µϕ

t , f(., u ◦ θ(.), u′(t))
〉

=
∑

x∈ϕ−1(t)

f(x, u ◦ θ(x), u′(t))
| ϕ′(x) | ·

Remark 2.7. Let us point out that existence results of the problem (4) in W have been studied in [15]
(cf. also [4,5]).

Proof. Let u be a solution in W of the problem (4) then we have:

∀ε ∈ R, ∀v ∈ D(0, 1) J(u + εv) − J(u) ≥ 0.

In order to establish our result, we start from the following equation which follows from the problem (4):

lim
ε→0

J(u+ εv) − J(u)
ε

= 0, ∀v ∈ D(0, 1). (31)

Next we underline in (31) the two following functions:

t→
∫
{x/θ(x)>t}

Xθ(x)
∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx,

t→
∫
{x/ϕ(x)>t}

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx.

And finaly we establish the result by studying the Sobolev regularity of these functions. Therefore we shall lead
the proof in three steps.
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First step. By the regularity and the growth assumptions on f , using the Lebesgue theorem, we obtain the
existence of the limit in (31), and thus we have the following equation

∫ 1

0

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))v ◦ θ(x)dx +

∫ 1

0

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))v′ ◦ ϕ(x)dx = 0 ∀v ∈ D(0, 1). (32)

Second step. Let us set I1 =
∫ 1

0
∂f
∂η (x, u ◦ θ(x), u′ ◦ ϕ(x))v ◦ θ(x)dx. Using (26), we can also rewrite I1 in the

following form:

I1 =
∑
i∈I

∫
{x∈[0,1]/θ(x)=ti}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))v(ti)dx

+
∫
{x∈[0,1]/θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))v ◦ θ(x)dx ∀v ∈ D(0, 1).

Using the following remark in the second term of I1:

v ◦ θ(x) =
∫ θ(x)

0

v′(t)dt =
∫
{t∈[0,1]/θ(x)≥t}

v′(t)dt ∀v ∈ D(0, 1),

we obtain

∫
{x∈[0,1]/θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))v ◦ θ(x)dx

=
∫
{x∈[0,1]/θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))

[ ∫
{t∈[0,1]/θ(x)≥t}

v′(t)dt
]
dx.

Let us set

F (x, t) =
∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))v′(t)

and
D = {(x, t) ∈ [0, 1]× [0, 1]/θ(x) ≥ t, θ(x) �= ti ∀i ∈ I} .

Let us show that F (., .) belongs to L1([0, 1] × [0, 1]). By (25), we have:

∫
[0,1]×[0,1]

| F (x, t) | dx ≤
∫

[0,1]×[0,1]

[
a2 | u′ ◦ ϕ(x) |p + | b2 |

]
|v′(t)| dxdt.

But∫
[0,1]×[0,1]

[
a2 | u′ ◦ ϕ(x) |p + | b2 |

]
|v′(t)| dxdt =

{∫ 1

0

[
a2 | u′(x) |p dµϕ

dm
(x)+ | b2 |

]
dx

} {∫ 1

0

|v′(t)| dt
}
,

thus we obtain ∫
[0,1]×[0,1]

| F (x, t) | dxdt <∞, since u ∈ W and v ∈ D(0, 1).

And since D ⊆ [0, 1] × [0, 1], the claimed result follows:

∫
D

| F (x, t) | dxdt <∞.
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Using Fubini’s theorem we obtain:

∫
{x∈[0,1]/θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))

[ ∫
{t∈[0,1]/θ(x)≥t}

v′(t)dt
]
dx =

∫ 1

0

v′(t)
[ ∫

{x∈[0,1]/θ(x)>t, θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

]
dt.

But we have∫
{x∈[0,1]/θ(x)>t, θ(x) �=ti ∀i∈I}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx =

∫
{x∈[0,1]/θ(x)>t}

Xθ(x)
∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx.

Thus we can finally rewrite I1 in the following form:

I1 =
∑
i∈I

∫
{x∈[0,1]/θ(x)=ti}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))〈δti , v〉dx

+
∫ 1

0

v′(t)
[ ∫

{x∈[0,1]/θ(x)>t}
Xθ(x)

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

]
dt.

Now let us consider the second part of (32):

I2 =
∫ 1

0

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))v′ ◦ ϕ(x)dx

and let us remark that

v′ ◦ ϕ(x) =
∫ ϕ(x)

0

v′′(t)dt ∀v ∈ D(0, 1).

Using the same arguments as for I1, we obtain:

I2 =
∫ 1

0

v′′(t)

[∫
{x∈[0,1]/ϕ(x)>t}

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

]
dt.

Finally (32) is equivalent to the following equation:

∑
i∈I

∫
{x∈[0,1]/θ(x)=ti}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))〈δti , v〉dx

+
∫ 1

0

v′(t)
[ ∫

{x∈[0,1]/θ(x)>t}
Xθ(x)

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

]
dt

+
∫ 1

0

v′′(t)
[ ∫

{x∈[0,1]/ϕ(x)>t}

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

]
dt = 0 ∀v ∈ D(0, 1). (33)

Third step. Let us set

H(t) =
∫
{x∈[0,1]/θ(x)>t}

Xθ(x)
∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx

and
G(t) =

∫
{x∈[0,1]/ϕ(x)>t}

∂f

∂ξ
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx.
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Let us remark that by (27) and (28), θ(.) and ϕ(.) verify the assumptions of Corollary 2.1. Then using this
corollary, we have

for a.e. t
dH(t)

dt
= −

∑
x∈θ−1(t)

Xθ(x)

∂f

∂η
(x, u(t), u′ ◦ ϕ(x))

| θ′(x) | , (34)

and dH(t)
dt belongs to LΛ, where

Λ =
p′µν(ρ− 1)

(ρ− 1)p′µ+ νρ(µ+ p′) − ρ(µ+ p′)
·

We also have

for a.e. t
dG(t)

dt
= −

∑
x∈ϕ−1(t)

∂f

∂ξ
(x, u ◦ θ(x), u′(t))

| ϕ′(x) | , (35)

and dG(t)
dt belongs to LΛ′

, where

Λ′ =
p′µ′ν′(ρ′ − 1)

(ρ′ − 1)p′µ′ + ν′ρ′(µ′ + p′) − ρ′(µ′ + p′)
·

From (33), (34) and (35) we deduce the following equation

∑
i∈I

δti

∫
{x∈[0,1]/θ(x)=ti}

∂f

∂η
(x, u ◦ θ(x), u′ ◦ ϕ(x))dx +

∂

∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

− d
dt

[
∂

∂ξ

〈
µϕ

t , f(., u ◦ θ(.), u′(t))
〉]

= 0 in Dt
′(0, 1),

where 〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

=
∑

x∈θ−1(t)

Xθ(x)
f(x, u(t), u′ ◦ ϕ(x))

| θ′(x) | for a.e. t ∈ [0, 1]

and 〈
µϕ

t , f(., u ◦ θ(.), u′(t))
〉

=
∑

x∈ϕ−1(t)

f(x, u ◦ θ(x), u′(t))
| ϕ′(x) | for a.e. t ∈ [0, 1]. �

Remarks 2.1.

(1) In the multidimensionnal case, putting η = (η1, . . . , ηN ), ξ = (ξ1, . . . , ξN ), u ◦ θ = (u1 ◦ θ, . . . , uN ◦ θ),
u′◦ϕ = (u′1◦ϕ, . . . , u′N◦ϕ), we obtain the following result: Under suitable assumptions as in Theorem 2.1
the Euler-Lagrange equation of our problem is

∂

∂ηj

〈
νθ

t , f(., u(t), u′(ϕ(.)))
〉

+
∑
i∈I

δti

∫
{θ=ti}

∂f

∂ηj
(s, u(θ(s)), u′(ϕ(s))) ds− d

dt

[ ∂

∂ξj

〈
µϕ

t , f(., u(θ(.)), u′(t))
〉]

= 0,

for any j = 1, 2, . . . , N .
(2) It is clear that we can choose θ = (θ1, . . . , θN ), ϕ = (ϕ1, . . . , ϕN ), u ◦ θ = (u1 ◦ θ1, . . . , uN ◦ θN ),

u′ ◦ ϕ = (u′1 ◦ ϕ1, . . . , u
′
N ◦ ϕN ).
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3. Application to the regularity of solutions of the problem (4)

In general the solutions of problem (4) do not belong to W 1,p
0 (0, 1) if we consider the following growth

condition: a | ξ |p +b ≤ f(x, η, ξ), p > 1. They belong to W 1,q
0 (0, 1) for some real number q such that 1 < q < p.

To obtain more regularity from the Euler-Lagrange equation (30) stated in Theorem 2.1, we have to delete
Dirac measures. Therefore, we assume that the deviation θ(.) has the following property:

| {s ∈ [0, 1]/θ(s) = t} |= 0, ∀t. (36)

Corollary 3.1. Let the following assumptions hold:

(i)

⎧⎨
⎩
a1 | ξ |p + b1 ≤ f(x, η, ξ) ≤ a2 | ξ |p + b2, ai > 0, i = 1, 2, p > 1

| ∂f
∂η

(x, η, ξ) |, | ∂f
∂ξ

(x, η, ξ) | ≤ a3 | ξ |p−1 + b3, a3 > 0.

(ii)

⎧⎪⎪⎨
⎪⎪⎩
θ : [0, 1] −→ [0, 1] is absolutely continuous such that:
| θ′ |∈ Lρ(0, 1), 1

|θ′| ∈ Lµ(0, 1), card(θ−1(s)) ∈ Lν(0, 1)
with 1

ρ + 1
p′ + 1

µ ≤ 1, 1
µ + 1

ν + 1
ρ + 1

p′ − 1
ν ( 1

p′ + 1
µ + 1

ρ) ≤ 1,
1
p + 1

p′ = 1.

(iii)

⎧⎪⎪⎨
⎪⎪⎩
ϕ : [0, 1] −→ [0, 1] is absolutely continuous such that:
| ϕ′ |∈ Lρ′

(0, 1), 1
|ϕ′| ∈ Lµ′

(0, 1), card(ϕ−1(s)) ∈ Lν′
(0, 1)

with 1
ρ′ + 1

p′ + 1
µ′ ≤ 1, 1

µ′ + 1
ν′ + 1

ρ′ + 1
p′ − 1

ν′ ( 1
p′ + 1

µ′ + 1
ρ′ ) ≤ 1.

∀e ⊂ [0, 1] such that | e | = 0, we have | ϕ−1(e) | = 0.

(iv) | {s ∈ [0, 1]/θ(s) = t} |= 0, ∀t.

Then for every solution u in W ⊆W 1,q
0 (0, 1) of the problem (4), we have:

If | ϕ′(t) |≤ C0 for a.e. t then u′ ∈ L∞(0, 1).

If k(t) =
[∑

x∈ϕ−1(t)
1

|ϕ′(x)|
]−1

∈ Lp(0, 1), then u′ ∈ Lp(0, 1) if 2 < q < p <∞,

and u′ ∈ L
qp2
p+q (0, 1) if 1 ≤ q < p <∞.

And if k(t) =
[∑

x∈ϕ−1(t)
1

|ϕ′(x)|
]−1

∈ Lδ(0, 1), then u′ ∈ L
δpq
δ+q (0, 1) if q ≤ δ ≤ 2 < p <∞.

To prove Corollary 3.1, the following classical proposition will be useful.

Proposition 3.1. Let p and f be such that 1 < p < +∞ and f : [0, 1] × R × R −→ R, (x, η, ξ) −→ f(x, η, ξ),
convex with respect to ξ such that:

a1 | ξ |p + b1 ≤ f(x, η, ξ) ≤ a2 | ξ |p + b2, ai > 0, i = 1, 2, ∀η ∈ R, ∀ξ ∈ R, a.e. x ∈ [0, 1].

Then there exist two positive constants α and γ such that:

ξ
∂f

∂ξ
(x, η, ξ) ≥ α | ξ |p −γ, ∀η ∈ R, ∀ξ ∈ R, a.e. x ∈ [0, 1].

Proof of Corollary 3.1. Let u be a solution of the problem (4). Under the hypotheses (i) to (iv), u satisfies the
following equation:

∂

∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉
− d

dt

[ ∂
∂ξ

〈
µϕ

t , f(., u ◦ θ(.), u′(t)
〉]

= 0 in Dt
′(0, 1), (37)

where ∂
∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

stands for ∂
∂η

〈
νθ

t , f(., η, u′ ◦ ϕ(.))
〉

η=u(t)
. Thanks to Corollary 2.1 the two

following functions t �→ ∂
∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

and t �→ ∂
∂ξ

〈
µϕ

t , f(., u ◦ θ(.), u′(t))
〉

belong respectively to
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LΛ(0, 1) and LΛ′
(0, 1), where

Λ =
p′µν(ρ− 1)

(ρ− 1)p′µ+ νρ(µ+ p′) − ρ(µ+ p′)
,

and

Λ′ =
p′µ′ν′(ρ′ − 1)

(ρ′ − 1)p′µ′ + ν′ρ′(µ′ + p′) − ρ′(µ′ + p′)
·

From (37), this entails that:

〈
µϕ

t ,
∂f

∂ξ
(., u ◦ θ(.), u′(t))

〉
=

∫ t

0

〈
νθ

s ,
∂f

∂η
(., u(s), u′ ◦ ϕ(.))

〉
ds+ C1 for a.e. t,

where C1 is some constant. This implies that:

〈
µϕ

t , u
′(t)

∂f

∂ξ
(., u ◦ θ(.), u′(t))

〉
= u′(t)

∫ t

0

〈
νθ

s ,
∂f

∂η
(., u(s), u′ ◦ ϕ(.))

〉
ds+ C1u

′(t) for a.e. t ∈ (0, 1). (38)

Since for almost every where t, µϕ
t is a positive measure and since the function s �→

〈
νθ

s ,
∂f
∂η (., u(s), u′ ◦ ϕ(.))

〉
belongs to Lr

s(0, 1), where

r =
p′µν(ρ− 1)

(ρ− 1)p′µ+ νρ(µ+ p′) − ρ(µ+ p′)
≥ 1,

we obtain from Proposition 3.1 and equation (38):(
α | u′(t) |p −γ

) ∑
x∈ϕ−1(t)

1

| ϕ′(x) | ≤ C | u′(t) | for a.e. t ∈ (0, 1), (39)

where C stands for some constant. Let us prove the claimed result.

First case. If | ϕ′(t) |≤ C0 for a.e. t, then u′ belongs to L∞(0, 1).
Indeed we have ∑

x∈ϕ−1(t)

1
| ϕ′(x) | ≥

cardϕ−1(t)
C0

≥ 1
C0

since ϕ([0, 1]) = [0, 1] and cardϕ−1(t) ≥ 1 ∀t. From (39) we obtain

| u′(t) |p ≤ C1

(
| u′(t) | + 1

)
for a.e. t ∈ (0, 1), (40)

where C1 is some constant. We claim that (40) entails that u′ belongs to L∞(0, 1). We argue by contradiction.
If u′ /∈ L∞(0, 1) then there exists tn ∈ [0, 1] such that:

lim
n→+∞ | u′(tn) |= +∞.

From (40) we have:

1 ≤ C1

( 1
| u′(tn) |p−1

+
1

| u′(tn) |p
)
,

this is a contradiction as n goes to infinity, since p > 1. This proves that u′ ∈ L∞(0, 1).
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Second case. If k(t) =
[ ∑

x∈ϕ−1(t)

1
| ϕ′(x) |

]−1

∈ Lp(0, 1), with 2 < q < p <∞, then u′ ∈ Lp(0, 1).

To prove this claimed result we start from inequality (39) that we integrate on the set In = {x ∈ [0, 1]/
| u′(x) | ≤ n}. We have a non decreasing sequence of measurables subsets In of [0, 1] such that

⋃
n In = [0, 1].

From inequality (39) we have:

α | u′(t) |p ≤ C | u′(t) | k(t) + γ. (41)

From the existence result of the problem (4) in [15], there exists some real number q, 2 < q < p < +∞ such
that u′ ∈ Lq(0, 1). Then u′ ∈ Lq′

(0, 1). This entails that u′ ∈ Lp′
(0, 1), where 1

p + 1
p′ = 1. From inequality (41)

we have:

α

∫
In

| u′(t) |p dt ≤ C

∫
In

| u′(t) | k(t)dt+ γ. (42)

Hölder’s inequality gives:

∫
In

| u′(t) | k(t)dt ≤
(∫

In

| u′(t) |p′
dt

) 1
p′ ( ∫

In

kp(t)dt
) 1

p

.

Thus we obtain from (42):

α

∫
In

| u′(t) |p dt ≤ C
( ∫

In

| u′(t) |p′
dt

) 1
p′ ( ∫

In

kp(t)dt
) 1

p

+ γ

≤ C2

[(∫
In

| u′(t) |p′
dt

) 1
p′

+ 1
]
≤ C2

[(∫ 1

0

| u′(t) |p′
dt

) 1
p′

+ 1
]
,

where C2 is some constant independent with respect to n. Then let us remark that there exists some constant C3

such that:

∀n an =
∫

In

| u′(t) |p dt ≤ C3.

As In is a nondecreasing sequence of subsets of [0, 1], the monotonous convergence theorem gives the following:

∫ 1

0

| u′(t) |p dt ≤ C3.

So we have proved that u′ belongs Lp(0, 1).

Third case. If k(t) =
[ ∑

x∈ϕ−1(t)

1
| ϕ′(x) |

]−1

∈ Lp(0, 1), with 1 ≤ q < p <∞, then u′ ∈ L
qp2
p+q (0, 1).

As we have 1 ≤ q < p < +∞, then thanks to the existence result of the problem (4), we obtain u′ ∈ Lq(0, 1).
From (41) we have:

α
pq

p+q

∫
In

| u′(t) | qp2
p+q dt ≤ C4

( ∫
In

| u′(t) | pq
p+q k

pq
p+q (t)dt+ γ

pq
p+q

)
. (43)

Hölder’s inequality shows that:

∫
In

| u′(t) | pq
p+q k

pq
p+q (t)dt ≤

(∫
In

| u′(t) |q dt
) p

p+q
( ∫

In

kp(t)dt
) q

p+q

,
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so from (43) we have:

α
pq

p+q

∫
In

| u′(t) | qp2
p+q dt ≤ C4

[(∫
In

| u′(t) |q dt
) p

p+q
(∫

In

kp(t)dt
) q

p+q

+ γ
pq

p+q

]

≤ C5

[(∫
In

| u′(t) |q dt
) p

p+q

+ 1
]
≤ C5

[(∫ 1

0

| u′(t) |q dt
) p

p+q

+ 1
]
,

where C5 is some constant independent with respect to n. From this inequality there exists some constant C6

such that:

∀n an =
∫

In

| u′(t) | qp2
p+q dt ≤ C6.

As n �→ In is a nondecreasing sequence, the monotonous convergence theorem entails:

∫ 1

0

| u′(t) | qp2

p+q dt ≤ C6.

So we have proved that u′ belongs to L
qp2
p+q (0, 1).

Fourth case. If k(t) =
[ ∑

x∈ϕ−1(t)

1
| ϕ′(x) |

]−1

∈ Lδ(0, 1), with q ≤ δ ≤ 2 < p <∞, then u′ ∈ L
δpq
δ+q (0, 1).

As we have q ≤ δ ≤ 2 < p < +∞, then thanks to the existence result of the problem (4), we have u′ ∈ Lq(0, 1).
From (41) we obtain:

α
δq

δ+q

∫
In

| u′(t) | δpq
δ+q dt ≤ C7

( ∫
In

| u′(t) | δq
δ+q k

δq
δ+q (t)dt+ γ

δq
δ+q

)
. (44)

Hölder’s inequality shows that:

∫
In

| u′(t) | δq
δ+q k

δq
δ+q (t)dt ≤

(∫
In

| u′(t) |q dt
) δ

δ+q
(∫

In

kδ(t)dt
) q

δ+q

.

Thus from (44) we obtain:

α
δq

δ+q

∫
In

| u′(t) | δpq
δ+q dt ≤ C7

[(∫
In

| u′(t) |q dt
) δ

δ+q
(∫

In

kδ(t)dt
) q

δ+q

+ γ
δq

δ+q

]

≤ C8

[( ∫
In

| u′(t) |q dt
) δ

δ+q

+ 1
]
≤ C8

[(∫ 1

0

| u′(t) |q dt
) δ

δ+q

+ 1
]
,

where C8 is some constant independent with respect to n. From this inequality there exists some constant C9

such that:

∀n an =
∫

In

| u′(t) | δpq
δ+q dt ≤ C9.

Since n �→ In is a nondecreasing sequence, the monotonous convergence theorem gives:

∫ 1

0

| u′(t) | δpq
δ+q dt ≤ C9.
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Thus we have proved that u′ ∈ L
δpq
δ+q (0, 1); this means:

if k(t) =

⎡
⎣ ∑

x∈ϕ−1(t)

1
| ϕ′(x) |

⎤
⎦
−1

∈ Lδ(0, 1), with q ≤ δ ≤ 2 < p <∞, then u′ ∈ L
δpq
δ+q (0, 1). �

4. Equivalent problem without deviations

Theorem 4.1. Let us assume hypotheses (i) to (iv) of Corollary 3.1 and

(v) k(t) =
[ ∑

x∈ϕ−1(t)

1
| ϕ′(x) |

]−1

∈ Lp(0, 1), with 1 ≤ q < p <∞;

(vi) for a.e. x, ∀ξ, η �→ f(x, η, ξ) is strictly convex, and for a.e. x, ∀η, ξ �→ f(x, η, ξ) is strictly convex.
Then every solution u of the problem (4) belonging in W 1,q

0 (0, 1) is solution of the following problem without
deviations:

inf
{∫ 1

0

G (t, v(t), v′) (t)dt/v ∈W 1,p
0 (0, 1)

}
, (45)

where G (t, η, ξ) =
〈
νθ

t , f(., η, u′ ◦ ϕ(.))
〉

+
〈
µϕ

t , f(., u ◦ θ(.), ξ)
〉

for a.e. t, ∀η, ∀ξ.
Proof. From the assumption (v) and using Corollary 3.1, we have u ∈ W 1,p

0 (0, 1). The function (η, ξ) −→
G(t, η, ξ) is strictly convex with the adequate growth. It follows that there exists a unique solution w for the
problem (45).

Moreover the problem (45) is equivalent to the resolution of its following Euler-Lagrange equation:

∂

∂η

〈
νθ

t , f(., w(t), u′ ◦ ϕ(.))
〉
− d

dt

[ ∂
∂ξ

〈
µϕ

t , f(., u ◦ θ(.), w′(t)
〉]

= 0 in Dt
′(0, 1). (46)

Let us recall that we can also rewrite the Euler-Lagrange equation of the problem (4) in the following form:

∂

∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉
− d

dt

[ ∂
∂ξ

〈
µϕ

t , f(., u ◦ θ(.), u′(t)
〉]

= 0 in Dt
′(0, 1), (47)

where we use the notation:

∂

∂η

〈
νθ

t , f(., u(t), u′ ◦ ϕ(.))
〉

=
∂

∂η

〈
νθ

t , f(., η, u′ ◦ ϕ(.))
〉

η=u(t)

with the similar notation for the second term of equation (47).
From (47) u is a solution of (46). Thus by the uniqueness of the solution of the problem (45) we obtain

u = w. �

5. Necessary optimality conditions of control problems where the state

plays the role of deviation

In this section, we establish necessary optimality conditions of the following control problem:

inf

{∫ 1

0

f1(t, u(t), u′(t), u ◦ θv(t), θv(t), v(t))dt = J(u, v)/(u, v) ∈ E × Uad

}
. (48)

Under the state constraint, for instance,{
dθv(t)

dt = g(t, θv(t), v(t))

θv(0) = θ0, 0 < θ0 < 1, θv(t) ∈ [0, 1] ∀t,
(49)
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where E stands for a subset of W 1,p
0 (0, 1), for instance, and

Uad =
{
c ∈ L1(0, 1)/c(t) ≥ 0,

∫ t

0

c(s)ds ∈ [0, 1] ∀t ∈ [0, 1]
}
.

To be clear we begin to consider this problem with a simple state equation in Section 5.1 and its application
will be given in Section ??. Section 5.2 is devoted to the study of the general case.

5.1. Problem where the constraint is simple

The application of this section will be the financial model of [9,10] given in Section ??. We consider in this
section the following problem:

inf
{∫ 1

0

f1(t, v(t), v′(t), v ◦ θc(t), θc(t), c(t))dt = J(v, c)
}
, (50)

where (v, c) is a control, θc stands for the state of the system and satisfies the state constraint{
dθc(t)

dt = c(t)

θc(0) = 0, θc(t) ∈ [0, 1] ∀t ∈ [0, 1].
(51)

The control c belongs to

Uad =
{
c ∈ L1(0, 1)/c(t) ≥ 0,

∫ t

0

c(s)ds ∈ [0, 1] ∀t ∈ [0, 1]
}
,

and the control v belongs to W 1,p
0 (0, 1) with p > 1. In the sequel to simplify, we denote f1 by f . Let the

following assumptions hold: f : [0, 1] × R × R × R × [0, 1] × R
+ −→ R, (t, η1, ξ, η2, ν, λ) −→ f(t, η1, ξ, η2, ν, λ),

continuously differentiable with respect to the five last arguments when t is fixed, such that:
(i) | f(t, η1, ξ, η2, ν, λ) | ≤ C1(1 + | η1 |p + | ξ |p + | η2 |p + | ν |p + | λ |), C1 > 0.
(ii) There exists some positive constant C2 such that∣∣∣∣ ∂f

∂η1
(t, η1, ξ, η2, ν, λ)

∣∣∣∣ +

∣∣∣∣ ∂f

∂η2
(t, η1, ξ, η2, ν, λ)

∣∣∣∣ +

∣∣∣∣∂f

∂ν
(t, η1, ξ, η2, ν, λ)

∣∣∣∣
+

∣∣∣∣∂f

∂ξ
(t, η1, ξ, η2, ν, λ)

∣∣∣∣ +

∣∣∣∣∂f

∂λ
(t, η1, ξ, η2, ν, λ)

∣∣∣∣ ≤ C2(1+ | η1 |p−1 + | ξ |p−1 + | η2 |p−1 + | ν |p−1),

for any t, η1, η2, ν, ξ, λ.

There exists (ū, c̄) ∈ W 1,p
0 (0, 1) × Uad solution of the problem (50)–(51) (52)

such that ū′ ◦ θc̄(t) exists ∀t ∈ [0, 1].

As the function t �→| {
s ∈ [0, 1]/θ̄(s) = θc̄ > t

} | is decreasing, we know that there exists a family of real numbers
(ti)i∈I ⊂ [0, 1], with I empty, finite or countable, such that:

| {
s ∈ [0, 1]/θ̄(s) = θc̄ = ti

} | > 0. (53)

Let also the following assumption hold: θ̄ = θc̄ : [0, 1] −→ [0, 1] is absolutely continuous such that:⎧⎪⎪⎨
⎪⎪⎩

| θ̄′(.) |∈ Lρ(0, 1), Xθ̄(.)

|θ̄′(.)| ∈ Lµ(0, 1), card(θ̄−1(.)) ∈ Lν(0, 1)

with 1
ρ + 1

p′ + 1
µ ≤ 1, 1

µ + 1
ν + 1

ρ + 1
p′ − 1

ν ( 1
p′ + 1

µ + 1
ρ ) ≤ 1,

1
p + 1

p′ = 1,

(54)
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where
Xθ̄(.) = XE(.) with E =

{
s ∈ [0, 1]/θ̄(s) �= ti ∀i ∈ I

}
.

Theorem 5.1. Under the assumptions (i), (ii), (52) and (54), the control (ū, c̄) solution of the problem (50)–(51)
satisfies the following relations:

(i) Equation

∂f

∂η1
(t, ū(t), c̄(t)) +

∂

∂η2

〈
µt, f(., ū(.), ū′(.), ū(t), t, c̄(.))

〉

+
∑
i∈I

δti

∫
{θ̄=ti}

∂f

∂η2
(s, ū(s), c̄(s))ds − d

dt

[∂f
∂ξ

(t, ū(t), c̄(t))
]

= 0,

in Dt
′(0, 1), where f(s, ū(s), c̄(s)) = f(s, ū(s), ū′(s), ū ◦ θ̄(s), θ̄(s), c̄(s)), and where µt stands for the

counting measure defined by:

〈
µt, f(., ū(.), ū′(.), ū(t), t, ,̄c(.))

〉
=

∑
x∈θ̄−1

c̄ (t)

Xθ̄(x)
f(x, ū(x), ū′(x), ū(t), t, c̄(x))

| θ̄′(x) |

and δti is the Dirac measure at the point ti.
(ii) Integrodifferential inequality

c̄(t)
[∂f
∂λ

(t, ū(t), c̄(t)) −
∫ 1

t

( ∂f
∂η2

(s, ū(s), c̄(s))ū′ ◦ θ̄(s) +
∂f

∂λ
(s, ū(s), c̄(s))

)
ds

]
≤ 0

for a.e. t ∈ [0, 1].

Proof. Let (ū, c̄) be a solution of the problem (50)–(51), then we have:

J(ū, c̄) ≤ J(v, c) ∀(v, c) ∈W 1,p
0 (0, 1) × Uad.

For any admissible (v, c), for any ε > 0, (ū+ εv, c̄+ ε(c− c̄)) is admissible and we obtain:

lim
ε→0

J(ū+ εv, c̄+ ε(c− c̄)) − J(ū, c̄)
ε

≥ 0. (55)

By the regularity and the growth assumptions on f , using the Lebesgue theorem, we obtain the existence of
the limit in (55), and thus we have the following inequality:

∫ 1

0

∂f

∂η1
(t, ū(t), c̄(t))v(t)dt +

∫ 1

0

∂f

∂ξ
(t, ū(t), c̄(t))v′(t)dt+

∫ 1

0

∂f

∂η2
(t, ū(t), c̄(t))

(
ū′ ◦ θ̄(t)δ(t) + v ◦ θ̄(t)

)
dt

+
∫ 1

0

∂f

∂ν
(t, ū(t), c̄(t))δ(t)dt +

∫ 1

0

∂f

∂λ
(t, ū(t), c̄(t))(c − c̄)(t)dt ≥ 0 ∀(v, c) ∈W 1,p

0 (0, 1) × Uad, (56)

where

θ̄(t) =
∫ t

0

c̄(s)ds, δ(t) =
∫ t

0

(c(s) − c̄(s))ds.
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The inequality (56) is equivalent to (57) and (58):

∫ 1

0

∂f

∂η1
(t, ū(t), c̄(t))v(t)dt +

∫ 1

0

∂f

∂ξ
(t, ū(t), c̄(t))v′(t)dt +

∫ 1

0

∂f

∂η2
(t, ū(t), c̄(t))v ◦ θ̄(t)dt = 0 ∀v ∈W 1,p

0 (0, 1),

(57)∫ 1

0

∂f

∂η2
(t, ū(t), c̄(t))ū′ ◦ θ̄(t)δ(t)dt +

∫ 1

0

∂f

∂ν
(t, ū(t), c̄(t))δ(t)dt +

∫ 1

0

∂f

∂λ
(t, ū(t), c̄(t))(c − c̄)(t)dt ≥ 0 ∀c ∈ Uad.

(58)
Using the same idea as in the proof of Theorem 2.1, equation (57) is equivalent to:

∂f

∂η1
(t, ū(t), c̄(t)) +

∂

∂η2

〈
µt, f(., ū(.), ū′(.), ū(t), t, c̄(.))

〉
+

∑
i∈I

δti

∫
{θ̄=ti}

∂f

∂η2
(s, ū(s), c̄(s))ds− d

dt

[∂f
∂ξ

(t, ū(t), c̄(t))
]

= 0 in Dt
′(0, 1).

This proves (i) of Theorem 5.1. By integrating by parts, (58) gives:

∫ 1

0

∂f

∂λ
(t, ū(t), c̄(t))(c − c̄)(t)dt+

∫ 1

0

[ ∫ 1

t

( ∂f
∂η2

(s, ū(s), c̄(s))ū′ ◦ θ̄(s)) +
∂f

∂ν
(t, ū(t), c̄(t))

)
ds

]
(c− c̄)(t)dt ≥ 0

∀c ∈ Uad. (59)

Let h ∈ D(0, 1) and γ be such that: −1 ≤ h ≤ 0 and 0 ≤ γ ≤ 1. Let us set c = c̄+ γhc̄ and let us show that c
is admissible:

c = c̄+ γhc̄ = c̄(1 + hγ) ≥ c̄(1 − γ) ≥ 0
and

0 ≤
∫ t

0

c(s)ds =
∫ t

0

c̄(s)ds+ γ

∫ t

0

hc̄(s)ds ≤
∫ t

0

c̄(s)ds ≤ 1.

This proves that c is admissible. Taking c = c̄+ γhc̄ in (59), we obtain:

∫ 1

0

∂f

∂λ
(t, ū(t), c̄(t))c̄(t)h(t)dt+

∫ 1

0

[ ∫ 1

t

( ∂f
∂η2

(s, ū(s), c̄(s))ū′ ◦ θ̄(s)) +
∂f

∂ν
(t, ū(t), c̄(t))

)
ds

]
c̄(t)h(t)dt ≥ 0

∀h ∈ D(0, 1), h ≤ 0, by homogeneousness,

i.e.

∂f

∂λ
(t, ū(t), c̄(t))c̄(t) +

[∫ 1

t

( ∂f
∂η2

(s, ū(s), c̄(s))ū′ ◦ θ̄(s)) +
∂f

∂ν
(t, ū(t), c̄(t))

]
c̄(t) ≤ 0 a.e. t ∈ [0, 1]. (60)

This proves (ii) of Theorem 5.1. �

5.2. Problem where the constraint is general

We consider in this section the following problem:

inf
{∫ 1

0

f(t, u(t), u′(t), u ◦ θv(t), θv(t), v(t))dt = J(u, v)
}

(61)

under the state constraint, {
dθv(t)

dt = g(t, θ(t), v(t))

θv(0) = θ0, 0 < θ0 < 1, θv(t) ∈ [0, 1] ∀t,
(62)
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where the control v belongs to L∞((0, 1),V) for instance, where V = [0, 1] and the control u belongs to W 1,p
0 (0, 1)

with p > 1. Let the following assumption hold:

f : [0, 1] × R × R × R × [0, 1] × R −→ R, (t, η1, ξ, η2, ν, λ) −→ f(t, η1, ξ, η2, ν, λ), continuously differentiable
in the five last arguments when t is fixed. We assume that f satisfies the hypotheses (i) and (ii) of Section 5.1
and the fonction g satisfies the following assumptions:

g : [0, 1] × [0, 1] × R −→ R, (t, α, β) −→ g(t, α, β), continuously differentiable with respect to α, twice
continuously differentiable with respect to β and continuous with respect to t. We assume that there exists a
constant K such that:

| ∂g
∂α

(t, α, β) | + | ∂g
∂β

(t, α, β) |≤ K. (63)

Let us suppose that:

∃ (ū, v̄) ∈W 1,p
0 (0, 1) × Lp((0, 1),V) solution of the problem (61)–(62) (64)

such that ū′ ◦ θv̄(t) exists ∀t ∈ [0, 1].

As the function t �→| {
s ∈ [0, 1]/θ̄(s) = θv̄ > t

} | is decreasing, it is known that there exists a family of real
members (ti)i∈I ⊂ [0, 1] with I empty, finite or countable, such that:

| {
s ∈ [0, 1]/θ̄(s) = θv̄ = ti

} | > 0. (65)

Let also the following assumption hold:

θ̄ = θv̄ : [0, 1] −→ ]0, 1[ is absolutely continuous such that:

⎧⎪⎪⎨
⎪⎪⎩

| θ̄′(.) |∈ Lρ(0, 1), Xθ̄(.)

|θ̄′(.)| ∈ Lµ(0, 1), card(θ̄−1(.)) ∈ Lν(0, 1)

with 1
ρ + 1

p′ + 1
µ ≤ 1, 1

µ + 1
ν + 1

ρ + 1
p′ − 1

ν ( 1
p′ + 1

µ + 1
ρ) ≤ 1

1
p + 1

p′ = 1,

(66)

where
Xθ̄(.) = XE(.) with E =

{
s ∈ [0, 1]/θ̄(s) �= ti ∀i ∈ I

}
.

Theorem 5.2. Under the assumptions (64) and (66), the control (ū, v̄) solution of the problem (61)–(62) satisfies
the following relations:

(i)
∂f

∂η1
(t, ū(t), v̄(t)) +

∂

∂η2

〈
µt, f(., ū(.), ū′(.), ū(t), t, v̄(.))

〉
+

∑
i∈I

δti

∫
{θ̄=ti}

∂f

∂η2
(s, ū(s), v̄(s))ds

− d
dt

[∂f
∂ξ

(t, ū(t), v̄(t))
]

= 0,

in Dt
′(0, 1), with the notation f(s, ū(s), c̄(s)) = f(s, ū(s), ū′(s), ū◦ θ̄(s), θ̄(s), v̄(s)). In addition µt stands

for the counting measure defined by:

〈
µt, f(., ū(.), ū′(.), ū(t), t, v̄(.))

〉
=

∑
x∈θ̄−1(t)

Xθ̄(x)
f(x, ū(x), ū′(x), ū(t), t, v̄(x))

| θ̄′(x) | ,

and δti is the Dirac measure at the point ti.

(ii) v̄(t)
[∂f
∂λ

(t, ū(t), v̄(t)) + p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))

]
≤ 0 for a.e. t ∈ [0, 1],
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where p̄(t) is the adjoint state solution of the equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p̄′(t) = − ∂g

∂α
(t, θ̄(t), v̄(t))p̄(t) −

[
∂f

∂η2
(t, ū(t), v̄(t))ū′ ◦ θ̄(t)

+
∂f

∂ν
(t, ū(t), v̄(t))

]
on [0, 1]

p̄(1) = 0.

Proof. Assume that there exists (ū, v̄) solution of the problem (61)–(62) i.e.

J(ū, v̄) ≤ J(u, v) ∀(u, v) ∈W 1,p
0 (0, 1) × L∞((0, 1),V).

We have

J(ū+ εu, v̄ + ε(v − v̄)) − J(ū, v̄) ≥ 0 ∀ε > 0 small enough, ∀(u, v) admissible. (67)

Let us set θ̄ the state optimal trajectory i.e. the solution of (62) corresponding to v̄. Moreover, if we set θε the
solution of the state equation (62) corresponding to vε = v̄ + ε(v − v̄), then we have: dθε

dt (t) = g(t, θε(t), vε(t))
and dθ̄(t)

dt = g(t, θ̄(t), v̄(t)). Following [14] let us consider x(.) the solution of the following trajectory equation:

⎧⎨
⎩ x′(t) =

∂g

∂α
(t, θ̄(t), v̄(t))x(t) +

∂g

∂β
(t, θ̄(t), v̄(t))(v − v̄)(t) on (0, 1)

x(0) = 0,
(68)

and let us set, for any ε > 0 small enough,

yε(.) =
θε(.) − θ̄(.)

ε
− x(.).

Thus we have:

yε(t) =
∫ t

0

1
ε

[
g(s, θε(s), vε(s)) − g(s, θ̄(s), v̄(s))

]
ds

−
∫ t

0

[ ∂g
∂α

(s, θ̄(s), v̄(s))x(s) +
∂g

∂β
(s, θ̄(s), v̄(s))(v − v̄)(s)

]
ds.

By using the mean value theorem, the Gronwall lemma and the assumption (63), we obtain ‖ yε ‖∞−→ 0
when ε −→ 0. Therefore we have:

θε(t) = θ̄(t) + εx(t) + o(ε) ∀t ∈ [0, 1],

and using the Taylor-Lagrange formula, we obtain:

J(ū + εu, v̄ + ε(v − v̄)) = J(ū, v̄) + ε

[∫ 1

0

∂f

∂η1
(t, ū(t), v̄(t))u(t)dt

+
∫ 1

0

∂f

∂ξ
(t, ū(t), v̄(t))u′(t)dt+

∫ 1

0

∂f

∂η2
(t, ū(t), v̄(t))[ū′ ◦ θ̄(t)x(t) + u ◦ θ̄(t)]dt

+
∫ 1

0

∂f

∂ν
(t, ū(t), v̄(t))x(t)dt +

∫ 1

0

∂f

∂λ
(t, ū(t), v̄(t))(v − v̄)(t)dt

]
+ o(ε).
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From (67), we obtain

∫ 1

0

∂f

∂η1
(t, ū(t), v̄(t))u(t)dt +

∫ 1

0

∂f

∂ξ
(t, ū(t), v̄(t))u′(t)dt+

∫ 1

0

∂f

∂η2
(t, ū(t), v̄(t))[ū′ ◦ θ̄(t)x(t) + u ◦ θ̄(t)]dt

+
∫ 1

0

∂f

∂ν
(t, ū(t), v̄(t))x(t)dt +

∫ 1

0

∂f

∂λ
(t, ū(t), v̄(t))(v − v̄)(t)dt ≥ 0 ∀u ∈ W 1,p

0 (0, 1), ∀v ∈ Lp((0, 1),V).

(69)

Following [14] let us introduce the adjoint state p̄(t) solution of the following equation

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p̄′(t) = − ∂g

∂α
(t, θ̄(t), v̄(t))p̄(t) −

[
∂f

∂η2
(t, ū(t), v̄(t))ū′ ◦ θ̄(t)

+
∂f

∂ν
(t, ū(t), v̄(t))

]
on [0, 1]

p̄(1) = 0.

(70)

Let us consider the following integral which follows from (69)

∫ 1

0

[
∂f

∂η2
(t, ū(t), v̄(t))ū′ ◦ θ̄(t) +

∂f

∂ν
(t, ū(t), v̄(t))

]
x(t)dt. (71)

Using (70), we rewrite (71) in the following form:

∫ 1

0

[ ∂f
∂η2

(t, ū(t), v̄(t))ū′ ◦ θ̄(t) +
∂f

∂ν
(t, ū(t), v̄(t))

]
x(t)dt = −

∫ 1

0

[
p̄′(t) +

∂g

∂α
(t, θ̄(t), v̄(t))p̄(t)

]
x(t)dt. (72)

By integrating by parts the right hand side of (72), using (68) we obtain:

∫ 1

0

[ ∂f
∂η2

(t, ū(t), v̄(t))ū′ ◦ θ̄(t) +
∂f

∂ν
(t, ū(t), v̄(t))

]
x(t)dt =

∫ 1

0

p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))(v − v̄)(t)dt.

Finally we rewrite (69) in the following form:

∫ 1

0

∂f

∂η1
(t, ū(t), v̄(t))u(t)dt +

∫ 1

0

∂f

∂ξ
(t, ū(t), v̄(t))u′(t)dt+

∫ 1

0

∂f

∂η2
(t, ū(t), v̄(t))u ◦ θ̄(t)dt

+
∫ 1

0

[∂f
∂λ

(t, ū(t), v̄(t)) + p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))

]
(v − v̄)(t)dt ≥ 0 ∀u ∈W 1,p

0 (0, 1), ∀v ∈ Lp((0, 1),V). (73)

The inequality (73) is equivalent to the following inequalities (74) and (75):

∫ 1

0

∂f

∂η1
(t, ū(t), v̄(t))u(t)dt +

∫ 1

0

∂f

∂ξ
(t, ū(t), v̄(t))u′(t)dt+

∫ 1

0

∂f

∂η2
(t, ū(t), v̄(t))u ◦ θ̄(t)dt = 0

∀u ∈W 1,p
0 (0, 1), (74)

and
∫ 1

0

[∂f
∂λ

(t, ū(t), v̄(t)) + p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))

]
(v − v̄)(t)dt ≥ 0 ∀v ∈ Lp((0, 1),V). (75)
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Using the same idea as in the proof of Theorem 2.1 we show that the inequality (74) is equivalent to:

∂f

∂η1
(t, ū(t), c̄(t)) +

∂

∂η2

〈
µt, f(., ū(.), ū′(.), ū(t), t, c̄(.))

〉

+
∑
i∈I

δti

∫
{θ̄=ti}

∂f

∂η2
(s, ū(s), c̄(s))ds− d

dt

[
∂f

∂ξ
(t, ū(t), c̄(t))

]
= 0,

in Dt
′(0, 1), with the short notation f(s, ū(s), c̄(s)) = f(s, ū(s), ū′(s), ū ◦ θ(s), θ(s), v̄(s)). Let h and γ be such

that h ∈ D(0, 1), −1 ≤ h ≤ 0 and 0 < γ < 1 and let us set v = v̄ + γhv̄. By taking v = v̄ + γhv̄ in (75) we
obtain:∫ 1

0

[∂f
∂λ

(t, ū(t), v̄(t)) + p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))

]
v̄(t)h(t)dt ≥ 0 ∀h ∈ D(0, 1), h ≤ 0, by homogeneousness. (76)

This gives:

v̄(t)
[∂f
∂λ

(t, ū(t), v̄(t)) + p̄(t)
∂g

∂β
(t, θ̄(t), v̄(t))

]
≤ 0 a.e. t ∈ [0, 1]. �

6. Application to a financial market problem: the model

of Jouini, Koehl and Touzi [9,10]

We shall consider the regular case as in [9]. Following [9] let us present this model. The financial market
consists in one riskless asset, whose price function is given by S(t). We assume that sales are subject to taxes
on benefits following the usual first-in-first-out rule according to which any bond sold at some time t should
be the oldest one in the time t portofolio. We introduce the set � =

{
(t, u) ∈ R

2/0 ≤ u ≤ t ≤ 1
}
. For each

monetary unit invested at time u and sold out at time t, we denote by ϕ(t, u) the after tax amount received at
time t; ϕ(t, u) is assumed to be c1 decreasing in t and increasing in u. Let x(t) be the investment rate in units
of the risky asset at time t; the disinvestment rate of this asset at time t is y(t) = x ◦ θ(t)θ′(t) for a.e. t (cf. [9])
where θ(.) is the delay function given by:

θ(t) = sup
[
s ∈ [0, 1]/

∫ s

0

x(u)du ≤
∫ t

0

y(u)du
]
.

We have: θ(0) = 0, 0 ≤ θ(t) ≤ t. The trading strategy is such that
∫ t

0 y(s)ds ≤ ∫ t

0 x(s)ds. The following two
functions are useful for the formulation of the problem: z(t) = x(t).S(t) and v(t) ≥ 0, such that θ′(t) = v(t).
With these functions, the agent control problem consists in maximizing the utility functional:

J(z, v) =
∫ 1

0

U(t, cz,θv(t))dt

under the state constraint:

dθv

dt
= v, θv(0) = 0 with v(t) ≥ 0,

and the control (z, v) belongs to Uad =
{

(z, v)/0 ≤ z(t) ≤ ω(t), v(t) ≥ 0,
∫ t

0
v(s)ds ≤ t

}
. The agent consumption

rate cz,θv is defined by
cz,θv(t) = ω − z(t) + θ′(t)z(θ(t)).ϕ(t, θ(t)).

In [10], the authors show that this problem has an optimal solution (x̄, v̄) such that x̄ is piecewise c1 on [0, 1]
and v̄ is piecewise continuous on [0, 1]. Let θ̄ be the optimal state, corresponding to (x̄, v̄). In this paper,
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we assume a regularity assumption on the optimal solution. As the function t �→| {
s ∈ [0, 1]/θ̄(s) = θv̄ > t

} | is
decreasing, there exists a family of reals (ti)i∈I ⊂ [0, 1], with I empty, finite or countable such that:

| {
s ∈ [0, 1]/θ̄(s) = θv̄ = ti

} | > 0. (77)

Let the following assumption hold: θ̄ = θv̄ : [0, 1] −→ [0, 1] is absolutely continuous such that:

⎧⎪⎪⎨
⎪⎪⎩

| θ̄′(.) |∈ Lρ(0, 1), Xθ̄(.)

|θ̄′(.)| ∈ Lµ(0, 1), card(θ̄−1(.)) ∈ Lν′
(R)

with 1
ρ + 1

p′ + 1
µ ≤ 1, 1

µ + 1
ν + 1

ρ + 1
p′ − 1

ν ( 1
p′ + 1

µ + 1
ρ ) ≤ 1,

1
p + 1

p′ = 1,

(78)

where
Xθ̄(.) = XE(.) with E =

{
s ∈ [0, 1]/θ̄(s) �= ti ∀i ∈ I

}
.

Under regularity assumption on (x̄, v̄) and under the following assumptions:

U : [0, 1] × R
+ −→ R, (t, ξ) −→ U(t, ξ) is continuously differentiable in ξ when t is fixed such that:

(i) | U(t, ξ) | ≤ C7(1+ | ξ |p), C7 > 0

(ii) | ∂U
∂ξ

(t, ξ) | ≤ C8(1+ | ξ |p−1), C8 > 0.

Our previous results allow us to obtain the following:

Corollary 6.1.

(i) x̄(t)
[
− ∂U

∂ξ
(t, c̄(t)) + 〈ν θ̄

t ,
∂U

∂ξ
(., c̄(.)ϕ(., t)v̄(.))〉

]
+ x̄(t)

∑
i∈I

δti

∫
{θ̄=ti}

∂U

∂ξ
(s, c̄(s))ϕ(s, θ̄(s))ds ≥ 0

in Dt
′(0, 1), where we denote θ̄ = θv̄, c̄(t) = c(x̄, v̄)(t) = ω(t) − x̄(t) + v̄(t).x̄ ◦ θv̄(t).ϕ(t, θv̄(t)). The

measure ν θ̄
t is the counting measure defined by:

〈
ν θ̄

t ,
∂U

∂ξ
(., c̄(.)ϕ(., t)v̄(.))

〉
=

∑
x∈θ̄−1(t)

Xθ̄(x)
∂U
∂ξ (x, c̄(x)ϕ(x, t)v̄(x))

| θ̄′(x) | for a.e. t.

(ii) v̄(t)
[∂U
∂ξ

(t, c̄(t)).x̄ ◦ θ̄(t).ϕ(t, θ̄(t))
]

+ v̄(t)
{∫ 1

t

v̄(s).
∂U

∂ξ
.
[
x̄′ ◦ θ̄(s).ϕ(s, θ̄(s)) + x̄ ◦ θ̄(s)∂ϕ

∂θ
(s, θ̄(s))

]
ds

}
≥ 0 for a.e. t ∈ [0, 1].

Remark 6.1. In [9] θ̄ is supposed to be implicitly invertible. This is not the case here by (77). Let us point
out that the conditions above are some what local, contrary to which exists in the literature, if we except the
case of translations [13] and the case of strictly monotonous deviations [9,12].

Proof of Corollary ??. Let (x̄, v̄) be an optimal solution of the agent problem which belongs to the set of
admissibles controls:

Uad =
{

(x, v)/0 ≤ x(t) ≤ ω(t), v(t) ≥ 0,
∫ t

0

v(s)ds ≤ t

}
,

and let us assume that x̄ is piecewise c1 and v̄ is piecewise continuous on [0, 1]. Then we have:

J(x̄, v̄) ≥ J(x, v) ∀(x, v) ∈ Uad.
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For all (y, r) admissible, for any ε > 0, the control (x̄+ ε(y − x̄), v̄ + ε(r − v̄)) is admissible and we obtain:

lim
ε→0

J(x̄ + ε(y − x̄), v̄ + ε(r − v̄)) − J(x̄, v̄)
ε

≤ 0. (79)

By the regularity and the growth assumptions on U , we obtain the existence of the limit in (79) and thus we
have the following inequality:

∫ 1

0

∂U

∂ξ
(t, c̄(t))

[
− (y(t) − x̄(t)) + (y − x̄) ◦ θ̄(t).v̄(t).ϕ(t, θ̄(t))

]
dt

+
∫ 1

0

∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))(r(t) − v(t))dt

+
∫ 1

0

∂U

∂ξ
(t, c̄(t))

[
v̄(t)x̄′ ◦ θ̄(t)ϕ(t, θ̄(t)) + v̄(t)x̄ ◦ θ̄(t)∂ϕ

∂θ
(t, θ̄(t))

]
λ(t)dt ≤ 0, (80)

for any admissible (y, r), where λ is the increase in θ̄ corresponding to the increase r in the control i.e. λ′ = r− v̄,
λ(0) = 0. By integrating by parts we obtain:

∫ 1

0

∂U

∂ξ
(t, c̄(t))

[
v̄(t)x̄′ ◦ θ̄(t)ϕ(t, θ̄(t)) + v̄(t)x̄ ◦ θ̄(t)∂ϕ

∂θ
(t, θ̄(t))

]
λ(t)dt

=
[
−

∫ 1

t

∂U

∂ξ
(s, c̄(s))[v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s)) + v̄(s)x̄ ◦ θ̄(s)∂ϕ

∂θ
(s, θ̄(s))]ds λ(t)

]1

0

+
∫ 1

0

{∫ 1

t

∂U

∂ξ
(s, c̄(s))[v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s)) + v̄(s)x̄ ◦ θ̄(s)∂ϕ

∂θ
(s, θ̄(s))]ds

}
(r − v̄)(t)dt.

We rewrite the inequality (80) in the following form:

∫ 1

0

[
∂U

∂ξ
(t, c̄(t))v̄(t)ϕ(t, θ̄(t))(y − x̄) ◦ θ̄(t)

]
dt

+
∫ 1

0

∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))(r − v̄)(t)dt +

∫ 1

0

[
−∂U
∂ξ

(t, c̄(t))(y(t) − x̄(t))
]

dt

+
∫ 1

0

{∫ 1

t

∂U

∂ξ
(s, c̄(s))[v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s)) + v̄(s)x̄ ◦ θ̄(s)∂ϕ

∂θ
(s, θ̄(s))]ds

}
(r − v̄)(t)dt ≤ 0, (81)

for any admissible (y, r). We can also easily derive from (81) the following inequality

∫ 1

0

∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))(r − v̄)(t)dt

+
∫ 1

0

{∫ 1

t

∂U

∂ξ
(s, c̄(s))[v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ(s)) + v̄(s)x̄ ◦ θ̄(s)∂ϕ

∂θ
(s, θ̄(s))]ds

}
(r − v̄)(t)dt ≤ 0, (82)

for any admissible r, and

∫ 1

0

[
−∂U
∂ξ

(t, c̄(t))(y(t) − x̄(t))
]

dt+
∫ 1

0

[
∂U

∂ξ
(t, c̄(t))v̄(t)ϕ(t, θ̄(t))(y − x̄) ◦ θ̄(t)

]
dt ≤ 0, (83)
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for any admissible y. And as in the proof of Theorem 2.1, we can rewrite the inequality (83) in the following
form:

∫ 1

0

[
−∂U
∂ξ

(t, c̄(t)) +
〈
ν θ̄

t ,
∂U

∂ξ
(., c̄(.))ϕ(., t)v̄(.)

〉]
(y(t) − x̄(t))dt

+
〈 ∑

i∈I

δti

∫
{θ̄=ti}

∂U

∂ξ
(s, c̄(s))ϕ(s, θ̄(s))ds, y − x̄

〉
≤ 0, for any admissible y. (84)

Let h and γ be such that h ∈ D(0, 1), −1 ≤ h ≤ 0 and 0 < γ < 1. Let us set y = x̄+ γhx̄ and let us show that
y is admissible. We have:

y(t) = x(t)(1 + γh(t)) ≥ x̄(t)(1 − γ) ≥ 0
and

ω(t) − y(t) = ω(t) − x̄(t) − γhx̄(t) ≥ ω(t) − x̄(t) ≥ 0,
i.e. y is admissible. If we take in (84) y = x̄+ γhx̄, then we obtain:

∫ 1

0

[
−∂U
∂ξ

(t, c̄(t)) +
〈
νθ

t ,
∂U

∂ξ
(., c̄(.))ϕ(., t)v̄(.)

〉]
x̄(t)h(t)dt

+
〈
x̄(t)

∑
i∈I

δti

∫
{θ̄=ti}

∂U

∂ξ
(s, c̄(s))ϕ(s, θ̄(s))ds, h

〉
≤ 0 (85)

for any h ∈ D(0, 1), h ≤ 0, by homogeneousness. We can therefore rewrite the inequality (85) in the following
form:

x̄(t)
[
−∂U
∂ξ

(t, c̄(t)) +
〈
ν θ̄

t ,
∂U

∂ξ
(., c̄(.))ϕ(., t)v̄(.)

〉]
+ x̄(t)

∑
i∈I

δti

∫
{θ̄=ti}

∂U

∂ξ
(s, c̄(s))ϕ(s, θ̄(s))ds ≥ 0, in D′(0, 1).

(86)
This proves (i) of Corollary ??. We can also rewrite the inequality (82) in the form:

∫ 1

0

[
∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))

]
(r − v̄)(t)dt+

∫ 1

0

[∫ 1

t

∂U

∂ξ
(s, c̄(s))v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s))ds

]
(r − v̄)(t)dt

+
∫ 1

0

[∫ 1

t

[v̄(s)x̄ ◦ θ̄(s)∂ϕ
∂θ

(s, θ̄(s))]ds
]

(r − v̄)(t)dt ≤ 0, (87)

for any admissible r. Let us consider the following control r(t) = v̄(t) + v̄(t)γh(t). This control is admissible
since we have:

r(t) = v̄(t)(1 + γh(t))v̄(t)(1 − γ) ≥ 0,
and ∫ t

0

r(s)ds =
∫ t

0

v̄(s)ds+ γ

∫ t

0

v̄(s)h(s)ds ≤
∫ t

0

v̄(s)ds ≤ t.

If we take in the inequality (87), r(t) = v̄(t) + v̄(t)γh(t), then we obtain:

∫ 1

0

[
∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))

]
v̄(t)h(t)dt +

∫ 1

0

[∫ 1

t

∂U

∂ξ
(s, c̄(s))v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s))ds

]
v̄(t)h(t)dt

+
∫ 1

0

[∫ 1

t

[v̄(s)x̄ ◦ θ̄(s)∂ϕ
∂θ

(s, θ̄(s))]ds
]
v̄(t)h(t)dt ≤ 0, (88)
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for any h ∈ D(0, 1), h ≤ 0, by homogeneousness, i.e.

v̄(t)
[
∂U

∂ξ
(t, c̄(t))x̄ ◦ θ̄(t)ϕ(t, θ̄(t))

]
+ v̄(t)

[∫ 1

t

∂U

∂ξ
(s, c̄(s))v̄(s)x̄′ ◦ θ̄(s)ϕ(s, θ̄(s))ds

]

+ v̄(t)
[∫ 1

t

[v̄(s)x̄ ◦ θ̄(s)∂ϕ
∂θ

(s, θ̄(s))]ds
]
≥ 0 in D′(0, 1), (89)

this proves (ii) of Corollary ??. �
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