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L∞-NORM MINIMAL CONTROL OF THE WAVE EQUATION:
ON THE WEAKNESS OF THE BANG-BANG PRINCIPLE

Martin Gugat
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Abstract. For optimal control problems with ordinary differential equations where the L∞-norm
of the control is minimized, often bang-bang principles hold. For systems that are governed by a
hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang
principle still holds for the wave equation, it implies no restriction on the form of the optimal control.
To illustrate that for the Dirichlet boundary control of the wave equation in general not even feasible
controls of bang-bang type exist, we examine the states that can be reached by bang-bang-off controls,
that is controls that are allowed to attain only three values: Their maximum and minimum values
and the value zero. We show that for certain control times, the difference between the initial and
the terminal state can only attain a finite number of values. For the problems of optimal exact and
approximate boundary control of the wave equation where the L∞-norm of the control is minimized,
we introduce dual problems and present the weak form of a bang-bang principle, that states that the
values of L∞-norm minimal controls are constrained by the sign of the dual solutions. Since these dual
solutions are in general given as measures, this is no restriction on the form of the control function: the
dual solution may have a finite support, and when the dual solution vanishes, the control is allowed to
attain all values from the interval between the two extremal control values.
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1. Introduction

For finite dimensional linear systems, the Kalman condition guarantees that a control of minimal L∞-norm
is of bang-bang form (see [17,20] and 1.1 below). For distributed parameter systems, the situation is more
involved. For the heat equation, where analytic solutions appear, a bang-bang structure in a weak form in
the sense of Krabs (see [14], Ths. 2.4.13 and 2.4.14) and Seidman (see [21]) remains. In this paper we try to
illuminate the situation for systems governed by the 1-D wave equation, where a finite wave speed is essential.
We show that the weak form of the bang-bang principle which holds for the wave equation does not imply any
restriction on the form of the optimal controls.
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1.1. About the bang-bang principle

Let Y be a separable Banach space that is used as the space for the controls. We consider pointwise time-
dependent control constraints of the form u(t) ∈ U(t) almost everywhere on the time interval [0, T ] that are
given by a multifunction U : t �→ U(t) where for all t ∈ [0, T ], the set U(t) ⊂ Y is nonempty and closed. The
analysis for the infinite-dimensional case is based upon measurable multifunctions.

Definition 1.1. A multifunction U with U(t) nonempty and closed for all t ∈ [0, T ] is said to be measurable, if
for every y ∈ Y , the function t �→ infν∈U(t) ‖y − ν‖ is measurable. We define the admissible set UT

U of controls

UT
U := {u ∈ L1(0, T ; Y ) : u(t) ∈ U(t) a.e. on (0,T) }. (1)

1.1.1. The finite-dimensional case

For all t ≥ 0, let U(t) ⊂ Rm be a nonempty closed set and let U(·) be a measurable multifunction. Let us
consider first the classical finite dimensional linear control problem

{
ẋ = A(t)x + B(t)u, t > 0
x(0) = x0, u(t) ∈ U(t), a.e. (2)

where x ∈ Rn, A(·) ∈ L1
loc(R+;Rn×n), B(·) ∈ L1

loc(R+;Rn×m). It is well-known that under these circumstances
there exists a unique absolutely continuous solution x(·) of (2).

Definition 1.2. Let Y = Rm and X = Rn. We define the attainable set

RT
U (x0) := {z ∈ X : There exists u ∈ UT

U such that x(·) solves (2) and satisfies x(T ) = z} (3)

as the set of points z that can be reached from the initial datum x0 in time T > 0 by the action of the control u.

It is known that

convUT
U = UT

convU . (4)

At this point recall the definition of extreme points:

Definition 1.3. Let V be a vector space and A ⊂ V a set. A point a ∈ A is called an extreme point of A if for
any two points b, c ∈ A such that (b + c)/2 = a the equation b = c = a holds. The set of all extreme points of
A is denoted extA.

If the sets U(t) are convex and compact, one has the bang-bang principle

RT
U (x0) = RT

extU (x0) (5)

which states that each attainable point can also be obtained by controls that satisfy u(t) ∈ extU(t) a.e., see
Hermes and Lasalle [11], Lee and Markus [16] as basic references. The bang-bang principle states that such
controls can be realized by functions with values in the extreme points of U(t). In particular, if for all t the set
U(t) = H is the same set H and H is a hypercube in Rm, then the extremal controls switch between the corners
of that cube. In intervals in Y = R1 there are only two extremal values, therefore the name ‘bang-bang’. This
principle has become a paradigm in control theory and in applied sciences, as it states that one may as well
control in fully exploring all resources any time in the sense that at any time, the control contraints are active.
For example, if U(t) = [−1, 1] the absolute value |u(t)| can be chosen to be equal to one at any time. This will
become even more important in optimal control problems.
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1.1.2. The infinite-dimensional case

Let X = Y be a separable Banach-space. For all t ≥ 0, let U(t) ⊂ X be a nonempty closed set and let
U(·) be a measurable multifunction. Define the reachable set as in Definition 1.2 with the infinite-dimensional
space X = Y . For all t ≥ 0, let A(t) be an unbounded linear operator in X and let B(t) ∈ L(X) be a bounded
operator, where L(X) denotes the space of bounded operators in X . Assume that B(·) ∈ L∞

loc(R+;L(X)).
Using Kato’s theory [13] we may consider solutions of the distributed parameter system⎧⎨

⎩
ẋ = A(t)x + B(t)u, t > 0
x(0) = x0, u(t) ∈ U(t) a.e.,
u(·) ∈ L1(0, T ; X).

(6)

We assume that the homogeneous problem{
ẋ = A(t)x, t > 0
x(0) = x0

(7)

admits a fundamental solution i.e. an evolution operator

Φ(·, ·) : {(t, s) : 0 ≤ s ≤ t} → L(X). (8)

See Kato [12]. In fact, for time-independent operators A(t) = A the fundamental solution is given by the
C0-semi-group Φ(t, s) = exp A(t − s) generated by A. If moreover B(·)u(·) ∈ L1

loc(R+; X) then

x(t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)u(s) ds, t ≥ 0 (9)

x(·) ∈ C(R+; X).

Unfortunately a strong bang-bang-principle of the form (5) does not hold in infinite dimensions. However, there
is a weaker version of it, see Papageorgiu [22]. In the infinite-dimensional case, instead of (4) we have

UT
U

w
= UT

convU (10)

where the w-closure refers to the weak topology in L1(0, T ; X). See Papageorgiu [22], Theorem 4.1. Moreover,
if for all t ≥ 0 the set U(t) is weakly compact and convex, and UT

extU is nonempty we have

UT
extU

w
= UT

U

(Th. 4.2 in [22]) and one obtains
RT

extU

w
(x0) = RT

U

w
(x0). (11)

Moreover, both sets are convex. Define |U(t)| = supu(t)∈U(t) ‖u(t)‖. If |U(·)| ∈ L1
loc then RT

U is already weakly
closed and the corresponding closure can be omitted, that is

RT
extU

w
(x0) = RT

U (x0). (12)

See Papageorgiu [22] for further details. This result can be interpreted as an infinite dimensional anologon of
the bang-bang principle (5), as it states that all reachable points can be approximated via a weakly-converging
sequence of extremal controls in the sense of the weak topology in L1(0, T ; X). In terms of approximate con-
trollability, equation (12) can also be interpreted as the statement that for the attainable set, weak approximate
controllability by extremal controls holds.
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The theorem behind the bang-bang principle in the finite-dimensional case is the Liapunov [19] theorem on
the convexity and compactness of vector valued measures. There are only few papers related to the extension
of this result into infinite dimensions. See Papageorgiu [22], Drobot [5] (for convexity) and Dovretzki [4].

In other words, in infinite dimensions, under canonical circumstances, any reachable state can be approxi-
mated weakly by bang-bang controls.

For boundary control problems, of course, the input operator B(t) is unbounded. In such a situation a
corresponding general result does not seem to be known. This paper is meant to reveal further properties.

1.1.3. Optimal control and bang-bang

The bang-bang result (5) for the finite-dimensional case merely states that among possibly many other
controls steering x0 to z in time T > 0 there is a bang-bang control. In the infinite dimensional context (12)
states that there is a sequence of extremal controls such that the sequence of generated states converges to z in
the sense of the weak topology in L1(0, T ; X) in time T > 0.

In the framework of optimal control it is of interest whether optimal controls of bang-bang type exist. There
are two interesting types of optimal control problems in this context: the minimal norm reachability problem,
and the time optimal reachability problem. In the minimal norm problem one fixes a time T and a reachable
point z and asks for a control u that realizes the transfer from x0 to z with minimal norm ‖u‖. In this case,
U(t) = X .

Let Bρ(0) denotes the ball with radius ρ in a given norm. In the time-optimal reachability problem one fixes
the control set U(t) = Bρ(0) and asks for the minimal time T > 0 when z ∈ RT

U (x0). For the latter problem,
in any dimensions, it can be seen that the state x(T ) lies on the boundary of the reachable set that is

x(T ) ∈ ∂RT
U (x0).

It is then a matter of applying separation theorems in order to characterize such boundary points. This question
is answered by the classical Pontriagin-Maximum-Principle. In the linear finite-dimensional context of (2) we
have

x(T ) ∈ ∂RT
U (x0) ⇔ ∃η such that (13)

η̇ = A(t)� η
η(t)� B(t) u(t) = max

u∈U
η(t)� B(t) u, for almost all t ∈ [0, T ]. (14)

Here η(t) is the adjoint state. The proof of this fact starts from a separating hyperplane, separating the boundary
point x(T ) from the set RT

U . The normal to that hyperplane at x(T ) is considered as the end-point η(T ) of
the adjoint problem in (13). The uniqueness of such controls steering an initial datum to a boundary point
of the reachable set, therefore, is related to the geometry of that set. A suggestive notion in this context
is that of normality, which says exactly that two controls reaching the same boundary point should coincide
almost everywhere. Normality can be seen to be equivalent to the statement that no component of the adjoint
state vanishes on a set of positive measure. Further analysis is easily available for the autonomous (still finite
dimensional) control problem. In the autonomous case this is equivalent to

(1) The reachable set is strictly convex.
(2) The adjoint state has no component that vanishes on an interval of positive measure.
(3) The stronger Kalman condition rank[bi, Abi, . . . , A

n−1bi] = n, i = 1, . . . , m holds where the bi denote
the columns of B.

In contrast to the stronger Kalman condition, the Kalman condition requires only rank[B, AB, . . . , An−1B] = n.
Under normality, the unique time-minimal control for a given norm bound on the control is the same as

the norm-minimal control for the minimal time T . Thus under normality, in finite dimensions, norm-minimal
controls are uniquely given as bang-bang controls. Such a result is not available in infinite dimensions.

There is no simple extension of statements (1)–(3) into infinite dimensional systems. For autonomous infinite
dimensional systems Krabs [14] has shown that time minimal solutions are norm minimal on the minimal time
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interval. If the minimal-norm function is strictly decreasing (which is implied by normality in finite dimension),
then the reverse statement is also true. Still in the infinite dimensional situation this does not imply a strong
bang-bang principle. A unifying theory seems to be lacking. Indeed, the results concerning the wave equation
and the heat equation differ substantially. Optimal solutions for the heat equation exhibit a weak bang-bang
structure in the sense that the controls switch between the extreme points of the control constraint set, but the
switches may accumulate at the time T . See Krabs [14], and Seidman [21]. Some results and open problems in
the controllability of partial differential equations are presented in [28].

1.2. Boundary control of the wave equation

In this paper, we consider the problem of L∞-norm minimal Dirichlet boundary control of the wave equation,
where at the left end the value zero is prescribed and the right end is controlled. An overview about control
and numerical approximation of waves is given in [27].

We start with the problem of optimal exact control, where the control time and a desired terminal state that
has to be reached at that time are given. We analyze the corresponding reachable set and show that in general,
not even feasible bang-bang controls exist. In fact the geometry of the feasible set is not what one might expect:
In the case of ordinary differential equations, the bang-bang controls are the extreme points of the feasible set
(see [1]). In the case of the wave equation, the situation is completely different and the extreme points of the
corresponding feasible set are not necessarily of bang-bang type. We show that for certain control times, the
difference between the initial and the terminal state can only attain a finite number of values and the terminal
velocities that can be reached by bang-bang controls with a finite number of switching points are equal to the
initial velocity plus a linear combination of Dirac measures.

We introduce a primal problem for which the optimal control problem is the dual problem. Similar primal
problems have been introduced in [6,7,26]. We show by an example, that in general, the primal problem does
not have a solution. This motivates the introduction of a dual problem with measure-valued solutions for which
existence of a solution is guaranteed. We present weak and strong duality results. In this context, weak duality
means that the optimal value of the primal minimization problem is greater than or equal to the optimal value
of the corresponding dual maximization problem and strong duality means that the optimal value of the primal
problem is equal to the optimal value of the corresponding dual problem.

We continue with the problem of optimal approximate control, where the control time and an ε-neighbourhood
of the desired terminal state that has to be reached at that time are given. The ε-neighbourhood is defined
with the norms corresponding to the maximal regularity that we can expect in general, in our case this means
with norms for non-reflexive spaces. With examples we show that also for the problem of optimal approximate
control with relaxation in a non-reflexive space, it is necessary to consider measure-valued dual solutions. For
these solutions, the corresponding weak form of a bang-bang principle is in general no restriction on the form
of the controls: If the dual solutions are given by Dirac measures, the weak form of a bang-bang principle is
only a restriction on a finite number of points on the time-interval.

For relaxation with respect to Hilbert-space norms, the situation is different: we give an example with an
optimal control with bang-intervals and where the corresponding dual solution can be interpreted as a function.

This paper has the following structure: First we present the initial-boundary-value problem for the wave
equation and provide a representation of its solution. Then we define bang-bang-off controls and compute the
corresponding reachable set for certain times. A bang-bang-off control allows to use the value zero in addition to
the two extremal control values. Such control strategies appear for example in orbital transfer and include the
possibility of zero thrust, that is to switch off the rocket. For the wave equation, in [2] a time-optimal boundary
control of bang-bang-off type is given. It turns out that the reachable set for the bang-bang-off controls that
contains the reachable set for the bang-bang controls is very small.

Then we look at a problem of L∞-norm minimal control, where the feasible controls steer the system exactly
to the zero state at a prescribed time. We consider an example for which a primal problem corresponding to
this optimal control problem does not have a solution that is given as a function.
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This is the motivation to present a dual problem with solutions that are given as measures. We show weak
and strong duality between this dual problem and our optimal control problem. The proof of strong duality
shows how the sign of a measure that solves the dual problem is a constraint for the L∞-norm optimal controls
that solve our original problem. The objective function of the dual problem contains an expression of L1-norm
type. The signum function is the subdifferential of the absolute value function that appears in this expression
when we consider the necessary optimality conditions.

If the support of a certain measure that is related to a solution of the dual problem is equal to the whole
time interval, an optimal bang-bang control exists. In the next part of the paper, we consider the problem of
optimal ε-approximate control and introduce the corresponding dual problem. Weak and strong duality and the
weak bang-bang principle (49) are proven. The result are analogous to the case of optimal exact control. The
continuity of the optimal value function for the problem of optimal ε-approximate control as ε tends to zero
is shown. An example is given, where an optimal ε-approximate control can be computed explicitly which is
not of bang-bang type. For this example, also solutions of the dual problem are given: In these dual solutions,
Dirac measures appear.

As an alternative approach to the relaxation with a norm of L∞-type, we present a problem of optimal
ε-approximate control where the relaxation of the end-condition is done with respect to a Hilbert-space norm.
In contrast to the relaxation with a norm of L∞-type, the Hilbert space relaxation yields controls with bang-
intervals. As the relaxation parameter tends to zero, these intervals become shorter and shorter. This is
illustrated by an example.

In the last section, we point out the relation between time-optimal and norm-minimal control (see also [15])
and give an example where the standard normality condition is violated: The minimal-norm function is piecewise
constant and decreasing, but not strictly decreasing.

2. The initial-boundary-value problem and its solution

Let L > 0 and a wave speed c > 0 be given. For y0 ∈ L∞(0, L), y1 ∈ W−1,∞(0, L) and a control function
u ∈ L∞(0,∞) we consider the initial boundary value problem

1
c2

∂2

∂t2
y(x, t) − ∂2

∂x2
y(x, t) = 0, (x, t) ∈ (0, L) × (0,∞) (15)

y(x, 0) = y0(x),
∂

∂t
y(x, 0) = y1(x), x ∈ (0, L) (16)

y(0, t) = 0, y(L, t) = u(t), t ∈ (0,∞). (17)
We give a representation of the solution of the initial-boundary-value problem that is based upon D’Alembert’s
solution of the wave equation. The given representation of the solution is very flexible with repect to the choice
of function spaces containing y0 and y1.

Theorem 2.1. Let t0 = L/c. For (x, t) ∈ (0, L)× (0,∞) choose i, j ∈ N and t1, t2 ∈ [0, t0) such that

x + ct = jL + ct1, (L − x) + ct = iL + ct2.

Then the solution of the initial-boundary-value problem (15), (16), (17) is given by

y(x, t) = [αj(t1) + βi(t2)]/2

and the time derivative in the sense of distributions is given by

∂

∂t
y(x, t) =

α′
j(t1) + β′

i(t2)
2
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where for s ∈ (0, t0), αk and βk are defined as follows:
If k ∈ N is odd:

αk(s) =
(k−1)/2∑

i=0

2 u(s + 2it0) − β0(s),

βk(s) =
(k−1)/2∑

i=1

−2 u(s + (2i − 1)t0) − α0(s).
(18)

If k ∈ N is even:

αk(s) =
(k−2)/2∑

i=0

2 u(s + (2i + 1)t0) + α0(s),

βk(s) =
(k−2)/2∑

i=0

−2 u(s + 2it0) + β0(s).
(19)

For s ∈ (0, t0), α0 and β0 are defined as follows:

α0(s) = y0(cs) +
1
c

∫ cs

0

y1(σ) dσ, (20)

β0(s) = y0(L − cs) − 1
c

∫ L−cs

0

y1(σ) dσ. (21)

Proof. First we check the initial conditions: If t = 0, we have t1 = x/c and t2 = (L − x)/c = t0 − t1 and
i = j = 0. Thus

y(x, 0) = [α0(t1) + β0(t2)]/2 = [y0(x) + y0(x)]/2 = y0(x).
Moreover, we have

[α′
0(t1) + β′

0(t2)]/2 = y1(x).
Hence the initial conditions (16) are valid.

Now we check whether the wave equation (15) holds. We have

1
c2

∂2

∂t2
y(x, t) = [α′′

j (t1) + β′′
i (t2)]/(2c2),

∂2

∂x2
y(x, t) =

1
2

∂2

∂x2
[αj(x/c + t − jt0) + βi(t0 − (x/c) + t − it0)] =

α′′
j (t1) + β′′

i (t2)
2c2

,

hence (15) is valid.
Now we check the boundary condition y(0, t) = 0. For x = 0 we have

x + ct = ct = jL + ct1, (L − x) + ct = ct + L = iL + ct2

hence ct = (i − 1)L + ct2. Thus i = j + 1 and t2 = t1. Hence y(0, t) = [αj(t1) + βj+1(t1)]/2.
If j ∈ N is odd, this yields

y(0, t) =
(j−1)/2∑

i=0

u(t1 + 2it0) − β0(t1)
2

+
(j−1)/2∑

i=0

− u(t1 + 2it0) +
β0(t1)

2
= 0.

If j ∈ N is even, this yields

y(0, t) =
(j−2)/2∑

i=0

u(t1 + (2i + 1)t0) +
α0(t1)

2
+

j/2∑
i=1

− u(t1 + (2i − 1)t0) − α0(t1)
2

= 0.
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Hence y(0, t) = 0 for all t > 0.
Now we check the boundary condition y(L, t) = u(t). For x = L we have

x + ct = L + ct = jL + ct1, (L − x) + ct = ct = iL + ct2

hence ct = (j − 1)L + ct1. Thus i = j − 1 and t2 = t1. Hence y(L, t) = [αj(t1) + βj−1(t1)]/2.
If j ∈ N is odd, this yields

y(L, t) =
(j−1)/2∑

i=0

u(t1 + 2it0) − β0(t1)
2

+
(j−3)/2∑

i=0

− u(t1 + 2it0) +
β0(t1)

2
= u(t1 + (j − 1)t0) = u(t).

If j ∈ N is even, this yields

y(L, t) =
(j−2)/2∑

i=0

u(t1 + (2i + 1)t0) +
α0(t1)

2
+

(j−2)/2∑
i=1

− u(t1 + (2i − 1)t0) − α0(t1)
2

= u(t1 + (j − 1)t0) = u(t).

Hence y(L, t) = u(t) for all t > 0 and the boundary conditions (17) hold.

3. Reachable set: which states can be reached by bang-bang-off controls?

In this section, we consider bang-bang-off (bang-zero-bang) controls where in addition to the two extremal
control values, also zero is allowed as control value. The attainable set for bang-bang-off controls contains the
set that can be reached using bang-bang controls. We show that the attainable set for bang-bang-off controls
is rather small (see Th. 3.1).

Definition 3.1. Let T > 0 be given. A function u ∈ L∞(0, T ) is called a bang-bang-off control, if

u(t) ∈ { ‖u‖∞,(0,T ), 0, −‖u‖∞,(0,T ) }

almost everywhere on [0, T ]. A function u ∈ L∞(0, T ) is called a bang-bang control, if

u(t) ∈ { ‖u‖∞,(0,T ), −‖u‖∞,(0,T ) }

almost everywhere on [0, T ].

Figure 2 shows an example for a bang-bang-off control. In [2] an example of a time-optimal bang-bang-off
control of the wave equation with Neumann boundary controls at both ends is given.

Let k ∈ N and T = 2kt0. We are interested in the set of states y(x, T ), yt(x, T ) that can be reached at the
time T with bang-bang-off controls.

Since x + cT = x + 2kL, we have t1 = x/c and j = 2k. Since (L − x) + cT = (L − x) + 2kL, we have
t2 = (L − x)/c = t0 − t1 and i = j. This implies the equation

y(x, T ) = [α2k(t1) + β2k(t0 − t1)]/2

=
k−1∑
i=0

u(t1 + (2i + 1)t0) +
k−1∑
i=0

− u(t0 − t1 + 2it0) + [α0(t1) + β0(t0 − t1)]/2

= y0(x) +
k−1∑
i=0

u((2i + 1)t0 + t1) − u((2i + 1)t0 − t1)

= y0(x) + S1(x/c).
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If u is a bang-bang-off control, the sum S1(x/c) can only obtain 4k + 1 different values, namely from the set

{−2k ‖u‖∞,(0,T ), (−2k + 1) ‖u‖∞,(0,T ), ..., (2k − 1) ‖u‖∞,(0,T ), 2k ‖u‖∞,(0,T )}.

Hence the set of states that can be reached with a bang-bang-off control u is equal to

{f(x) ∈ L∞(0, L) : for all x ∈ (0, L) we have f(x) ∈ y0(x) + ‖u‖∞,(0,T ) {−2k, −2k + 1, ..., 2k − 1, 2k}}.

This implies the following controllability result:
The state y(x, T ) = 0 can be reached at the time T = 2kt0 if and only if the function y0 attains at most

4k + 1 different values from an equidistant grid of 4k + 1 different values.
For the velocity at time T we have

∂

∂t
y(x, T ) =

α′
2k(t1) + β′

2k(t0 − t1)
2

=
k−1∑
i=0

u′((2i + 1)t0 + t1) − u′((2i + 1)t0 − t1) + [α′
0(t1) + β′

0(t0 − t1)]/2

= y1(x) +
k−1∑
i=0

u′((2i + 1)t0 + t1) − u′((2i + 1)t0 − t1)

= y1(x) + S2(x/c).

For a bang-bang-off control with a finite number of switching points, we have

u′(t) =
N∑

j=0

λj δtj (t)

with tj ∈ [0, T ] (j ∈ {0, ..., N}) and λj ∈ {−2‖u‖∞,(0,T ), −‖u‖∞,(0,T ), 0, ‖u‖∞,(0,T ), 2‖u‖∞,(0,T )}.
In this case the sum S2(x/c) is a linear combination of Dirac-measures, that is

S2(x/c) =
k−1∑
i=0

N∑
j=0

λj [δtj ((2i + 1)t0 + x/c) − δtj ((2i + 1)t0 − x/c)].

This implies the following controllability result: the velocity yt(x, T ) can be reached in time T = 2kt0 with a
bang-bang-off control with a finite number of switching points, if and only if

yt(x, T ) = y1(x) +
k−1∑
i=0

N∑
j=0

λj [δtj ((2i + 1)t0 + x/c) − δtj ((2i + 1)t0 − x/c)].

We summarize our controllability results in the following theorem:

Theorem 3.1. Let T = 2kt0 and a bang-bang-off control u ∈ L∞(0, T ) be given. For the state that can be
reached at time T we have for x ∈ (0, L) almost everywhere

y(x, T ) ∈ y0(x) + ‖u‖∞,(0,T ) {−2k, −2k + 1, ..., 2k − 1, 2k}.



THE WAVE EQUATION AND BANG-BANG CONTROL 263

Figure 1. The state y0 in Example 3.1.

For the velocity that can be reached at time T with a bang-bang-off control with a finite number of switching
points we have the representation

yt(x, T ) = y1(x) +
k−1∑
i=0

N∑
j=0

λj [δtj ((2i + 1)t0 + x/c) − δtj ((2i + 1)t0 − x/c)]

with λi ∈ {−2‖u‖∞,(0,T ), −‖u‖∞,(0,T ), 0, ‖u‖∞,(0,T ), 2‖u‖∞,(0,T )} and ti ∈ (0, T ).

Theorem 3.1 implies that the zero state y(x, T ) = yt(x, T ) = 0 can be reached at time T = 2kt0 with a bang-
bang-off control with a finite number of switching points if and only if the initial velocity is a linear combination
of Dirac measures and the initial state attains at most 4k + 1 equidistant different values from a set of the form
h {−2k, −2k + 1, ..., 2k − 1, 2k} with a stepsize h > 0.

Example 3.1. Figure 1 shows a state y0 on the space interval [0, L] = [0, 1] that can be controlled exactly to
the zero state in the time T = 4L/c = 4 (c = 1) by a bang-bang-off control if y1(x) = 0:

y0(x) =

⎧⎨
⎩

0 if x ∈ [0, 1/8) ∪ [7/8, 1],
4 if x ∈ [1/8, 3/8)∪ [5/8, 7/8),
8 if x ∈ [3/8, 5/8).

(22)

Figure 2 shows a bang-bang-off control u on the time interval [0, T ] that steers the state from Figure 1 to the
zero state. This is an exact control with minimal L∞-norm ‖u‖∞,(0,4) = 2 (see Sect. 4).

u(t) =

⎧⎨
⎩

0 if t ∈ [0, 1/8) ∪ [7/8, 9/8)∪ [15/8, 19/8)∪ [21/8, 27/8)∪ [29/8, 4],
2 if t ∈ [1/8, 7/8)∪ [19/8, 21/8),

−2 if t ∈ [9/8, 15/8)∪ [27/8, 29/8).
(23)

Note that reflection at an axis in T/2 = 2 and multiplication by −1 yields another exact bang-bang-off control
with the same L∞-norm.

Another exact control with the same L∞-norm that is not bang-bang-off is given by the 2-periodic function u1

depicted in Figure 3 with

u1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t ∈ [0, 1/8) ∪ [7/8, 9/8)∪ [15/8, 2),
1 if t ∈ [1/8, 3/8)∪ [5/8, 7/8),
2 if t ∈ [3/8, 5/8),

−1 if t ∈ [9/8, 11/8)∪ [13/8, 15/8),
−2 if t ∈ [11/8, 13/8).

(24)
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Figure 2. A successful bang-bang-off control in Example 3.1.

Figure 3. A successful control that is not bang-bang-off in Example 3.1.

4. L∞
-norm minimal exact control

Consider the following problem of L∞-norm minimal control:

P : min (1/2) ‖u‖2
∞,(0,T ) such that (15)–(17) and y(x, T ) = yt(x, T ) = 0.

Remark 4.1. Example 3.1 shows that in general, the solution of P is not uniquely determined.
Exact controllability holds for T ≥ 2t0 so if T < 2t0, existence of a solution of P cannot be guaranteed.

In [6], it is pointed out that the optimal boundary controls can also be determined as boundary traces of
solutions of an adjoint optimal control problem (a primal problem). In this section we give an example, where
the primal problem does not have a solution that is a Lebesgue-integrable function. However, the problem can
be relaxed. In Section 5, we introduce a dual problem that has solutions in the sense of measures.

4.1. An example with explicit solution

Results from [10] imply that for T = 2L/c, y0(x) = sin(xπ/L) and y1(x) = 0 the control

u(t) = sin(ctπ/L)/2 (25)
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is a solution of the optimization problem P . Hence the optimal value of P is equal to 1/8. In fact, with t1 = x/c
Theorem 2.1 yields

y(x, T ) = u(t0 + t1) − u(t0 − t1) + y0(x) = sin
( x

L
π
)

+
1
2

sin
( c

L
(t0 + t1)π

)
− 1

2
sin
( c

L
(t0 − t1)π

)
= sin

( x

L
π
)

+
1
2

sin
( c

L
t1π − π

)
+

1
2

sin
( c

L
t1π + π

)
= sin

( x

L
π
)

+ sin
( c

L
t1π
)

cos(π) = 0.

Moreover, we have

yt(x, T ) = u′(t0 + t1) − u′(t0 − t1) + y1(x) =
cπ

2L

[
cos
( c

L
(t0 + t1)π

)
− cos

( c

L
(t0 − t1)π

)]
= − cπ

2L

[
cos
(
π − c

L
t1π
)
− cos

(
π +

c

L
t1π
)]

= −cπ

L
sin(π) sin(

c

L
t1π) = 0.

The control u is not bang-bang-off. In fact, Theorem 3.1 implies that no feasible bang-bang-off control exists.
The time T = 2L/c is the minimal time for which the system is exactly controllable that is for which

problem P has feasible points for all initial states y0, y1 that are sufficiently regular. For T = 2L/c all feasible
controls u1 have the form u1(t) = u(t) + r where u is a given feasible control and r is a real number. Hence the
feasible set does not contain a bang-bang control.

4.2. The corresponding primal problem

Assume that L = c = 1. For (v0, v1) ∈ W 1,1(0, 1) × L1(0, 1) define

K((v0, v1)) =
1
2

(∫ 2

0

|vx(1, t)| dt

)2

+
∫ 1

0

y0(x)v1(x) − y1(x)v0(x) dx

where v is the solution of the adjoint system

vtt(x, t) = vxx(x, t)
v(0, t) = v(1, t) = 0
v(x, 0) = v0(x), vt(x, 0) = v1(x).

The primal problem corresponding to problem P is

PRIM : min K((v0, v1)). (26)

If v is a solution of PRIM , then a solution u of P is quasi-bang-bang in the sense that

u(t) ∈ sign(vx(1, t)). (27)

Note that it is not clear that a solution v of PRIM exists in the given space W 1,1(0, 1)×L1(0, 1). This will be
explained further in Section 4.3.

Example 4.1. Consider problem P with L = c = 1, T = 4, y1 = 0 and y0 as in (22). Then a solution of
PRIM is given by v0 = 0 and

v1(x) =
{

0 if x ∈ [3/8, 5/8),
−2 if x �∈ [3/8, 5/8). (28)

This follows from the strong duality results in Section 5. All the optimal controls presented in Example 3.1 are
quasi-bang-bang in the sense of (27). This is illustrated by Figure 4 that shows the state v generated by (v0, v1)
as defined above. The support of vx(1, ·) is equal to [3/8, 5/8]∪ [11/8, 13/8]∪ [19/8, 21/8]∪ [27/8, 29/8].



266 M. GUGAT AND G. LEUGERING

Figure 4. The optimal adjoint state in Example 4.1.

4.3. Example: nonexistence of a solution of the primal problem

In this section, for our example with y0(x) = sin(xπ/L) and y1(x) = 0 we construct a minimizing sequence
that has a Dirac measure as the only limit point. We show that it makes sense to consider this Dirac measure
as a solution of the primal problem PRIM .

For real numbers M ∈ R and δ < 1/2 define

v0(x) = 0, v1(x) = −M for x ∈ [(1/2) − δ, (1/2) + δ], v1(x) = 0 else. (29)

For t ∈ (0, t0) we have

vx(1, t) = [α′
1(t) − β′

0(t)]/2 = −β′
0(t)

and for t ∈ (t0, 2t0) we have

vx(1, t) = [α′
2(t − t0) − β′

1(t − t0)]/2 = α′
0(t − t0).

This implies

∫ 2

0

|vx(1, t)| dt =
∫ 1

0

|β′
0(t)| dt +

∫ 2

1

|α′
0(t − t0)| dt =

∫ 1

0

|α′
0(t)| + |β′

0(t)| dt = 2
∫ 1

0

|v1(t)| dt = 4δ|M |.
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Moreover, we have

∫ 1

0

y0(x)v1(x) − y1(x)v0(x) dx =
∫ 1

0

sin(πx)
1
2
[α′

0(x) + β′
0(1 − x)] dx = −M

∫ (1/2)+δ

(1/2)−δ

sin(πx) dx

= −2M

π

[
1
2

(
cos
(π

2
− πδ

)
− cos

(π

2
+ πδ

))]
= −2M

π
sin(πδ).

Hence
K((v0, v1)) = 8δ2M2 − 2M

π
sin(πδ).

With the choice δ = 1/(8M) we obtain

K((v0, v1)) =
1
8
− 2M

π
sin(π/(8M)) → −1

8
(M → ∞).

Define

I1 =
∫ 1

0

|β′
0(t)| dt +

∫ 2

1

|α′
0(t − t0)| dt =

∫ 1

0

|α′
0(t)| + |β′

0(t)| dt.

Since | sin(πx)| ≤ 1, we have a lower bound for K((v0, v1)), namely

K((v0, v1)) =
I2
1

2
+
∫ 1

0

sin(πx)
1
2
[α′

0(x)+β′
0(1−x)] dx ≥ I2

1

2
− 1

2

∫ 1

0

|α′
0(t)|+ |β′

0(t)| dt =
1
2
(I2

1 −I1) ≥ −1
8
· (30)

This implies that the control functions (v1,k, v2,k) as defined in (29) with the choice M = Mk = k, δ = δk =
1/(8k) form a minimizing sequence. This in turn implies that the optimal value of problem PRIM is −1/8.

Our minimizing sequence is a bounded sequence in L1. For all ϕ ∈ C(0, 1), we have

lim
k→∞

∫ 1

0

v1,k(x)ϕ(x) dx = lim
k→∞

−k

∫ (1/2)+δk

(1/2)−δk

ϕ(x) dx = −(1/4)ϕ(1/2) (31)

which shows that the sequence (v1,k)k∈N does not have a limit point in L1(0, 1).
We can even state that for our example, problem PRIM does not have a solution.
This can be seen as follows: Inequality (30) show that K(·) can only obtain the value −1/8 if

∫ 1

0

sin(πx) [α′
0(x) + β′

0(x)] dx = −1/2 and I1 =
∫ 1

0

|α′
0(x)| + |β′

0(x)| dx = 1/2.

Since these two equations cannot be satisfied at the same time, problem PRIM cannot have a solution that is
given as a function.

Instead, a solution given as a measure that describes the limit point of the minimizing sequence should be
considered. On account of (31), for our example v1 would be a Dirac measure with support in the point x = 1/2
and weight −1/4, that is

v1(t) = −(1/4)δ1/2(t).
With v0 = 0 this yields

vx(1, t) = (1/4)δ1/2(t) for t ∈ (0, t0]
vx(1, t) = −(1/4)δ1/2(t − t0) for t ∈ (t0, 2t0).

Hence in this case the quasi-bang-bang principle u(t) ∈ sign(vx(1, t)) yields

u(1/2) = ‖u‖∞,(0,2) and u(3/2) = −‖u‖∞,(0,2)
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which is satisfied by the optimal control u defined in (25).

5. A dual problem

In order to avoid the difficulties connected with problem PRIM , in this section we introduce a dual problem
for P in the spirit of the Hilbert uniqueness method (HUM) introduced by Lions (see [18]).

Define the topological dual spaces X0 = (L∞(0, L))∗ and X1 = (W−1,∞(0, L))∗. The dual of L∞ is larger
than L1 and may be identified with a space of absolutely continuous, finitely additive set functions of bounded
total variation on (0, L) (see [25], p. 118). For (µ0, µ1) ∈ X1 × X0, consider the adjoint system

µtt = c2 µxx(x, t) (32)
µ(x, 0) = µ0(x), µt(x, 0) = µ1(x) (33)
µ(0, t) = µ(L, t) = 0. (34)

For (µ0, µ1) ∈ X1 × X0 define

J((µ0, µ1)) = −c4

2

(∫ T

0

d |µx(L, t)|
)2

− 〈y0, µ1〉L∞×X0 + 〈y1, µ0〉W−1,∞×X1 (35)

where µ is the solution of the adjoint system (32)–(34). We define the dual problem

DUAL : max
(µ0,µ1)∈X1×X0

J((µ0, µ1)).

Weak duality. In this section, we show that for all controls u ∈ L∞(0, T ) for which the solution y of (15)–(17)
satisfies the end conditions y(x, T ) = yt(x, T ) = 0 and for all (µ0, µ1) ∈ X1 × X0 we have

J((µ0, µ1)) ≤ (1/2) ‖u‖2
∞,(0,T )

which shows that problems P and DUAL are in weak duality that is the optimal value of the minimization
problem P is greater than or equal to the optimal value of the maximization problem DUAL.

To show that weak duality holds, we multiply the state equation (15) (with the control u) by the solution µ
of the adjoint system. Using the end conditions, this yields the equation

c2

∫ T

0

u(t) dµx(L, t) + 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1 = 0. (36)

Thus we have

1
2
‖u‖2

∞,(0,T ) − J((µ0, µ1)) =
1
2
‖u‖2

∞,(0,T ) +
1
2

(
c2

∫ T

0

d |µx(L, t)|
)2

+ 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1

=
1
2
‖u‖2

∞,(0,T ) − c2

∫ T

0

u(t)dµx(L, t) +
1
2

(
c2

∫ T

0

d |µx(L, t)|
)2

≥ 1
2

⎡
⎣‖u‖2

∞,(0,T ) − 2c2 ‖u‖∞,(0,T )

∫ T

0

d |µx(L, t)| +

(
c2

∫ T

0

d |µx(L, t)|
)2
⎤
⎦

=
1
2

[
‖u‖∞,(0,T ) − c2

∫ T

0

d |µx(L, t)|
]2

≥ 0. (37)
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So we have shown that the optimization problems P and DUAL are in weak duality.

Strong duality and detection of bang-bang controls. In this section, we show that if DUAL has a solution,
the optimal value of DUAL is equal to the optimal value of P . Moreover, we show how a solution of DUAL
can be used to construct a solution of P .

For x ∈ R define f(x) = |x| as the absolute value function. Then f is a convex function. For the subdifferential
(see [24]) of f , we use the notation ∂f(x) = sign(x).

Let (µ0, µ1) be a solution of DUAL. We want to look at the necessary optimality conditions. Since the L1

norm is not differentiable, we cannot look at the gradient of −J . However, for the subdifferential ∂(−J) (see [3])
of the convex functional −J(·) we have

0 ∈ ∂(−J((µ0, µ1))).
This implies the existence of a function w1 ∈ L∞(0, T ) such that

w1(t) ∈ sign(µx(L, t)) on [0, T ]

and for all (ω0, ω1) ∈ X1 × X0 we have

0 = c4

(∫ T

0

d |µx(L, t)|
) ∫ T

0

w1(t) dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1 (38)

where ω denotes the solution of the adjoint system (32)–(34) with the initial data (ω0, ω1). Define

I1 =
∫ T

0

d |µx(L, t)|. (39)

Equation (38) implies the existence of a control u = c2 I1 w1 ∈ L∞(0, T ) that satisfies the inclusion

u(t) ∈ c2I1 sign(µx(L, t)) (40)

and for all (ω0, ω1) ∈ X1 × X0 the equation

0 = c2

∫ T

0

u(t)dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1 . (41)

Multiplying the state equation (15) (with the control u) by the solution ω of the adjoint system yields

0 = c2

∫ T

0

u(t)dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1

− 〈y(·, T ), ωt(·, T )〉L∞×X0 + 〈yt(·, T ), ω(·, T )〉W−1,∞×X1 . (42)

Combining these two identities (41), (42) yields

0 = 〈y(·, T ), ωt(·, T )〉L∞×X0 − 〈yt(·, T ), ω(·, T )〉W−1,∞×X1

for all (ω0, ω1) ∈ X1 × X0, which is equivalent to the exact controllability condition.
This means that the control u which satisfies (40) and (41) is feasible for P . As in (37), we see that

1
2
‖u‖2

∞,(0,T ) − J((µ0, µ1)) =
c4

2
I2
1 − c4

∫ T

0

I1sign(µx(L, t)) d µx(L, t) +
c4

2
I2
1

= c4I2
1 − c4 I1

∫ T

0

d |µx(L, t)| = 0.
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This means that P and DUAL have the same optimal values and that the control u that satisfies (40) and (41)
solves P . Thus we have constructed an L∞ norm minimal control.

Note that (40) implies that

u(t) ∈ {−‖u‖∞,(0,T ), ‖u‖∞,(0,T )} for all t ∈ supp(µx(L, ·)).

Since the set supp(µx(L, ·) can be very small (for example, it may contain only two points as in our previous
example) this is not a restriction on the form of the control.

Suppose that DUAL has a solution µ such that supp(µx(L, ·)) = [0, T ]. Then the L∞ norm minimal control
that satisfies (40) and (41) only attains the values c2 I1 = ‖u‖∞,(0,T ) and −c2 I1, that is u is a bang-bang
control.

Existence of a solution for the dual problem. In this section we show that problem DUAL has a solution.
On account of the weak duality, the objective functional J is bounded above. Using the same technique as for
the proof of Theorem 2.1, we can show that for all natural numbers j and t1 ∈ [0, t0) we have

µx(L, t + (j − 1)t0 + t1) =
{

µ′
0(cs) + µ1(cs)/c if j is even,

µ′
0(L − cs) − µ1(L − cs)/c if j is odd.

(43)

For T ≥ 2t0 this implies the inequality

I1 =
∫ T

0

d |µx(L, t)| ≥
∫ t0

0

d|µ′
0(cs)| +

1
c

∫ t0

0

d|µ1(cs)|.

From the definition (35) of J , this implies the coerciveness of −J on the space X1 × X0.
Thus every minimizing sequence for −J is bounded in the space X1 × X0, which is the dual space of

W−1,∞(0, L) × L∞(0, L). By Alaoglu’s Theorem (see [23], Th. 2.5.2) this implies that every minimizing se-
quence contains a weakly∗ convergent subsequence. Inserting the representation of µx(L, t) from (43) in the
definition (35) of J implies that −J is sequentially weak∗ lower semicontinuous. Thus every limit point of the
weakly∗ convergent subsequence solves DUAL.

Note that on account of the use of weak∗ convergence, this argument does not work for problem PRIM ,
since the space W 1,1(0, 1)×L1(0, 1) containing the solutions of PRIM is not given as the dual space of another
Banach space.

6. Optimal approximate control

Now we analyze what happens when we replace the exact end condition

y(·, T ) = yt(·, T ) = 0

by the constraints
‖y(·, T )‖∞,(0,L) ≤ ε and ‖yt(·, T )‖W−1,∞,(0,L) ≤ ε (44)

for some ε > 0.

6.1. The L∞-norm minimal ε-approximate control problem P (ε)

Let ε ≥ 0 be given.
Consider the following problem of L∞-norm minimal control:

P (ε) : min (1/2) ‖u‖2
∞,(0,T ) such that (15)–(17) and ‖y(·, T )‖∞,(0,L) ≤ ε and ‖yt(·, T )‖W−1,∞,(0,L) ≤ ε.

Problem P (0) is equivalent to the problem P of L∞-norm minimal exact control defined above.
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6.2. A dual problem for ε-approximate control

Let the functional J be defined as in (35). For ε ≥ 0, we define the dual problem

DUAL(ε) : max
(µ0,µ1)∈X1×X0

J((µ0, µ1)) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0).

where µ is the solution of the adjoint system (32)–(34).
Problem DUAL(0) is the dual problem defined in Section 5.

Weak duality for ε-approximate control. In this section, we show that for all controls u ∈ L∞(0, T ) for
which the solution y of (15)–(17) satisfies the ε-approximate end conditions (44) and for all (µ0, µ1) ∈ X1 ×X0

we have
J((µ0, µ1)) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0) ≤ (1/2) ‖u‖2

∞,(0,T )

which shows that problems P (ε) and DUAL(ε) are in weak duality. This implies in particular that the optimal
value of DUAL(ε) is less than or equal to the optimal value of P (ε).

To show that weak duality holds, we multiply the state equation (15) (with the control u) by the solution µ
of the adjoint system. This yields the equation

0 = c2

∫ T

0

u(t)dµx(L, t) + 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1

− 〈y(·, T ), µt(·, T )〉L∞×X0 + 〈yt(·, T ), µ(·, T )〉W−1,∞×X1 . (45)

Using the ε-approximate end conditions, this implies the inequality

c2

∫ T

0

u(t)dµx(L, t) + 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1 ≥ −ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0). (46)

Thus we have

1
2
‖u‖2

∞,(0,T )−J((µ0, µ1)) + ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

=
1
2
‖u‖2

∞,(0,T ) +
c4

2

(∫ T

0

d |µx(L, t)|
)2

+ ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

+ 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1

≥ 1
2
‖u‖2

∞,(0,T ) − c2

∫ T

0

u(t)dµx(L, t) +
1
2

(
c2

∫ T

0

d |µx(L, t)|
)2

≥ 1
2

⎡
⎣‖u‖2

∞,(0,T ) − 2c2 ‖u‖∞,(0,T )

∫ T

0

d |µx(L, t)| +

(
c2

∫ T

0

d |µx(L, t)|
)2
⎤
⎦

=
1
2

[
‖u‖∞,(0,T ) − c2

∫ T

0

d |µx(L, t)|
]2

≥ 0. (47)

So we have shown that the optimization problems P (ε) and DUAL(ε) are in weak duality.

Strong duality for ε-approximate control. In this section, we show that if DUAL(ε) has a solution, the
optimal value of DUAL(ε) is equal to the optimal value of P (ε) and show how a solution of DUAL(ε) can be
used to construct a solution of P (ε).
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Let (µ0, µ1) be a solution of DUAL(ε). We want to look at the necessary optimality conditions. Since the
absolute value function is not differentiable, we cannot look at the gradient of the objective functional

J − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0).

For the subdifferential ∂(−J + ε (‖µ(·, T )‖X1 + ‖µt(·, T )‖X0) (see [3]) of the corresponding convex functional we
have

0 ∈ ∂(ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0) − J((µ0, µ1))).

This implies the existence of a function w1 ∈ L∞(0, T ) such that

w1(t) ∈ sign(µx(L, t)) on [0, T ]

and for all (ω0, ω1) ∈ X1 × X0 we have

0 = c4

∫ T

0

d |µx(L, t)|
∫ T

0

w1(t) dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1 (48)

+ ε

(∫ L

0

sign(µ(·, T )) dω(·, T ) +
∫ L

0

sign(µt(·, T )) dωt(·, T )

)

where ω denotes the solution of the adjoint system (32), (33), (34) with the initial data (ω0, ω1). Define I1 as
in (39). Equation (48) implies the existence of a control u = c2 I1 w1 ∈ L∞(0, T ) that satisfies the inclusion

u(t) ∈ I1 sign(µx(L, t)) (49)

and for all (ω0, ω1) ∈ X1 × X0 the equation

0 = c2

∫ T

0

u(t)dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1

+ ε

(∫ L

0

sign(µ(·, T )) dω(·, T ) +
∫ L

0

sign(µt(·, T )) dωt(·, T )

)
. (50)

On the other hand, multiplying the state equation (15) (with the control u) by the solution ω of the adjoint
system yields

0 = c2

∫ T

0

u(t)dωx(L, t) + 〈y0, ω1〉L∞×X0 − 〈y1, ω0〉W−1,∞×X1

− 〈y(·, T ), ωt(·, T )〉L∞×X0 + 〈yt(·, T ), ω(·, T )〉W−1,∞×X1 . (51)

Combining these two identities (50), (51) yields

〈y(·, T ), ωt(·, T )〉L∞×X0 − 〈yt(·, T ), ω(·, T )〉W−1,∞×X1

= −ε

(∫ L

0

sign(µ(·, T ) dω(·, T ) +
∫ L

0

sign(µt(·, T )) dωt(·, T )

)
(52)
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for all (ω0, ω1) ∈ X1 × X0. This implies the inequalities

‖y(·, T )‖∞,(0,L) = sup
ωt(·,T )∈X0

〈y(·, T ), ωt(·, T )〉L∞×X0

‖ωt(·, T )‖X0

≤ ε

∫ L

0 d|ωt(T, ·)|
‖ωt(·, T )‖X0

= ε

and

‖yt(·, T )‖∞,(0,L) = sup
ω(·,T )∈X1

〈yt(·, T ), ω(·, T )〉W−1,∞×X1

‖ω(·, T )‖X1

≤ ε

∫ L

0 d|ω(T, ·)|
‖ω(·, T )‖X0

= ε

which means that y satisfies the ε-approximate end conditions (44). Hence the control u that satisfies (49) and
(50) is feasible for P (ε). As in (47), we see that

1
2
‖u‖2

∞,(0,T ) − J((µ0, µ1)) + ε(‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

=
c4

2
I2
1 − c4

∫ T

0

I1sign(µx(L, t)) dµx(L, t) +
c4

2
I2
1

+ 〈y(·, T ), µt(·, T )〉L∞×X0 − 〈yt(·, T ), µ(·, T )〉W−1,∞×X1 + ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

= c4 I2
1 − c4I1

∫ T

0

d |µx(L, t)|

− ε

(∫ L

0

sign(µ(·, T ) dµ(·, T ) +
∫ L

0

sign(µt(·, T ) dµt(·, T )

)
+ ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0) = 0.

This means that P (ε) and DUAL(ε) have the same optimal values and that the control u that satisfies (49)
and (50) solves P (ε). Thus we have constructed an L∞ norm minimal control.

Note that (49) implies that

u(t) ∈ {−‖u‖∞,(0,T ), ‖u‖∞,(0,T )} for all t ∈ supp(µx(L, ·)).

The weak bang-bang principle for ε-approximate optimal control has exactly the same form as for the corre-
sponding problem P = P (0) of exact optimal control.

The existence of a solution of problem DUAL(ε) can be proved as in Section 5. The term ε( ‖µ(·, T )‖X1 +
‖µt(·, T )‖X0) in the objective function of DUAL(ε) can be considered as a regularization term.

6.3. The optimal value function of P (ε)

In this section we analyze the behaviour of the optimal value of P (ε) as a function of ε. The behaviour at
ε = 0 is particularly interesting.

Theorem 6.1. Let ω(ε) denote the optimal value of P (ε). Then the function ω : [0,∞) → R is decreasing. Let
(µ0, µ1) denote a solution of DUAL(0) and µ the corresponding solution of the adjoint system (32)–(34).

Let (µε
0, µ

ε
1) denote a solution of DUAL(ε) and µε the corresponding solution of the adjoint system (32)–(34).

Then the following inequality holds:

ω(0) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0) ≤ ω(ε) ≤ ω(0) − ε( ‖µε(·, T )‖X1 + ‖µε
t (·, T )‖X0).

In particular, ω is continuous at zero.

Proof. Let 0 ≤ ε1 < ε2 be given. The feasible set of P (ε1) is contained in the feasible set of P (ε2), hence
ω(ε2) ≤ ω(ε1). We insert the dual solution (µ0, µ1) in the objective functional of DUAL(ε). Then weak duality
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for P (ε) and strong duality for P (0) yield

ω(ε) ≥ J(µ0, µ1) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)
= ω(0) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0).

We insert the dual solution (µε
0, µ

ε
1) in the objective functional of DUAL(0). Then weak duality for P (0) and

strong duality for P (ε) yield

ω(0) ≥ J(µε
0, µ

ε
1) = J(µε

0, µ
ε
1) − ε( ‖µε(·, T )‖X1 + ‖µε

t (·, T )‖X0) + ε( ‖µε(·, T )‖X1 + ‖µε
t (·, T )‖X0)

= ω(ε) + ε( ‖µε(·, T )‖X1 + ‖µε
t (·, T )‖X0)

and the assertion follows.

6.4. An example for p(ε) with explicit solution

Results from [10] imply that for T = 4L/c, y0(x) = sin(xπ/L) and y1(x) = 0 the control

u(t) = sin(ctπ/L)/4 (53)

is a solution of the optimization problem P (0). Hence the optimal value of P (0) is equal to 1/32. In fact, with
t1 = x/c Theorem 2.1 yields

y(x, T ) = u(t0 + x/c) − u(t0 − x/c) + u(3t0 + x/c) − u(3t0 − x/c) + y0(x) = 0.

Moreover, we have

yt(x, T ) = u′(t0 + x/c) − u′(t0 − x/c) + u′(3t0 + x/c) − u′(3t0 − x/c) = 0.

The control u is not bang-bang-off. In fact, Theorem 3.1 implies that no feasible bang-bang-off control exists.
The strong duality implies that (µ0, µ1) = (0,−(1/16)δL/2(t)) is a solution of DUAL(0).
For ε ∈ [0, 1], define the control function

uε(t) = (1 − ε) sin(ctπ/L)/4 = (1 − ε)u(t)

with u from (53). Then we have

y(x, T ) = u(t0 + x/c) − u(t0 − x/c) + u(3t0 + x/c) − u(3t0 − x/c) + y0(x) (54)

= sin(x/Lπ) +
1 − ε

4
[sin(xπ/L − π) + sin(xπ/L + π)] +

1 − ε

4
[sin(xπ/L − 3π) + sin(xπ/L + 3π)]

= sin(x/Lπ) +
1 − ε

2
sin(x/Lπ) cos(π) +

1 − ε

2
sin(x/Lπ) cos(3π) = sin(x/Lπ) − (1 − ε) sin(x/Lπ)

= ε sin(x/Lπ).

Moreover, we have

yt(x, T ) = u′(t0 + x/c) − u′(t0 − x/c) + u′(3t0 + x/c) − u′(3t0 − x/c) + y1(x) (55)

=
ε − 1

4
cπ

L

[
cos
(
π − xπ

L

)
− cos

(
π +

xπ

L

)
+ cos

(
3π − xπ

L

)
− cos

(
3π +

xπ

L

)]
=

ε − 1
2

cπ

L
[sin(π) sin(x/Lπ) + sin(3π) sin(x/Lπ)] = 0.
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Figure 5. The optimal control u0(t) (Sect. 6.4).

So we see that uε is feasible for problem P (ε). This yields an upper bound for the optimal value ω(ε), namely

ω(ε) ≤ ‖uε‖2
∞,(0,T )/2 = (1 − ε)2/32. (56)

To obtain a lower bound for ω(ε), we look at a point which is feasible for the dual problem DUAL(ε). Define
the dual feasible point

(µε
0, µ

ε
1) = (0, (ε − 1)/16)δL/2(t)) = (1 − ε)(µ0, µ1).

Theorem 2.1 implies that for the solution µε of the adjoint system (32)–(34) we have µε(·, T ) = µε(·, 0) = µ0

and µε
t (·, T ) = µε

t (·, 0) = µ1. This implies ‖µε(·, T )‖X1 = 0 and ‖µε
t (·, T )‖X0 = (1 − ε)/16. Moreover,

−〈y0, µ1〉L∞×X0 + 〈y1, µ0〉W−1,∞×X1 = (1 − ε)/16

and ∫ T

0

d|µx(L, ·)| =
4
c2

∫ L

0

d|µ1| =
1 − ε

4 c2
·

Hence for the value of the objective functional of DUAL(ε) we have

J((µε
0, µ

ε
1)) − ε( ‖µε(·, T )‖X1 + ‖µε

t (·, T )‖X0)

= −1
2

[
1 − ε

4

]2
+

1 − ε

16
− ε

1 − ε

16
= − (1 − ε)2

32
+

(1 − ε)2

16
=

(1 − ε)2

32
·

Now weak duality implies that ω(ε) ≥ (1 − ε)2/32. With the upper bound (56) this yields ω(ε) = (1 − ε)2/32
which implies that uε is a solution of P (ε). Note that the optimal control uε is not of bang-bang-off type.

Figure 5 shows the optimal control u0. The arrows indicate the points where the weak bang-bang principle
is a restriction on the control function. The direction of the arrows indicate the sign of µx(L, ·): If the arrows
point downwards, the sign is positive. If the arrows point upwards, the sign is negative. At the points on the
time-axis where no arrow appears, µx(L, ·) is not supported, that is has the value zero.

Figure 6 shows an approximation of adjoint state µ generated by the dual solution (µ0, µ1) = (0,−(1/16)δL/2(t))
of DUAL(0) for L = c = 1. For the exact solution, the flat surfaces are connected by jump discontinuities.

Figure 7 shows the system state y generated by the control u0 for L = c = 1. Note that the state is
continuous.

6.4.1. An optimal approximate control with bang-intervals

For ε ∈ [0, 1], define the set Mε = {t ∈ [0, T ] : |uε(t))| ≥ ‖uε‖∞,(0,T ) (1 − ε)}. Define the control function

wε(t) =
{

uε(t) if t �∈ Mε,
‖uε‖∞,(0,T ) sign(uε(t)) if t ∈ Mε.
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Figure 6. The adjoint state for ε = 0 (Sect. 6.4).

Figure 7. The system state y generated by u0 (Sect. 6.4).

Then for the corresponding velocity we have yt(x, T ) = 0.
If t0 +x/c �∈ Mε, we have also t0−x/c, 3t0 +x/c, 3t0−x/c �∈ Mε, which implies that |y(x, T )| = ε| sin(xπ/L)|

≤ ε.
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If t0+x/c ∈ Mε, we have also t0−x/c, 3t0+x/c, 3t0−x/c ∈ Mε, which implies that for the state corresponding
to wε we have

y(x, T ) = y0(x) − ‖uε‖∞,(0,T ) − ‖uε‖∞,(0,T ) − ‖uε‖∞,(0,T ) − ‖uε‖∞,(0,T )

= sin(xπ/L) − (1 − ε) = ε + sin(xπ/L) − 1 ≤ ε.

If t0 + x/c ∈ Mε, we have
sin(xπ/L) ≥ 1 − ε.

This implies
y(x, t) ≥ ε − ε ≥ 0.

So we have shown that wε is a feasible control for P (ε). Since ‖wε‖∞,(0,T ) = ‖uε‖∞,(0,T ), this implies that wε

is a solution of P (ε) with bang-intervals.
For ε = 1, we obtain a pure bang-bang control. As ε tends to zero, the length of the bang-intervals also

converges to zero. Figure 8 shows the optimal control wε for L = c = 1 and ε = 0.1.

6.4.2. Nonexistence of dual solutions given as Lebesgue integrable functions

In this section we want to analyze whether it is possible that for our example problem regular dual solutions
exist that are given by integrable functions and where no measures appear.

Assume that (µ0, µ1) is a solution of problem DUAL(ε) for our example and µ is the solution of the adjoint
system (32)–(34). Let y denote the state that is generated by the optimal control uε. Equation (51) yields

∫ L

0

sin(xπ/L)dµ1(x) = 〈y0, µ1〉L∞×X0 − 〈y1, µ0〉W−1,∞×X1

= −c2

∫ T

0

uε(t)dµx(L, t) + 〈y(·, T ), µt(·, T )〉L∞×X0 − 〈yt(·, T ), µ(·, T )〉W−1,∞×X1

= −c2

∫ T

0

uε(t)dµx(L, t) +
∫ L

0

ε sin(xπ/L)dµt(x, T ). (57)

Since T = 4L/c, we have µt(·, T ) = µt(·, 0) = µ1, hence the above equation yields

(1 − ε)
∫ L

0

sin(xπ/L)dµ1(x) = −c2

∫ T

0

uε(t)dµx(L, t). (58)

Suppose that µ1 is a measure that is supported in other points than L/2. Then we have

∫ T

0

uε(t) dµx(L, t) =
∫ T

0

(1 − ε)
sin(ctπ/L)

4
dµx(L, t) <

1 − ε

4

∫ T

0

d|µx(L, t)|.

Therefore in this case (58) yields the strict inequality

(1 − ε)
∫ L

0

− sin(xπ/L)dµ1(x) = c2

∫ T

0

uε(t)dµx(L, t) < c2 1 − ε

4

∫ T

0

d|µx(L, t)| =
1 − ε

4
c2 I1. (59)

The weak bang-bang principle (49) implies that

1 − ε

4
= ‖uε‖∞,(0,T ) = c2 I1.
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The objective function of DUAL(ε) is

J((µ0, µ1)) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

= −c4 I2
1

2
− 〈y0, µ1〉L∞×X0 + 〈y1, µ0〉W−1,∞×X1 − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

= −c4 I2
1

2
− 〈y0, µ1〉L∞×X0 − ε( ‖µ0‖X1 + ‖µ1‖X0)

because on account of T = 4L/c, we have µ(·, T ) = µ(·, 0). The ε-approximate end conditions (44) implies that

−ε( ‖µ0‖X1 + ‖µ1‖X0) ≤ 〈y(·, T ), µ1〉L∞×X0 + 〈yt(·, T ), µ0〉W−1,∞×X1

= 〈y(·, T ), µ1〉L∞×X0 =
∫ L

0

ε sin(xπ/L)dµ1(x).

Therefore we can conclude that if µ1 is supported in other points than L/2, (59) yields the strict inequality

J((µ0, µ1)) − ε( ‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

= −c4 I2
1

2
−
∫ L

0

sin(xπ/L)dµ1(x) − ε (‖µ(·, T )‖X1 + ‖µt(·, T )‖X0)

≤ −c4 I2
1

2
−
∫ L

0

sin(xπ/L)dµ1(x) +
∫ L

0

ε sin(xπ/L)dµ1(x)

= −c4 I2
1

2
+ (1 − ε)

∫ L

0

− sin(xπ/L)dµ1(x)

< −c4 I2
1

2
+

1 − ε

4
c2 I1 = − (1 − ε)2

32
+

(1 − ε)2

16
=

(1 − ε)2

32
= ω(ε)

where as in Section 6.3, ω(ε) denotes the optimal value of DUAL(ε).
So we see that there exists no dual solution where µ1 is not given by a Dirac measure.

6.5. Relaxation with Hilbert space norms

As an alternative to the problem of optimal ε-approximate control P (ε) defined in Section 6.1 we consider a
problem where the end conditions are relaxed with respect to a Hilbert space norm, namely

Q(ε) : min (1/2) ‖u‖2
∞,(0,T ) such that (15), (16), (17) and∫ L

0

|y(x, T )|2 dx + ‖yt(·, T )‖2
H−1(0,L) ≤ ε2

for ε ≥ 0. Problem Q(0) is equivalent to the problem P of L∞-norm minimal exact control defined above.
In contrast to the relaxed problem P (ε) that is defined above in a non-reflexive setting, for ε > 0 problem Q(ε)

yields controls with bang-intervals. This is illustrated by an example in the next section.

6.5.1. Example for relaxation with Hilbert space norms

Consider our example with T = 4L/c, y0(x) = sin(xπ/L) and y1(x) = 0. For δ ∈ (0, 1) define the control

u(t) =
{

sin(ctπ/L)/4 if | sin(ctπ/L)|/4 ≤ (1 − δ)/4,
(1 − δ)/4 sign(sin(ctπ/L)) if | sin(ctπ/L)|/4 > (1 − δ)/4.

Then u has four bang-intervals.
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Figure 8. The optimal approximate control wε with bang-intervals (Sect. 6.4.1).

Figure 9. Hilbert space relaxation: the optimal control u with bang-intervals (Sect. 6.5).

Figure 9 shows the control u for L = c = 1 and δ = 0.15.
Equation (55) implies that the control u generates a state with yt(·, T ) = 0. Moreover, by (54) we have

y(x, T ) =
{

0 if sin(xπ/L) ≤ (1 − δ),
sin(xπ/L) − (1 − δ) if sin(xπ/L) > (1 − δ).

Figure 10 shows the terminal state y(·, T ) for L = c = 1 and δ = 0.15. Note that y(·, T ) is positive and thus can
be seen as the density of a measure, which appears also in the corresponding necessary optimality conditions.
The support of y(·, T ) corresponds to the bang-intervals of the control u. In fact, the form of y(·, T ) implies
that u satisfies the necessary optimality condition for Q(ε) where ε is defined as a function of δ by the equation

ε2 =
∫ L

0

y(x, T )2 dx.

The necessary optimality conditions for Q(ε) are satisfied if a Lagrange multiplier λ ∈ [0,∞) and a nonnegative
measure µ exist such that for all v ∈ L∞(0, T ) the following equation holds:

0 =
∫ T

0

sign(u(t))v(t) dµ(t) + 2λ

∫ L

0

y(x, T )[ v(t0 + x/c) − v(t0 − x/c) + v(3t0 + x/c) − v(3t0 − x/c)] dx. (60)

Let Ib ⊂ [0, T ] denote the set of bang-points of u. We define a measure µ with support Ib by

dµ(t) = [| sin(xπ/L)| − (1 − δ)] dt
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Figure 10. Hilbert space relaxation: the terminal state y(·, T ) is the density of a measure (Sect. 6.5).

on Ib and µ = 0 otherwise. For all v ∈ L∞(0, T ) we get

∫ T

0

sign(u(t))v(t) dµ(t)

=
∫ L

0

y(x, T )v(t0−x/c) dx−
∫ L

0

y(x, T )v(t0 +x/c) dx+
∫ L

0

y(x, T )v(3t0−x/c) dx−
∫ L

0

y(x, T )v(3t0 +x/c) dx.

Hence with the choice λ = 1/2 equation (60) holds which implies that u is an optimal ε-approximate control
for the Hilbert space relaxation.

Since for ε > 0, the solutions of Q(ε) have bang-intervals, as in the example for the corresponding dual problem
we find solutions that are measures with densities, that is solutions that can be interpreted as functions.

7. Time-optimal control

The problem of time-optimal control is to find a control function that steers the system in minimal time
exactly to the desired target state subject to an upper bound on the norm of the control function, in our case
a bound on the L∞-norm. If this upper bound is sufficiently large, the minimal control time will in general
be equal to the minimal time where exact controllability is possible, that is in our case twice the characteristic
time L/c that the characteristic curves need to travel from one end of the string to the other. When the upper
bound is decreased, the corresponding minimal control time increases. In fact, there is a certain duality between
the problem of time optimal control with a fixed upper bound and the problem of norm minimal control with
a fixed control time. We will describe this relation in the next section.

7.1. Duality between time optimal and norm minimal control

For a given bound β > 0, the problem of time optimal control corresponding to our system is

P0(β) : min T s.t. (15), (16), (17),
y(x, T ) = yt(x, T ) = 0 and
1
2
‖u‖2

∞,(0,T ) ≤ β.

Let τ(β) denote the minimal control time.
For a control time T > 0, we define the problem of norm-minimal control

P (T ) : min (1/2) ‖u‖2
∞,(0,T ) s.t. (15), (16), (17) and

y(x, T ) = yt(x, T ) = 0.
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Let ω(T ) denote the optimal value of problem P (T ). Then the function ω is decreasing.
We have the duality relation

τ(β) = min{T : ω(T ) ≤ β}. (61)
If the function ω is strictly decreasing and continuous (the so called normal case) the equation

ω(T ) = β

already determines τ(β) (see [14]) if β is less than or equal to ω(2L/c).

7.2. An example for the non-normal case

In [10] a norm minimal control problem for the wave equation with Dirichlet boundary controls at both ends
is solved, also for the L∞ case, namely the problem

P (T ) : min max {‖u−1‖∞,(0,T ), ‖u1‖∞,(0,T )} s.t.

ytt(x, t) = c2yxx(x, t), (x, t) ∈ (0, L) × (0, T )
y(x, 0) = 0, yt(x, 0) = 0, x ∈ (0, L)
y(0, t) = u−1(t), y(L, t) = u1(t), t ∈ (0, T ) and
y(x, T ) = y0, yt(x, T ) = y1, x ∈ (0, L).

In this case the minimal time where exact controllability holds is L/c. Let ω(T ) denote the optimal value of
problem P (T ) and Y1(x) =

∫ x

0 y1(t) dt. Define

g1(t) = y0(ct)/2 − (1/(2c)) Y1(ct),
g2(t) = y0(L − ct)/2 + (1/(2c)) Y1(L − ct).

Then we have ω(T ) = h∞(r0), where r0 is the real number that minimizes the function

h∞(r) = max
[‖(g1(t) + r)/(k + 1)‖∞,(0,T−kL/c), ‖(g2(t) − r)/(k + 1)‖∞,(0,T−kL/c),

‖(g1(t) + r)/k‖∞,(T−kL/c,L/c), ‖(g2(t) − r)/k‖∞,(T−kL/c,L/c)

]
.

Here, k is the natural number such that kL/c ≤ T < (k + 1)L/c.
As an example we consider L = c = 1 and y0(t) = 2 if t ∈ [0, 1/2], y0(t) = 0 if t ∈ (1/2, 1] and y1(t) = 0.

Then we have g1(t) = 1 if t ∈ [0, 1/2], g1(t) = 0 if t ∈ (1/2, 1] and g2(t) = 0 if t ∈ [0, 1/2), g2(t) = 1 if t ∈ [1/2, 1].
If T − kL/c ∈ [1/2, 1] this yields

min
r

h∞(r) = min
r

max
{ |1 + r|

k + 1
,

|r|
k + 1

,
|r|
k

,
|1 − r|
k + 1

,
|1 − r|

k

}
= h∞(

1
2k + 1

) =
1

k + 1
2

·

If T − kL/c ∈ [0, 1/2) this yields

min
r

h∞(r) = min
r

max
{ |1 + r|

k + 1
,
|1 + r|

k
,
|r|
k

,
|r|

k + 1
,
|r|
k

,
|1 − r|

k

}
= h∞(0) =

1
k
·

This implies that the function ω is piecewise constant on intervals of length 1/2 with jumps at the points
{k, k + 1/2, k ≥ 1}. So here we are in the nonnormal case where the minimal control times only attain the
discrete values {k, k + 1/2, k ≥ 1}. Figure 11 shows a plot of ω.

Note that this nonnormal behaviour occurs only in the L∞-case. For the Lp case with p ∈ [2,∞), the
corresponding function hp(r) is of integral type and the situation is different: ω is continuous and strictly
decreasing. This also follows from the computation of ω(T ) in [10].

Continuity, Lipschitz and Hölder conditions for ω in the L2 case are studied in [8].
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Figure 11. Time optimal control: the optimal value function ω(t) is discontinuous.

8. Conclusion

The purpose of this paper is to point out the fact that the weak forms of the bang-bang principle which hold
for L∞-norm minimal control of the wave equation do not impose any restriction on the form of the optimal
controls. The situation is similar for the problem of optimal exact control and optimal approximate control.
For optimal exact control the weak bang-bang principle is given in (40) and for optimal approximate control
in (49).

This situation is due to the fact that the dual solutions are in general given as measures, and it can happen
that the support of the measures consist of a finite number of points only. Thus the set of points where these
measures are zero can be quite large: This set is equal to the set where (40) ((49) respectively) is no restriction
on the control values. We have given examples where the dual solutions are given by a Dirac measure.

Moreover, we have shown that the set of states that can be reached with bang-bang-off controls is quite small.
This situation has important consequences for numerical methods based upon the optimization of a discretized

system: If the optimal controls of the discretized system are of bang-bang type (which may happen if the
discretized system is governed by an ordinary differential equation) in general only weak convergence to the
optimal control for the original system is possible. In [9], a method is described that takes into account this
difficulty.

For the problem of time-optimal control with an L∞-norm bound for the controls, we have given an example
for non-normal behaviour where the minimal control time as functions of the upper bound only attains values
on a discrete grid.

Acknowledgements. We gratefully acknowledge fruitful disscussions on the subject with E. Zuazua at the Benasque Center
for Science.
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