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LOCAL NULL CONTROLLABILITY OF A TWO-DIMENSIONAL
FLUID-STRUCTURE INTERACTION PROBLEM

Muriel Boulakia1 and Axel Osses2

Abstract. In this paper, we prove a controllability result for a fluid-structure interaction problem.
In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes
equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial
data, this system is null controllable, that is, for a given T > 0, the system can be driven at rest
and the structure to its reference configuration at time T . To show this result, we first consider a
linearized system. Thanks to an observability inequality obtained from a Carleman inequality, we
prove an optimal controllability result with a regular control. Next, with the help of Kakutani’s fixed
point theorem and a regularity result, we pass to the nonlinear problem.
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1. Introduction and main result

1.1. Introduction

We consider a rigid structure immersed in a viscous incompressible fluid. At time t, the structure occupies the
smooth connected domain ΩS(t). The structure and the fluid are contained in a fixed bounded connected open
set Ω ⊂ R

2 with a regular boundary. We suppose that ΩS(0) and Ω have a smooth boundary (for instance C2).
The time evolution of the fluid eulerian velocity u is governed by the incompressible Navier-Stokes equations
(for simplicity, we assume that the fluid density is constant and equal to 1):{ (

∂tu+ (u · ∇)u
)
(t, x) − div σ(u, p)(t, x) = f(t, x)1ω(x), ∀x ∈ ΩF (t), ∀ t ∈ (0, T ),

div u(t, x) = 0, ∀x ∈ ΩF (t), ∀ t ∈ (0, T ).
(1.1)

For any t ∈ (0, T ), these equations are satisfied on ΩF (t) = Ω \ ΩS(t), the fluid domain. The tensor σ(u, p) is
the Cauchy tensor given by

σ(u, p) = 2ε(u) − p Id,
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F́ısicas y Matemáticas, Universidad de Chile, Casilla 170/3 - Correo 3, Santiago, Chile; axosses@dim.uchile.cl

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.esaim-cocv.org or http://dx.doi.org/10.1051/cocv:2007031

http://www.edpsciences.org
http://www.esaim-cocv.org
http://dx.doi.org/10.1051/cocv:2007031


2 M. BOULAKIA AND A. OSSES

where ε(u) = 1
2 (∇u + ∇ut) is the symmetric part of the gradient. Here, p is the pressure of the fluid. Without

lost of generality, we have supposed that the viscosity is equal to 1. Finally f is the control function which acts
over a fixed small nonempty open subset ω of the fluid domain ΩF (t) and 1ω is the characteristic function of
the domain ω.

The motion of the structure is given by the translation velocity which is the velocity of the center of mass
of the structure a(t) ∈ R

2 and by the instantaneous rotation velocity denoted r(t) ∈ R. The equations of the
structure motion are given by the balance of linear and angular momentum. So, without the action of external
forces, we have, for all t ∈ (0, T )

mä(t) =
∫
∂ΩS(t)

σ(u, p)n dσ(x), (1.2)

Jṙ(t) =
∫
∂ΩS(t)

(σ(u, p)n) · (x− a(t))⊥ dσ(x). (1.3)

We have denoted by m > 0 the mass of the rigid structure and J > 0 its moment of inertia. Moreover, x⊥ is
defined by

∀x = (x1, x2) ∈ R
2, x⊥ = (−x2, x1).

At last, n is the outward unit normal to ∂ΩS(t). On the interface, we consider a non-slip boundary condition.
Therefore, we have, for all t ∈ (0, T )

u(t, x) = 0, ∀x ∈ ∂Ω, (1.4)

u(t, x) = ȧ(t) + r(t)(x − a(t))⊥, ∀x ∈ ∂ΩS(t). (1.5)

We define up to a constant the angle θ associated to the rotation velocity

r = θ̇.

The system is completed by the following initial conditions:

u(0, ·) = u0 in ΩF (0), a(0) = a0, ȧ(0) = a1, θ(0) = θ0, r(0) = r0, (1.6)

where a0 ∈ R
2 the center of mass at initial time, θ0 ∈ R, u0 ∈ H3(ΩF (0))2, a1 ∈ R

2 and r0 ∈ R satisfy

div u0 = 0 in ΩF (0), u0 = a1 + r0(x− a0)⊥ on ∂ΩS(0) and u0 = 0 on ∂Ω. (1.7)

At time t, the domain occupied by the structure ΩS(t) is defined by

ΩS(t) = X(t,ΩS(0)),

where X denotes the flow associated to the motion of the structure:

X(t, y) = a(t) +Rθ(t)−θ0(y − a0), ∀ y ∈ ΩS(0), ∀t ∈ (0, T ). (1.8)

Here, Rθ is the rotation matrix of angle θ. We have chosen to denote by y the lagrangian coordinate and by x
the eulerian coordinate. We can also notice that equation (1.5) allows to extend u on the whole domain Ω. We
still denote u the global velocity defined on the solid domain by

u(t, x) = ȧ(t) + r(t)(x − a(t))⊥, ∀x ∈ ΩS(t), ∀ t ∈ (0, T ).

We also extend u0 on Ω in the same way. Thus, if we define

V = {v ∈ H1
0 (Ω)/div v = 0 in Ω},
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then, for a.e. t in (0, T ), u(t) belongs to V .
This problem satisfies an a priori estimate. Indeed, if we denote E the global energy:

E(t) =
1
2

∫
ΩF (t)

|u(t, x)|2 dx+
m

2
|ȧ(t)|2 +

J

2
|r(t)|2 +

∫ t

0

∫
ΩF (t′)

|∇u(t′, x)|2 dxdt′,

we have

E(t) ≤ E(0) + C(T )
∫ t

0

∫
ω

|f(t′, x)|2 dxdt′.

Let us mention that [3] and [5] prove the existence of local solutions for this model (see also the references
therein). In [18], a global existence result is proven: in particular, weak solutions of the fluid-structure problem
are defined beyond collisions. Moreover, [19] obtains a regularity result valid as long as no collisions occur. In
our study, we will need to keep this non-collision condition. We also want to avoid contact between the structure
and the control domain. We consider an initial position such that

ΩS(0) ⊂ Ω \ ω, d
(
ΩS(0), ∂

(
Ω \ ω

))
> 0,

∫
∂ΩS(0)

(y − a0) dσ(y) = 0. (1.9)

The last hypothesis will be necessary to obtain the Carleman inequality given in subsection 1.5. Indeed, thanks
to this hypothesis, we will be able to deduce estimates for the structure velocity from estimates on the interface
of the fluid velocity. It will come from the fact that, if u = ȧ+ r(x − a)⊥ on ∂ΩS(t), we have∫

∂ΩS(t)

|u|2 = |ȧ|2
∫
∂ΩS(t)

1 + |r|2
∫
∂ΩS(t)

|x− a|2 = |ȧ|2
∫
∂ΩS(0)

1 + |r|2
∫
∂ΩS(0)

|y − a0|2,

thanks to the last hypothesis of (1.9). This hypothesis will be satisfied for a ball, an ellipse and more generally
for any structure symmetric with respect to the center of mass.

In this paper, we will be concerned with the null controllability of the system presented above. In [6], the local
null controllability is proved in dimension one for a particle evolving in a fluid modeled by Burgers equation.
This one-dimensional model has been analyzed in [21] and in [22]. Simplified problems for the interaction
between an elastic structure and a fluid are studied in [16,17,23]. The controllability of Navier-Stokes equations
is the subject of recent works. The methods used to deal with Navier-Stokes equations in our fluid-structure
problem are essentially due to papers [10, 12].

Our article has been announced in a preprint [2]. Let us mention that a simultaneous and independent work
has been achieved in [14]. Some differences can be emphasized. Indeed, in this paper, the geometry of the rigid
solid is necessarily a ball while, in our paper, it only has to satisfy some symmetric hypothesis. The methods
used in [14] and in our work are different even if, in the two works, the main tool is a Carleman inequality. In
particular, in [14], the nonlinear problem is not proved with a compactness argument and thus initial conditions
are not as regular as in our work.

Remark 1. In (1.9), we only assume that no contact occurs between the structure and the global boundary
at initial time. As we will see, we keep this non-collision condition for all t ∈ (0, T ). Indeed, if initial data are
small, then the control function is also small (see Prop. 6) and thus the displacement of the structure stays
small. Thus, if initial data are small enough, we then get that

d
(
ΩS(t), ∂

(
Ω \ ω

))
> 0.



4 M. BOULAKIA AND A. OSSES

To conclude this subsection, we introduce function spaces on moving domains. In the following, for the sake
of readability, we omit to indicate with respect to which variable we are integrating, except when this is not
obvious.

Definition 1. We consider a domain S ⊂ Ω and, for each t, the domain S(t) = Ψ(t, S) ⊂ Ω where

Ψ : (t, y) ∈ (0, T ) × Ω �→ Ω

belongs to H2(0, T ; C2(Ω)) and is such that, for all t ∈ (0, T ), Ψ(t, ·) is a C2-diffeomorphism from Ω on Ω and
from S on S(t). For a function u(t, ·) : S(t) �→ R, we define

U(t, y) = u(t,Ψ(t, y)), ∀ t ∈ (0, T ), ∀ y ∈ S.

Then, we define, for all 1 ≤ p, q ≤ +∞, for all k ∈ N,

Lp
(
0, T ;W k,q

(
S(t)

))
=
{
u /U ∈ Lp

(
0, T ;W k,q

(
S
))}

,

and, for l = 1, 2,
W l,p

(
0, T ;W k,q

(
S(t)

))
=
{
u /U ∈ W l,p

(
0, T ;W k,q(S

))}
.

In each space, we consider the associated norms

‖u‖Lp(0,T ;Wk,q(S(t))) = ‖U‖Lp(0,T ;Wk,q(S)), ‖u‖W l,p(0,T ;Wk,q(S(t))) = ‖U‖W l,p(0,T ;Wk,q(S)).

We give some useful properties satisfied by these spaces.

Proposition 1. We use the same notations and hypotheses as in Definition 1.
• A function u belongs to Lp

(
0, T ;W k,q

(
S(t)

))
if and only if, for a.e. t ∈ (0, T ),

x �→ u(t, x) belongs to W k,q
(
S(t)

)
and

∫ T

0

‖u(t)‖p
Wk,qS(t))

<∞.

Moreover, the norm

(∫ T

0

‖ · ‖p
Wk,q(S(t))

)1/p

is equivalent to ‖ · ‖Lp(0,T ;Wk,q(S(t))):

C1‖u‖Lp(0,T ;Wk,q(S(t))) ≤
(∫ T

0

‖u(t)‖p
Wk,q(S(t))

)1/p

≤ C2‖u‖Lp(0,T ;Wk,q(S(t))),

where C1 > 0 and C2 > 0 depend on the norm of Ψ and Ψ−1 in L∞(0, T ; C2(Ω)).
• If u belongs to W 1,p

(
0, T ;W k,q

(
S(t)

))
∩ Lp

(
0, T ;W k+1,q

(
S(t)

))
, ∂tu defined by

∂tu(t, x) = ∂tU(t,Ψ−1(t, x)) − ∂tΨ(t,Ψ−1(t, x)) · ∇u(t, x) (1.10)

belongs to Lp(0, T ;W k,q(S(t))).

1.2. Compatibility conditions on the initial data

With (1.7), we have already given compatibility conditions which have to be satisfied by our initial data. In
particular, we want the velocity to be continuous on the interface at initial time. These compatibility conditions
are necessary to obtain a first regularity result on the velocities of the fluid and the structure (the precise result
is given below by Prop. 2). Our study will also require a second regularity result on the acceleration associated
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to the fluid and structure motions (this result is given by Prop. 3). To obtain this result, we will need an
additional compatibility condition expressing that the acceleration is continuous on the interface and on the
global boundary at initial time. This kind of compatibility conditions appears for general classes of problems
(we refer to [20] for a general theory).

First, we have to define the acceleration of the fluid and of the structure at time t = 0. They will be
determined by the equations of the motion as explained in the following lemma. Since our control function f
will be null at initial time, the compatibility condition will not depend on f .

Lemma 1. Let u0 ∈ H3(ΩF (0))2, a0 ∈ R
2, a1 ∈ R

2 and r0 ∈ R be given. We consider the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 + (u0 · ∇)u0 − divσ(u0, p0) = 0 in ΩF (0),

ma2 =
∫
∂ΩS(0)

σ(u0, p0)n,

Jr1 =
∫
∂ΩS(0)

(σ(u0, p0)n) · (x− a0)⊥,

divu1 = 0 in ΩF (0),
u1 · n = 0 on ∂Ω,

u1 · n =
(
a2 + r1(x− a0)⊥ − r20(x − a0) −∇u0

(
a1 + r0(x− a0)⊥

))
· n on ∂ΩS(0).

Then this problem admits a solution (u1, p0, a2, r1) ∈ H1(ΩF (0))2×H2(ΩF (0))×R
2×R. Moreover, this solution

is unique (up to a constant for p0).

Proof of Lemma 1. We define the solution (u1,0, p0,0) ∈ H1(ΩF (0))2 × H2(ΩF (0)) obtained by a Helmholtz
decomposition ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u1,0 + ∇p0,0 = −(u0 · ∇)u0 + ∆u0 in ΩF (0),

div u1,0 = 0 in ΩF (0),
u1,0 · n = 0 on ∂Ω,

u1,0 · n =
(
− r20(x− a0) −∇u0

(
a1 + r0(x− a0)⊥

))
· n on ∂ΩS(0).

In the sequel of the proof, we will denote by x1 and x2 the coordinates of a vector x ∈ R
2. We consider the

following problems: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1,1 + ∇p0,1 = 0 in ΩF (0)
div u1,1 = 0 in ΩF (0)
u1,1 · n = 0 on ∂Ω

u1,1 · n = n1 on ∂ΩS(0)

,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1,2 + ∇p0,2 = 0 in ΩF (0)
divu1,2 = 0 in ΩF (0)
u1,2 · n = 0 on ∂Ω

u1,2 · n = n2 on ∂ΩS(0)

and ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1,3 + ∇p0,3 = 0 in ΩF (0)

div u1,3 = 0 in ΩF (0)
u1,3 · n = 0 on ∂Ω

u1,3 · n = (x− a0)⊥ · n on ∂ΩS(0).

These three problems admit solutions in H1(ΩF (0))2 × H2(ΩF (0)). We are looking for u1, p0, a2 and r1
satisfying, up to a constant for p0,

u1 = u1,0 + a1
2u1,1 + a2

2u1,2 + r1u1,3, p0 = p0,0 + a1
2p0,1 + a2

2p0,2 + r1p0,3. (1.11)
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Thus, the dependence of u1 and p0 with respect to a1
2, a

2
2 and r1 is affine. From this expression, we deduce the

system which has to be satisfied by a2 and r1⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ma1
2 = −a1

2

∫
∂ΩS(0)

p0,1n
1 − a2

2

∫
∂ΩS(0)

p0,2n
1 − r1

∫
∂ΩS(0)

p0,3n
1 + F 1

1 ,

ma2
2 = −a1

2

∫
∂ΩS(0)

p0,1n
2 − a2

2

∫
∂ΩS(0)

p0,2n
2 − r1

∫
∂ΩS(0)

p0,3n
2 + F 2

1 ,

Jr1 = −a1
2

∫
∂ΩS(0)

p0,1n · (x− a0)⊥ − a2
2

∫
∂ΩS(0)

p0,2n · (x− a0)⊥ − r1

∫
∂ΩS(0)

p0,3n · (x− a0)⊥ + F2

with

F1 = 2
∫
∂ΩS(0)

ε(u0)n−
∫
∂ΩS(0)

p0,0n, F2 = 2
∫
∂ΩS(0)

(ε(u0)n) · (x− a0)⊥ −
∫
∂ΩS(0)

(p0,0n) · (x− a0)⊥.

By noticing that, for instance,∫
∂ΩS(0)

p0,1n
1 =

∫
ΩF (0)

|u1,1|2,
∫
∂ΩS(0)

p0,2n
1 =

∫
ΩF (0)

u1,1 · u1,2,

we can easily prove that, since m > 0 and J > 0, the matrix associated to this system is symmetric and definite
positive. Thus, our system admits a unique solution a1

2, a
2
2 and r1 and then we deduce u1 and p0 from (1.11).�

This lemma allows to define the acceleration u1 of the fluid at initial time and the acceleration of the center
of mass a2 and of the angle r1 at initial time. It asserts the continuity of the normal trace of the acceleration.
In order to get the continuity of the whole trace of the acceleration, we make the following assumption on
(u1, a2, r0):

u1 = 0 on ∂Ω, u1 = a2 + r1(x− a0)⊥ − r20(x− a0) −∇u0

(
a1 + r0(x− a0)⊥

)
on ∂ΩS(0). (1.12)

Indeed, if we consider the expression (1.5) and we derive it with respect to time, we obtain this expression at
initial time. To derive this expression, we have to be careful since the domain ∂ΩS(t) depends on time. Thus,
we first have to express this equality on ∂ΩS(0) thanks to the flow X defined by (1.8). Condition (1.12) can be
expressed in terms of initial data u0, a0, a1 and r0.

We make the following hypothesis for u0, a0, a1, θ0 and r0:

u0 ∈ H3(ΩF (0))2, a0 ∈ R
2, a1 ∈ R

2, θ0 ∈ R and r0 ∈ R,

div u0 = 0 in ΩF (0), u0 = a1 + r0(x− a0)⊥ on ∂ΩS(0) and u0 = 0 on ∂Ω,

(u1, a2, r1) defined by Lemma 1 satisfy (1.12).

⎫⎪⎬⎪⎭ (1.13)

1.3. Main result

We introduce the notion of controllability:

Definition 2. We will say that our problem is null controllable at time T if there exists a control function
f ∈ L2((0, T )× ω)2 such that

u(T, ·) = 0 in ΩF (T ), a(T ) = 0, ȧ(T ) = 0, θ(T ) = 0, r(T ) = 0, (1.14)

or, equivalently,
u(T, ·) = 0 in Ω, a(T ) = 0, θ(T ) = 0,

where (u, a, θ) is the solution, together with a pressure p, of the problem defined by equations (1.1) to (1.6).
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Thus, we want to drive the fluid and the structure at rest and we also want the structure to be located in
the reference configuration R−θ0(ΩS(0) − a0). The main result of this article is:

Theorem 1. We suppose that u0, a0, a1, θ0 and r0 satisfy (1.13) and we consider an initial structure do-
main ΩS(0) such that (1.9) is satisfied. Let T > 0 be a fixed final time. Then, there exists ε > 0 depending on
T and on the domains Ω, ω and ΩS(0) such that, if

‖u0‖H3(ΩF (0))2 + |a0| + |a1| + |θ0| + |r0| ≤ ε,

the problem defined by equations (1.1) to (1.6) is null controllable at time T .

Remark 2. We can also consider N structures occupying the domains ΩiS(t), 1 ≤ i ≤ N , immersed in the
fluid. The two equations for the structure motion are replaced by 2N equations for the translation ai and the
rotation velocity ri associated to the i-th solid. Each structure has to satisfy (1.9) and we also have to avoid
contact between two different structures i.e.

d
(
ΩiS(0),ΩjS(0)

)
> 0, ∀ 1 ≤ i, j ≤ N.

Then we can prove that the same Carleman inequality (1.30) holds for the structure domain ΩS(t) defined by
ΩS(t) =

⋃
1≤i≤N

ΩiS(t) and we can obtain the same local null controllability result.

Remark 3. By standard arguments in controllability, we can prove that this result also holds for a control
domain located on the boundary of the cavity Ω.

To begin with, we will prove a controllability result on a linearized problem. Let (ã, r̃) be given in H2(0, T )2×
H1(0, T ). We define θ̃ the angle associated to the rotation velocity r̃ defined up to a constant. Thus, for any
t ∈ (0, T ), the structure domain Ω̃S(t) is defined by

Ω̃S(t) = X̃(t,ΩS(0)), (1.15)

where X̃ denotes the flow associated to the structure velocity and is defined by

X̃(t, y) = ã(t) +Rθ̃(t)−θ0(y − a0), ∀ t ∈ (0, T ), ∀ y ∈ ΩS(0). (1.16)

We assume that ã and θ̃ satisfy

ã(0) = a0, ˙̃a(0) = a1, θ̃(0) = θ0, r̃(0) = r0, Ω̃S(t) ⊂ Ω \ ω, d
(
Ω̃S(t), ∂

(
Ω \ ω

))
≥ α, ∀ t ∈ [0, T ], (1.17)

where α > 0 is a fixed real number small enough. The last two properties are satisfied at time t = 0 because
X̃(0, ·) = Id in ΩS(0) and we have supposed that ΩS(0) satisfies (1.9). We can also define the corresponding
fluid domain by

Ω̃F (t) = Ω \ Ω̃S(t).

Next, let ũ be given such that

ũ ∈ L∞(0, T ;L∞(Ω̃F (t)))2 ∩W 1,4(0, T ;L4(Ω̃F (t)))2 ∩ L∞(0, T ;H1(Ω̃F (t)))2, (1.18)

div ũ = 0 in Ω̃F (t), ũ = ˙̃a+ r̃(x− ã)⊥ on ∂Ω̃S(t), ũ = 0 on ∂Ω, (1.19)
ũ(t = 0) = u0 in ΩF (0). (1.20)
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As for the velocity u, we can extend ũ on Ω̃S(t) by the velocity of the structure.
We will say that (u, p, a, r) is a solution of the linearized problem around (ũ, ã, r̃) if and only if, for all t ∈ (0, T ),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂tu+ (ũ · ∇)u

)
(t, x) − div σ(u, p)(t, x) = f(t, x)1ω(x), ∀x ∈ Ω̃F (t),

mä(t) =
∫
∂Ω̃S(t)

σ(u, p)n,

Jṙ(t) =
∫
∂Ω̃S(t)

(σ(u, p)n) · (x− ã(t))⊥,

div u(t, x) = 0, ∀x ∈ Ω̃F (t),

u(t, x) = 0, ∀x ∈ ∂Ω,

u(t, x) = ȧ(t) + r(t)(x − ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

u(0, ·) = u0 in ΩF (0), a(0) = a0, ȧ(0) = a1, θ(0) = θ0, r(0) = r0.

(1.21)

We easily obtain an a priori energy estimate for this problem. Indeed denoting Ẽ(t) the global energy:

Ẽ(t) =
1
2

∫
Ω̃F (t)

|u(t, x)|2 dx+
m

2
|ȧ(t)|2 +

J

2
|r(t)|2 +

∫ t

0

∫
Ω̃F (t′)

|∇u(t′, x)|2 dxdt′,

we have

Ẽ(t) ≤ E(0) + C(T )
∫ t

0

∫
ω

|f(t′, x)|2 dxdt′.

It seems worth noting that, in order to have an energy estimate for the linearized problem, the given velocities ũ,
˙̃a and r̃ have to satisfy continuity and divergence-free conditions (1.19). Since the trace of ũ has to be defined,
we have taken ũ in L∞(0, T ;H1(Ω̃F (t)))2.

First of all, we will prove a controllability result for this linearized problem. The result is formulated as
follows:

Theorem 2. We consider initial data u0 ∈ H1(ΩF (0))2, a0 ∈ R
2, a1 ∈ R

2, θ0 ∈ R and r0 ∈ R satisfying (1.7)
and an initial structure domain ΩS(0) such that (1.9) is satisfied.

Let T > 0 be a fixed final time. We suppose that (ã, r̃) ∈ H2(0, T )2 ×H1(0, T ) are such that (1.17) holds for
some α > 0 and that ũ satisfies conditions (1.18) to (1.20). Then, problem (1.21) is null controllable at time T .

To prove the controllability result for the linearized problem, we need to introduce the homogeneous adjoint
problem. It is defined by the following system, for all t ∈ (0, T )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂tv − (ũ · ∇)v

)
(t, x) − div σ(v, q)(t, x) = 0, ∀x ∈ Ω̃F (t),

mb̈(t) = −
∫
∂Ω̃S(t)

σ(v, q)n,

Jγ̇(t) = −
∫
∂Ω̃S(t)

(σ(v, q)n) · (x − ã(t))⊥,

div v(t, x) = 0, ∀x ∈ Ω̃F (t),

v(t, x) = 0, ∀x ∈ ∂Ω,

v(t, x) = ḃ(t) + γ(t)(x− ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

v(T, ·) = vT0 in Ω̃F (T ), b(T ) = 0, ḃ(T ) = bT1 , γ(T ) = γT0 .

(1.22)
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The initial data vT0 ∈ H1(Ω̃F (T ))2, bT1 and γT0 satisfy

vT0 = bT1 + γT0 (x− ã(T ))⊥ on ∂Ω̃S(T ), vT0 = 0 on ∂Ω and div vT0 = 0 in Ω̃F (T ). (1.23)

1.4. Extension of the structure flow

We have already introduced the definition of the structure flow by (1.16). In the following, we will need to
extend this flow up to the global boundary ∂Ω by a regular and incompressible flow. To construct this extension,
conditions of non-collision between the structure and the boundary of Ω have to be satisfied. According to
condition (1.17), we have Ω̃S(t) ⊂ (Ω \ ω)α, for each t ∈ [0, T ] where we have denoted, for a subset A of R

2,
Aε = {x ∈ A/d (x, ∂A) ≥ ε}. We have the following result:

Lemma 2. Let (ã, r̃) ∈ H2(0, T )2 ×H1(0, T ) be given. We define Ω̃S(t) by (1.15) and we suppose that (1.17)
is satisfied for some α > 0. We can extend the velocity

˙̃a+ r̃(x− ã)⊥

defined on Ω̃S(t) by a velocity ũS ∈ H1(0, T ; C2(Ω))2 satisfying, for all t ∈ (0, T )

div ũS = 0 in Ω,
ũS = 0 in Ω \ (Ω \ ω)α/4, ũS = ˙̃a+ r̃(x− ã)⊥ in (Ω \ ω)α/2,

and such that
‖ũS‖H1(0,T ;C2(Ω))2 ≤ C(‖ ˙̃a‖H1(0,T )2 + ‖r̃‖H1(0,T )), (1.24)

where C depends on T and α.

We do not detail how we obtain this incompressible velocity which extends the velocity defined on the
structure: we refer to [19] for the proof of this result. We define the flow associated to ũS. We still denote it X̃
since it extends the flow defined on the structure by (1.16).

Lemma 3. Under the same hypotheses as in Lemma 2, the flow X̃ associated to ũS defined in Lemma 2 satisfies:
• for each t ∈ [0, T ], X̃(t, ·) is a C2-diffeomorphism from Ω on Ω and from ΩF (0) on Ω̃F (t). We denote

by Ỹ (t, ·) the inverse of X̃(t, ·) defined on Ω;
• X̃ and Ỹ belong to H2(0, T ; C2(Ω))2;
• ∀ (t, y) ∈ (0, T ) × Ω, det∇X̃(t, y) = 1;
• ∀ t ∈ (0, T ), ∀ y ∈ Ω \ (Ω \ ω)α/4, X̃(t, y) = y;
• ∀ t ∈ (0, T ), ∀ y ∈ ΩS(0) +B(0, α/2), X̃(t, y) = ã(t) +Rθ̃(t)−θ0(y − a0),

where B(0, α/2) denotes the ball of center 0 and of radius α/2. Moreover, we have

‖X̃‖H2(0,T ;C2(Ω))2 + ‖Ỹ ‖H2(0,T ;C2(Ω))2 ≤ C(‖ã‖H2(0,T )2 + ‖r̃‖H1(0,T )),

where the constant C depends on T and α.

Proof of Lemma 3. Thanks to the regularity of ũS obtained in Lemma 2 and the properties of the flow associated
to a velocity, we easily obtain the first three points of the lemma.

Now, on Ω \ (Ω \ ω)α/4, since ũS = 0, we have that X̃(t, ·) = Id. Moreover, for each t ∈ (0, T ), for each
y ∈ ΩS(0) +B(0, α/2), we have

ã(t) +Rθ̃(t)−θ0(y − a0) ∈ Ω̃S(t) +B(0, α/2) ⊂ (Ω \ ω)α/2.

Consequently, by uniqueness of the flow, the last point of the lemma is satisfied. �
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Remark 4. If ã belongs to W 1,∞(0, T )2 and r̃ belongs to L∞(0, T ), Lemmas 2 and 3 still hold with the
appropriate changes (the flows belong to W 1,∞(0, T ; C2(Ω))2.

1.5. A Carleman inequality

To obtain our controllability result, we prove a Carleman inequality result for the adjoint system (1.22).
We consider a nonempty open set ω0 such that ω0 ⊂⊂ ω (i.e. ω0 ⊂ ω). We will introduce time-dependent
weight functions defined on the moving domain Ω̃F (t). First of all, we consider a steady weight function β0 in
C2
(
ΩF (0)

)
depending on Ω, ω0 and ΩS(0) such that

β0 = 0 on ∂Ω ∪ ∂ΩS(0), β0 > 0 in ΩF (0),
∇β0 · n ≤ c1 < 0 on ∂Ω,∇β0 · n ≥ c2 > 0 on ∂ΩS(0), |∇β0| > 0 in ΩF (0) \ ω0.

On the boundary of Ω, the vector n is the outward unit normal to Ω and on the boundary of the structure
domain, n is the outward unit normal to the structure domain (and thus the inward normal to the fluid domain).
For the proof of this result, we refer to [11]. We suppose that (1.17) holds for some α > 0. Then, thanks to β0,
we define the time-dependent weight function β which follows the displacement of the structure by

β(t, x) = β0(Ỹ (t, x)), ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),

where Ỹ is defined by Lemma 3.

Lemma 4. The function β belongs to L∞(0, T ;W 2,∞(Ω̃F (t))) ∩W 1,∞(0, T ;W 1,∞(Ω̃F (t))) and is such that:

β = 0 on ∂Ω ∪ ∂Ω̃S(t), β > 0 in Ω̃F (t),

∇β · n ≤ c1 < 0 on ∂Ω,∇β · n ≥ c2 > 0 on ∂Ω̃S(t), |∇β| > 0 in Ω̃F (t) \ ω0. (1.25)

Moreover, we have the following estimate:

‖β‖L∞(0,T ;W 2,∞(Ω̃F (t))) + ‖β‖W 1,∞(0,T ;W 1,∞(Ω̃F (t))) ≤ C, (1.26)

where C depends on T and α.

To introduce the Carleman inequality satisfied by a solution of the adjoint linearized problem (1.22), we
define, for λ ≥ 1, the functions V and ϕ by: ∀ t ∈ (0, T ), ∀x ∈ Ω̃F (t),

V(t, x) =
e10λM − eλ(8M+β(t,x))

t4(T − t)4
, ϕ(t, x) =

eλ(8M+β(t,x))

t4(T − t)4
, (1.27)

where M = ‖β0‖L∞(ΩF (0)). For this choice of M , we can already notice that V is a positive function since
‖β‖L∞(0,T ;L∞(Ω̃F (t))) = ‖β0‖L∞(ΩF (0)). Moreover, V and ϕ have the following properties:

∇V = −λϕ∇β, ∇ϕ = λϕ∇β.

We also define, ∀ t ∈ (0, T ),

V̂(t) = inf
x∈Ω̃F (t)

V(t, x) =
e10λM − e9λM

t4(T − t)4
, V∗(t) = sup

x∈Ω̃F (t)

V(t, x) =
e10λM − e8λM

t4(T − t)4
, (1.28)

ϕ̂(t) = sup
x∈Ω̃F (t)

ϕ(t, x) =
e9λM

t4(T − t)4
, ϕ∗(t) = inf

x∈Ω̃F (t)
ϕ(t, x) =

e8λM

t4(T − t)4
· (1.29)
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Then, the following global Carleman estimate for problem (1.22) holds:

Theorem 3. Let ã ∈ H2(0, T )2, r̃ ∈ H1(0, T ) and ũ be given such that (1.17) holds for some α > 0 and such
that conditions (1.18) to (1.20) are satisfied.

Then, there exists a constant C and two constants ŝ and λ̂ such that, for every vT0 ∈ L2(Ω̃F (T ))2, bT1 ∈ R
2,

sT0 ∈ R, the corresponding solution (v, q, b, γ) of (1.22) satisfies, for any s ≥ ŝ and λ ≥ λ̂,∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗

(∣∣b̈∣∣2 + |γ̇|2
)

+s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sV∗
(ϕ∗)3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sV∗
ϕ∗|∇v n|2

≤ Cs19/2λ13

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|v|2. (1.30)

The constant C only depends on T , α and β0, and ŝ and λ̂ depend on T , α, β0 and the norm of ã in H2(0, T )2,
r̃ in H1(0, T ) and ũ in L∞((0, T ) × Ω)2 ∩W 1,4(0, T ;L4(Ω̃F (t)))2.

Remark 5. In this work, we suppose that the viscosity µ is equal to 1. It can be interesting to wonder how
the constant in our Carleman inequality depends on µ if µ is not fixed. It is known that the constant in global
Carleman inequalities for parabolic equations behaves as exp(C/T ), where C > 0 is a constant depending on
the domain and T > 0 is the length of the time interval (see for instance [9]). Let us consider the heat equation

ut − µ∆u = f in (0, T ),

where µ > 0 and make the change of variables τ = µ t then we retrieve a heat equation with µ = 1

ũτ − ∆ũ = f̃ in (0, µ T ),

where ũ(τ) = u(τ/µ), f̃(τ) = f(τ/µ)/µ, and therefore, with the classical computations, we find that the constant
in the global Carleman inequality is of order exp(C/(µT )). It has been also shown that this constant is optimal
for the observability inequality at least in one dimension (see [4]). In our case, the situation is essentially the
same.

The proof of this theorem will be given in Section 2, but before, we will study some regularity properties
which will be useful in the sequel.

1.6. Regularity results on the linearized problem

We give regularity results for the following non-homogeneous linearized system associated to (1.21): for all
t ∈ (0, T ), ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂tu+ (ũ · ∇)u

)
(t, x) − div σ(u, p)(t, x) = gF (t, x), ∀x ∈ Ω̃F (t),

mä(t) =
∫
∂Ω̃S(t)

σ(u, p)n+ gT (t),

Jṙ(t) =
∫
∂Ω̃S(t)

(σ(u, p)n) · (x− ã(t))⊥ + gR(t),

div u(t, x) = 0, ∀x ∈ Ω̃F (t),

u(t, x) = 0, ∀x ∈ ∂Ω,

u(t, x) = ȧ(t) + r(t)(x − ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

u(0, ·) = u0 in ΩF (0), a(0) = a0, ȧ(0) = a1, θ(0) = θ0, r(0) = r0,

(1.31)
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where gF is the force acting on the fluid and gT and gR are the force and the torque acting on the structure.
Of course, these results are also true for the linear adjoint system and can be shown in the same way. In [19],
the first regularity result is proved for the nonlinear fluid-structure direct problem. Thus, the proposition which
follows is a result contained in [19]. We only give a sketch of the proof and we refer to [19] and the references
therein for complementary explanations. Let us define

U(0, T ; Ω) = L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)).

Proposition 2. Let initial data u0 ∈ H1(ΩF (0))2, a0 ∈ R
2, a1 ∈ R

2, θ0 ∈ R, r0 ∈ R and forces gF ∈
L2(0, T ;L2(Ω̃F (t)))2, gT ∈ L2(0, T )2, gR ∈ L2(0, T ) be given. We suppose that initial data satisfy (1.7), that
ũ ∈ L∞(0, T ;L∞(Ω̃F (t)))2 ∩ L∞(0, T ;H1(Ω̃F (t)))2, (ã, r̃) ∈ W 1,∞(0, T )2 × L∞(0, T ) satisfy (1.19) and (1.17)
for some α > 0. Then, the system (1.31) admits a unique solution

u ∈ U(0, T ; Ω̃F (t))2, p ∈ L2(0, T ;H1(Ω̃F (t))), a ∈ H2(0, T )2, r ∈ H1(0, T ).

Moreover, we have the estimate

‖u‖U(0,T ;Ω̃F (t))2 + ‖p‖L2(0,T ;H1(Ω̃F (t))) + ‖a‖H2(0,T )2 + ‖r‖H1(0,T )

≤ C
(
‖(u0, a1, r0)‖H1(ΩF (0))2×R2×R + ‖gF‖L2(0,T ;L2(Ω̃F (t)))2 + ‖gT‖L2(0,T )2 + ‖gR‖L2(0,T )

)
,

where the constant C depends on T , α, the norm of ũ in L∞((0, T ) × Ω)2 (and thus on the norm of (ã, r̃) in
W 1,∞(0, T )2 × L∞(0, T )).

Proof of Proposition 2. This result is obtained by doing a change of variables to come back to initial configu-
rations ΩF (0) and ΩS(0). Thanks to Lemma 3 (see Rem. 4), we define the flows X̃ and Ỹ . Let us define the
new variables

U(t, y) = ∇Ỹ (t, X̃(t, y))u(t, X̃(t, y)), P (t, y) = p(t, X̃(t, y)), A(t) =
∫ t

0

Rθ0−θ̃(t′)ȧ(t
′) dt′.

It can be proved (see [19]) that (u, p, a, r) is a solution of (1.31) if and only if (U,P,A, r) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU − [LU ] + [MU ] + [NU, Ũ ] + [GP ] = GF in (0, T ) × ΩF (0),

mÄ =
∫
∂ΩS(0)

σ(U,P )n+GT +mr̃Ȧ⊥ in (0, T ),

Jṙ =
∫
∂ΩS(0)

(σ(U,P )n) · (y − a0)⊥ +GR in (0, T ),

divU = 0 in (0, T )× ΩF (0),

U = 0 on (0, T ) × ∂Ω,

U = Ȧ+ r(y − a0)⊥ on (0, T ) × ∂ΩS(0),

U(0, ·) = u0 in ΩF (0), A(0) = 0, Ȧ(0) = a1, r(0) = r0,

(1.32)

where we have defined

GF (t, y) = ∇Ỹ (t, X̃(t, y)) gF (t, X̃(t, y)), GT (t) = Rθ0−θ̃(t)gT (t),

GR(t) = gR(t), Ũ(t, y) = ∇Ỹ (t, X̃(t, y)) ũ(t, X̃(t, y)).
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The operators L, M , N and G are given by (we implicitly sum over repeated indexes)

[LU ]i = ∂j
(
gjk∂kUi

)
+ 2gklΓijk∂lUj +

(
∂k
(
gklΓijl

)
+ gklΓmjlΓ

i
km

)
Uj ,

[MU ]i =
(
∂tỸj ◦ X̃

)
∂jUi +

(
Γijk

(
∂tỸk ◦ X̃

)
+
(
∂kỸi ◦ X̃

)
∂t∂jX̃k

)
Uj ,

[NU, Ũ ]i = Ũj∂jUi + ΓijkŨjUk,

[GP ]i = gij∂jP,

(1.33)

where we defined

gij = ∂kỸi ◦ X̃∂kỸj ◦ X̃, gij = ∂kX̃i∂kX̃j , Γkij =
1
2
gkl

(
∂jgil + ∂igjl + ∂lgij

)
.

According to Lemma 5 which is given below and to definition 1, we deduce the regularity result on the inter-
val (0, T0). Since this time T0 only depends on α and the norm of ũ in L∞((0, T ) × Ω)2 and thanks to the
estimate (1.34), we can extend our solution until time T . �
Lemma 5. Let GF ∈ L2(0, T ;L2(ΩF (0)))2, GT ∈ L2(0, T )2 and GR ∈ L2(0, T ) be given. We consider initial
data u0 ∈ H1(ΩF (0))2, a0 ∈ R

2, a1 ∈ R
2, θ0 ∈ R, r0 ∈ R which satisfy (1.7) and we suppose that Ũ belongs

to L∞((0, T ) × ΩF (0))2, ã belongs to W 1,∞(0, T )2 and r̃ belongs to L∞(0, T ). We consider the system (1.32)
where L, M , N and G are defined by (1.33).

Then there exists a time 0 < T0 < T depending on α, the norm of Ũ in L∞((0, T )×ΩF (0))2, ã in W 1,∞(0, T )2

and r̃ in L∞(0, T ) such that this system admits a unique solution

U ∈ U(0, T0; ΩF (0))2, P ∈ L2(0, T0;H1(ΩF (0))), A ∈ H2(0, T0)2, r ∈ H1(0, T0).

Moreover, we have the estimate

‖U‖U(0,T0;ΩF (0))2 + ‖P‖L2(0,T0;H1(ΩF (0))) + ‖A‖H2(0,T0)2 + ‖r‖H1(0,T0)

≤ C
(
‖(u0, a1, r0)‖H1(ΩF (0))2×R2×R + ‖GF ‖L2(0,T0;L2(ΩF (0)))2 + ‖GT ‖L2(0,T0)2 + ‖GR‖L2(0,T0)

)
,

(1.34)

where the constant C depends on T , α, the norms of Ũ in L∞((0, T ) × ΩF (0))2, ã in W 1,∞(0, T )2 and r̃ in
L∞(0, T ).

Proof of Lemma 5. First of all, we consider the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tU − ∆U + ∇P = FF in (0, T ) × ΩF (0),

mÄ =
∫
∂ΩS(0)

σ(U,P )n+ FT in (0, T ),

Jṙ =
∫
∂ΩS(0)

(σ(U,P )n) · (y − a0)⊥ + FR in (0, T ),

divU = 0 in (0, T )× ΩF (0),

U = 0 on (0, T ) × ∂Ω,

U = Ȧ+ r(y − a0)⊥ on (0, T ) × ∂ΩS(0),

U(0, ·) = u0 in ΩF (0), A(0) = 0, Ȧ(0) = a1, r(0) = r0.

(1.35)

A regularity result for this problem is proved in [19]: this system admits a unique solution (U,P,A, r) in
U(0, T ; ΩF (0))2 × L2(0, T ;H1(ΩF (0))) × H2(0, T )2 × H1(0, T ) and (1.34) is satisfied with GF , GT and GR
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respectively replaced by FF , FT and FR. (U,P,A, r) is solution of the system (1.32) if and only if it is solution
of (1.35) with

FF = GF + [(L− ∆)U ] − [MU ] − [NU, Ũ ] + [(∇−G)P ],

FT = GT +mr̃Ȧ⊥, FR = GR.

By proving estimates on the coefficients as in [19] thanks to Lemma 3 and Remark 4, we obtain that, near 0, the
flows X̃ and Ỹ stay close to Id and thus, the operators L−∆, M , N , ∇−G stay small. Therefore, we obtain the
regularity result. �

We will also need estimates on the second derivative of the velocity for the adjoint linear problem and the
direct linear problem. The result which follows is given for the direct linear problem but it can be word for
word adapted to the adjoint linear problem. This result plays a key role to prove Carleman estimate and to
pass to the nonlinear problem in the last section. Hypotheses of regularity (1.18) we have to do come directly
from this proposition. We suppose that the given forces satisfy

gF (t = 0) = 0 in ΩF (0), gT (t = 0) = 0, gR(t = 0) = 0. (1.36)

Proposition 3. Let gF ∈ H1(0, T ;L2(Ω̃F (t)))2, gT ∈ H1(0, T )2, gR ∈ H1(0, T ) be given functions satisfying
(1.36). We suppose that initial data u0, a0, a1, θ0 and r0 satisfy (1.13) and we consider ũ and (ã, r̃) ∈
H2(0, T )2 ×H1(0, T ) satisfying conditions (1.17) to (1.20). Then, the system (1.31) admits a unique solution

u ∈ H1(0, T ;H2(Ω̃F (t)))2 ∩H2(0, T ;L2(Ω̃F (t)))2 ∩W 1,∞(0, T ;H1(Ω̃F (t)))2,

p ∈ H1(0, T ;H1(Ω̃F (t))), a ∈ H3(0, T )2, r ∈ H2(0, T ).

Moreover, we have the estimate

‖u‖H1(0,T ;H2(Ω̃F (t)))2 + ‖u‖H2(0,T ;L2(Ω̃F (t)))2 + ‖u‖W 1,∞(0,T ;H1(Ω̃F (t)))2 + ‖p‖H1(0,T ;H1(Ω̃F (t)))

+ ‖a‖H3(0,T )2 + ‖r‖H2(0,T ) ≤ C
(
‖(u0, a1, r0)‖H3(ΩF (0))2×R2×R + ‖gF ‖H1(0,T ;L2(Ω̃F (t)))2

+ ‖gT ‖H1(0,T )2 + ‖gR‖H1(0,T )

)
, (1.37)

where the constant C depends on T , α, the norm of ũ in L∞(0, T ;L∞(Ω̃F (t)))2 and in W 1,4(0, T ;L4(Ω̃F (t)))2

and the norm of (ã, r̃) in H2(0, T )2 ×H1(0, T ).

Proof of Proposition 3. As in Proposition 2, we consider the equivalent transported system (1.32) on ΩF (0).
We derive this system with respect to time. We see that (∂tU, ∂tP, Ȧ, ṙ) is formally solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tW − [LW ] + [MW ] + [NW, Ũ ] + [GΠ] = GF in (0, T ) × ΩF (0),

mD̈ =
∫
∂ΩS(0)

σ(W,Π)n+ GT −mr̃Ḋ⊥ in (0, T ),

J τ̇ =
∫
∂ΩS(0)

(
σ(W,Π)n

)
· (y − a0)⊥ + GR in (0, T ),

divW = 0 in (0, T )× ΩF (0),

W = 0 on (0, T ) × ∂Ω,

W = Ḋ + τ(y − a0)⊥ on (0, T )× ∂ΩS(0),

W (0, ·) = ∂tU(0, ·) in ΩF (0), D(0) = Ȧ(0), Ḋ(0) = Ä(0), τ(0) = ṙ(0),

(1.38)
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where the forces are given by

GF = ∂tGF + [∂tLU ]− [∂tMU ] − [∂tNU, Ũ ] − [NU, ∂tŨ ] − [∂tGP ],

GT = ∂tGT +m ˙̃rȦ⊥,

GR = ∂tGR.

We have defined ∂tL, ∂tM , ∂tN and ∂tG by

[∂tLU ]i = ∂j
(
∂tg

jk∂kUi
)

+ 2∂t(gklΓijk)∂lUj +
(
∂t∂k

(
gklΓijl

)
+ ∂t(gklΓmjlΓ

i
km)

)
Uj ,

[∂tMU ]i = ∂t
(
∂tỸj ◦ X̃

)
∂jUi + ∂t

(
Γijk

(
∂tỸk ◦ X̃

)
+
(
∂kỸi ◦ X̃

)
∂t∂jX̃k

)
Uj,

[∂tNU, Ũ ]i = ∂tΓijkŨjUk,

[∂tGP ]i = ∂tg
ij∂jP.

These operators correspond to L, M , N and G where we have derived the coefficients with respect to time.
Lemma 1 allows to define the initial data ∂tU(0, ·), Ä(0) and ṙ(0).

We do not prove here rigorously that (∂tU, ∂tP, Ȧ, ṙ) satisfies this system. This can be done by considering
the solution (W,Π, D, τ) of the problem (1.38). According to what follows, this solution is well defined. Then,
it can be proved that the primitives in time of this solution with the good initial data satisfy the same problem
as (U,P,A, r) and thus, by uniqueness, we can identify (W,Π, D, τ) and (∂tU, ∂tP, Ȧ, ṙ).

We want to apply the regularity result given by Lemma 5 to system (1.38). First, according to Lemma 1,
∂tU(0, ·) belongs to H1(ΩF (0))2 and, since the acceleration of the fluid at initial time u1 and the terms of
acceleration of the structure at initial time a2 and r1 satisfy (1.12), the compatibility conditions

div ∂tU(0, ·) = 0 in ΩF (0), ∂tU(0, y) = 0 on ∂Ω, ∂tU(0, y) = Ä(0) + ṙ(0)(y − a0) on ∂ΩS(0)

are satisfied. Next, we have to prove estimates on GF , GT and GR. According to Lemma 5, (U,P,A, r) satisfies
(1.34) on (0, T0) where T0 depends on α and the norm of ũ in L∞((0, T ) × Ω)2. Next, we notice that the
coefficients gij , gij and Γkij belong to H2(0, T ; C2(ΩF (0))) since X̃ and Ỹ belong to H2(0, T ; C2(Ω)). Thus, we
have

‖[∂tLU ] − [∂tMU ] − [∂tNU, Ũ ]‖L2((0,T0)×ΩF (0))2 ≤ C‖U‖U(0,T0;ΩF (0))2 ,
‖[∂tGP ]‖L2((0,T0)×ΩF (0))2 ≤ C‖P‖L2(0,T0;H1(ΩF (0))),

where C depends on T , α, the norm of Ũ in L∞((0, T )×ΩF (0))2 and the norm of (ã, r̃) in H2(0, T )2×H1(0, T ).
Moreover, since U belongs to U(0, T0; ΩF (0))2 ↪→ L4−α(0, T0;W 1,4−α(ΩF (0)))2 for every α > 0 and ∂tŨ

belongs L4((0, T )× ΩF (0))2, we have

‖[NU, ∂tŨ ]‖L2((0,T0)×ΩF (0))2 ≤ C‖U‖U(0,T0;ΩF (0))2 .

Thus, thanks to (1.34), we obtain an estimate on GF in L2(0, T0;L2(ΩF (0)))2:

‖GF ‖L2((0,T0)×ΩF (0))2 ≤ C
(
‖(u0, a1, r0)‖H1(ΩF (0))2×R2×R + ‖GF ‖H1(0,T0;L2(ΩF (0)))2

+ ‖GT ‖L2(0,T0)2 + ‖GR‖L2(0,T0)

)
,

where the constant C depends on α, the norm of ũ in L∞(0, T ;L∞(Ω̃F (t)))2 and in W 1,4(0, T ;L4(Ω̃F (t)))2 and
on the norm of (ã, r̃) in H2(0, T )2 ×H1(0, T ).
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For GT and GR, we also have estimates in L2(0, T ):

‖GT ‖L2(0,T0)2 ≤ C
(
‖(u0, a1, r0)‖H1(ΩF (0))2×R2×R + ‖GF ‖L2(0,T0;L2(ΩF (0)))2

+‖GT ‖H1(0,T0)2 + ‖GR‖L2(0,T0)

)
,

‖GR‖L2(0,T0) ≤ ‖GR‖H1(0,T0).

We deduce from Lemma 5 that

∂tU ∈ U(0, T0; ΩF (0))2, ∂tP ∈ L2(0, T0;H1(ΩF (0))), A ∈ H3(0, T0)2, r ∈ H2(0, T0),

and

‖∂tU‖U(0,T0;ΩF (0))2 + ‖∂tP‖L2(0,T0;H1(ΩF (0))) + ‖A‖H3(0,T0)2 + ‖r‖H2(0,T0)

≤ C
(
‖(u0, a1, r0)‖H3(ΩF (0))2×R2×R + ‖GF ‖H1(0,T0;L2(ΩF (0)))2 + ‖GT ‖H1(0,T0)2 + ‖GR‖H1(0,T0)

)
.

Thus, we obtain our proposition and estimate (1.37) on (0, T0). Next, we can extend this solution until time T
since this time T0 only depends on α and the norm of ũ in L∞((0, T )×Ω)2. �

The first step of our work is devoted to the proof of the Carleman inequality.

2. Proof of Theorem 3

We divide the proof of Theorem 3 in several subsections: in the first subsection, the Navier-Stokes equation
is treated as a heat equation with a right-hand side depending on the pressure. We have to be careful since
the fluid domain (and consequently the associated weight functions) depends on time. Thanks to the equations
satisfied by the structure, we obtain estimates on the acceleration of the rigid motion which enable us to bound
the terms on the interface appearing in the Carleman estimate. We obtain an inequality with global integrals in
the pressure in the right-hand side. In the second subsection, we prove that we can replace this global integral
in the pressure by a local integral: to do this, we follow the method introduced by [10] using an auxiliary
Carleman inequality given in [13]. And finally, in the last subsection, we estimate this local integral in the
pressure, following the arguments in [10]. The hypotheses of Theorem 3 on the acceleration of the given motion
(ũ, ã, r̃) are only used in this last section.

2.1. A first estimate with global integrals in the pressure in the right-hand side

We set:

w(t, x) = e−sV(t,x)v(t, x), ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),

where v together with some q, b and γ is the solution of the homogeneous adjoint problem (1.22). Notice that
w satisfies

w(0, x) = 0, ∀x ∈ ΩF (0), w(T, x) = 0, ∀x ∈ Ω̃F (T ), (2.1)
w(t, x) = 0, ∀ t ∈ (0, T ), ∀x ∈ ∂Ω, (2.2)

w(t, x) = e−sV
∗(t)

(
ḃ(t) + γ(t)(x− ã(t))⊥

)
, ∀ t ∈ (0, T ), ∀x ∈ ∂Ω̃S(t). (2.3)
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We have

∂tv = esV(∂tw + s∂tVw), ∇v = esV (∇w + sw∇Vt), (2.4)

∆v = esV(∆w + 2s∇w∇V + s∆Vw + s2|∇V|2w). (2.5)

Replacing v by w in the first equation of the adjoint problem (1.22), we obtain that

−∂tw − s∂tVw − (ũ · ∇)w − ∆w − 2s∇w∇V − s2|∇V|2w − s∆Vw = s(ũ · ∇V)w − e−sV∇q,

so equivalently
L1(w) + L2(w) = gs,

where L1(w), L2(w) and gs are defined by

L1(w) = −∆w − s2λ2ϕ2|∇β|2w, (2.6)
L2(w) = −

(
∂tw + (ũS · ∇)w

)
+ 2sλϕ∇w∇β + 2sλ2ϕ|∇β|2w, (2.7)

gs = s∆Vw + 2sλ2ϕ|∇β|2w + s(∂tV + ũ · ∇V)w −
(
(ũS − ũ) · ∇

)
w − e−sV∇q.

Let us notice that we have added the term 2sλ2ϕ|∇β|2w in L2 and in gs in order to obtain additional estimates
on ∇w. We recall that the velocity ũS is defined by Lemma 2. Then, we have

‖L1(w)‖2
2 + ‖L2(w)‖2

2 + 2
(
L1(w), L2(w)

)
2

= ‖gs‖2
2, (2.8)

where (·, ·)2 and ‖ · ‖2 denote the following scalar product and the associated norm:

(
U, V

)
2

=
∫ T

0

∫
Ω̃F (t)

U(t, x) · V (t, x), ‖U‖2
2 =

(
U,U

)
2
.

We shall now compute the scalar product in the left hand side of (2.8). We can write that

(
L1(w), L2(w)

)
2

=
2∑
i=1

3∑
j=1

Iij ,

where Iij represents the scalar product between the i-th term of L1(w) and the j-th term of L2(w). In the
sequel, these two integrals will play a key role:

K1 = s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2, K2 = sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2, for s > 1 and λ > 1.

We have the following successive results:

I11 =
∫ T

0

∫
Ω̃F (t)

∆w ·
(
∂tw + (ũS · ∇)w

)
= −

∫ T

0

∫
Ω̃F (t)

∇w : ∇
(
∂tw + (ũS · ∇)w

)
−
∫ T

0

∫
∂Ω̃S(t)

(∇w n) ·
(
∂tw + (ũS · ∇)w

)
.

This is obtained by integrating by parts in space. We recall that n denotes the outward unit normal to ∂Ω̃S(t).
Since we are working on moving domains, we have to be careful on the way we treat the integral. We recall a
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differentiation formula: for a scalar function f regular enough, we have

d
dt

∫
Ω̃F (t)

f =
∫

Ω̃F (t)

∂tf + div (fũS) =
∫

Ω̃F (t)

∂tf + ũS · ∇f, (2.9)

since ũS is divergence free. Thus,

1
2

d
dt

∫
Ω̃F (t)

|∇w|2 =
∫

Ω̃F (t)

∇w : ∇∂tw +
1
2

∫
Ω̃F (t)

ũS · ∇|∇w|2.

Consequently,

I11 = −1
2

∫ T

0

d
dt

∫
Ω̃F (t)

|∇w|2 −
∫ T

0

∫
Ω̃F (t)

∇w : (∇w∇ũS)

−
∫ T

0

∫
∂Ω̃S(t)

(∇w n) ·
(
∂tw + (ũS · ∇)w

)
= −

∫ T

0

∫
Ω̃F (t)

∇w : (∇w∇ũS) −
∫ T

0

∫
∂Ω̃S(t)

(∇w n) ·
(
∂tw + (ũS · ∇)w

)
,

since w satisfies (2.1). Moreover, according to Lemma 2 and Remark 4, ũS belongs to L∞(0, T ;W 1,∞(Ω̃F (t)))2

and satisfies
‖ũS‖L∞(0,T ;W 1,∞(Ω̃F (t)))2 ≤ C(‖ ˙̃a‖L∞(0,T )2 + ‖r̃‖L∞(0,T )) ≤ C‖ũ‖L∞((0,T )×Ω).

The last inequality comes from the fact that ũ = ˙̃a+ r̃(x− ã)⊥ on Ω̃S(t). Thus, we have

I11 ≥ − C̃

sλ2
K2 −

∫ T

0

∫
∂Ω̃S(t)

(∇w n) ·
(
∂tw + (ũS · ∇)w

)
,

where C̃ depends on T , α, β0 and ‖ũ‖L∞((0,T )×Ω). We have used that the weight function ϕ is greater than a
strictly positive constant which only depends on T .

In the sequel of this subsection, we will denote by C̃ various constants depending on T , α, β0 and ‖ũ‖L∞((0,T )×Ω)

(thus depending on ‖ã‖W 1,∞(0,T )2 and ‖r̃‖L∞(0,T )), and we will denote by C various constants only depending
on T and β0. Integrating by parts, we have, for I12,

I12 = − 2sλ
∫ T

0

∫
Ω̃F (t)

ϕ∆w · (∇w∇β)

= sλ

∫ T

0

∫
Ω̃F (t)

ϕ∇|∇w|2 · ∇β + 2sλ
∫ T

0

∫
Ω̃F (t)

∇w : (∇w∇(ϕ∇β))

+ 2sλ
∫ T

0

∫
∂Ω̃S(t)

ϕ(∇w n) ·
(
∇w∇β

)
− 2sλ

∫ T

0

∫
∂Ω

ϕ(∇w n) ·
(
∇w∇β

)
= − sλ

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2
(
∆β + λ|∇β|2

)
+ 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w∇β|2

+ 2sλ
∫ T

0

∫
Ω̃F (t)

ϕtr(∇wD2β∇wt) − sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)|∇w|2 + sλ

∫ T

0

∫
∂Ω

ϕ(∇β · n)|∇w|2

+ 2sλ
∫ T

0

∫
∂Ω̃S(t)

ϕ(∇w n) ·
(
∇w∇β

)
− 2sλ

∫ T

0

∫
∂Ω

ϕ(∇w n) ·
(
∇w∇β

)
,
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where D2β is the matrix (∂2
i,jβ)i,j . For the boundary terms, we notice that

2(∇w n) ·
(
∇w∇β

)
− (∇β · n)|∇w|2 = 2(∇β · n) |∇wn|2 + 2(∇β · τ)(∇w τ) · (∇w n)

−(∇β · n)|∇w n|2 − (∇β · n)|∇w τ |2,

where τ is the tangent vector to the boundaries ∂Ω̃S(t) and ∂Ω. Thus, since β is zero on the two boundaries,
we obtain that

2(∇w n) ·
(
∇w∇β

)
− (∇β · n)|∇w|2 = (∇β · n)

(
|∇w n|2 − |∇w τ |2

)
.

Moreover, on ∂Ω, w is zero and consequently ∇w τ = 0. On ∂Ω̃S(t), w satisfies (2.3) and ∇w τ = e−sV
∗
γn.

Therefore, we have, for I12,

I12 = − sλ

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2
(
∆β + λ|∇β|2

)
+ 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w∇β|2

+ 2sλ
∫ T

0

∫
Ω̃F (t)

ϕtr(∇wD2β∇wt) + sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)
(
|∇wn|2 − e−2sV∗

γ2
)

− sλ

∫ T

0

∫
∂Ω

ϕ(∇β · n) |∇w n|2 .

At last, we obtain:

I12 ≥ − sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2 − C̃

λ
K2 + sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)
(
|∇w n|2 − e−2sV∗

γ2
)

− sλ

∫ T

0

∫
∂Ω

ϕ(∇β · n) |∇wn|2 ,

≥ − sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2 − C̃

λ
K2 + sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)
(
|∇w n|2 − e−2sV∗

γ2
)
,

according to properties (1.26) and (1.25) satisfied by β. We consider

I13 = − 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2∆w · w

= 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2 + 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ
(
∇w∇

(
|∇β|2

))
· w

+ 2sλ3

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2
(
∇w∇β

)
· w + 2sλ2

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇β|2(∇w n) · w.

Therefore,

I13 ≥ 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2 − C̃

s
K1 −

C̃

s
K2 + 2sλ2

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇β|2(∇wn) · w.
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This inequality is obtained thanks to Cauchy-Schwarz inequality. We also define

I21 = s2λ2

∫ T

0

∫
Ω̃F (t)

ϕ2|∇β|2w ·
(
∂tw + (ũS · ∇)w

)
=

1
2
s2λ2

∫ T

0

∫
Ω̃F (t)

ϕ2|∇β|2
(
∂t|w|2 + (ũS · ∇)|w|2

)
= −1

2
s2λ2

∫ T

0

∫
Ω̃F (t)

|w|2
(
∂t(ϕ2|∇β|2) + ũS · ∇(ϕ2|∇β|2)

)
= −s2λ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|w|2
(
∂tϕ+ ũS · ∇ϕ

)
−s2λ2

∫ T

0

∫
Ω̃F (t)

ϕ2|w|2∇β ·
(
∂t∇β + (ũS · ∇)∇β

)
,

thanks to formula (2.9) and property (2.1). We obtain:

I21 ≥ − C̃

sλ
K1.

Next, we have

I22 = − 2s3λ3

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|2w ·
(
∇w∇β

)
= −s3λ3

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|2∇|w|2 · ∇β

= s3λ3

∫ T

0

∫
Ω̃F (t)

|w|2div (ϕ3|∇β|2∇β) + s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n

= 3s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2 + s3λ3

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2div (|∇β|2∇β)

+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n.

Therefore,

I22 ≥ 3s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2 − C̃

λ
K1 + s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n.

At last, we have

I23 = −2s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2.
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Reassembling all these inequalities, we conclude that

(
L1(w), L2(w)

)
2
≥ s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2 + sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2

+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n+ sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)|∇w n|2 − C̃

(
1
s

+
1
λ

)
K1

−C̃
(

1
s

+
1
λ

)
K2 − sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sV∗
ϕ(∇β · n)γ2

+ 2sλ2

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇β|2(∇w n) · w −
∫ T

0

∫
∂Ω̃S(t)

(
∇w n

)
·
(
∂tw + (ũS · ∇)w

)
.

As we will see later, the last term, which comes from the fluid-structure interaction, will be bounded thanks to
the solid equations. The last hypothesis of (1.9) is important at this step of the proof to deduce, from estimates
on w on the boundary, estimates on the structure motion. Indeed, we have∫

∂Ω̃S(t)

|w|2 = e−2sV∗
∫
∂Ω̃S(t)

|ḃ+ γ(x− ã)⊥|2.

Since condition (1.9) is prescribed, if we develop this expression, we notice that the scalar product is equal to 0.
Thus, we obtain ∫

∂Ω̃S(t)

|w|2 = e−2sV∗
∫
∂Ω̃S(t)

|ḃ|2 + e−2sV∗
∫
∂Ω̃S(t)

|γ(x− ã)⊥|2.

Moreover, since ∫
∂Ω̃S(t)

|(x− ã)⊥|2 =
∫
∂Ω̃S(t)

|x− ã|2 =
∫
∂ΩS(0)

|y − a0|2,

we deduce that

e−2sV∗(|ḃ|2 + γ2
)
≤ C

∫
∂Ω̃S(t)

|w|2. (2.10)

Therefore,

sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sV∗
ϕ(∇β · n)γ2 ≤ Csλ

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n.

Here, we have used that ∇β · n ≥ c2 > 0 on ∂Ω̃S(t). Thus, for s ≥ s0 and λ ≥ λ0, where s0 and λ0 depend
on T , α, β0 and the norm of ũ in L∞((0, T ) × Ω), equation (2.8) becomes:

‖L1(w)‖2
2 + ‖L2(w)‖2

2 + 2s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2 + 2sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2

− C̃

(
1
s

+
1
λ

)
K1 − C̃

(
1
s

+
1
λ

)
K2 + s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|∇β|2|w|2∇β · n

+ 2sλ
∫ T

0

∫
∂Ω̃S(t)

ϕ(∇β · n)|∇w n|2 − 2
∫ T

0

∫
∂Ω̃S(t)

(
∇w n

)
·
(
∂tw + (ũS · ∇)w

)
≤ ‖gs‖2

2 − 4sλ2

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇β|2(∇w n) · w.
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Now, we notice, according to the definition (2.6) of L1, that∫ T

0

∫
Ω̃F (t)

1
sϕ

|∆w|2 ≤ C

∫ T

0

∫
Ω̃F (t)

1
sϕ

|L1(w)|2 + Cs3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2.

In the same way, according to the definition (2.7) of L2, we have∫ T

0

∫
Ω̃F (t)

1
sϕ

|∂tw|2 ≤ C

∫ T

0

∫
Ω̃F (t)

1
sϕ

|L2(w)|2 +
C̃

s2
K1 +

C̃

s
K2 + Csλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2.

Moreover, we can write that

‖gs‖2
2 ≤ C̃

s
K1 +

C̃

sλ2
K2 + C

∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2.

Indeed, since the definition (1.27) of V involves t(T − t) to the power 4 at the denominator, we have

|∂tV + ũ · ∇V| ≤ C̃λϕ5/4.

We also notice that

−4sλ2

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇β|2(∇w n) · w ≤ C

∫ T

0

∫
∂Ω̃S(t)

λ|∇w n|2 + s2λ3ϕ2|w|2,

and ∫ T

0

∫
∂Ω̃S(t)

(
∇w n

)
·
(
∂tw + (ũS · ∇)w

)
≤ C

∫ T

0

∫
∂Ω̃S(t)

∣∣∇wn∣∣2 +
∣∣∂tw + (ũS · ∇)w

∣∣2.
At last, according to the property (1.25) satisfied by β, we have

K1 ≤ C̃s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|∇β|4|w|2 + s3λ4

∫ T

0

∫
ω0

ϕ3|w|2,

and

K2 ≤ C̃sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇β|2|∇w|2 + sλ2

∫ T

0

∫
ω0

ϕ|∇w|2.

Therefore, we obtain, for s ≥ s1 and λ ≥ λ1 where s1 and λ1 depends on T , α, β0 and the norm of ũ in
L∞((0, T ) × Ω): ∫ T

0

∫
Ω̃F (t)

1
sϕ

|∆w|2 +
∫ T

0

∫
Ω̃F (t)

1
sϕ

|∂tw|2 + s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2

+ sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2 + s3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|w|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

ϕ|∇w n|2

≤ C̃

(∫ T

0

∫
∂Ω̃S(t)

∣∣∂tw + (ũS · ∇)w
∣∣2 +

∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2

+
∫ T

0

∫
ω0

(
s3λ4ϕ3|w|2 + sλ2ϕ|∇w|2

))
.



A CONTROLLABILITY RESULT IN FLUID-STRUCTURE INTERACTION 23

Now, we come back to our initial variable v. Thanks to (2.4) and (2.5), we obtain the following estimates:

sλ2

∫ T

0

∫
Ω̃F (t)

e−2sVϕ|∇v|2 ≤ C̃

(
sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2 + s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2
)
,

∫ T

0

∫
Ω̃F (t)

e−2sV

sϕ
|∆v|2 ≤ C̃

(∫ T

0

∫
Ω̃F (t)

1
sϕ

|∆w|2 + sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|∇w|2

+sλ2

∫ T

0

∫
Ω̃F (t)

ϕ|w|2 + s3λ4

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2
)
,

∫ T

0

∫
Ω̃F (t)

e−2sV

sϕ
|∂tv|2 ≤ C̃

(∫ T

0

∫
Ω̃F (t)

1
sϕ

|∂tw|2 + sλ2

∫ T

0

∫
Ω̃F (t)

ϕ3|w|2
)

sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2 ≤ Csλ

∫ T

0

∫
∂Ω̃S(t)

|∇wn|2 + Cs3λ3

∫ T

0

∫
∂Ω̃S(t)

ϕ3|w|2.

Moreover, since

∂tw + (ũS · ∇)w = e−sV
(
∂tv + (ũS · ∇)v − s

(
e10λM − eλ(8M+β)

) d
dt

(
1

t4(T − t)4

)
v

)
,

we have

∫
∂Ω̃S(t)

∣∣∂tw + (ũS · ∇)w
∣∣2 ≤ C

(∫
∂Ω̃S(t)

e−2sV ∣∣∂tv + (ũS · ∇)v
∣∣2 + s2

∫
∂Ω̃S(t)

e−2sVϕ3|v|2
)
.

Finally, we obtain, for s ≥ s2 and λ ≥ λ2 where s2 and λ2 only depend on T , α, β0 and the norm of ũ in
L∞((0, T ) × Ω),

∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C̃

(∫ T

0

∫
∂Ω̃S(t)

e−2sV ∣∣∂tv + (ũS · ∇)v
∣∣2 +

∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2

+
∫ T

0

∫
ω0

e−2sV(s3λ4ϕ3|v|2 + sλ2ϕ|∇v|2
))

.

Thanks to the equations of the structure motion, we are able to obtain estimates on the acceleration of the
motion. Indeed, we deduce from the second and third equations of system (1.22) that

sλ

∫ T

0

e−2sV∗
ϕ∗(|b̈|2 + |γ̇|2

)
≤ sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|q|2.
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Now, we have ∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v|2 ≤
∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ
(
|∇v n|2 + |∇v τ |2

)
≤ C

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ
(
|∇v n|2 + |v|2

)
,

since on ∂Ω̃S(t), ∇v τ = γn and since (2.10) is satisfied. This last inequality is very strong and holds in our
problem since the fluid velocity has a specific writing. Thus, we obtain for s ≥ s3 and λ ≥ λ3 where s3 and λ3

only depend on T , α, β0 and the norm of ũ in L∞((0, T ) × Ω),∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗|b̈|2

sλ

∫ T

0

e−2sV∗
ϕ∗|γ̇|2 + s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C̃

(∫ T

0

∫
∂Ω̃S(t)

e−2sV ∣∣∂tv + (ũS · ∇)v
∣∣2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|q|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2

+
∫ T

0

∫
ω0

e−2sV(s3λ4ϕ3|v|2 + sλ2ϕ|∇v|2
))

.

Next, we notice that, on ∂Ω̃S(t)

∂tv + (ũS · ∇)v = b̈+ γ̇(x − ã)⊥ − γr̃(x− ã). (2.11)

Thus, we finally get that, for s ≥ s4 and λ ≥ λ4 where s4 and λ4 only depend on T , α, β0 and the norm of ũ
in L∞((0, T )× Ω),∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗|b̈|2

sλ

∫ T

0

e−2sV∗
ϕ∗|γ̇|2 + s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C̃

(
sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|q|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2

+
∫ T

0

∫
ω0

e−2sV(s3λ4ϕ3|v|2 + sλ2ϕ|∇v|2
))

. (2.12)

We recall that, in order to estimate the last term in (2.11), we have used (2.10).

2.2. Estimate on the pressure

We now want to obtain a bound on the two integrals in q in the right-hand side of this expression in terms
of a local integral of q. Applying the divergence operator to the first equation of (1.22), we obtain, for almost
every t ∈ (0, T ),

∆q(t) = div
(
(ũ · ∇)v

)
(t) in Ω̃F (t). (2.13)
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Here, the capital point is to apply to this elliptic problem defined on the regular domain Ω̃F (t) the Carleman
inequality obtained in [13]. It allows to assert that, for almost every t ∈ (0, T ), there exists a constant C
depending on Ω and ω, and two real numbers λ and τ such that, for all λ ≥ λ and τ ≥ τ , we have

τ2λ2

∫
Ω̃F (t)

e2τψ(t)ψ(t)2|q(t)|2 +
∫

Ω̃F (t)

e2τψ(t)|∇q(t)|2 ≤ C

(
τ

∫
Ω̃F (t)

e2τψ(t)ψ(t)
∣∣(ũ · ∇)v

∣∣2(t)
+

√
τe2τ‖q(t)‖2

H1/2(∂Ω∪∂Ω̃S(t))
+
∫
ω0

e2τψ(t)
(
|∇q(t)|2 + τ2λ2ψ(t)2|q(t)|2

))
,

where ψ is defined by
ψ(t) = eλβ(t,·) in Ω̃F (t), for all t ∈ (0, T ).

Next, proceeding as in [10] (we refer to this paper for complementary explanations and computations), we
eliminate the local integral in ∇q in the right-hand side by integrating by parts several times and using (2.13).
If we consider an open set ω1 such that ω0 ⊂⊂ ω1 ⊂⊂ ω, we get∫

ω0

e2τψ(t)|∇q(t)|2 ≤ C

(
τ2λ2

∫
ω1

e2τψ(t)ψ(t)2|q(t)|2 +
∫
ω1

e2τψ(t)
∣∣(ũ · ∇)v

∣∣2(t)) .
Thus, we have

τ2λ2

∫
Ω̃F (t)

e2τψ(t)ψ(t)2|q(t)|2 +
∫

Ω̃F (t)

e2τψ(t)|∇q(t)|2

≤ C

(
τ

∫
Ω̃F (t)

e2τψ(t)ψ(t)
∣∣(ũ · ∇)v

∣∣2(t) +
√
τe2τ‖q(t)‖2

H1/2(∂Ω∪∂Ω̃S(t))

+ τ2λ2

∫
ω1

e2τψ(t)ψ2|q(t)|2
)
.

To use this estimate in (2.12), we see that we have to take τ =
se8λM

t4(T − t)4
. Next, we multiply this equation by

exp
(
−2s

e10λM

t4(T − t)4

)
,

and we integrate in time. In this way, we obtain that

s2λ2

∫ T

0

∫
Ω̃F (t)

e−2sVϕ2|q|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2 ≤ C

(
s

∫ T

0

∫
Ω̃F (t)

e−2sVϕ
∣∣(ũ · ∇)v

∣∣2
+ s1/2

∫ T

0

e−2sV∗
(ϕ∗)1/2‖q(t)‖2

H1/2(∂Ω∪∂Ω̃S(t))
+ s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|q|2
)
, (2.14)

where ϕ∗ and V∗ are defined in (1.28) and (1.29). Moreover, since the boundary term satisfies

sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|q|2 ≤ C

∫ T

0

∫
Ω̃S(t)

(
s2λ2ϕ2

∣∣e−sVq∣∣2 +
∣∣∇ (

e−sVq
)∣∣2) ,

it is bounded by the terms in the right-hand side of (2.14). Therefore, for the two terms in q in the right-hand
side of (2.12), we have, for s ≥ s5 and λ ≥ λ5 where s5 and λ5 only depend on T , α, β0 and the norm of ũ in
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L∞((0, T ) × Ω),

sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|q|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV |∇q|2 ≤ C

(
s

∫ T

0

∫
Ω̃F (t)

e−2sVϕ
∣∣(ũ · ∇)v

∣∣2
+ s1/2

∫ T

0

e−2sV∗
(ϕ∗)1/2‖q(t)‖2

H1/2(∂Ω∪∂Ω̃S(t))
+ s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|q|2
)
. (2.15)

We now have to estimate the trace of the pressure. To do this, we follow the method introduced in [12] and
in [10]. We define

v∗ = s1/4e−sV
∗
(ϕ∗)1/4v, q∗ = s1/4e−sV

∗
(ϕ∗)1/4q, ḃ∗ = s1/4e−sV

∗
(ϕ∗)1/4ḃ, γ∗ = s1/4e−sV

∗
(ϕ∗)1/4γ.

Moreover, we impose that b∗(T ) = 0. We prove that (v∗, q∗, ḃ∗, γ∗) is solution of a problem similar to (1.22).
Next, according to the regularity result given by Proposition 2, we know that q∗ belongs to L2(0, T ;H1(Ω̃F (t)))
and its norm in this space is bounded by the norm of the right-hand sides in L2. Consequently, after several
computations, we obtain that

∫ T

0

‖q∗(t)‖2
H1/2(∂Ω∪∂Ω̃S(t))

≤ C̃

(
s5/2

∫ T

0

∫
Ω̃F (t)

e−2sVϕ3|v|2 + s5/2
∫ T

0

e−2sV∗
(ϕ∗)3

(
|ḃ|2 + |γ|2

))
. (2.16)

Therefore, inequality (2.12) becomes, thanks to (2.15) and (2.16), for s ≥ s6 and λ ≥ λ6 where s6 and λ6 only
depend on T , α, β0 and the norm of ũ in L∞((0, T ) × Ω),∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗

(∣∣b̈∣∣2 + |γ̇|2
)

+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C̃

(
s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|q|2 +
∫ T

0

∫
ω0

e−2sV(s3λ4ϕ3|v|2 + sλ2ϕ|∇v|2
))

. (2.17)

2.3. Estimate on the local integral of the pressure

We follow the arguments employed in [10]. Until now, we did not need hypotheses on the acceleration of
the given fluid and structure motion (i.e. on ∂tũ, ¨̃a and ˙̃r). It will be necessary in this subsection to obtain
estimates on ∂tv. First of all, we define the time-dependent weight

µ̂(t) = sλe−sV̂ ϕ̂.

Then, according to (1.28)-(1.29) and to Poincaré-Wirtinger’s inequality, we have

s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|q|2 ≤
∫ T

0

∫
ω1

µ̂2|q|2 ≤ C

∫ T

0

∫
ω1

µ̂2|∇q|2,

if we prescribe the condition on q: ∫
ω1

q(t) = 0.
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From the first equation of system (1.22), we obtain

s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|∇q|2 ≤ C

(∫ T

0

∫
ω1

µ̂2|∆v|2 +
∫ T

0

∫
ω1

µ̂2|∂tv|2

+‖ũ‖2
L∞((0,T )×Ω)

∫ T

0

∫
ω1

µ̂2|∇v|2
)
. (2.18)

Now, we want to get estimates on the local integrals of v in the right-hand side of this inequality. To begin
with, we consider the term in ∆v. Let us define an open set ω2 such that ω1 ⊂⊂ ω2 ⊂⊂ ω. We introduce the
function

µ̂χ0∆v(T − t),
where χ0 belongs to C2

c (ω2) and χ0 = 1 in ω1 and we consider the problem satisfied by this function. In this
stage, we can exactly use the arguments developed in [10] as if there was no structure. Indeed, the treatment is
completely local, and thus the motion of the structure does not interfere. Therefore, we directly give the final
estimate: ∫ T

0

∫
ω1

µ̂2|∆v|2 ≤ C

(∫ T

0

∫
ω2

| ˙̂µ|2|v|2 +
∫ T

0

∫
ω2

µ̂2
(
‖ũ‖2

L∞((0,T )×Ω)|∇v|2 + |v|2
))

. (2.19)

The difficult part of the proof lies in obtaining estimates on ∂tv. Contrarily to the estimate on ∆v, a local
treatment can not be done. Therefore, we have to consider the global fluid-structure problem and the action of
the structure on the fluid motion. Let us define a new time-dependent weight µ:

µ(t) = s15/4e−2sV̂+sV∗
ϕ̂15/4.

We define (v̂, π̂, ˙̂c, τ̂ ) = (µv, µq, µḃ, µγ) and we suppose that ĉ(T ) = 0. We notice that (v̂, π̂, ˙̂c, τ̂) is solution of
the problem, for all t ∈ (0, T )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂tv̂ − (ũ · ∇)v̂

)
(t, x) − div σ(v̂, π̂)(t, x) = −µ̇(t)v(t, x), ∀x ∈ Ω̃F (t),

m¨̂c(t) = −
∫
∂Ω̃S(t)

σ(v̂, π̂)n+mµ̇(t)ḃ,

J ˙̂τ(t) = −
∫
∂Ω̃S(t)

(σ(v̂, π̂)n) · (x− ã(t))⊥ + Jµ̇(t)γ(t),

div v̂(t, x) = 0, ∀x ∈ Ω̃F (t),

v̂(t, x) = 0, ∀x ∈ ∂Ω,

v̂(t, x) = ˙̂c(t) + τ̂ (t)(x− ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

v̂(T, ·) = 0 in Ω̃F (T ), ĉ(T ) = 0, ˙̂c(T ) = 0, τ̂(T ) = 0.

(2.20)

Now, we come back to the term we want to estimate:∫ T

0

∫
ω1

µ̂2|∂tv|2 =
∫ T

0

∫
ω1

µ̂2µ−2|µ∂tv|2 =
∫ T

0

∫
ω1

µ̂2µ−2|∂tv̂ − µ̇v|2. (2.21)

By integrating by parts in time, we get∫ T

0

∫
ω1

µ̂2µ−2|∂tv̂|2 =
1
2

∫ T

0

∫
ω1

d2

dt2
(
µ̂2µ−2

)
|v̂|2 −

∫ T

0

∫
ω1

µ̂2µ−2∂ttv̂ · v̂.
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Therefore, since the weight function in the integral in |v̂|2 is bounded, we obtain:∫ T

0

∫
ω1

µ̂2µ−2|∂tv̂|2 ≤ C

∫ T

0

∫
ω1

|v̂|2 − λ6

∫ T

0

∫
ω1

µ∗∂ttv̂ · v̂,

where µ∗ is defined by

µ∗ =
1
λ6
µ̂2µ−2 = s−11/2λ−4e−2sV∗+2sV̂ ϕ̂−11/2.

Moreover, we have

−λ6

∫ T

0

∫
ω1

µ∗∂ttv̂ · v̂ ≤ 1
2

∫ T

0

∫
ω1

|µ∗|2|∂ttv̂|2 +
1
2
λ12

∫ T

0

∫
ω1

|v̂|2.

Consequently, ∫ T

0

∫
ω1

µ̂2µ−2|∂tv̂|2 ≤ 1
2

∫ T

0

∫
ω1

|µ∗|2|∂ttv̂|2 + Cλ12

∫ T

0

∫
ω1

µ2|v|2.

Thus, relation (2.21) becomes∫ T

0

∫
ω1

µ̂2|∂tv|2 ≤ C

∫ T

0

∫
ω1

(
λ12µ2 + µ̇2

)
|v|2 +

∫ T

0

∫
ω1

|µ∗|2|∂ttv̂|2, (2.22)

since
µ̂2µ−2 = s−11/2λ2e−2sV∗+2sV̂ ϕ̂−11/2

is bounded on (0, T ). We will now concentrate on the integral involving ∂ttv̂. To obtain an estimate on this
term, we use Proposition 3 which is given for a direct problem but holds equivalently for an adjoint system.
Considering the problem satisfied by (µ∗v̂, µ∗π̂, µ∗ ˙̂c, µ∗τ̂ ), we have, in particular

‖µ∗v̂‖H2(0,T ;L2(ω1))2 ≤ ‖µ∗v̂‖H2(0,T ;L2(Ω̃F (t)))2 ≤ C
(
‖µ∗µ̇v‖H1(0,T ;L2(Ω̃F (t)))2

+ ‖µ̇∗v̂‖H1(0,T ;L2(Ω̃F (t)))2 + ‖µ∗µ̇ḃ‖H1(0,T )2 + ‖µ̇∗ ˙̂c‖H1(0,T )2 + ‖µ∗µ̇γ‖H1(0,T ) + ‖µ̇∗τ̂‖H1(0,T )

)
,

where the constant C depends on T , α, the norm of ũ in L∞(0, T ;L∞(Ω̃F (t)))2 and in W 1,4(0, T ;L4(Ω̃F (t)))2

and the norm of (ã, r̃) in H2(0, T )2 ×H1(0, T ). Thus

‖µ∗∂ttv̂‖L2((0,T )×ω1)2 ≤ C
(
‖µ̇∗∂tv̂‖L2((0,T )×ω1)2 + ‖µ̈∗v̂‖L2((0,T )×ω1)2

+ ‖µ∗µ̇v‖H1(0,T ;L2(Ω̃F (t)))2 + ‖µ̇∗v̂‖H1(0,T ;L2(Ω̃F (t)))2 + ‖µ∗µ̇ḃ‖H1(0,T )2 + ‖µ̇∗ ˙̂c‖H1(0,T )2

+ ‖µ∗µ̇γ‖H1(0,T ) + ‖µ̇∗τ̂‖H1(0,T )

)
.

Now, we come back to the variables (v, ḃ, γ). We have

‖µ∗∂ttv̂‖L2((0,T )×ω1)2 ≤ C
(
‖µ̇∗µv‖H1(0,T ;L2(Ω̃F (t)))2 + ‖µ̈∗µv‖L2(0,T ;L2(Ω̃F (t)))2

+ ‖µ∗µ̇v‖H1(0,T ;L2(Ω̃F (t)))2 + ‖µ∗µ̇ḃ‖H1(0,T )2 + ‖µ̇∗µḃ‖H1(0,T )2 + ‖µ∗µ̇γ‖H1(0,T ) + ‖µ̇∗µγ‖H1(0,T )

)
.

Thus, (2.22) becomes

‖µ̂∂tv‖2
L2((0,T )×ω1)

≤ C
(
λ12‖µv‖2

L2((0,T )×ω1)
+ ‖µ̇v‖2

L2((0,T )×ω1)

+ ‖µ̇∗µv‖2
H1(0,T ;L2(Ω̃F (t)))2

+ ‖µ̈∗µv‖2
L2(0,T ;L2(Ω̃F (t)))2

+ ‖µ∗µ̇v‖2
H1(0,T ;L2(Ω̃F (t)))2

+ ‖µ∗µ̇ḃ‖2
H1(0,T )2 + ‖µ̇∗µḃ‖2

H1(0,T )2 + ‖µ∗µ̇γ‖2
H1(0,T ) + ‖µ̇∗µγ‖2

H1(0,T )

)
.
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Therefore, on the one hand, we have local integrals on the velocity v which we will keep in our final Carleman
estimate and, on the other hand, we have global integrals in v, ḃ and γ and their first derivatives with respect
to time which will be eliminated thanks to the estimate (2.17). Indeed, we notice that

|µ∗µ̇| + |µ̇∗µ| ≤ Cs−3/4λ−4e−sV
∗
ϕ̂−1/2, |µ̈∗µ| + |µ̇∗µ̇| + |µ∗µ̈| ≤ Cs1/4λ−4e−sV

∗
ϕ̂3/4.

Therefore, according to definition (1.10), we get

∫ T

0

∫
ω1

|µ̂2|∂tv|2 ≤ C

(∫ T

0

∫
ω1

(
λ12µ2 + µ̇2

)
|v|2 + s1/2λ−8

∫ T

0

∫
Ω̃F (t)

e−2sV∗
ϕ̂3/2|v|2

+ s1/2λ−8

∫ T

0

e−2sV∗
ϕ̂3/2

(
|ḃ|2 + |γ|2

)
+ s−3/2λ−8

∫ T

0

∫
Ω̃F (t)

e−2sV∗
ϕ̂−1

(
|∂tv|2 + |∇v|2

)
+ s−3/2λ−8

∫ T

0

e−2sV∗
ϕ̂−1

(
|b̈|2 + |γ̇|2

))
,

where the constant C depends on T , α, the norm of ũ in L∞(0, T ;L∞(Ω̃F (t)))2 and in W 1,4(0, T ;L4(Ω̃F (t)))2

and the norm of (ã, r̃) in H2(0, T )2 ×H1(0, T ). It remains to reassemble all these terms to obtain an estimate
on the local integral on the pressure. Thanks to (2.19) and the last inequality, (2.18) becomes

s2λ2

∫ T

0

∫
ω1

e−2sVϕ2|q|2 ≤ C

(∫ T

0

∫
ω2

µ̂2|∇v|2 +
∫ T

0

∫
ω2

(
λ12µ2 + |µ̇|2

)
|v|2

+ s1/2λ−8

∫ T

0

∫
Ω̃F (t)

e−2sV∗
ϕ̂3/2|v|2 + s1/2λ−8

∫ T

0

e−2sV∗
ϕ̂3/2

(
|ḃ|2 + |γ|2

)
+ s−3/2λ−8

∫ T

0

∫
Ω̃F (t)

e−2sV∗
ϕ̂−1

(
|∂tv|2 + |∇v|2

)
+ s−3/2λ−8

∫ T

0

e−2sV∗
ϕ̂−1

(
|b̈|2 + |γ̇|2

))
.

We see that terms in v, b and γ can be eliminated using the left-hand side of (2.17). Finally inequality (2.17)
becomes

∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗

(∣∣b̈∣∣2 + |γ̇|2
)

+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C̃

(∫ T

0

∫
ω2

µ̂2|∇v|2 +
∫ T

0

∫
ω2

(
λ12µ2 + |µ̇|2

)
|v|2

)
, (2.23)

for s ≥ s7 and λ ≥ λ7 where s7 and λ7 depend on T , α, β0, the norms of ã in H2(0, T )2, r̃ in H1(0, T ) and ũ

in L∞((0, T ) × Ω)2 ∩W 1,4(0, T ;L4(Ω̃F (t)))2. To conclude the proof, we notice that it is not necessary to have
a control both on v and on ∇v. Indeed, if we consider a function χ1 belonging to C2

c (ω) such that

0 ≤ χ1 ≤ 1, χ1 = 1 in ω2,
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we notice that∫ T

0

∫
ω2

µ̂2|∇v|2 ≤
∫ T

0

∫
ω

χ1µ̂
2|∇v|2 = −

∫ T

0

∫
ω

div (χ1µ̂
2∇v) · v

≤ 1
2

∫ T

0

∫
ω

µ̂2∆χ1|v|2 −
∫ T

0

∫
ω

µ̂2χ1∆v · v

≤ C

(∫ T

0

∫
ω

µ̂2|v|2 +
ε

sλ

∫ T

0

∫
ω

e−2sV∗ 1
ϕ̂
|∆v|2 +

sλ

ε

∫ T

0

∫
ω

e2sV∗
ϕ̂µ̂4|v|2

)

≤ C

(
ε

sλ

∫ T

0

∫
Ω̃F (t)

e−2sV 1
ϕ
|∆v|2 +

s5λ5

ε

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂5|v|2
)
,

for ε > 0 sufficiently small. Thus, (2.23) becomes, for s ≥ s8, λ ≥ λ8,∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
sϕ

(
|∆v|2 + |∂tv|2

)
+ sλ2ϕ|∇v|2 + s3λ4ϕ3|v|2

)
+ sλ

∫ T

0

e−2sV∗
ϕ∗

(∣∣b̈∣∣2 + |γ̇|2
)

+ s3λ3

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + sλ

∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ|∇v n|2

≤ C

(
s19/2λ12

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|v|2
)
.

The constants C, s8, λ8 depend on T , α, β0 and the norms of ã in H2(0, T )2, r̃ in H1(0, T ) and ũ in L∞((0, T )×
Ω)2 ∩ W 1,4(0, T ;L4(Ω̃F (t)))2. Thus, we obtain inequality (1.30) with a constant C depending only on T , α
and β0.

3. Null controllability of the linear system

In this section, we will prove Theorem 2. Under the hypotheses given in this theorem, we will prove the
existence of a control f such that the solution of (1.21) satisfies

u(T, ·) = 0 in Ω̃F (t), a(T ) = 0, ȧ(T ) = 0, θ(T ) = 0, r(T ) = 0. (3.1)

3.1. An observability inequality

To begin with, we will deduce from Theorem 3 an observability inequality for the adjoint problem (1.22)
associated to the linearized problem.

Proposition 4. We consider s ≥ ŝ and λ ≥ λ̂ such that Carleman inequality (1.30) holds. For any ã ∈
H2(0, T )2, r̃ ∈ H1(0, T ) satisfying (1.17) for some α > 0 and ũ satisfying conditions (1.18) to (1.20) such that

‖ã‖H2(0,T )2 + ‖r̃‖H1(0,T ) + ‖ũ‖L∞(0,T ;L∞(Ω̃F (t)))2 + ‖ũ‖W 1,4(0,T ;L4(Ω̃F (t)))2 ≤ R,

there exists a constant C depending on T , α, R, s and λ such that every solution of (1.22) satisfies∫
ΩF (0)

|v(0)|2 + |ḃ(0)|2 + |γ(0)|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
ϕ

(
|∆v|2 + |∂tv|2

)
+ ϕ|∇v|2 + ϕ3|v|2

)
+
∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 ≤ C

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|v|2. (3.2)
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Proof of Proposition 4. Let us define a function η ∈ C1(0, T ) such that

η = 1 on [0, T/2], η = 0 on [3T/4, T ].

Next, we consider (v, q, ḃ, γ) = (η v, η q, η ḃ, η γ) such that b(T ) = 0 where (v, q, b, s) is solution of (1.22). It
satisfies the following system: for all t ∈ (0, T ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tv − (ũ · ∇)v − div σ(v, q) = −η̇ v in Ω̃F (t),

mb̈ = −
∫
∂Ω̃S(t)

σ(v, q)n+mη̇ ḃ,

Jγ̇ = −
∫
∂Ω̃S(t)

(σ(v, q)n) · (x− ã)⊥ + Jη̇ γ,

div v = 0 in Ω̃F (t),
v = 0 on ∂Ω,

v = ḃ+ γ(x− ã)⊥ on ∂Ω̃S(t),

v(T, ·) = 0 in Ω̃F (T ), ḃ(T ) = 0, b(T ) = 0, γ(T ) = 0.

Thanks to Proposition 2 applied to this adjoint problem, we have

‖v‖U(0,T ;Ω̃F (t))2 + ‖ḃ‖H1(0,T )2 + ‖γ‖H1(0,T ) ≤ C
(
‖η̇ v‖L2(0,T ;L2(Ω̃F (t)))2 + ‖η̇ ḃ‖L2(0,T )2

+‖η̇ γ‖L2(0,T )

)
.

This implies that

‖v‖U(0,T/2;Ω̃F (t))2 + ‖ḃ‖H1(0,T/2)2 + ‖γ‖H1(0,T/2) ≤ C
(
‖v‖L2(T/2,3T/4;L2(Ω̃F (t)))2

+ ‖ḃ‖L2(T/2,3T/4)2 + ‖γ‖L2(T/2,3T/4)

)
.

Therefore, since the weight functions are bounded in [T/2, 3T/4], we have

∫
ΩF (0)

|v(0)|2 + |ḃ(0)|2 + |γ(0)|2 ≤ C

(∫ 3T/4

T/2

∫
Ω̃F (t)

e−2sVϕ3|v|2

+
∫ 3T/4

T/2

e−2sV∗
(ϕ∗)3

(
|ḃ|2 + |γ|2

))
.

Thus, the Carleman inequality (1.30) allows to conclude the proof of Proposition 4. �

3.2. Control of the displacement

Arguing as in [6], we can show that the conditions on the displacement a(T ) = 0 and θ(T ) = 0 required on
system (1.21) are equivalent to two linear constraints on the control f . Indeed, if we define (v1, q1, b1, γ1) and
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(v2, q2, b2, γ2) as the solutions of the following problems

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂tv1 − (ũ · ∇)v1

)
(t, x) − div σ(v1, q1)(t, x) = 0, ∀x ∈ Ω̃F (t),

m
(
b̈1(t) + 1

)
= −

∫
∂Ω̃S(t)

σ(v1, q1)n,

Jγ̇1(t) = −
∫
∂Ω̃S(t)

(σ(v1, q1)n) · (x− ã(t))⊥,

div v1(t, x) = 0, ∀x ∈ Ω̃F (t),

v1(t, x) = 0, ∀x ∈ ∂Ω,

v1(t, x) = ḃ1(t) + γ1(t)(x − ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

v1(T, ·) = 0 in Ω̃F (T ), b1(T ) = 0, ḃ1(T ) = 0, γ1(T ) = 0,

(3.3)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂tv2 − (ũ · ∇)v2

)
(t, x) − div σ(v2, q2)(t, x) = 0, ∀x ∈ Ω̃F (t),

mb̈2(t) = −
∫
∂Ω̃S(t)

σ(v2, q2)n,

J
(
γ̇2(t) + 1

)
= −

∫
∂Ω̃S(t)

(σ(v2, q2)n) · (x− ã(t))⊥,

div v2(t, x) = 0, ∀x ∈ Ω̃F (t),

v2(t, x) = 0, ∀x ∈ ∂Ω,

v2(t, x) = ḃ2(t) + γ2(t)(x − ã(t))⊥, ∀x ∈ ∂Ω̃S(t),

v2(T, ·) = 0 in Ω̃F (T ), b2(T ) = 0, ḃ2(T ) = 0, γ2(T ) = 0,

(3.4)

a classical computation leads to

∫ T

0

∫
ω

f · v1 = −mḃ1(0) · a1 − Jγ1(0)r0 −
∫

ΩF (0)

v1(0) · u0 +ma(T ) −ma0,∫ T

0

∫
ω

f · v2 = −mḃ2(0) · a1 − Jγ2(0)r0 −
∫

ΩF (0)

v2(0) · u0 + Jθ(T ) − Jθ0.

Consequently, a(T ) = 0 and θ(T ) = 0 if and only if

∫ T

0

∫
ω

f · v1 = m1(a0, a1, r0, u0),
∫ T

0

∫
ω

f · v2 = m2(a1, θ0, r0, u0), (3.5)

where

m1(a0, a1, r0, u0) = −mḃ1(0) · a1 − Jγ1(0)r0 −
∫

ΩF (0)

v1(0) · u0 −ma0,

m2(a1, θ0, r0, u0) = −mḃ2(0) · a1 − Jγ2(0)r0 −
∫

ΩF (0)

v2(0) · u0 − Jθ0.
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We have to check that, for each initial condition (a0, a1, θ0, r0, u0) the set of functions f in L2((0, T ) × ω)
satisfying (3.5) is non empty. This will hold if v1 and v2 are non identically equal to 0 on (0, T )× ω. To prove
this, we need the following unique continuation property on the fluid equations:

Lemma 6. Let (ã, θ̃) ∈ C(0, T )2 × C(0, T ) be given. We define Ω̃S(t) by (1.15) and we suppose that (1.17) is
satisfied. We consider the following system{(

− ∂tv − (ũ · ∇)v
)
(t, x) − div σ(v, q)(t, x) = 0, ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),

div v(t, x) = 0, ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),
(3.6)

where Ω̃F (t) = Ω \ Ω̃S(t) and ũ belongs to L∞(0, T ;L∞(Ω̃F (t)))2. If

v(t, x) = 0, ∀x ∈ ω, ∀ t ∈ (0, T ),

then
v(t, x) = 0, q(t, x) = q0, ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),

where q0 is a constant.

Proof of Lemma 6. Let t0 ∈ (0, T ) be fixed. We consider a given x0 ∈ Ω̃F (t0). Then, there exists 0 < t1 < t0 <
t2 < T and an open and connected set Ω1 such that (t0, x0) ∈ (t1, t2) × Ω1 and

ω ⊂ Ω1 ⊂ Ω̃F (t), ∀ t ∈ (t1, t2).

This comes from the regularity of ã and θ̃ and from the two last conditions of (1.17). Thus, system (3.6) is
satisfied in (t1, t2)×Ω1 and we can apply the unique continuation property obtained in [7]. We deduce that v = 0
in (t1, t2)×Ω1 and in particular v(t0, x0) = 0. This proves our result. �

Thus, if we suppose that, for instance v1 = 0 on (0, T )× ω, this lemma implies that

v1(t, x) = 0, q1(t, x) = q10 , ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ),

where q10 is a constant and thus, by continuity of the velocities at the interface, ḃ1 = 0 and γ1 = 0 on (0, T ).
But according to the equation satisfied by b1, this is impossible. Thus v1 and, with the same arguments, v2 are
non identically null on ω.

To obtain a control satisfying the constraints (3.5), we follow the method presented in [15] and used in [6].
We will prove an improved observability inequality. We define the weight Θ by

Θ = e4sV̂−2sV∗
ϕ̂−10.

This weight corresponds to the inverse of the weight function in the right-hand side of inequality (3.2). We
denote by P the orthogonal projection operator from L2((0, T ) × ω) into span(v1, v2) where the measure of
L2((0, T )× ω) is the weighted measure Θ−1 dxdt. Thus, we have∫ T

0

∫
ω

Θ−1(v − P (v)) · v1 =
∫ T

0

∫
ω

Θ−1(v − P (v)) · v2 = 0, ∀ v ∈ L2((0, T ) × ω). (3.7)

We also introduce P1 and P2 the linear operators from L2((0, T ) × ω) into R such that

P (v) = P1(v)v1 + P2(v)v2, ∀ v ∈ L2((0, T ) × ω).
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Proposition 5. Under the assumptions of Proposition 4, every solution of (1.22) satisfies∫
ΩF (0)

|v(0)|2 + |ḃ(0)|2 + |γ(0)|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
ϕ

(
|∆v|2 + |∂tv|2

)
+ ϕ|∇v|2 + ϕ3|v|2

)
+
∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|v|2 + |P1(v)|2 + |P2(v)|2 ≤ C

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|v − P (v)|2. (3.8)

Proof of Proposition 5. To prove this inequality, we will argue by contradiction. Assume that this inequality
does not hold and let us define, for each n ∈ N, (vn, qn, bn, γn) a solution of (1.22) such that

1 =
∫

ΩF (0)

|vn(0)|2 + |ḃn(0)|2 + |γn(0)|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
ϕ

(
|∆vn|2 + |∂tvn|2

)
+ ϕ|∇vn|2

)
+
∫ T

0

∫
Ω̃F (t)

e−2sVϕ3|vn|2 +
∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|vn|2 + |P1(vn)|2 + |P2(vn)|2

> n

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|vn − P (vn)|2. (3.9)

This implies that (P1(vn)) and (P2(vn)) are bounded in R and converge, up to a subsequence, respectively to
β1 and β2. We also deduce from (3.9) that, for all fixed ε > 0, the sequence (vn) is bounded in L2(ε, T − ε;
L2(Ω̃F (t)))2 and the sequence (vn − P (vn)) strongly converges to 0 in L2((ε, T − ε) × ω)2. Therefore, up to a
subsequence, (vn) weakly converges to v in L2(ε, T − ε;L2(Ω̃F (t)))2 and

v = β1v1 + β2v2 in (0, T ) × ω.

Moreover, according to (3.9) and to the first equation of system (1.22), we have, up to a subsequence,

vn ⇀ v in L2(ε, T − ε;H1(Ω̃F (t)))2, qn ⇀ q in L2(ε, T − ε;L2(Ω̃F (t)))2.

(3.9) also implies that ∫ T−ε

ε

∫
∂Ω̃S(t)

|vn|2

is bounded, and thus, thanks to the last hypothesis of (1.9), we have, up to a subsequence,

bn ⇀ b in H1(ε, T − ε)2, γn ⇀ γ in L2(ε, T − ε).

We notice that (v, q, b, γ) satisfies, for all t ∈ (0, T )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂tv − (ũ · ∇)v

)
(t, x) − div σ(v, q)(t, x) = 0, ∀x ∈ Ω̃F (t),

mb̈(t) = −
∫
∂Ω̃S(t)

σ(v, q)n,

Jγ̇(t) = −
∫
∂Ω̃S(t)

(σ(v, q)n) · (x − ã(t))⊥,

div v(t, x) = 0, ∀x ∈ Ω̃F (t),

v(t, x) = 0, ∀x ∈ ∂Ω,

v(t, x) = ḃ(t) + γ(t)(x− ã(t))⊥, ∀x ∈ ∂Ω̃S(t).
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Next, we notice that, if we consider the function v − (β1v1 + β2v2), we can apply Lemma 6 and deduce that

v(t, x) = β1v1(t, x) + β2v2(t, x), ∀x ∈ Ω̃F (t), ∀ t ∈ (0, T ).

This implies that

ḃ(t) = β1ḃ1(t) + β2ḃ2(t), γ(t) = β1γ1(t) + β2γ2(t), ∀ t ∈ (0, T ).

According to the equations satisfied by b, b1 and b2 on one hand, and γ, γ1 and γ2 on the other hand, this is
only possible for β1 = 0, β2 = 0 and thus v = 0. Moreover, since vn = (vn − P (vn)) + P (vn), (vn) strongly
converges to 0 in L2((0, T ) × ω) and, in particular,

∫ T

0

∫
ω

e2sV∗−4sV̂ ϕ̂10|vn|2 → 0.

Thus, according to (3.2),

∫
ΩF (0)

|vn(0)|2 + |ḃn(0)|2 + |γn(0)|2 +
∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
ϕ

(
|∆vn|2 + |∂tvn|2

)
+ ϕ|∇vn|2

)
+
∫ T

0

∫
Ω̃F (t)

e−2sVϕ3|vn|2 +
∫ T

0

∫
∂Ω̃S(t)

e−2sVϕ3|vn|2 → 0.

At last, since P1 and P2 are continuous from L2((0, T ) × ω) to R (this can be shown by expressing P1(v) and
P2(v) in terms of v, v1 and v2), we also have

|P1(vn)|2 + |P2(vn)|2 → 0.

These two properties are in contradiction with hypothesis (3.9). Therefore our proposition holds.

3.3. Null controllability result on the linear system

We are now able to prove Theorem 2. Adapting the method used in [1], we introduce an extremal problem.
For any fixed initial condition (a0, a1, θ0, r0, u0) and any ε > 0, we consider the functional

Jε(f, u, p, a, r) =
1
2ε

(∫
Ω̃F (T )

|u(T )|2 dx+ |ȧ(T )|2 + |r(T )|2
)

+
1
2

∫ T

0

∫
ω

Θ|f |2,

where (u, p, a, r) is the solution of (1.21) associated to f and we want to minimize this functional with respect to
f in L2((0, T )×ω)2 such that (3.5) holds. The set of functions satisfying these constraints is non empty thanks
to Lemma 6. For each ε > 0, Jε is continuous and strictly convex. Moreover, arguing as in [8], we can prove
that it is also coercive. Thus, this minimization problem admits a unique solution (fε, uε, pε, aε, rε). We will
apply Lagrange’s principle to this problem. We formally explain how we apply it. First of all, we can compute
the derivative of Jε at a point (f, u, p, a, r)

D(f,u,p,a,r)Jε(F,U, P,A,R) =
1
ε

(∫
Ω̃F (T )

u(T ) · U(T ) dx+ ȧ(T ) · A(T ) + r(T )R(T )

)

+
∫ T

0

∫
ω

Θf · F.
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Next, we define the functional

L(f, u, p, a, r) =

(
∂tu+ (ũ · ∇)u − div σ(u, p) − f1ω, div u, ä− 1

m

∫
∂Ω̃S(t)

σ(u, p)n,

ṙ − 1
J

∫
∂Ω̃S(t)

(σ(u, p)n) · (x− ã)⊥,
∫ T

0

∫
ω

Θf · v1,
∫ T

0

∫
ω

Θf · v2

)
.

The constraints on (f, u, p, a, r) can be expressed by the following equality

L(f, u, p, a, r) =
(
O, O, −→OR2 , 0, m1(a0, a1, r0, u0), m2(a1, θ0, r0, u0)

)
,

where O is the null function defined in L2(0, T ;L2(Ω̃F (t))). According to Lagrange’s principle, there exist dual
variables (ûε, p̂ε, âε, r̂ε), α̂ε ∈ R and β̂ε ∈ R such that

ûε = 0 on ∂Ω, ûε = ˙̂aε + r̂ε(x− ã)⊥ on ∂Ω̃S(t),

and for all (F,U, P,A,R) such that U = 0 on ∂Ω and U = Ȧ+R(x− ã)⊥ on ∂Ω̃S(t),

D(fε,uε,pε,aε,rε)Jε(F,U, P,A,R) +
〈
(ûε, p̂ε, ˙̂aε, r̂ε, α̂ε, β̂ε), L(F,U, P,A,R)

〉
= 0.

Thus, we obtain that (ûε, p̂ε, âε, r̂ε) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ∂tûε − (ũ · ∇)ûε − div σ(ûε, p̂ε) = 0 in Ω̃F (t),

m¨̂aε = −
∫
∂Ω̃S(t)

σ(ûε, p̂ε)n,

J ˙̂rε = −
∫
∂Ω̃S(t)

(σ(ûε, p̂ε)n) · (x− ã)⊥,

Θfε = ûε − α̂εv1 − β̂εv2 in ω,

div ûε = 0 in Ω̃F (t),
ûε = 0 on ∂Ω,

ûε = ˙̂aε + r̂ε(x − ã)⊥ on ∂Ω̃S(t),

ûε(T ) = −1
ε
uε(T ) in Ω̃F (T ), ˙̂aε(T ) = −1

ε
ȧε(T ), r̂ε(T ) = −1

ε
rε(T ).

Moreover, we can always suppose that âε(T ) = 0. Multiplying the first equation of this system by uε, we obtain
that

∫ T

0

∫
ω

fε · ûε +
1
ε

∫
Ω̃F (T )

|uε(T )|2 +
m

ε
|ȧε(T )|2 +

J

ε
|rε(T )|2 = −

∫
ΩF (0)

u0 · ûε(0) − ma1 · ˙̂aε(0) − Jr0r̂ε(0).
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Thus, we have ∫ T

0

∫
ω

Θ|fε|2 +
1
ε

∫
Ω̃F (T )

|uε(T )|2 +
m

ε
|ȧε(T )|2 +

J

ε
|rε(T )|2

≤ −
∫

ΩF (0)

u0 · ûε(0) −ma1 · ˙̂aε(0) − Jr0r̂ε(0) − α̂ε

∫ T

0

∫
ω

fε · v1 − β̂ε

∫ T

0

∫
ω

fε · v2

≤ C0

(
‖ûε(0)‖L2(ΩF (0)) + | ˙̂aε(0)| + |r̂ε(0)| + |α̂ε| + |β̂ε|

)
, (3.10)

since fε satisfies (3.5). Here and in the following of this subsection, the constant C0 linearly depends on |a0|,
|a1|, |θ0|, |r0| and ‖u0‖L2(ΩF (0))2 . From the observability inequality (3.8), we deduce that

‖ûε(0)‖L2(ΩF (0)) + | ˙̂aε(0)| + |r̂ε(0)| + |α̂ε| + |β̂ε|

≤ C

(∫ T

0

∫
ω

Θ−1|ûε − P (ûε)|2
)1/2

+ |α̂ε − P1(ûε)| + |β̂ε − P2(ûε)|

≤ C

⎛⎝(∫ T

0

∫
ω

Θ|fε|2
)1/2

+ |α̂ε − P1(ûε)| + |β̂ε − P2(ûε)|

⎞⎠ ,

where C depends on T , α and R. Since fε satisfies (3.5) and P (ûε) satisfies (3.7), we have∫ T

0

∫
ω

Θ−1
((
P1(ûε) − α̂ε

)
v1 +

(
P2(ûε) − β̂ε

)
v2

)
· v1 = m1(a0, a1, r0, u0),∫ T

0

∫
ω

Θ−1
((
P1(ûε) − α̂ε

)
v1 +

(
P2(ûε) − β̂ε

)
v2

)
· v2 = m2(a1, θ0, r0, u0).

This allows to obtain the following estimate

|α̂ε − P1(ûε)| + |β̂ε − P2(ûε)| ≤ C0.

Thus, from (3.10), we obtain∫ T

0

∫
ω

Θ|fε|2 +
1
ε

∫
Ω̃F (T )

|uε(T )|2 +
m

ε
|ȧε(T )|2 +

J

ε
|rε(T )|2 ≤ CC2

0 , (3.11)

where C depends on T , α and R. Moreover, according to the observability inequality (3.8), we also have∫ T

0

∫
Ω̃F (t)

e−2sV
(

1
ϕ
|∂tûε|2 + ϕ3|ûε|2

)
+ |P1(ûε)|2 + |P2(ûε)|2 ≤ C

∫ T

0

∫
ω

Θ−1|ûε − P (ûε)|2

≤ C

∫ T

0

∫
ω

Θ|fε|2 + CC2
0 .

Thus, we get,∫ T

0

∫
ω

e−4sV∗+8sV̂−2sV ϕ̂−20ϕ−1|∂tfε|2 ≤ C
(
|a0|2 + |a1|2 + |θ0|2 + |r0|2 + ‖u0‖2

L2(ΩF (0))2

)
,

and
‖fε‖H1(0,T ;L2(ω))2 ≤ C

(
|a0| + |a1| + |θ0| + |r0| + ‖u0‖L2(ΩF (0))2

)
,
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where C is a constant which depends on T , α and R. In particular, there exists a function f ∈ H1(0, T ;L2(ω))2

such that, for a subsequence of (fε),
fε ⇀ f in H1(0, T ;L2(ω))2.

Thanks to Proposition 2, (uε) weakly converges to u in L2(0, T ;H2(Ω̃F (t)))2∩H1(0, T ;L2(Ω̃F (t)))2, (pε) weakly
converges to p in L2(0, T ;H1(Ω̃F (t))), (aε) weakly converges to a in H2(0, T )2 and (rε) weakly converges to r
in H1(0, T ) where (u, p, a, r) is the solution of (1.21) together with the control f . Moreover, by passing to the
limit in (3.11), we get

u(T, ·) = 0 in Ω̃F (T ), ȧ(T ) = 0, r(T ) = 0.
At last, since f satisfies (3.5), we also have that a(T ) = 0 and θ(T ) = 0. Thus, we have proved Theorem 2.

Proposition 6. We suppose that u0, a0, a1, θ0 and r0 satisfy (1.13) and we consider an initial structure
domain ΩS(0) such that (1.9) is satisfied. We consider ã ∈ H2(0, T )2, r̃ ∈ H1(0, T ) which satisfy (1.17) for
some α > 0 and ũ which satisfies conditions (1.18) to (1.20) and such that

‖ã‖H2(0,T )2 + ‖r̃‖H1(0,T ) + ‖ũ‖L∞(0,T ;L∞(Ω̃F (t)))2 + ‖ũ‖W 1,4(0,T ;L4(Ω̃F (t)))2 ≤ R.

Then, our system is null controllable in the sense of Definition 2. Moreover, the control f belongs to
H1(0, T ;L2(ω))2 satisfies f(t = 0) = 0 and

‖f‖H1(0,T ;L2(ω))2 ≤ C3

(
|a0| + |a1| + |θ0| + |r0| + ‖u0‖L2(ΩF (0))2

)
,

where C3 is a constant which depends on T , α and R and the solution (u, p, a, r) has the following regularity:

u ∈ H1(0, T ;H2(Ω̃F (t)))2 ∩H2(0, T ;L2(Ω̃F (t)))2 ∩W 1,∞(0, T ;H1(Ω̃F (t)))2,

p ∈ H1(0, T ;H1(Ω̃F (t))), a ∈ H3(0, T )2, r ∈ H2(0, T ),

and the norms of (u, p, a, r) in these spaces are bounded by

‖f‖H1(0,T ;L2(ω))2 + ‖u0‖H3(ΩF (0))2 + |a0| + |a1| + |θ0| + |r0|.

Proof of Proposition 6. The properties satisfied by Θ imply that fε(t = 0) = 0 and thus

f(t = 0) = 0 in ω.

Then, the proposition results from the regularity result given by Proposition 3.

4. Local null controllability

We are now able to prove Theorem 1. We will prove this theorem using a fixed point argument. Formally, we
want to prove that the application which maps (ũ, ã, r̃) on (u, a, r) the controlled solution given by Proposition 6
admits a fixed point if initial conditions are small enough. This fixed point will be the controlled solution of the
nonlinear problem. But the space where (ũ, ã, r̃) is given depends on ã and r̃ themselves; indeed (ũ, ã, r̃) has to
satisfy conditions (1.18) and (1.19) where the spaces Ω̃S(t) and Ω̃F (t) are given by ã and r̃. Thus, we are not
able to find a fixed point on this kind of spaces. Consequently, we will first construct (ũ, ã, r̃) from uncoupled
velocities (ũ, ã, r̃) given on the initial domains.
We define

α0 =
1
2
d
(
ΩS(0), ∂

(
Ω \ ω

))
.

According to (1.9), α0 > 0.
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Lemma 7. If ã and θ̃ satisfy

‖ã− a0‖L∞(0,T )2 ≤ α0

2
, ‖Rθ̃−θ0 − Id‖L∞(0,T ;M2×2(R)) ≤

α0

2

(
sup

y∈ΩS(0)

|y − a0|
)−1

, (4.1)

then
d
(
Ω̃S(t), ∂

(
Ω \ ω

))
≥ α0.

Proof of Lemma 7. We have

d
(
Ω̃S(t), ∂

(
Ω \ ω

))
= inf

x∈Ω̃S(t),z∈∂(Ω\ω)
|x− z| = inf

y∈ΩS(0),z∈∂(Ω\ω)

∣∣ã(t) +Rθ̃(t)−θ0(y − a0) − z
∣∣,

and, for all y ∈ ΩS(0), z ∈ ∂(Ω \ ω),∣∣ã(t) +Rθ̃(t)−θ0(y − a0) − z
∣∣ ≥ |y − z| −

∣∣ã(t) +Rθ̃(t)−θ0(y − a0) − y
∣∣

≥ d
(
ΩS(0), ∂

(
Ω \ ω

))
−
∣∣ã(t) +Rθ̃(t)−θ0(y − a0) − y

∣∣.
Moreover, we have∣∣ã(t) +Rθ̃(t)−θ0(y − a0) − y

∣∣ ≤ |ã(t) − a0| +
∣∣(Rθ̃(t)−θ0 − Id)(y − a0)

∣∣ ≤ α0.

This allows to obtain Lemma 7. �
We consider the following spaces

Y = L∞((0, T )× ΩF (0))2 ∩W 1,4(0, T ;L4(ΩF (0)))2 ∩ L∞(0, T ;H1
0 (ΩF (0)))2,

Z =
{
(w̃, ã, r̃) ∈ Y ×W 2,4(0, T )2 ×W 1,4(0, T )

/
div w̃ = 0 in ΩF (0)

}
.

We consider (w̃, ã, r̃) ∈ Z and θ̃ such that

ã(0) = a0, ˙̃a(0) = a1, θ̃(0) = θ0, r̃(0) = r0, (4.2)

where θ̃ is the angle associated to the angular velocity r̃. We define an odd and nondecreasing function φ ∈ C2(R)
such that

φ(x) =
{

x in [0, 3/4],
1 in [1,∞[,

and we introduce the family of functions defined for K > 0, h ∈ R by

TK,h(x) = h+Kφ
(
(x− h)/K

)
, ∀x ∈ R.

Thus,

TK,h(x) =

{
x if |x− h| ≤ 3K/4,

h+K if |x− h| ≥ K.

Since, for all x ∈ R, |TK,h(x) − h| ≤ K, we can find b and c (small enough) depending only on α0 and ΩS(0)
such that (Tb,a1

0
(ã1), Tb,a2

0
(ã2)) and Tc,θ0(θ̃) satisfy (4.1) where a0 = (a1

0, a
2
0) and ã = (ã1, ã2). We denote

Tb,a0(ã) = (Tb,a1
0
(ã1), Tb,a2

0
(ã2)). Thus, we can extend the flow X̃ defined on ΩS(0) by

X̃(t, y) = Tb,a0(ã) +RTc,θ0(θ̃)−θ0(y − a0)
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and its inverse Ỹ as it is done in Lemma 3. The displacements Tb,a0(ã), Tc,θ0(θ̃) and the moving domains
associated to X̃ satisfy condition (1.17) with α = α0. We denote ũS the velocity associated to X̃. Now, we
define on (0, T ) × Ω,

ũ(t, x) = ũS(t, x) + ∇X̃(t, Ỹ (t, x))w̃(t, Ỹ (t, x)).

This velocity combined with the rigid motion Tb,a0(ã) and Tc,θ0(θ̃) satisfies (1.18) and (1.19). We denote u0
S the

velocity which extends a1 + r0(x− a0)⊥ thanks to Lemma 2 and we define

w0 = u0 − u0
S .

We see that, if w̃(t = 0) = w0 and (ã, r̃) satisfies (4.2), then ũ satisfies (1.20). Next, we introduce ZR a subset
of Z by

ZR =
{
(w̃, ã, r̃) ∈ Z

/
‖w̃‖Y + ‖ã‖W 2,4(0,T )2 + ‖r̃‖W 1,4(0,T ) ≤ R, w̃(t = 0) = w0 in ΩF (0),

ã(0) = a0, ˙̃a(0) = a1, θ̃(0) = θ0, r̃(0) = r0

}
.

Let us take (w̃, ã, r̃) ∈ ZR. We can apply Proposition 6 which associates to (ũ, Tb,a0(ã), Tc,θ0(θ̃)) a control
f ∈ H1(0, T ;L2(ω))2 and an associated state (u, p, a, r) solution of (1.21) such that

u(T, ·) = 0 in Ω, a(T ) = 0, θ(T ) = 0,

and
f(t = 0) = 0 in ω, ‖f‖H1(0,T ;L2(ω))2 ≤ C4

(
|a0| + |a1| + |θ0| + |r0| + ‖u0‖L2(ΩF (0))2

)
, (4.3)

where C4 depends on T , α0 and R. Indeed, since (w̃, ã, r̃) belongs to ZR,

‖ã‖H2(0,T )2 + ‖r̃‖H1(0,T ) + ‖ũ‖L∞(0,T ;L∞(Ω̃F (t)))2 + ‖ũ‖W 1,4(0,T ;L4(Ω̃F (t)))2 ≤ CR,

where C depends on T and α0.
According to proposition 6, (a, r) belongs to H3(0, T )2×H2(0, T ). We consider the velocity defined on Ω̃S(t)

by
ȧ+ r(x − ã)⊥

and we extend this velocity on Ω by a velocity uS which has the same properties as ũS given by Lemma 2.
Then, we define w by

w(t, y) = ∇Ỹ (t, X̃(t, y))(u − uS)(t, X̃(t, y)), ∀ y ∈ ΩF (0).
The velocity uS belongs to H2(0, T ; C2(Ω))2 and

‖uS‖H2(0,T ;C2(Ω))2 ≤ C(‖a‖H3(0,T )2 + ‖r‖H2(0,T )).

We easily check that (w, a, r) belongs to Z according to Proposition 6 and

‖w‖Y + ‖a‖W 2,4(0,T )2 + ‖r‖W 1,4(0,T ) ≤ C5

(
|a0| + |a1| + |θ0| + |r0| + ‖u0‖H3(ΩF (0))2

)
, (4.4)

where the constant C5 depends on T , α0 and R. Moreover, we also have

w(T, ·) = 0 in ΩF (0), a(T ) = 0, θ(T ) = 0, ȧ(T ) = 0, r(T ) = 0. (4.5)

For (w̃, ã, r̃) ∈ ZR, let us define the set Λ(w̃, ã, r̃) by

Λ(w̃, ã, r̃) =
{
(w, a, r) ∈ Z satisfying (4.4), (4.5) with f ∈ H1(0, T ;L2(ω))2 satisfying (4.3)

}
,
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and let us consider the set-valued mapping Λ : ZR �→ Z. We will apply Kakutani’s theorem to this mapping.
First of all, according to what precedes, Λ(w̃, ã, r̃) is always a nonempty subset of Z. Moreover, it is easy to
see that it is a closed convex subset of Z. Next, since the control f belongs to H1(0, T ;L2(ω))2, we can apply
Proposition 3 and deduce that

w ∈ H1(0, T ;H2(ΩF (0)))2 ∩H2(0, T ;L2(ΩF (0)))2 ∩W 1,∞(0, T ;H1(ΩF (0)))2,
a ∈ H3(0, T )2, r ∈ H2(0, T ).

Consequently, for each (w̃, ã, r̃) ∈ ZR, Λ(w̃, ã, r̃) ↪→ K where K is a compact subset of Z. We also have to prove
that Λ is upper hemicontinuous in Z. This will be true if, for all ν ∈ R and for all (v, b, s) ∈ Z ′

B(ν, v, b, s) =
{

(w̃, ã, r̃) ∈ Z
/

sup
(w,a,r)∈Λ(w̃,ã,r̃)

〈(v, b, s), (w, a, r)〉 ≥ ν

}
is a closed subset of Z.

We consider a sequence (w̃n, ãn, r̃n) of B(ν, v, b, s) such that

(w̃n, ãn, r̃n) → (w̃, ã, r̃) in Z

and we want to prove that (w̃, ã, r̃) belongs to B(ν, v, b, s). Since Λ(w̃, ã, r̃) is compact, for every n ∈ N, there
exists (wn, an, rn) ∈ Λ(w̃n, ãn, r̃n) such that

sup
(w,a,r)∈Λ(w̃n,ãn,r̃n)

〈(v, b, s), (w, a, r)〉 = 〈(v, b, s), (wn, an, rn)〉.

This sequence (wn, an, rn) satisfies (4.4) and belongs to the compact subset K. Thus, it strongly converges to
a limit (w, a, r) in Z. In the same way, the sequence of controls (fn) associated to (wn, an, rn) is bounded in
H1(0, T ;L2(ω))2 and weakly converges to f in H1(0, T ;L2(ω))2. Now, since (w, a, r) belongs to Λ(w̃, ã, r̃), we
obtain that

sup
(w,a,r)∈Λ(w̃,ã,r̃)

〈(v, b, s), (w, a, r)〉 ≥ 〈(v, b, s), (w, a, r)〉 = lim
n→∞

〈(v, b, s), (wn, an, rn)〉 ≥ ν.

This proves that Λ is upper hemicontinuous.
At last, according to (4.4), if

|a0| + |a1| + |θ0| + |r0| + ‖u0‖H3(ΩF (0))2 ≤ R

C5
, (4.6)

(w, a, r) belongs to ZR. Thus, we consider initial data which satisfy (4.6) and we can apply Kakutani’s fixed
point theorem to the set-valued mapping Λ : ZR �→ ZR. Therefore, if initial data satisfy (4.6), we have the
existence of a solution (w, a, r) associated to a control f ∈ H1(0, T ;L2(ω))2 which satisfies (4.4). The associated
velocity u together with a, r and the pressure p is solution of a nonlinear system where the domains are given
by the flow

X(t, y) = Tb,a0(a) +RTc,θ0 (θ)−θ0(y − a0).
From (4.4), we deduce

‖a‖W 1,∞(0,T )2 + ‖r‖L∞(0,T ) ≤ C6

(
|a0| + |a1| + |θ0| + |r0| + ‖u0‖H3(ΩF (0))2

)
,

where C6 depends on T , α0 and R. Thus, for initial conditions such that

|a0| + |a1| + |θ0| + |r0| + ‖u0‖H3(ΩF (0))2 ≤ 3
4TC6

min (b, c) , (4.7)
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we have Tb,a0(a) = a and Tc,θ0(θ) = θ. It implies that (u, p, a, r) is solution of the problem (1.1) to (1.6) and
satisfies (1.14). Therefore, for (a0, a1, θ0, r0, u0) satisfying (4.6) and (4.7), we obtain Theorem 1.
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