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AN ELLIPTIC EQUATION WITH NO MONOTONICITY
CONDITION ON THE NONLINEARITY

Gregory S. Spradlin
1

Abstract. An elliptic PDE is studied which is a perturbation of an autonomous equation. The
existence of a nontrivial solution is proven via variational methods. The domain of the equation is
unbounded, which imposes a lack of compactness on the variational problem. In addition, a popular
monotonicity condition on the nonlinearity is not assumed. In an earlier paper with this assumption, a
solution was obtained using a simple application of topological (Brouwer) degree. Here, a more subtle
degree theory argument must be used.
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1. Introduction

In this paper we consider an elliptic equation of the form

−∆u + u = f(x, u), x ∈ R
N , (1.1)

where f is a “superlinear” function of u. For large |x|, the equation resembles an autonomous equation

−∆u + u = f0(u), x ∈ R
N . (1.2)

Under weak assumptions on f and f0, we prove the existence of a nontrivial solution u of (1.1) with |u(x)| → 0
as |x| → ∞.

Let f satisfy

(f1) f ∈ C2(RN × R, R).
(f2) f(x, 0) = 0 = fq(x, 0) for all x ∈ R

N , where f ≡ f(x, q).
(f3) If N > 2, there exist a1, a2 > 0, s ∈ (1, (N + 2)/(N − 2)) with |fq(x, q)| ≤ a1 + a2|q|s−1 for all q ∈ R,

x ∈ R
N . If N = 2, there exist a1 > 0 and a function ϕ : R

+ → R with |fq(x, q)| ≤ a1 exp(ϕ(|q|)) for all
q ∈ R, x ∈ R

N and ϕ(t)/t2 → 0 as t → ∞.
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(f4) There exists µ > 2 such that

0 < µF (x, q) ≡ µ

∫ q

0

f(x, s) ds ≤ f(x, q)q (1.3)

for all q ∈ R, x ∈ R
N .

Let f0 ∈ C2(R, R) with satisfy (f1)-(f4) (except there is no dependence on x). Let f also satisfy
(f5) (f(x, q) − f0(q))/f0(q) → 0 as |x| → ∞, uniformly in q ∈ R

N \ {0}.
In order to state the theorem, we need to outline the variational framework of the problem. Define functionals
I0, I ∈ C2(W 1,2(RN , R), R) by

I0(u) =
1
2
‖u‖2 −

∫
RN

F0(u(x)) dx, (1.4)

I(u) =
1
2
‖u‖2 −

∫
RN

F (x, u(x)) dx, (1.5)

where ‖u‖ is the standard norm on W 1,2(RN , R) given by

‖u‖2 =
∫

RN

|∇u(x)|2 + u(x)2 dx. (1.6)

Critical points of I0 correspond exactly to solutions u of (1.2) with u(x) → 0 as |x| → ∞, and critical points of
I correspond exactly to solutions u of (1.1) with u(x) → 0 as |x| → ∞.

By (f4), F0 and F are “superquadratic” functions of q, with, for example, F (x, q)/q2 → 0 as q → 0 and
F (x, q)/q2 → ∞ as |q| → ∞ for all x ∈ R

N , uniformly in x. Therefore I(0) = I0(0) = 0, and there exists
r0 > 0 with I(u) ≥ ‖u‖2/3 and I0(u) ≥ ‖u‖2/3 for all u ∈ W 1,2(RN ) with ‖u‖ ≤ r0, and there also exist
u, u0 ∈ W 1,2(RN , R) with I0(u0) < 0 and I(u) < 0. So the sets of “mountain-pass curves” for I0 and I,

Γ0 = {γ ∈ C([0, 1], W 1,2(RN , R)) | γ(0) = 0, I0(γ(1)) < 0}, (1.7)

Γ = {γ ∈ C([0, 1], W 1,2(RN , R)) | γ(0) = 0, I(γ(1)) < 0}, (1.8)

are nonempty, and the mountain-pass values

c0 = inf
γ∈Γ0

max
θ∈[0,1]

I0(γ(θ)) (1.9)

c = inf
γ∈Γ

max
θ∈[0,1]

I(γ(θ)) (1.10)

are positive.
We are now ready to state the theorem.

Theorem 1.1. If f0 and f satisfy (f1)-(f4) and f satisfies (f5), and if there exists α > 0 such that

I0 has no critical values in the interval [c0, c0 + α) (1.11)

then there exists ε0 = ε0(f0) > 0 with the following property: if f satisfies

|f(x, q) − f0(q)| < ε0|f0(q)| (1.12)

for all x ∈ R
N , q ∈ R, then (1.2) has a nontrivial solution u 	≡ 0 with u(x) → 0 as |x| → ∞.

As shown in [9], (1.12) holds in a wide variety of situations.
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The missing monotonicity assumption

One interesting aspect of Theorem 1.1 is a condition that is not assumed. We do not assume

For all q ∈ R and x ∈ R
N , F0(q)/q2 is

a nondecreasing function of q for q > 0;

F0(q)/q2 is a nonincreasing function of q for q < 0;

F (x, q)/q2 is a nondecreasing function of q for q > 0; or

F (x, q)/q2 is a nonincreasing function of q for q < 0.

(1.13)

This condition holds in the power case, F0(q) = |q|α/α, α > 2. The condition is due to Nehari.
If (1.13) were case, then for any u ∈ W 1,2(RN , R) \ {0}, the mapping s 
→ I(su) would begin at 0 at s = 0,

increase to a positive maximum, then decrease to −∞ as s → ∞. Defining

S = {u ∈ W 1,2(RN , R) \ {0} | I ′(u)u = 0}, (1.14)

S would be a codimension-one submanifold of E, homeomorphic to the unit sphere in W 1,2(RN , R) via radial
projection. S is known as the Nehari manifold in the literature. Any ray of the form {su | s > 0} (u 	= 0)
intersects S exactly once. All nonzero critical points of I are on S. Conversely, under suitable smoothness
assumptions on F , any critical point of I constrained to S would be a critical point of I (in the large) (see [17]).
Therefore, one could work with S instead of W 1,2(RN , R), and look for, say, a local minimum of I constrained
to S (which may be easier than looking for a saddle point of I). There is another way to use (1.13): for any
u ∈ S, the ray from 0 passing through u can be used (after rescaling in θ) as a mountain-pass curve along which
the maximum value of I is I(u). Conversely, any mountain-pass curve γ ∈ Γ intersects S at least once [6].
Therefore, one may work with points on S instead of paths in Γ. Since assumption (1.13) is so helpful, it is
found in many papers, such as [1, 5, 20], and [18].

In the paper [17], a result similar to Theorem 1.1 was proven for the N = 1 (ODE) case. The proof
of Theorem 1.1 is similar except that a simple connectivity argument must be replaced by a degree theory
argument [18]. proves a version of Theorem 1.1 under the assumption (1.13). Without 1.13, the manifold S
must be replaced by a set with similar properties.

Define B1(0) = {x ∈ R
N | |x| < 1}, and Ω and ∂Ω to be, respectively, the topological closure and topological

boundary of Ω. It is a simple consequence of the Brouwer degree [7] that for any continuous function h :
B1(0) → R

N with h(x) = x for all x ∈ ∂B1(0), there exists x ∈ B1(0) with h(x) = 0. We will need the following
generalization:

Lemma 1.2. Let h ∈ C(B1(0) × [0, 1], RN) with, for all x ∈ B1(0) and t ∈ [0, 1],
(i) h(x, 0) = x = h(x, 1).
(ii) x ∈ ∂B1(0) ⇒ h(x, t) = x.

Then there exists a connected subset C0 ⊂ B1(0)× [0, 1] with (0, 0), (0, 1) ∈ C0 and h(x, t) = 0 for all (x, t) ∈ C0.

Using the Brouwer degree, it is clear that under the hypotheses of Lemma 1.2, for each “horizontal slice”
B1(0)×{t} of the cylinder B1(0)× [0, 1], there exists x ∈ B1(0) with h(x, t) = 0. The conclusion of Lemma 1.2
does not follow from this observation. A generalization of Lemma 1.2 is known [16]: however, the reference may
be difficult to find, so a proof is given here.

This paper is organized as follows: Section 2 contains the proof of Theorem 1.1. The proof of Lemma 1.2 is
deferred until Section 3.
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2. Proof of Theorem 1.1

It is fairly easy to show that
c ≤ c0, (2.1)

where c and c0 are from (1.9)–(1.10): it is proven in [11] that there exists γ1 ∈ Γ0 with maxθ∈[0,1] I0(γ1(θ)) = c0.
Define the translation operator τ as follows: for a function u on R

N and a ∈ R
N , define let τau be u shifted by

a, that is, (τau)(x) = u(x − a). Let ε > 0. Let e1 =< 1, 0, 0, . . . , 0 >∈ R
N and define τRe1γ1 by (τRe1γ1)(θ) =

τRe1 (γ1(θ)). Then for large R > 0, by (f5), τRe1γ1 ∈ Γ and maxθ∈[0,1] I((τRe1γ1)(θ)) < c0 + ε. Since ε > 0 was
arbitrary, c ≤ c0.

A Palais-Smale sequence for I is a sequence (um) ⊂ W 1,2(RN , R) with (I(um)) convergent and ‖I ′(um)‖ → 0
as m → ∞. It is well-known that I fails the “Palais-Smale condition”. That is, a Palais-Smale sequence need
not converge. However, the following proposition states that a Palais-Smale sequence “splits” into the sum of
a critical point of I and translates of critical points of I0:

Proposition 2.1. If (um) ⊂ W 1,2(RN , R) with I ′(um) → 0 and I(um) → a > 0, then there exist k ≥ 0,
v0, v1, . . . , vk ∈ W 1,2(RN , R), and sequences (xi

m)1≤i≤k
m≥1 ⊂ R

N , such that
(i) I ′(v0) = 0;
(ii) I ′0(vi) = 0 for all i = 1, . . . , k,

and along a subsequence (also denoted (um))

(iii) ‖um − (v0 +
∑k

i=1 τxi
m

vi)‖ → 0 as m → ∞;
(iv) |xi

m| → ∞ as m → ∞ for i = 1, . . . , k;
(v) |xi

m − xj
m| → ∞ as m → ∞ for all i 	= j;

(vi) I(v0) +
∑k

i=1 I0(vi) = a.

A proof for the case of x-periodic F is found in [6], and essentially the same proof works here. Similar propositions
for nonperiodic coefficient functions, for both ODE and PDE, are found in [1,5], and [19], for example. All are
inspired by the “concentration-compactness” theorems of P.-L. Lions [12].

If c < c0, then by standard deformation arguments [15], there exists a Palais-Smale sequence (um) with
I(um) → c. By [11], the smallest nonzero critical value of I0 is c0. Applying Proposition 2.1, we obtain k = 0,
and (um) has a convergent subsequence, proving Theorem 1.1. So assume from now on that

c = c0. (2.2)

For u ∈ L2(RN , R) \ {0} and i ∈ {1, . . . , N}, define Li, the ith component of the “location” of u, by
∫

RN

u2 tan−1(xi − Li(u)) dx = 0 (2.3)

and the “location” of u by
L(u) = (L1(u), . . . ,LN (u)) ∈ R

N . (2.4)
The following lemma establishes the existence and continuity of L.

Lemma 2.2. L is well-defined and continuous on L2(RN , R) \ {0}.
Proof. It suffices to show that L1 is well-defined and continuous on L2(RN , R) \ {0}. Let u ∈ L2(RN , R) \ {0}.
By Leibniz’s Theorem, the mapping φ : s 
→ ∫

RN u2 tan−1(x1 − s) dx is continuous, differentiable, and strictly
decreasing, with

φ′(s) = −
∫

RN

u2(x)/((x1 − s)2 + 1) dx < 0. (2.5)

φ(s) → ∓∞ as s → ±∞. Therefore L1(u) is unique and well-defined. Let ε > 0 and um → u. Now∫
RN u2 tan−1(x1 − (L1(u) + ε)) dx < 0. Since u2

m → u2 in L1(RN , R),
∫

RN u2
m tan−1(x1 − (L(u) + ε)) dx < 0 for
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large m, so for large m, L1(um) < L1(u) + ε. Similarly, for large m, L1(um) > L1(u) − ε. Since ε is arbitrary,
L1(um) → L1(u). �

We are ready to begin the minimax argument. First we construct a mountain-pass curve γ0 with some special
properties:

Lemma 2.3. There exists γ0 ∈ Γ0 such that for all θ ∈ [0, 1],
(i) I0(γ0(θ)) ≤ c0.
(ii) θ > 0 ⇒ γ0(θ) 	= 0.
(iii) θ ≤ 1/2 ⇒ I0(γ(θ)) ≤ c0/2.
(iv) θ > 0 ⇒ L(γ(θ)) = 0.

Proof. By [10], there exists γ1 ∈ Γ0 with maxθ∈[0,1] I0(γ1(θ)) = c0. Assume without loss of generality that
γ1(θ) 	= 0 for θ > 0. By rescaling in θ if necessary, assume that I0(γ1(θ)) ≤ c0/2 for θ ≤ 1/2. Finally, define γ0

by γ0(0) = 0, γ0(θ) = τ−L(γ1(θ))γ1(θ) for θ > 0.

Assume ε0 in (1.12) is small enough so that for all x ∈ R
N and θ ∈ [0, 1],

I(τx(γ0(θ)) < min(2c0, c0 + α) and I(τx(γ0(1))) < 0, (2.6)

where α is from (1.11).

A substitute for S
Using the mountain-pass geometry of I and the fact that Palais-Smale sequences of I are bounded in norm [6],

we construct a set which has similar properties to S, described in Section 1. Let ∇I denote the gradient of
I, that is, (∇I(u), w) = I ′(u)w for all u, w ∈ W 1,2(RN , R). Here, (·, ·) is the usual inner product defined by
(u, w) =

∫
RN ∇u · ∇w + uw dx. Let ϕ : W 1,2(RN , R) → R be locally Lipschitz, with I(u) ≥ −1 ⇒ ϕ(u) = 1 and

I(u) ≤ −2 ⇒ ϕ(u) = 0. Let η be the solution of the initial value problem

dη

ds
= −ϕ(η)∇I(u), η(0, u) = u. (2.7)

In [19] it is proven that η is well-defined on R
+ × W 1,2(RN ). Let B be the basin of attraction of 0 under the

flow η, that is,
B =

{
u ∈ W 1,2(RN , R) | η(s, u) → 0 as s → ∞}

(2.8)

B is an open neighborhood of 0 [19]. Let ∂B be the topological boundary of B in W 1,2(RN , R). ∂B has some
properties in common with S. For example, for any γ ∈ Γ, γ([0, 1]) intersects ∂B at least once.

A pseudo-gradient vector field for I ′ may be used in place of ∇I, in which case B and ∂B would be different,
but the ensuing arguments would be the same.

Let
c+ = inf{I(u) | u ∈ ∂B, |L(u)| ≤ 1}. (2.9)

The reason for the label “c+” will become apparent in a moment. From now on, let us assume

I has no critical values in (0, c0] = (0, c]. (2.10)

This will lead to the conclusion that I has a critical value greater than c0.
We claim that under assumptions (2.2) and (2.10),

c+ > c0. (2.11)

We use arguments that are sketched here and found in more detail in [19] and [5].
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To prove the claim, suppose first that c+ < c0. Then there exists u0 ∈ ∂B with I(u0) < c0. By arguments
in [19], there exists a large positive constant P with

I(u) ≤ c0 and ‖u‖ ≥ 2P ⇒ I(η(s, u)) < 0 for some s > 0, and ‖η(s, u)‖ > P (2.12)

for all s > 0. Suppose a > 0 and ‖I ′(η(sm, U0))‖ ≥ a for some sequence (sm) with sm → ∞. Since u0 ∈ ∂B,
‖η(u0)‖ < 2P for all s > 0. I ′′ is bounded on bounded subsets of W 1,2(R), so I ′ is Lipschitz on bounded
subsets of W 1,2(R). Therefore I(η(s, u0)) < 0 for some s > 0. This is impossible since u0 ∈ ∂B. Therefore
I ′(η(s, u0) → 0 as s → ∞.

Define un = η(n, u0). Since I ′(un) → 0 and un ∈ ∂B, there exists b ∈ (0, c0) with I(un) → b. By [11], I0 has
no critical values between 0 and c0. Therefore, Proposition 2.1, with k = 0, implies that (un) converges along
a subsequence to a critical point w of I with 0 < I(w) < c0. This contradicts assumption (2.10).

Next, suppose that c+ = c0. Then there exists a sequence (un) ⊂ ∂B with |L(un)| ≤ 1 for all n and
I(un) → c0 as n → ∞. As above, I ′(un) → 0 as n → ∞; to prove, suppose otherwise. Then there exist a > 0
and a subsequence of (un) (also called (un)) along which ‖I ′(un)‖ > a. Since ∂B is forward-η-invariant [19],
η(1, un) ∈ ∂B for all n. Since (η(1, un))n≥1 is bounded and I ′ is Lipschitz on bounded subsets of W 1,2(RN , R),
for large n, η(1, un) ∈ ∂B with I(η(1, un)) < c0. By the argument above, this implies that I has a critical value
in (0, c0), contradicting assumption (2.2). Thus I ′(un) → 0 as n → ∞. Applying Proposition 2.1 and using
the fact that |L(un)| ≤ 1 for all n, (un) converges along a subsequence to a critical point of I, contradicting
assumption (2.10). (2.11) is proven. �

Let R > 0 be big enough so that for all x ∈ ∂BR(0) ⊂ R
N and θ ∈ [0, 1],

I(τxγ0(θ)) < c+. (2.13)

This is possible by (1.12), (2.11), and Lemma 2.3(i). Define the minimax class

H = {h ∈C(BR(0) × [0, 1], W 1,2(RN , R)) |
for all x ∈ BR(0) and t ∈ [0, 1],

t > 0 ⇒ h(x, t) 	= 0

0 ≤ t ≤ 1/2 ⇒ h(x, t) = τxγ0(t)

x ∈ ∂BR(0) ⇒ h(x, t) = τxγ0(t)

h(x, 1) = τxγ0(1)}

and the minimax value
h0 = inf

h∈H
max

(x,t)∈BR(0)×[0,1]
I(h(x, t)). (2.14)

We claim
c0 < c+ ≤ h0 < min(2c0, c0 + α). (2.15)

Proof of Claim. Define h̄ ∈ H by h̄(x, t) = τx(γ0(t)). Then h̄ ∈ H and by (2.6), max(x,t)∈BR(0)×[0,1] h̄(x, t) <

min(2c0, c0 + α). Therefore h0 < min(2c0, c0 + α).
Next, let h ∈ H. By Lemma 1.2, and a suitable rescaling of x and t, there exists a connected set C2 ⊂

BR(0) × [1/2, 1] with (0, 1/2), (0, 1) ∈ C2 and along which for all (x, t) ∈ C2,

L(h(x, t)) = 0. (2.16)

Joining C2 with the segment {0}× [0, 1/2], we obtain a connected set C3 ⊂ BR(0)× [0, 1] such that (0, 0), (0, 1) ∈
C3 and for all (x, t) ∈ C3, L(h(x, t)) = 0. C3 is not necessarily path-connected, so let r > 0 be small enough so
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that for all

(x, t) ∈Nr(C3) ≡ {(y, s) ∈ BR(0) × [0, 1] |
∃(x′, t′) ∈ BR(0) × [0, 1] with |y − x′|2 + (s − t′)2 < r2}, (2.17)

|L(h(x, t))| < 1.

Nr(C3) is path-connected [21], so there exists a path g ∈ C([0, 1], Nr(C3)) with g(0) = (0, 0), g(1) = (0, 1), and
g(θ) ∈ Nr(C3) for all θ ∈ [0, 1]. If we define γ̃ ∈ Γ by γ̃(θ) = h(g(θ)), then |L(γ̃(θ))| < 1 for all θ ∈ [0, 1]. Since
γ̃(0) = 0 and I(γ̃(1)) < 0, there exists θ∗ ∈ [0, 1] with γ̃(θ∗) ∈ ∂B. By the definition of c+ (2.9), I(γ̃(θ∗)) ≥ c+.

Since h was an arbitrary element of H, h0 ≥ c+.
By standard deformation arguments, such as described in [15], there exists a Palais-Smale sequence (un) ⊂

W 1,2(RN , R) with I ′(un) → 0 and I(un) → h0 as n → ∞. c0 < h0 < min(2c0, c0 + α). Apply Proposition 2.1
to (un). Since I0 has no positive critical values smaller than c0 [11], k ≤ 1. By (2.10), (un) converges along a
subsequence to a critical point z of I, with I(z) = h0. Theorem 1.1 is proven.

3. A degree-theoretic lemma

Here, we prove Lemma 1.2. Let h be as in the hypotheses of the lemma. For l > 0, define Al ⊂ B1(0)× [0, 1]
by

Al = {(x, t) ∈ B1(0) × [0, 1] | |f(x, t)| < l}. (3.1)
Al is an open neighborhood of (0, 0). Let Cl be the component of Al containing (0, 0). We will prove the
following claim:

For all ε > 0, (0, 1) ∈ Cε. (3.2)
Then we will use the Cε’s to construct C0. For l > 0 and t ∈ [0, 1], define

Ct
l = {x ∈ B1(0) | (x, t) ∈ Cl}. (3.3)

Fix ε ∈ (0, 1). Define φ : [0, 1] → Z by
φ(t) = d(h(·, t), Ct

ε , 0), (3.4)
where d is the topological Brouwer degree [7]. We will prove φ(t) = 1 for all t ∈ [0, 1], in particular φ(1) = 1, so
(3.2) is satisfied.

f is continuous on a compact domain, so f is uniformly continuous. Let ρ > 0 be small enough so that for
all x ∈ B1(0) and t1, t2 ∈ [0, 1],

|t1 − t2| < ρ ⇒ |h(x, t1) − h(x, t2)| < ε/4. (3.5)

Clearly
φ(0) = d(id, Bε(0), 0) = 1. (3.6)

Let 0 ≤ t1 < t2 ≤ 1 with t2 − t1 < ρ. We will show φ(t1) = φ(t2), proving that φ is constant, which by (3.6),
implies (3.2).

Ω is nonempty. For all x ∈ ∂Ct1
ε , |h(x, t1)| = ε, so by (3.5),

x ∈ ∂Ct1
ε ⇒ |h(x, t1)| ≥ 3

4
ε. (3.7)

By the additivity property of d [7],

φ(t2) ≡ d(f(·, t2), Ct2
ε , 0) (3.8)

= d(f(·, t2), Ct2
ε \ Ct1

ε , 0) + d(f(·, t2), Ct1
ε ∩ Ct2

ε , 0).
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We will show:
There does not exist x ∈ Ct2

ε \ Ct1
ε with h(x, t2) = 0. (3.9)

Suppose such an x exists. Then by (3.5), |h| < ε/4 on the segment {x} × [t1, t2]. x ∈ Ct2
ε , so (x, t2) ∈ Cε, and

by the definition of Cε, (x, t1) ∈ Cε, and x ∈ Ct1
ε , contradicting x ∈ Ct2

ε \ Ct1
ε . So (3.9) is true. Therefore by

(3.8),
φ(t2) = d(f(·, t2), Ct1

ε ∩ Ct2
ε , 0). (3.10)

By the same argument, switching the roles of t1 and t2,

φ(t1) = d(f(·, t1), Ct1
ε ∩ Ct2

ε , 0). (3.11)

For all t ∈ [t1, t2] and x ∈ ∂Ct1
ε ∪ ∂Ct2

ε , (3.5) gives |h(x, t1)| > 3ε/4 and |h(x, t) − h(x, t1)| < ε/4. Therefore by
the homotopy invariance property of the degree [7],

φ(t1) = d(f(·, t1), Ct1
ε ∩ Ct2

ε , 0) (3.12)

= d(f(·, t2), Ct1
ε ∩ Ct2

ε , 0) = φ(t2).

φ(0) = 1 and φ(t1) = φ(t2) for any t1 < t2 with t1, t2 ∈ [0, 1] and t2 − t1 < ρ. Therefore φ is constant, and
φ(1) = 1. Therefore (0, 1) ∈ Cε.

Now let
C0 =

⋂
ε>0

Cε. (3.13)

Each Cε is a connected set containing (0, 0) and (0, 1), so it is easy to show that C0 is a connected set containing
(0, 0) and (0, 1), and clearly for all (x, t) ∈ C0, h(x, t) = 0.
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