ESAIM: COCV October 2006, Vol. 12, 786-794 DOI: 10.1051/cocv:2006022

AN ELLIPTIC EQUATION WITH NO MONOTONICITY CONDITION ON THE NONLINEARITY

Gregory S. $SPRADLIN^1$

Abstract. An elliptic PDE is studied which is a perturbation of an autonomous equation. The existence of a nontrivial solution is proven via variational methods. The domain of the equation is unbounded, which imposes a lack of compactness on the variational problem. In addition, a popular monotonicity condition on the nonlinearity is not assumed. In an earlier paper with this assumption, a solution was obtained using a simple application of topological (Brouwer) degree. Here, a more subtle degree theory argument must be used.

Mathematics Subject Classification. 35J20, 35J60.

Received July 6, 2005.

1. INTRODUCTION

In this paper we consider an elliptic equation of the form

$$-\Delta u + u = f(x, u), \qquad x \in \mathbb{R}^N, \tag{1.1}$$

where f is a "superlinear" function of u. For large |x|, the equation resembles an autonomous equation

$$-\Delta u + u = f_0(u), \qquad x \in \mathbb{R}^N.$$
(1.2)

Under weak assumptions on f and f_0 , we prove the existence of a nontrivial solution u of (1.1) with $|u(x)| \to 0$ as $|x| \to \infty$.

Let f satisfy

- $(f_1) f \in C^2(\mathbb{R}^N \times \mathbb{R}, \mathbb{R}).$
- $\begin{array}{l} (f_1) \ f \in \mathbb{C} \ (\mathrm{id}^{-1} \times \mathrm{id}^{-1}, \mathrm{id}^{-1}) \\ (f_2) \ f(x,0) = 0 = f_q(x,0) \ \text{for all } x \in \mathbb{R}^N, \ \text{where } f \equiv f(x,q). \\ (f_3) \ \mathrm{If } N > 2, \ \text{there exist } a_1, a_2 > 0, \ s \in (1, (N+2)/(N-2)) \ \text{with } |f_q(x,q)| \leq a_1 + a_2 |q|^{s-1} \ \text{for all } q \in \mathbb{R}, \\ x \in \mathbb{R}^N. \ \mathrm{If } N = 2, \ \text{there exist } a_1 > 0 \ \text{and a function } \varphi : \mathbb{R}^+ \to \mathbb{R} \ \text{with } |f_q(x,q)| \leq a_1 \exp(\varphi(|q|)) \ \text{for all } q \in \mathbb{R}, \\ \end{array}$ $q \in \mathbb{R}, x \in \mathbb{R}^N \text{ and } \varphi(t)/t^2 \to 0 \text{ as } t \to \infty.$

© EDP Sciences, SMAI 2006

Keywords and phrases. Mountain-pass theorem, variational methods, Nehari manifold, Brouwer degree, concentration-compactness.

¹ Department of Mathematics Embry-Riddle Aeronautical University Daytona Beach, Florida 32114-3900, USA; spradlig@erau.edu

 (f_4) There exists $\mu > 2$ such that

$$0 < \mu F(x,q) \equiv \mu \int_0^q f(x,s) \, \mathrm{d}s \le f(x,q)q$$
 (1.3)

for all $q \in \mathbb{R}, x \in \mathbb{R}^N$.

Let $f_0 \in C^2(\mathbb{R}, \mathbb{R})$ with satisfy (f_1) - (f_4) (except there is no dependence on x). Let f also satisfy (f_5) $(f(x,q) - f_0(q))/f_0(q) \to 0$ as $|x| \to \infty$, uniformly in $q \in \mathbb{R}^N \setminus \{0\}$.

In order to state the theorem, we need to outline the variational framework of the problem. Define functionals $I_0, I \in C^2(W^{1,2}(\mathbb{R}^N, \mathbb{R}), \mathbb{R})$ by

$$I_0(u) = \frac{1}{2} \|u\|^2 - \int_{\mathbb{R}^N} F_0(u(x)) \,\mathrm{d}x, \tag{1.4}$$

$$I(u) = \frac{1}{2} ||u||^2 - \int_{\mathbb{R}^N} F(x, u(x)) \,\mathrm{d}x,$$
(1.5)

where ||u|| is the standard norm on $W^{1,2}(\mathbb{R}^N,\mathbb{R})$ given by

$$||u||^{2} = \int_{\mathbb{R}^{N}} |\nabla u(x)|^{2} + u(x)^{2} \,\mathrm{d}x.$$
(1.6)

Critical points of I_0 correspond exactly to solutions u of (1.2) with $u(x) \to 0$ as $|x| \to \infty$, and critical points of I correspond exactly to solutions u of (1.1) with $u(x) \to 0$ as $|x| \to \infty$.

By (f_4) , F_0 and F are "superquadratic" functions of q, with, for example, $F(x,q)/q^2 \to 0$ as $q \to 0$ and $F(x,q)/q^2 \to \infty$ as $|q| \to \infty$ for all $x \in \mathbb{R}^N$, uniformly in x. Therefore $I(0) = I_0(0) = 0$, and there exists $r_0 > 0$ with $I(u) \ge ||u||^2/3$ and $I_0(u) \ge ||u||^2/3$ for all $u \in W^{1,2}(\mathbb{R}^N)$ with $||u|| \le r_0$, and there also exist $u, u_0 \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$ with $I_0(u_0) < 0$ and I(u) < 0. So the sets of "mountain-pass curves" for I_0 and I,

$$\Gamma_0 = \{ \gamma \in C([0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I_0(\gamma(1)) < 0 \},$$
(1.7)

$$\Gamma = \{ \gamma \in C([0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid \gamma(0) = 0, \ I(\gamma(1)) < 0 \},$$
(1.8)

are nonempty, and the mountain-pass values

$$c_0 = \inf_{\gamma \in \Gamma_0} \max_{\theta \in [0,1]} I_0(\gamma(\theta))$$
(1.9)

$$c = \inf_{\gamma \in \Gamma} \max_{\theta \in [0,1]} I(\gamma(\theta))$$
(1.10)

are positive.

We are now ready to state the theorem.

Theorem 1.1. If f_0 and f satisfy (f_1) - (f_4) and f satisfies (f_5) , and if there exists $\alpha > 0$ such that

 I_0 has no critical values in the interval $[c_0, c_0 + \alpha)$ (1.11)

then there exists $\epsilon_0 = \epsilon_0(f_0) > 0$ with the following property: if f satisfies

$$|f(x,q) - f_0(q)| < \epsilon_0 |f_0(q)| \tag{1.12}$$

for all $x \in \mathbb{R}^N$, $q \in \mathbb{R}$, then (1.2) has a nontrivial solution $u \neq 0$ with $u(x) \to 0$ as $|x| \to \infty$.

As shown in [9], (1.12) holds in a wide variety of situations.

G.S. SPRADLIN

The missing monotonicity assumption

One interesting aspect of Theorem 1.1 is a condition that is *not* assumed. We do not assume

For all
$$q \in \mathbb{R}$$
 and $x \in \mathbb{R}^N$, $F_0(q)/q^2$ is
a nondecreasing function of q for $q > 0$;
 $F_0(q)/q^2$ is a nonincreasing function of q for $q < 0$;
 $F(x,q)/q^2$ is a nondecreasing function of q for $q > 0$; or
 $F(x,q)/q^2$ is a nonincreasing function of q for $q < 0$.
(1.13)

This condition holds in the power case, $F_0(q) = |q|^{\alpha}/\alpha$, $\alpha > 2$. The condition is due to Nehari.

If (1.13) were case, then for any $u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$, the mapping $s \mapsto I(su)$ would begin at 0 at s = 0, increase to a positive maximum, then decrease to $-\infty$ as $s \to \infty$. Defining

$$S = \{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \setminus \{ 0 \} \mid I'(u)u = 0 \},$$
(1.14)

S would be a codimension-one submanifold of E, homeomorphic to the unit sphere in $W^{1,2}(\mathbb{R}^N, \mathbb{R})$ via radial projection. S is known as the Nehari manifold in the literature. Any ray of the form $\{su \mid s > 0\}$ $(u \neq 0)$ intersects S exactly once. All nonzero critical points of I are on S. Conversely, under suitable smoothness assumptions on F, any critical point of I constrained to S would be a critical point of I (in the large) (see [17]). Therefore, one could work with S instead of $W^{1,2}(\mathbb{R}^N, \mathbb{R})$, and look for, say, a local minimum of I constrained to S (which may be easier than looking for a saddle point of I). There is another way to use (1.13): for any $u \in S$, the ray from 0 passing through u can be used (after rescaling in θ) as a mountain-pass curve along which the maximum value of I is I(u). Conversely, any mountain-pass curve $\gamma \in \Gamma$ intersects S at least once [6]. Therefore, one may work with points on S instead of paths in Γ . Since assumption (1.13) is so helpful, it is found in many papers, such as [1,5,20], and [18].

In the paper [17], a result similar to Theorem 1.1 was proven for the N = 1 (ODE) case. The proof of Theorem 1.1 is similar except that a simple connectivity argument must be replaced by a degree theory argument [18]. proves a version of Theorem 1.1 under the assumption (1.13). Without 1.13, the manifold Smust be replaced by a set with similar properties.

Define $B_1(0) = \{x \in \mathbb{R}^N \mid |x| < 1\}$, and $\overline{\Omega}$ and $\partial\Omega$ to be, respectively, the topological closure and topological boundary of Ω . It is a simple consequence of the Brouwer degree [7] that for any continuous function $h : \overline{B_1(0)} \to \mathbb{R}^N$ with h(x) = x for all $x \in \partial B_1(0)$, there exists $x \in B_1(0)$ with h(x) = 0. We will need the following generalization:

Lemma 1.2. Let $h \in C(\overline{B_1(0)} \times [0,1], \mathbb{R}^N)$ with, for all $x \in \overline{B_1(0)}$ and $t \in [0,1]$,

(i)
$$h(x,0) = x = h(x,1)$$
.

(ii)
$$x \in \partial B_1(0) \Rightarrow h(x,t) = x$$

Then there exists a connected subset $C_0 \subset \overline{B_1(0)} \times [0,1]$ with $(0,0), (0,1) \in C_0$ and h(x,t) = 0 for all $(x,t) \in C_0$.

Using the Brouwer degree, it is clear that under the hypotheses of Lemma 1.2, for each "horizontal slice" $\overline{B_1(0)} \times \{t\}$ of the cylinder $\overline{B_1(0)} \times [0, 1]$, there exists $x \in B_1(0)$ with h(x, t) = 0. The conclusion of Lemma 1.2 does not follow from this observation. A generalization of Lemma 1.2 is known [16]: however, the reference may be difficult to find, so a proof is given here.

This paper is organized as follows: Section 2 contains the proof of Theorem 1.1. The proof of Lemma 1.2 is deferred until Section 3.

AN ELLIPTIC EQUATION ...

2. Proof of Theorem 1.1

It is fairly easy to show that

$$c \le c_0, \tag{2.1}$$

where c and c_0 are from (1.9)–(1.10): it is proven in [11] that there exists $\gamma_1 \in \Gamma_0$ with $\max_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0$. Define the translation operator τ as follows: for a function u on \mathbb{R}^N and $a \in \mathbb{R}^N$, define let $\tau_a u$ be u shifted by a, that is, $(\tau_a u)(x) = u(x-a)$. Let $\epsilon > 0$. Let $\mathbf{e}_1 = < 1, 0, 0, \ldots, 0 > \in \mathbb{R}^N$ and define $\tau_{R\mathbf{e}_1}\gamma_1$ by $(\tau_{R\mathbf{e}_1}\gamma_1)(\theta) =$ $\tau_{Re_1}(\gamma_1(\theta))$. Then for large R > 0, by (f_5) , $\tau_{Re_1}\gamma_1 \in \Gamma$ and $\max_{\theta \in [0,1]} I((\tau_{Re_1}\gamma_1)(\theta)) < c_0 + \epsilon$. Since $\epsilon > 0$ was arbitrary, $c \leq c_0$.

A Palais-Smale sequence for I is a sequence $(u_m) \subset W^{1,2}(\mathbb{R}^N,\mathbb{R})$ with $(I(u_m))$ convergent and $||I'(u_m)|| \to 0$ as $m \to \infty$. It is well-known that I fails the "Palais-Smale condition". That is, a Palais-Smale sequence need not converge. However, the following proposition states that a Palais-Smale sequence "splits" into the sum of a critical point of I and translates of critical points of I_0 :

Proposition 2.1. If $(u_m) \subset W^{1,2}(\mathbb{R}^N, \mathbb{R})$ with $I'(u_m) \to 0$ and $I(u_m) \to a > 0$, then there exist $k \ge 0$, $v_0, v_1, \ldots, v_k \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$, and sequences $(x_m^i)_{m\ge 1}^{1\le i\le k} \subset \mathbb{R}^N$, such that

- (i) $I'(v_0) = 0;$
- (ii) $I'_0(v_i) = 0$ for all i = 1, ..., k,

and along a subsequence (also denoted (u_m))

- (iii) $||u_m (v_0 + \sum_{i=1}^k \tau_{x_m^i} v_i)|| \to 0 \text{ as } m \to \infty;$ (iv) $|x_m^i| \to \infty \text{ as } m \to \infty \text{ for } i = 1, \dots, k;$ (v) $|x_m^i x_m^j| \to \infty \text{ as } m \to \infty \text{ for all } i \neq j;$ (vi) $I(v_0) + \sum_{i=1}^k I_0(v_i) = a.$

A proof for the case of x-periodic F is found in [6], and essentially the same proof works here. Similar propositions for nonperiodic coefficient functions, for both ODE and PDE, are found in [1,5], and [19], for example. All are inspired by the "concentration-compactness" theorems of P.-L. Lions [12].

If $c < c_0$, then by standard deformation arguments [15], there exists a Palais-Smale sequence (u_m) with $I(u_m) \rightarrow c$. By [11], the smallest nonzero critical value of I_0 is c_0 . Applying Proposition 2.1, we obtain k = 0, and (u_m) has a convergent subsequence, proving Theorem 1.1. So assume from now on that

$$c = c_0. \tag{2.2}$$

For $u \in L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$ and $i \in \{1, \ldots, N\}$, define \mathcal{L}_i , the *i*th component of the "location" of u, by

$$\int_{\mathbb{R}^N} u^2 \tan^{-1}(x_i - \mathcal{L}_i(u)) \, \mathrm{d}x = 0$$
(2.3)

and the "location" of u by

$$\mathcal{L}(u) = (\mathcal{L}_1(u), \dots, \mathcal{L}_N(u)) \in \mathbb{R}^N.$$
(2.4)

The following lemma establishes the existence and continuity of \mathcal{L} .

Lemma 2.2. \mathcal{L} is well-defined and continuous on $L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$.

Proof. It suffices to show that \mathcal{L}_1 is well-defined and continuous on $L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$. Let $u \in L^2(\mathbb{R}^N, \mathbb{R}) \setminus \{0\}$. By Leibniz's Theorem, the mapping $\phi : s \mapsto \int_{\mathbb{R}^N} u^2 \tan^{-1}(x_1 - s) \, dx$ is continuous, differentiable, and strictly decreasing, with

$$\phi'(s) = -\int_{\mathbb{R}^N} u^2(x) / ((x_1 - s)^2 + 1) \,\mathrm{d}x < 0.$$
(2.5)

 $\begin{aligned} \phi(s) &\to \mp \infty \text{ as } s \to \pm \infty. \text{ Therefore } \mathcal{L}_1(u) \text{ is unique and well-defined. Let } \epsilon > 0 \text{ and } u_m \to u. \text{ Now } \\ \int_{\mathbb{R}^N} u^2 \tan^{-1}(x_1 - (\mathcal{L}_1(u) + \epsilon)) \, \mathrm{d}x < 0. \text{ Since } u_m^2 \to u^2 \text{ in } L^1(\mathbb{R}^N, \mathbb{R}), \\ \int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (\mathcal{L}(u) + \epsilon)) \, \mathrm{d}x < 0 \text{ for } u_m^2 \to u^2 \text{ in } L^1(\mathbb{R}^N, \mathbb{R}), \\ \int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (\mathcal{L}(u) + \epsilon)) \, \mathrm{d}x < 0 \text{ for } u_m^2 \to u^2 \text{ in } L^1(\mathbb{R}^N, \mathbb{R}), \\ \int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (\mathcal{L}(u) + \epsilon)) \, \mathrm{d}x < 0 \text{ for } u_m^2 \to u^2 \text{ in } L^1(\mathbb{R}^N, \mathbb{R}), \\ \int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (\mathcal{L}(u) + \epsilon)) \, \mathrm{d}x < 0 \text{ for } u_m^2 \to u^2 \text{ in } L^1(\mathbb{R}^N, \mathbb{R}), \\ \int_{\mathbb{R}^N} u_m^2 \tan^{-1}(x_1 - (\mathcal{L}(u) + \epsilon)) \, \mathrm{d}x < 0 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for } u_m^2 \to u^2 \text{ for } u_m^2 \text{ for$

G.S. SPRADLIN

large m, so for large m, $\mathcal{L}_1(u_m) < \mathcal{L}_1(u) + \epsilon$. Similarly, for large m, $\mathcal{L}_1(u_m) > \mathcal{L}_1(u) - \epsilon$. Since ϵ is arbitrary, $\mathcal{L}_1(u_m) \rightarrow \mathcal{L}_1(u)$.

We are ready to begin the minimax argument. First we construct a mountain-pass curve γ_0 with some special properties:

Lemma 2.3. There exists $\gamma_0 \in \Gamma_0$ such that for all $\theta \in [0, 1]$,

- (i) $I_0(\gamma_0(\theta)) \leq c_0$.
- (ii) $\theta > 0 \Rightarrow \gamma_0(\theta) \neq 0.$
- (iii) $\theta \leq 1/2 \Rightarrow I_0(\gamma(\theta)) \leq c_0/2.$
- (iv) $\theta > 0 \Rightarrow \mathcal{L}(\gamma(\theta)) = 0.$

Proof. By [10], there exists $\gamma_1 \in \Gamma_0$ with $\max_{\theta \in [0,1]} I_0(\gamma_1(\theta)) = c_0$. Assume without loss of generality that $\gamma_1(\theta) \neq 0$ for $\theta > 0$. By rescaling in θ if necessary, assume that $I_0(\gamma_1(\theta)) \leq c_0/2$ for $\theta \leq 1/2$. Finally, define γ_0 by $\gamma_0(0) = 0$, $\gamma_0(\theta) = \tau_{-\mathcal{L}(\gamma_1(\theta))}\gamma_1(\theta)$ for $\theta > 0$.

Assume ϵ_0 in (1.12) is small enough so that for all $x \in \mathbb{R}^N$ and $\theta \in [0, 1]$,

$$I(\tau_x(\gamma_0(\theta)) < \min(2c_0, c_0 + \alpha) \text{ and } I(\tau_x(\gamma_0(1))) < 0,$$
 (2.6)

where α is from (1.11).

A substitute for S

Using the mountain-pass geometry of I and the fact that Palais-Smale sequences of I are bounded in norm [6], we construct a set which has similar properties to S, described in Section 1. Let ∇I denote the gradient of I, that is, $(\nabla I(u), w) = I'(u)w$ for all $u, w \in W^{1,2}(\mathbb{R}^N, \mathbb{R})$. Here, (\cdot, \cdot) is the usual inner product defined by $(u, w) = \int_{\mathbb{R}^N} \nabla u \cdot \nabla w + uw \, dx$. Let $\varphi : W^{1,2}(\mathbb{R}^N, \mathbb{R}) \to \mathbb{R}$ be locally Lipschitz, with $I(u) \ge -1 \Rightarrow \varphi(u) = 1$ and $I(u) \le -2 \Rightarrow \varphi(u) = 0$. Let η be the solution of the initial value problem

$$\frac{\mathrm{d}\eta}{\mathrm{d}s} = -\varphi(\eta)\nabla I(u), \quad \eta(0,u) = u.$$
(2.7)

In [19] it is proven that η is well-defined on $\mathbb{R}^+ \times W^{1,2}(\mathbb{R}^N)$. Let \mathcal{B} be the basin of attraction of 0 under the flow η , that is,

$$\mathcal{B} = \left\{ u \in W^{1,2}(\mathbb{R}^N, \mathbb{R}) \mid \eta(s, u) \to 0 \text{ as } s \to \infty \right\}$$
(2.8)

 \mathcal{B} is an open neighborhood of 0 [19]. Let $\partial \mathcal{B}$ be the topological boundary of \mathcal{B} in $W^{1,2}(\mathbb{R}^N, \mathbb{R})$. $\partial \mathcal{B}$ has some properties in common with \mathcal{S} . For example, for any $\gamma \in \Gamma$, $\gamma([0, 1])$ intersects $\partial \mathcal{B}$ at least once.

A pseudo-gradient vector field for I' may be used in place of ∇I , in which case \mathcal{B} and $\partial \mathcal{B}$ would be different, but the ensuing arguments would be the same.

Let

$$c^{+} = \inf\{I(u) \mid u \in \partial \mathcal{B}, \ |\mathcal{L}(u)| \le 1\}.$$

$$(2.9)$$

The reason for the label " c^+ " will become apparent in a moment. From now on, let us assume

I has no critical values in
$$(0, c_0] = (0, c].$$
 (2.10)

This will lead to the conclusion that I has a critical value greater than c_0 .

We claim that under assumptions (2.2) and (2.10),

$$c^+ > c_0.$$
 (2.11)

We use arguments that are sketched here and found in more detail in [19] and [5].

To prove the claim, suppose first that $c^+ < c_0$. Then there exists $u_0 \in \partial \mathcal{B}$ with $I(u_0) < c_0$. By arguments in [19], there exists a large positive constant P with

$$I(u) \le c_0 \text{ and } ||u|| \ge 2P \Rightarrow I(\eta(s, u)) < 0 \text{ for some } s > 0, \text{ and } ||\eta(s, u)|| > P$$
 (2.12)

for all s > 0. Suppose a > 0 and $||I'(\eta(s_m, U_0))|| \ge a$ for some sequence (s_m) with $s_m \to \infty$. Since $u_0 \in \partial \mathcal{B}$, $||\eta(u_0)|| < 2P$ for all s > 0. I'' is bounded on bounded subsets of $W^{1,2}(\mathbb{R})$, so I' is Lipschitz on bounded subsets of $W^{1,2}(\mathbb{R})$. Therefore $I(\eta(s, u_0)) < 0$ for some s > 0. This is impossible since $u_0 \in \partial \mathcal{B}$. Therefore $I'(\eta(s, u_0) \to 0$ as $s \to \infty$.

Define $u_n = \eta(n, u_0)$. Since $I'(u_n) \to 0$ and $u_n \in \partial \mathcal{B}$, there exists $b \in (0, c_0)$ with $I(u_n) \to b$. By [11], I_0 has no critical values between 0 and c_0 . Therefore, Proposition 2.1, with k = 0, implies that (u_n) converges along a subsequence to a critical point w of I with $0 < I(w) < c_0$. This contradicts assumption (2.10).

Next, suppose that $c^+ = c_0$. Then there exists a sequence $(u_n) \subset \partial \mathcal{B}$ with $|\mathcal{L}(u_n)| \leq 1$ for all n and $I(u_n) \to c_0$ as $n \to \infty$. As above, $I'(u_n) \to 0$ as $n \to \infty$; to prove, suppose otherwise. Then there exist a > 0 and a subsequence of (u_n) (also called (u_n)) along which $||I'(u_n)|| > a$. Since $\partial \mathcal{B}$ is forward- η -invariant [19], $\eta(1, u_n) \in \partial \mathcal{B}$ for all n. Since $(\eta(1, u_n))_{n\geq 1}$ is bounded and I' is Lipschitz on bounded subsets of $W^{1,2}(\mathbb{R}^N, \mathbb{R})$, for large n, $\eta(1, u_n) \in \partial \mathcal{B}$ with $I(\eta(1, u_n)) < c_0$. By the argument above, this implies that I has a critical value in $(0, c_0)$, contradicting assumption (2.2). Thus $I'(u_n) \to 0$ as $n \to \infty$. Applying Proposition 2.1 and using the fact that $|\mathcal{L}(u_n)| \leq 1$ for all n, (u_n) converges along a subsequence to a critical point of I, contradicting assumption (2.10). (2.11) is proven. \Box

Let R > 0 be big enough so that for all $x \in \partial B_R(0) \subset \mathbb{R}^N$ and $\theta \in [0, 1]$,

$$I(\tau_x \gamma_0(\theta)) < c^+. \tag{2.13}$$

This is possible by (1.12), (2.11), and Lemma 2.3(i). Define the minimax class

$$\mathcal{H} = \{h \in C(\overline{B_R(0)} \times [0,1], W^{1,2}(\mathbb{R}^N, \mathbb{R})) \mid$$
for all $x \in \overline{B_R(0)}$ and $t \in [0,1]$,
 $t > 0 \Rightarrow h(x,t) \neq 0$
 $0 \le t \le 1/2 \Rightarrow h(x,t) = \tau_x \gamma_0(t)$
 $x \in \partial B_R(0) \Rightarrow h(x,t) = \tau_x \gamma_0(t)$
 $h(x,1) = \tau_x \gamma_0(1)\}$

and the minimax value

$$h_0 = \inf_{h \in \mathcal{H}} \max_{(x,t) \in \overline{B_R(0)} \times [0,1]} I(h(x,t)).$$
(2.14)

We claim

$$c_0 < c^+ \le h_0 < \min(2c_0, c_0 + \alpha).$$
 (2.15)

Proof of Claim. Define $\bar{h} \in \mathcal{H}$ by $\bar{h}(x,t) = \tau_x(\gamma_0(t))$. Then $\bar{h} \in \mathcal{H}$ and by (2.6), $\max_{(x,t)\in \overline{B_R(0)}\times[0,1]} \bar{h}(x,t) < \min(2c_0, c_0 + \alpha)$. Therefore $h_0 < \min(2c_0, c_0 + \alpha)$.

Next, let $h \in \mathcal{H}$. By Lemma 1.2, and a suitable rescaling of x and t, there exists a connected set $C_2 \subset B_R(0) \times [1/2, 1]$ with $(0, 1/2), (0, 1) \in C_2$ and along which for all $(x, t) \in C_2$,

$$\mathcal{L}(h(x,t)) = 0. \tag{2.16}$$

Joining C_2 with the segment $\{0\} \times [0, 1/2]$, we obtain a connected set $C_3 \subset B_R(0) \times [0, 1]$ such that $(0, 0), (0, 1) \in C_3$ and for all $(x, t) \in C_3$, $\mathcal{L}(h(x, t)) = 0$. C_3 is not necessarily path-connected, so let r > 0 be small enough so

that for all

$$(x,t) \in N_r(C_3) \equiv \{(y,s) \in B_R(0) \times [0,1] \mid \\ \exists (x',t') \in B_R(0) \times [0,1] \text{ with } |y-x'|^2 + (s-t')^2 < r^2\},$$

$$|\mathcal{L}(h(x,t))| < 1.$$

$$(2.17)$$

 $N_r(C_3)$ is path-connected [21], so there exists a path $g \in C([0, 1], N_r(C_3))$ with g(0) = (0, 0), g(1) = (0, 1), and $g(\theta) \in N_r(C_3)$ for all $\theta \in [0, 1]$. If we define $\tilde{\gamma} \in \Gamma$ by $\tilde{\gamma}(\theta) = h(g(\theta))$, then $|\mathcal{L}(\tilde{\gamma}(\theta))| < 1$ for all $\theta \in [0, 1]$. Since $\tilde{\gamma}(0) = 0$ and $I(\tilde{\gamma}(1)) < 0$, there exists $\theta^* \in [0, 1]$ with $\tilde{\gamma}(\theta^*) \in \partial \mathcal{B}$. By the definition of c^+ (2.9), $I(\tilde{\gamma}(\theta^*)) \ge c^+$. Since h was an arbitrary element of $\mathcal{H}, h_0 \ge c^+$.

By standard deformation arguments, such as described in [15], there exists a Palais-Smale sequence $(u_n) \subset W^{1,2}(\mathbb{R}^N,\mathbb{R})$ with $I'(u_n) \to 0$ and $I(u_n) \to h_0$ as $n \to \infty$. $c_0 < h_0 < \min(2c_0, c_0 + \alpha)$. Apply Proposition 2.1 to (u_n) . Since I_0 has no positive critical values smaller than c_0 [11], $k \leq 1$. By (2.10), (u_n) converges along a subsequence to a critical point z of I, with $I(z) = h_0$. Theorem 1.1 is proven.

3. A degree-theoretic lemma

Here, we prove Lemma 1.2. Let h be as in the hypotheses of the lemma. For l > 0, define $\mathcal{A}_l \subset \overline{B_1(0)} \times [0,1]$ by

$$\mathcal{A}_{l} = \{ (x,t) \in \overline{B_{1}(0)} \times [0,1] \mid |f(x,t)| < l \}.$$
(3.1)

 \mathcal{A}_l is an open neighborhood of (0,0). Let C_l be the component of \mathcal{A}_l containing (0,0). We will prove the following claim:

For all
$$\epsilon > 0, (0,1) \in C_{\epsilon}$$
. (3.2)

Then we will use the C_{ϵ} 's to construct C_0 . For l > 0 and $t \in [0, 1]$, define

$$C_{l}^{t} = \{ x \in \overline{B_{1}(0)} \mid (x,t) \in C_{l} \}.$$
(3.3)

Fix $\epsilon \in (0, 1)$. Define $\phi : [0, 1] \to \mathbb{Z}$ by

$$\phi(t) = d(h(\cdot, t), C^t_{\epsilon}, 0), \tag{3.4}$$

where d is the topological Brouwer degree [7]. We will prove $\phi(t) = 1$ for all $t \in [0, 1]$, in particular $\phi(1) = 1$, so (3.2) is satisfied.

f is continuous on a compact domain, so f is uniformly continuous. Let $\rho > 0$ be small enough so that for all $x \in \overline{B_1(0)}$ and $t_1, t_2 \in [0, 1]$,

$$|t_1 - t_2| < \rho \Rightarrow |h(x, t_1) - h(x, t_2)| < \epsilon/4.$$
(3.5)

Clearly

$$\phi(0) = d(id, B_{\epsilon}(0), 0) = 1.$$
(3.6)

Let $0 \le t_1 < t_2 \le 1$ with $t_2 - t_1 < \rho$. We will show $\phi(t_1) = \phi(t_2)$, proving that ϕ is constant, which by (3.6), implies (3.2).

 Ω is nonempty. For all $x \in \partial C_{\epsilon}^{t_1}$, $|h(x, t_1)| = \epsilon$, so by (3.5),

$$x \in \partial C_{\epsilon}^{t_1} \Rightarrow |h(x, t_1)| \ge \frac{3}{4}\epsilon.$$
(3.7)

By the additivity property of d [7],

$$\phi(t_2) \equiv d(f(\cdot, t_2), C_{\epsilon}^{t_2}, 0)
= d(f(\cdot, t_2), C_{\epsilon}^{t_2} \setminus \overline{C_{\epsilon}^{t_1}}, 0) + d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0).$$
(3.8)

We will show:

There does not exist
$$x \in C_{\epsilon}^{t_2} \setminus \overline{C_{\epsilon}^{t_1}}$$
 with $h(x, t_2) = 0.$ (3.9)

Suppose such an x exists. Then by (3.5), $|h| < \epsilon/4$ on the segment $\{x\} \times [\underline{t_1, t_2}]$. $x \in C_{\epsilon}^{t_2}$, so $(x, t_2) \in C_{\epsilon}$, and by the definition of C_{ϵ} , $(x, t_1) \in C_{\epsilon}$, and $x \in C_{\epsilon}^{t_1}$, contradicting $x \in C_{\epsilon}^{t_2} \setminus \overline{C_{\epsilon}^{t_1}}$. So (3.9) is true. Therefore by (3.8),

$$\phi(t_2) = d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0).$$
(3.10)

By the same argument, switching the roles of t_1 and t_2 ,

$$\phi(t_1) = d(f(\cdot, t_1), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0).$$
(3.11)

For all $t \in [t_1, t_2]$ and $x \in \partial C_{\epsilon}^{t_1} \cup \partial C_{\epsilon}^{t_2}$, (3.5) gives $|h(x, t_1)| > 3\epsilon/4$ and $|h(x, t) - h(x, t_1)| < \epsilon/4$. Therefore by the homotopy invariance property of the degree [7],

$$\phi(t_1) = d(f(\cdot, t_1), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0)$$

$$= d(f(\cdot, t_2), C_{\epsilon}^{t_1} \cap C_{\epsilon}^{t_2}, 0) = \phi(t_2).$$
(3.12)

 $\phi(0) = 1$ and $\phi(t_1) = \phi(t_2)$ for any $t_1 < t_2$ with $t_1, t_2 \in [0, 1]$ and $t_2 - t_1 < \rho$. Therefore ϕ is constant, and $\phi(1) = 1$. Therefore $(0, 1) \in C_{\epsilon}$.

Now let

$$C_0 = \bigcap_{\epsilon > 0} C_\epsilon. \tag{3.13}$$

Each C_{ϵ} is a connected set containing (0,0) and (0,1), so it is easy to show that C_0 is a connected set containing (0,0) and (0,1), and clearly for all $(x,t) \in C_0$, h(x,t) = 0.

References

- F. Alessio and P. Montecchiari, Multibump solutions for a class of Lagrangian systems slowly oscillating at infinity. Ann. Instit. Henri Poincaré 16 (1999) 107–135.
- [2] A. Bahri and Y.-Y. Li, On a Min-Max Procedure for the Existence of a Positive Solution for a Certain Scalar Field Equation in R^N. Revista Iberoamericana 6 (1990) 1–17.
- [3] P. Caldiroli, A New Proof of the Existence of Homoclinic Orbits for a Class of Autonomous Second Order Hamiltonian Systems in R^N. Math. Nachr. 187 (1997) 19–27.
- [4] P. Caldiroli and P. Montecchiari, Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Comm. Appl. Nonlinear Anal. 1 (1994) 97–129.
- [5] V. Coti Zelati, P. Montecchiari and M. Nolasco, Multibump solutions for a class of second order, almost periodic Hamiltonian systems. Nonlinear Ord. Differ. Equ. Appl. 4 (1997) 77–99.
- [6] V. Coti Zelati and P. Rabinowitz, Homoclinic Orbits for Second Order Hamiltonian Systems Possessing Superquadratic Potentials. J. Amer. Math. Soc. 4 (1991) 693–627.
- [7] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, New York (1985).
- [8] M. Estaban and P.-L. Lions, Existence and non existence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh 93 (1982) 1–14.
- B. Franchi, E. Lanconelli and J. Serrin, Existence and Uniqueness of Nonnegative Solutions of Quasilinear Equations in R^N. Adv. Math. 118 (1996) 177–243.
- [10] L. Jeanjean and K. Tanaka, A Note on a Mountain Pass Characterization of Least Energy Solutions. Adv. Nonlinear Stud. 3 (2003) 445–455.
- [11] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbb{R}^N . Proc. Amer. Math. Soc. 131 (2003) 2399–2408.
- [12] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Instit. Henri Poincaré 1 (1984) 102–145 and 223–283.
- [13] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York (1989).
- [14] P. Rabinowitz, Homoclinic Orbits for a class of Hamiltonian Systems. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 33–38.
- [15] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, C.B.M.S. Regional Conf. Series in Math., No. 65, Amer. Math. Soc., Providence (1986).
- [16] P. Rabinowitz, Théorie du degrée topologique et applications à des problèmes aux limites nonlineaires, University of Paris 6 Lecture notes, with notes by H. Berestycki (1975).

G.S. SPRADLIN

- [17] G. Spradlin, Existence of Solutions to a Hamiltonian System without Convexity Condition on the Nonlinearity. Electronic J. Differ. Equ. 2004 (2004) 1–13.
- [18] G. Spradlin, A Perturbation of a Periodic Hamiltonian System. Nonlinear Anal. Theory Methods Appl. 38 (1999) 1003-1022.
- [19] G. Spradlin, Interacting Near-Solutions of a Hamiltonian System. Calc. Var. PDE 22 (2005) 447-464.
- [20] E. Serra, M. Tarallo and S. Terracini, On the existence of homoclinic solutions to almost periodic second order systems. Ann. Instit. Henri Poincaré 13 (1996) 783–812.
- [21] G. Whyburn, *Topological Analysis*. Princeton University Press (1964).