
ESAIM: COCV ESAIM: Control, Optimisation and Calculus of Variations
Vol. 13, No 1, 2007, pp. 93–106 www.edpsciences.org/cocv
DOI: 10.1051/cocv:2006017

EXISTENCE OF OPTIMAL MAPS IN THE REFLECTOR-TYPE PROBLEMS

Wilfrid Gangbo1 and Vladimir Oliker2

Abstract. In this paper, we consider probability measures µ and ν on a d-dimensional sphere in

Rd+1, d ≥ 1, and cost functions of the form c(x,y) = l( |x−y|2
2

) that generalize those arising in geometric
optics where l(t) = − log t. We prove that if µ and ν vanish on (d − 1)-rectifiable sets, if |l′(t)| > 0,
limt→0+ l(t) = +∞, and g(t) := t(2− t)(l′(t))2 is monotone then there exists a unique optimal map To

that transports µ onto ν, where optimality is measured against c. Furthermore, infx |Tox−x| > 0. Our
approach is based on direct variational arguments. In the special case when l(t) = − log t, existence
of optimal maps on the sphere was obtained earlier in [8] and [22] under more restrictive assumptions.
In these studies, it was assumed that either µ and ν are absolutely continuous with respect to the
d-dimensional Haussdorff measure, or they have disjoint supports. Another aspect of interest in this
work is that it is in contrast with the work in [7] where it is proved that when l(t) = t then existence
of an optimal map fails when µ and ν are supported by Jordan surfaces.
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1. Introduction

In Euclidean space Rd+1 consider a reflector system consisting of a point source O radiating with intensity
I(x) in directions x ∈ X, where X is a closed set on a d-dimensional unit sphere Sd ↪→ Rd+1 centered at O,
and a smooth perfectly reflecting hypersurface R, star-shaped relative to O, which intercepts and reflects the
light rays with directions from X; see Figure 1. Assuming the geometric optics approximation and applying the
classical reflection law to determine the set of reflected directions Y ⊂ Sd (after one reflection), we obtain an
associated with R “reflector map” ξ : X → Y. Assuming that no energy is lost in the process, one can apply
the energy conservation law to calculate the intensity distribution L(y) produced on Y. The reflector problem
consists in solving the inverse problem in which the source O, the sets X,Y and the intensities I and L are
given in advance and the reflector R needs to be determined. That is, R should be such that ξ(X) ⊇ Y and

L(ξ(x))|J(ξ)(x)| = I(x)

for all x in the interior of X; here J(ξ) denotes the Jacobian determinant of ξ.
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Problems of this type arise often in applications, for example, in design of reflector antennas [23]. In various
forms the reflector problem has been considered by many authors and numerous papers by engineers (at least
since early 60’s [12] until now [22]) are devoted to this subject. It was introduced in electrical engineering and
optics independently of the mass transport problem. Because of the strong nonlinear constraints appearing in the
problem, progress has been slow and many theoretical and computational issues still remain open. The problem
continues to attract considerable attention because of its practical importance and mathematical subtleties. It
may be pointed out that a version of the reflector problem appears on the famous list of unsolved problems
proposed by Yau [24] in 1993.

Analytically, the reflector problem considered in this paper can be formulated as a nonlinear second order
elliptic partial differential equation of Monge-Ampère type on a subset of Sd. In such form it has been studied
by Oliker and Waltman [16], Caffarelli and Oliker [3], Wang [21], Guan and Wang [10], Caffarelli, Kochengin
and Oliker [4], Oliker [17], and other authors.

Recently, Glimm and Oliker [8] and, independently, Wang [22] have shown that if the function I (resp. L)
is treated as the density of a measure µ (resp. ν) that are absolutely continuous with respect to the volume
measure on Sd, then the reflector problem can be studied as a variational problem in the framework of Monge-
Kantorovich theory, that is, a problem of finding an optimal map minimizing the transport cost of transferring
µ onto ν with the cost function − log(1− x · y). In contrast with other cost functions considered usually in the
Monge-Kantorovich theory, this cost function may assume infinite values. Consequently, in order to overcome
this difficulty, a geometric condition requiring the supports of µ and ν to be disjoint was imposed in [8] and
[22] to establish existence and uniqueness of optimal maps. Without imposing the condition that the supports
of the measures are disjoint, existence and uniqueness of optimal maps was also obtained in [8]. However, the
proof is indirect as it relies on existence of weak solutions in the reflector problem established earlier in [3, 17].

The contribution of this study is twofold. First of all, we obtain existence and uniqueness of optimal maps To

for a class of cost functions that may be infinite. This class includes the logarithmic cost function of the reflector
problem as a special case. The cost functions are precisely of the form c(x,y) = l( |x−y|2

2 ) where |l′(t)| > 0,
limt→0+ l(t) = +∞, and g(t) := t(2 − t)(l′(t))2 is monotone. Furthermore, we prove that infx |Tox − x| > 0,
which we view as an intermediary step in the study of the regularity of the map To. Secondly, our approach is
variational and direct; the supports of measures µ and ν are allowed to overlap and it is merely required that
these measures vanish on (d− 1)-rectifiable subsets. The precise statement can be found in Theorem 4.6.

Let us recall the main principles which ensure existence of optimal maps, which apparently, have been
explicitly pointed out for the first time in [5] and later exploited by many authors. Assume we are given a cost
function c : Rd+1 ×Rd+1 → R and two probability measures µ and ν on Rd+1, say, absolutely continuous with
respect to Lebesgue measure. Existence and uniqueness of an optimal map transporting µ onto ν against c is
ensured if ∇xc(x, ·) is a one-to-one map of Rd+1 into itself. Note that if c(x,y) = |x − y|2 then ∇xc(x, ·) has
this property.

It is shown in [7] that if instead, µ and ν are supported by Sd, then existence of an optimal map transporting
µ onto ν against c(x,y) = |x − y|2, fails. One of the points in our study here is that we start with a cost
function c(x,y) = l(|x − y|2/2) such that ∇xc(x, ·) fails to be a one-to-one map of Rd+1 into itself. However,
if x ∈ Sd and a ∈ Rd+1 is distinct from the origin, we observed that there exists a unique y ∈ Sd satisfying
the equation ∇x

Sdc(x,y) = a. Here, ∇x
Sdc(x, ·) is the tangential gradient of c on Sd with respect to x. The

injectivity of ∇x
Sdc(x, ·) yields existence of an optimal map that transports µ onto ν, if µ and ν are supported

by Sd and vanish on (d − 1)-rectifiable sets. We use the Kantorovich theory as a tool to give a transparent
explanation to the existence of a unique solution in the reflector problem, under sharp assumptions. Our main
results are stated in Theorem 4.6. We refer the reader to a variant of the reflector problem involving two
reflectors considered in a paper by Glimm and Oliker [9]. We also refer the reader to a recent study by Ahmad
[2] in the plane, motivated by [7].

The paper is essentially self-contained. It is organized as follows. In order to motivate out subsequent
considerations, we begin with a review of the reflector problem in Section 2. In Section 3 we review and extend
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Figure 1. The reflector problem.

some results from the Monge-Kantorovich theory. Our main results establishing existence and uniqueness of
optimal maps are in Section 4.

2. A review of the reflector problem

Let X,Y, I, L and R be as in the introduction. If n is the unit normal field on R, then the incident direction
x and the reflected direction y are related by the reflection law

y = x − 2(x · n)n. (1)

Thus, the hypersurface R defines the reflector map ξ : x → y which maps the “input aperture” X ⊂ Sd onto
the “output aperture” Y ⊂ Sd; see Figure 1. The intensity of the light reflected in direction y = ξ(x) is given
by I(x)/|J(ξ(x))|.

Suppose now that the closed sets X and Y on Sd are given as well as nonnegative integrable functions I on X
and L on Y representing, respectively, the intensity of the source and the desired intensity on the far-region Y.
The reflector problem is to determine a reflector R such that the map ξ defined by R maps X onto Y and
satisfies the equation

L(y) = I(ξ−1(y))|J(ξ−1(y))|, y ∈ IntY; (2)
see [15,16]. Note that this is an equation on the output aperture Y rather than on the input aperture X. One
could also set it up on X [14], but (2) is more convenient for our purposes here.

It was shown in [15, 16] that there exists a scalar quasi-potential p : Y → (0,∞) from which the reflector
R can be recovered and in terms of which the equation (2) when J(ξ−1) �= 0 is the following equation of
Monge-Ampère type

L(y) = I(ξ−1(y))
|det[Hess(p) + (p− ρ)e]|

ρndet(e)
, y ∈ IntY, (3)

where e is the standard metric on Sd, ρ = (p2 + |∇p|2)/2p, and Hess(p), ∇p are computed in the metric e. In
terms of p the position vector of R is given by

r(y) = −∇p(y) − (p(y) − ρ(y))y : Y → Rd+1, (4)

while

ξ−1(y) =
r(y)
ρ(y)

·

Note that |r| = ρ.
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A close examination of (4) shows that it describes R as an envelope of a family of paraboloids of revolution
P (y) tangent to R, parametrized by their axes y ∈ Y and with common focus O. For each y, p(y) is the
focal parameter of P (y). This observation was used in [3] for the weak formulation of the reflector problem
where a class of convex reflectors corresponding to positively elliptic solutions of (3) was introduced. Reflectors
corresponding to negatively elliptic solutions of (3) can be introduced and analyzed by similar methods [8, 22].
Such reflectors, however, are only piecewise concave (relative to the origin O). For brevity we discuss here only
convex reflectors which we now define.

Let Y be a subset on Sd and p′ : Y → (0,∞) a bounded function. Let {P (y)} be a family of paraboloids of
revolution with axes of direction y ∈ Y, common focus O and polar radii

ρy(x) =
p′(y)

1 − x · y , x ∈ Sd \ {y}. (5)

The closed convex hypersurface R given by r(x) = ρ(x)x, x ∈ Sd, with

ρ(x) = inf
y∈Y

ρy(x), x ∈ Sd, (6)

is called a reflector defined by the family {P (y)}y∈Y (with the light source at O).
Let R be a reflector, z a point on R, P a paraboloid of revolution with focus at O and B the convex body

bounded by P . If R ⊂ B and z ∈ P
⋂
R then P is called supporting to R at z.

For any y ∈ Sd a reflector R has a supporting paraboloid with axis y. The corresponding continuous function
giving the focal parameters of all such supporting paraboloids P (y), y ∈ Sd, of R is called the focal function
and denoted by p. The natural question of characterization of focal functions of closed convex reflectors was
partially answered in [17].

The reflector map (possibly multivalued) generalizing (1) and denoted again by ξ is defined for x ∈ Sd as

ξ(x) = {y ∈ Sd
∣∣ P (y) is supporting to R at ρ(x)x}. (7)

It follows from (5) and (6) that, equivalently, the reflector map can be defined as

ξ(x) = {y ∈ Sd
∣∣ log ρ(x) − log p(y) = − log(1 − x · y)}. (8)

The total amount of energy transferred from the source O in a given set of directions ω ⊂ Y is best described
with the use of the map ξ−1 defined on any subset ω ⊂ Y by setting

ξ−1(ω) =
⋃
y∈ω

ξ−1(y).

It is shown in [3, 17] that for any Borel subset ω ⊂ Y the set ξ−1(ω) is Lebesgue measurable on Sd. Thus, if
I ≥ 0 is the intensity of the source then the total amount of energy transferred by R to the set ω ⊂ Y is given
by the “energy” function

G(R,ω) =
∫

ξ−1(ω)

I(x)dσ(x), (9)

where dσ is the standard d-volume form on Sd. It is assumed here and everywhere below that I is extended
from X to the entire Sd by setting I(x) ≡ 0 ∀x ∈ Sd \ X. The function G(R,ω) is a Borel measure on Y (not
necessarily absolutely continuous) [3, 17].

For a given nonnegative and integrable function L on Y we say that a closed convex reflector R is a weak
solution of the reflector problem if

G(R,ω) =
∫

ω

L(y)dσ(y) for any Borel set ω ⊂ Y. (10)
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Put

µ[A] =
∫

A

I(x)dσ(x), ν[B] =
∫

B

L(y)dσ(y) (11)

for A ⊂ X and B ⊂ Y Borel sets. An obvious necessary condition for existence of a weak solution to the
reflector problem is that the total energy of the source and the total energy on the output aperture are in
balance, that is,

µ[X] = ν[Y]. (12)

Excluding the trivial case when either µ[X] or ν[Y] is zero, it may be assumed, without loss of generality, that
measures satisfying (12) are normalized so that they are probability measures.

The following existence result was established by Caffarelli and Oliker in [3] (and reproduced partly in [4]
and [17]).

Theorem 2.1. Let X and Y be closed sets on Sd (possibly coinciding with Sd) and I ≥ 0, L ≥ 0 two probability
densities on X and Y, respectively. Then there exists a reflector which is a weak solution of the reflector problem.

The proof is obtained in two steps. First the problem is solved in the case when the right hand side in (10)
is a finite sum of Dirac masses. In this case a constructive minimization procedure together with an a priori
two-sided C0 estimate of ρ is used to obtain the weak solution, which is also unique. The general problem is
solved by approximating the right hand side in (10) by finite sums of Dirac masses and obtaining the solution
R as a limit of a sequence of special solutions Rk, k = 1, 2, ..., constructed on the previous step. The measures
G(Rk, ·) are weakly continuous and converge to G(R, ·). Consequently, R is indeed a weak solution of the
reflector problem.

The procedure we have just described proves, in fact, that the reflector problem admits a solution if the right
hand side in (10) is any nonnegative probability measure on Y, possibly with a singular part.

Existence of regular solutions was studied by Wang [21] and Guan and Wang [10].
In the framework of Monge-Kantorovich theory the reflector problem was studied by Glimm and Oliker [8]

and Wang [22]. The following result was proved in [8], Theorem 4.1.

Theorem 2.2. Let R be a weak solution of the reflector problem with the reflector map ξ. Then ξ#µ = ν (that
is, ξ pushes µ forward to ν) and it is a minimizer of the problem

inf
ξ′

{∫
X

− log(1 − x · ξ′(x))dµ(x) | ξ′#µ = ν

}
. (13)

Furthermore, any other minimizer of (13) is equal to ξ almost everywhere on the set {x ∈ Sd
∣∣ I(x) �= 0}.

Remark 2.3. Theorems 2.1 and 2.2, together, imply existence of minimizers to the problem (13). In addition,
if I > 0 on X and X is connected, these results imply that, except for a set of measure zero, any minimizer
of (13) (with µ and ν as in (11)) is a reflector map associated with a closed convex reflector in Rd+1. Such
reflector is unique up to a constant multiple of the function ρ(x) in (6); see [8].

On the other hand, the minimization problem (13) is a variant of the Monge problem on Sd (see the beginning
of Sect. 3, below). By a different method, in the framework of Monge-Kantorovich theory, the existence and
uniqueness of minimizers to (13) was proved in [8] and [22] under the additional condition that spt(µ)∩spt(ν) = ∅.
Furthermore, if ρ and p are the functions in (8) then uo(x) = log ρ(x) and vo(y) = − log p(y) maximize

(u, v) →
∫
X

u(x)dµ(x) +
∫
Y

v(y)dν(y)

over the set of pairs (u, v) ∈ C(X × Y) satisfying u(x) + v(y) ≤ − log(1 − x · y) for all (x,y) ∈ X × Y.
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3. Background on the Monge-Kantorovich theory

As observed in Section 2, the reflector problem can be stated as a variant of the problem of Monge with the
cost function c(x,y) = − log(1−x ·y), x,y ∈ Sd. In this section we recall some facts of the Monge-Kantorovich
theory that will be needed to study an analogue of the reflector problem with general cost functions.

We first fix some notation. For a set Z ⊂ Rd+1 we denote by P(Z) the set of Borel probability measures
on Z. As usual, if Z is a closed subset of Rd+1 and γ ∈ P(Z) then the support of γ is the smallest closed set
sptγ ⊂ Z such that γ[ sptγ] = γ[Z] = 1.

Suppose, X,Y ⊂ Rd+1 are closed sets. If µ ∈ P(X), ν ∈ P(Y), we denote by Γ(µ, ν) the set of joint measures
γ on Rd+1×Rd+1 that have µ and ν as their marginals: µ[U ] = γ[U ×Rd+1] and γ[Rd+1×U ] = ν[U ] for Borel
U ⊂ Rd+1. In fact, if γ ∈ Γ(µ, ν) then sptγ ⊂ X × Y.

Assume that we are given two probability measures µ and ν on Rd+1. Let Γ(µ, ν) be the set of joint measures
γ on Rd+1 × Rd+1 that have µ and ν as their marginals. Kantorovich’s problem is to minimize the transport
cost

C(γ) :=
∫
c(x,y) dγ(x,y) (14)

for some given c among joint measures γ in Γ(µ, ν), to obtain

inf
γ∈Γ(µ,ν)

C[γ]. (15)

Let T (µ, ν) be the set of Borel maps T : Rd+1 → Rd+1 that push µ forward to ν : µ[T−1(B)] = ν[B] for all
Borel sets B ⊂ Rd+1. The Monge problem is to minimize

I[T ] =
∫
Rd+1

c(x, Tx)dµ(x)

over the set T (µ, ν).
There is a natural embedding which associates to T ∈ T (µ, ν) a γT := (id × T )#µ ∈ Γ(µ, ν), where id :

Rd+1 → Rd+1 is the identity map. Since C[γT ] = I[T ] we conclude that

inf
γ∈Γ(µ,ν)

C[γ] ≤ inf
T∈T (µ,ν)

I[T ]. (16)

Throughout this section we use the notation R∪{+∞} = R̄ and assume that c : Rd+1×Rd+1 → R̄. We endow
R̄ with the usual topology so that c ∈ C(Rd+1 × Rd+1, R̄) means that

lim
(x,y)→(x̄,ȳ)

c(x,y) = c(x̄, ȳ).

In particular, if c(x̄, ȳ) = +∞ then c(x,y) tends to +∞ as (x,y) tends to (x̄, ȳ).

Definition 3.1. A subset S ⊂ Rd+1 × Rd+1 is said to be c-cyclically monotone if for every natural number n
and every {(xi,yi)}n

i=1 ⊂ S we have

n∑
i=1

c(xi,yi) ≤
n∑

i=1

c(xi,yσ(i)),

for all permutation σ of n letters.

This notion of c-cyclical monotonicity was introduced by Knott and Smith [13]. When c(x,y) = |x − y|2,
c-cyclical monotonicity is simply called cyclical monotonicity [18].
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Proposition 3.2. Assume that X,Y ⊂ Rd+1 are closed sets, that µ ∈ P(X), ν ∈ P(Y) and that c ≥ 0 is lower
semicontinuous on X × Y. Then,

(i) there is at least one optimal measure γo ∈ Γ(µ, ν).
(ii) Suppose that in addition c ∈ C(X × Y, R̄). Unless C ≡ +∞ throughout Γ(µ, ν), there is a c-cyclically

monotone set S ⊂ Rd+1 × Rd+1 containing the support of all optimal measures in Γ(µ, ν).

Part (i) of Proposition 3.2 can be found in [11] (Th. 2.19). Note that that proof is interesting only in the
case C �≡ +∞. Part (ii) was established in [1] and [6] for c ∈ C(X × Y,R). One can readily adapt the proof of
Theorem 2.3 and Corollary 2.4 of [6] to cost functions c ∈ C(X × Y, R̄).

Definition 3.3. Suppose that ψ : Rd+1 → R ∪ {−∞} is not identically −∞. Then
(i) ψ is said to be c-concave if there exists a set A ⊂ Rd+1 × R such that

ψ(x) = inf
(y,λ)∈A

c(x,y) + λ, (x ∈ X). (17)

(ii) The c-superdifferential ∂cψ of ψ consists of the pairs (x,y) ∈ Rd+1 × Rd+1 for which

c(x,y) − ψ(x) ≤ c(v,y) − ψ(v), (18)

for all v ∈ Rd+1.
(iii) We define ∂cψ(x) ⊂ Rd+1 to be the set of y such that (x,y) ∈ ∂cψ(x). If E ⊂ Rd+1, ∂cψ(E) is the union
of the ∂cψ(x) such that x ∈ E.
(iv) The c–transform of ψ is the function y → ψc(y) = infx∈X{c(x,y) − ψ(x)}.
Remark 3.4. Suppose that ψ : Rd+1 → R ∪ {−∞} is not identically −∞ and is given by (17). We have

(i) ψc(y) ≥ −λ > −∞ if (y, λ) ∈ A where A is the set in (17). Hence, ψc �≡ −∞.
(ii) ψcc = ψ.

Proof. The proofs of these remarks are well documented when c : Rd+1 ×Rd+1 → R. We verify that the same
proofs apply when c may take the value +∞.

If (y, λ) ∈ A then −λ ≤ c(x,y) − ψ(x) for all x ∈ X. Hence ψc(y), the infimum of c(x,y) − ψ(x) over X, is
not smaller than −λ. This proves (i).

The inequality ψcc ≥ ψ which holds for general functions is readily checked. It remains to prove that
when (17) holds, then ψcc ≤ ψ. Fix x ∈ X and let {(yn, λn)}∞n=1 ⊂ A be such that

ψ(x) = lim
n→+∞

c(x,yn) + λn.

By (i), λn ≥ −ψc(yn) and so,

ψ(x) ≥ lim sup
n→+∞

c(x,yn) − ψc(yn) ≥ ψcc(x).

This proves (ii). �

4. Existence and uniqueness of optimal maps

Throughout this section, we assume that
(A1) c ∈ C1(Rd+1 × Rd+1 \ ∆).
(A2) c : Rd+1 × Rd+1 → [0,+∞] is lower semicontinuous.
(A3) for any xo ∈ Rd+1, c(xo,xo) = +∞.

We are interested in probability measures µ, ν for which C �≡ +∞ throughout Γ(µ, ν). Assume that c ∈
C(Rd+1 × Rd+1 \ ∆,R), where ∆ := {(x,x) | x ∈ Rd+1} denotes the diagonal. Proposition 4.1 provides a
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sufficient condition which ensures that C �≡ +∞ throughout Γ(µ, ν). Before stating that proposition, let us
introduce the sets

S(a, b) = {x = (x1, · · · , xd, xd+1) | a ≤ xd+1 ≤ b},
for −1 ≤ a ≤ b ≤ 1.

Proposition 4.1. Suppose that µ, ν ∈ P(Sd) are Borel measures which vanish on (d− 1)-rectifiable sets. Then
there exists γ ∈ Γ(µ, ν) and ε > 0 such that

|x − y| ≥ ε

for all (x,y) ∈ sptγ.

Proof. Since µ and ν vanish on (d− 1)-rectifiable sets, the functions

t→ µ[S(a, t)], t→ ν[S(a, t)] are continuous. (19)

Case 1. Assume first that there exists c ∈ (−1, 1) such that

sptµ ⊂ S(−1, c), sptν ⊂ S(c, 1). (20)

Thanks to (19) we may choose ε1, ε2 > 0 such that

µ[S(−1,−1 + ε1)] = ν[S(c, c+ ε2)] = 1/2.

By (20) −1 + ε1 < c. Set
γ̄ = 2(µ− ⊗ ν− + µ+ ⊗ ν+)

where
µ− = µ|S(−1,−1+ε1), µ+ = µ|S(−1+ε1,c), ν− = ν|S(c,c+ε2), ν+ = ν|S(c+ε2,1).

Note that γ̄ ∈ Γ(µ, ν) and
|x − y| ≥ min{c+ 1 − ε1, ε2} > 0

for all (x,y) ∈ sptγ. This proves the proposition in this special case.

Case 2. Assume that sptµ and sptν are arbitrary. We use (19) to choose c ∈ (−1, 1) such that

µ[S(c, 1)] = ν[S(−1, c)] := m. (21)

If m = 0 then
sptµ ⊂ S(−1, c), sptν ⊂ S(c, 1)

and so, we reduce the discussion to the case 1. Similarly, if m = 1 we reduce the discussion to the case 1.
Assume in the sequel that 0 < m < 1. Set

µ− = µ|S(−1,c), µ+ = µ|S(c,1), ν− = ν|S(−1,c), ν+ = ν|S(c,1).

By (21), µ+

m and ν−
m are probability measures. They satisfy

sptν− ⊂ S(−1, c), sptµ+ ⊂ S(c, 1).

Having that ν−, µ+ satisfy the assumptions of case 1, we may find γ̄ ∈ Γ(µ+

m , ν−
m ) and ε̄ > 0 such that

|x − y| ≥ ε̄ (22)
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for all (x,y) ∈ sptγ̄. Similarly, there exists γ̃ ∈ Γ( µ−
1−m ,

ν+

1−m) and ε̃ > 0 such that

|x − y| ≥ ε̃ (23)

for all (x,y) ∈ sptγ̃.
Set

γ = mγ̄ + (1 −m)γ̃.
Then γ ∈ Γ(µ, ν) and by (22)–(23), we have that

|x − y| ≥ min{ε̄, ε̃} > 0

for all (x,y) ∈ sptγ̃. This proves the proposition. �

Lemma 4.2. Suppose that c satisfies (A1)–(A3) and that X,Y ⊂ Rd+1 are closed sets. Suppose that S ⊂ X×Y
is c-cyclically monotone and contains two pairs (xo,yo), (x̄o, ȳo) such that xo �= x̄o and yo �= ȳo. Then, there
exists a function F ∈ C(X × Y) depending only on the pairs such that

c(xo,yo) + c(x̄o, ȳo) + c(x,y) ≤ F (x,y) (24)

for all (x,y) ∈ S.

Proof. Define ⎧⎪⎨
⎪⎩
F (x,y) = min{c(x,yo) +R1(y), c(x, ȳo) +R2(y)}
R1(y) = min{c(xo,y) + c(x̄o, ȳo), c(xo, ȳo) + c(x̄o,y)}
R2(y) = min{c(xo,y) + c(x̄o,yo), c(xo,yo) + c(x̄o,y)}.

(25)

We use that xo �= x̄o and (A1)–(A3) to obtain that R1, R2 ∈ C(Y). This, together with the fact that yo �= ȳo

yields that F is continuous on X × Y. If (x,y) is another element of S then setting

(x1,y1) = (xo,yo), (x2,y2) = (x̄o, ȳo), (x3,y3) = (x,y)

and using the c-cyclical monotonicity of S, we obtain (24). �

It is well known that a set is cyclically monotone if and only if it is contained in the subdifferential of a
convex function [18]. An analogue of this result was proved by Smith and Knott [20] for general cost functions
c : X × Y → R. The following Lemma 4.3 is a further extension that is needed to deal with cost functions
satisfying (A1)–(A3) (and may be = +∞ somewhere). Below, we check first that the proof in [19] extends to
such cost functions and then we show that the infimum in (26) can be performed over the subset of y such that
|x − y| > δ > 0.

Lemma 4.3. Suppose that c satisfies (A1)–(A3) and X,Y ⊂ Rd+1 are compact sets. Suppose that S ⊂ X×Y
is c-cyclically monotone and contains two pairs (xo,yo), (x̄o, ȳo) such that x̄o, ȳo �∈ {xo,yo} Then,

(i) S is contained in the c-superdifferential of a c-concave function ψ : Rd+1 → R∪{−∞} such that there exists
δ > 0 satisfying

ψ(x) = inf
y

{
c(x,y) − ψc(y) | |x − y| ≥ δ

}
, (x ∈ X). (26)

(ii) If (x,y) ∈ ∂cψ then ψ(x) > −∞ and |x − y| ≥ δ for some δ > 0 that depends only on ψ.

Proof. The expression ψ(x) = infy∈Y

{
c(x,y) − ψc(y)

}
, x ∈ X, is well-known in the literature. The only new

and useful fact we want to point out is that ψ(x) will be obtained by minimizing c(x,y) − ψc(y) not on Y (as
it is usually done), but on {y ∈ Y | |x − y| ≥ δ}. For completeness, we give the detailed proof below.
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Since X × Y is compact, the function F defined in (24) attains its maximum. We use Lemma 4.2 and the
fact that c is lower semicontinuous and equals +∞ on ∆ to conclude the following: if S′ ⊂ X×Y is c-cyclically
monotone and contains (xo,yo), (x̄o, ȳo) then there exists δ > 0 such that |x− y| ≥ 2δ for every (x,y) ∈ S′. In
particular, x �= y for (x,y) ∈ S′. In particular, there exists δS > 0 such that |x− y| ≥ 2δS for every (x,y) ∈ S.

As in [19], we define

ψ(x) = inf
n

inf
{(xi,yi)}n

i=1⊂S

{
c(x,yn) +

n−1∑
j=0

c(xj+1,yj) −
n∑

j=0

c(xj ,yj)
}
. (27)

Since c is finite on S and nonnegative on Rd+1 × Rd+1, we conclude that ψ(x) is well-defined.
The c-cyclical monotonicity of S gives that

c(xo,yn) +
n−1∑
j=0

c(xj+1,yj) −
n∑

j=0

c(xj ,yj) ≥ 0

and so, ψ(xo) ≥ 0. Taking n = 1, x1 = xo and y1 = yo in (27) gives that ψ(xo) ≤ 0. We conclude that ψ(xo) = 0
and so, ψ is not identically −∞. This, together with the fact that ψ is clearly of the form (17) yields that ψ is
c-concave.

Claim 1. We have that S ⊂ ∂cψ.
Fix (x,y) ∈ S and for each m integer, let {(xi,yi)}nm

i=1 ⊂ S be such that

lim
m→+∞

ψm = ψ(x),

where

ψm := c(x,ynm ) +
nm−1∑
j=0

c(xj+1,yj) −
nm∑
j=0

c(xj ,yj).

Setting (xnm+1,ynm+1) = (x,y) we have that

−c(x,y) + ψm = c(v,ynm+1) − c(v,y) +
nm∑
j=0

c(xj+1,yj) −
nm+1∑
j=0

c(xj ,yj) ≥ ψ(v) − c(v,y).

Letting m go to +∞ we conclude that

ψ(x) − c(x,y) ≥ ψ(v) − c(v,y), (28)

which proves claim 1.

Claim 2. Whenever (x,y) ∈ ∂cψ, we have that ψ(x) > −∞ and x �= y.
Recall that (x,y) ∈ ∂cψ is equivalent to (28). Setting (x,y) = (x̄o, ȳo), v = xo in (28), using the facts that

ψ(xo) = 0 and xo �= ȳo we obtain that ψ(x̄o) is finite. Next, if (uo,vo) ∈ S, setting v = uo we have that

c(x,y) − ψ(x) ≤ c(uo,y) − ψ(uo). (29)

If y �= xo we set uo = xo in (29) to obtain the claim. If y = xo, we set uo = x̄o and we use the fact that ψ(x̄o)
is finite to obtain the claim.

Claim 3. The set ∂cψ is c-cyclically monotone.
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For the sake of completeness, we reprove this claim although it is a repetition of a known argument in [19].
If {(xi,yi)}n

i=1 ⊂ ∂cψ, setting (xn+1,yn+1) = (x1,y1) we have that

c(xi,yi) − ψ(xi) ≤ c(xi+1,yi) − ψ(xi+1). (30)

By claim 2, each term in (30) is finite and so,

0 =
n∑

i=1

ψ(xi+1) − ψ(xi) ≤
n∑

i=1

c(xi+1,yi) − c(xi,yi),

which proves the claim.
We use Lemma 4.2, the facts that ∂cψ is c-cyclically monotone, that (xo,yo), (x̄o, ȳo) ∈ ∂cψ, that xo �= x̄o

and yo �= ȳo, to obtain the existence of some δ > 0 such that |x − y| ≥ 2δ for all (x,y) ∈ ∂cψ. By Remark 3.4
(ii) ψ = (ψc)c and so if x ∈ X, there exists a sequence {yn}∞n=1 ⊂ Y such that

ψ(x) = lim
n→+∞

c(x,yn) − ψc(yn). (31)

Since Y is compact, we may extract from {yn}∞n=1 a subsequence (which we still label {yn}∞n=1) that converges
to some y ∈ Y. Recall that the function ψc is upper semicontinuous as an infimum of upper semicontinuous
functions and therefore, (31) yields

ψ(x) ≥ c(x,y) − ψc(y).
This proves that ψ(x) = c(x,y) − ψc(y) and so, (x,y) ∈ ∂cψ. Hence |x − y| ≥ 2δ and y is a minimizer
in (26). �

Remark 4.4. Suppose that µ ∈ P(X) and ν ∈ P(Y) have no atoms and that γ minimizes C over Γ(µ, ν) and
that C(γ) < +∞. Then, γ[∆] = 0 and so, spt(γ) \ ∆ contains at least one element, say (xo,yo). Also, γ[E] = 0
where

E =
(
{xo,yo} × Y

)
∪

(
X× {xo,yo}

)
.

Hence, the set X×Y\(E∪∆)) is nonempty, and so, it contains an element (x̄o, ȳo). Note that x̄o, ȳo �∈ {xo,yo}.

We now further specialize the set of cost functions under consideration by assuming that

c(x,y) =

{
l( |x−y|2

2 ) if x �= y
+∞ if x = y

(32)

where l ∈ C2(0,+∞) is such that {
limt→0+ l(t) = +∞
|l′(t)| > 0 (t > 0).

(33)

Define
g(t) = t(2 − t)(l′(t))2. (34)

Note that if g is monotone on (0, 2] then g[ δ
2 , 2] is a closed interval on which g−1 exists and is continuous. Define

M(a,x) =
[
1 − g−1(|a|2)

]
x− a

l′ (g−1(|a|2)) ,

and the closed set

Kδ :=
{

(a,x) ∈ Rd+1 × Sd | |a|2 ∈ g

[
δ

2
, 2

]}
.

Note that M is continuous on Kδ for all δ > 0.
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When x ∈ Sd we next denote by ∇x
Sdc the tangential gradient of x → c(x,y) at x ∈ Sd and let Tx be the

tangent space to Sd at x ∈ Sd.

Lemma 4.5. Assume that c is given by (32) such that l satisfies (33). Assume that g is monotone on (0, 2]. If
0 �= a ∈ Rd+1, x,y ∈ Sd and ∇x

Sdc(x,y) = a then y = M(a,x).

Proof. Recall that if x ∈ Sd then the orthogonal projection of y ∈ Rd+1 onto Tx is y‖ = y − (x · y)x. Hence if
y ∈ Sd then

|y‖|2 + (x · y)2 = 1. (35)
Setting a := ∇x

Sdc(x,y) yields that

a = −l′( |x − y|2
2

)y‖. (36)

This, together with (35) and the fact that 1 − x · y = |x−y|2
2 for x,y ∈ Sd, yields that

|a|2 =
(
l′
( |x − y|2

2

))2

(1 − (x · y)2) = g(1 − x · y).

Thus,
1 − x · y = g−1(|a|2). (37)

We use (36), (37) and the fact that 1 − x · y = |x−y|2
2 to conclude that

y = (x · y)x + y‖ =
(
1 − g−1(|a|2)

)
x − a

l′
(
g−1(|a|2)

) = M(a,x). �

Theorem 4.6. Assume that c is given by (32) with l ∈ C2(0,+∞) and satisfying (33). Assume that g given
in (34) is monotone. Let µ, ν ∈ P(Sd) be Borel measures on the sphere Sd that vanish on (d − 1)-rectifiable
sets. Then

(i) There exists a unique measure γo that minimizes C over Γ(µ, ν).
(ii) There exists a unique map To : Sd → Sd that minimizes I over T (µ, ν). Furthermore the essential

infimum infx |Tox − x| > 0. The γo is uniquely determined and coincides with the measure (id × To)#µ.
(iii) The map To is invertible except on a set whose µ measure is null.

Proof of (i): existence of the measure γo. By Proposition 4.1, there exists γ ∈ Γ(µ, ν) and ε > 0 such that

|x − y| ≥ ε (38)

for all (x,y) ∈ sptγ. Since |x− y| ≤ 2 on Sd, (38) and the fact that c satisfies (A1) ensures that c is uniformly
bounded on sptγ. This proves that C[γ] < +∞. By Proposition 3.2 there is at least one optimal measure
γo ∈ Γ(µ, ν) and there is a c-cyclically monotone set S ⊂ Rd+1 × Rd+1 containing the support of all optimal
measures in Γ(µ, ν). By Remark 4.4 the support of γo and hence S contains pairs (xo,yo), (x̄o, ȳo) such that
x̄o, ȳo �∈ {xo,yo}. Lemma 4.3 ensures existence of δ > 0 and a c-concave function ψ such that S is contained in
the c-superdifferential of ψ and

ψ(x) = inf
y

{
c(x,y) − ψc(y) | |x − y| ≥ δ

}
, (x ∈ X). (39)

Clearly ψ is continuous and so is ψc. Hence, ∂cψ(x), ∂cψc(y) �= ∅ for all x,y ∈ Sd and

(x,y) ∈ ∂cψ ⇐⇒ ψ(x) + ψc(y) = c(x,y). (40)

We use again (39) and the assumption that l ∈ C2(0,∞) to conclude that ψ is semiconcave on Sd and so, it is
differentiable everywhere except for a set N ⊂ Sd which is (d− 1)-rectifiable. �
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Proof of (ii): existence and uniqueness of To; γo = (id × To)#µ; uniqueness of γo. Let x ∈ Sd \ N and y ∈
∂cψ(x). We use the fact that the function t → ψ(t) + ψc(y)− c(t,y) is differentiable and attains its maximum
at x to conclude that

∇Sdψ(x) = ∇x
Sdc(x,y). (41)

This, together with the Lemma 4.5, implies that y = M(∇Sdψ(x),x). Since

|x − y| ≥ δ, (42)

we obtain that (∇Sdψ(x),x) ∈ Kδ. Hence the map To defined by

Tox := M(∇Sdψ(x),x) (43)

is a Borel map. Note that by (42), the map To satisfies

|Tox − x| ≥ δ

for all x ∈ Sd \N.
Because µ vanishes on N we have that γo[N ×Sd] = 0 and so, To is defined µ almost everywhere. Note that

we have proved that
∂cψ \ (N × Sd) ⊂ graphTo. (44)

Since γo[N × Sd] = 0 and γo ∈ Γ(µ, ν), we obtain that∫
L(x,y)dγ(x,y) =

∫
L(x, Tox)dγo(x,y) =

∫
Sd

L(x, Tox)dµ(x), (45)

for all L ∈ C(Rd+1 × Rd+1). By (45) we have that

γo = (id× To)#µ, T#µ = ν.

This proves that γo is uniquely determined. We use (45) with c = L to obtain that C[γo] = I[To]. By (16) we
conclude that To minimizes I over T (µ, ν).

Furthermore, if T1 is another minimizer of I over T (µ, ν) then γo = (id×T1)#µ and (x, T1x) ∈ sptγo ⊂ ∂cψ
for µ almost every x. By (44) we have that T1(x) = Tox for µ almost every x. This proves that To is uniquely
determined. �
Proof of (iii): invertibility of the map To. The analogue of (39) for ψc gives that ψc is semiconcave and so, the
set Ñ where ψc is not differentiable is (d− 1)-rectifiable. Substituting µ by ν , the above reasoning yields that
the map

Soy = M(∇Sdψc(y),y), (y ∈ Sd \ Ñ),
is such that So#ν = µ, and

∂cψc \ (Ñ × Sd) ⊂ graphSo. (46)
We use (44), (46) and the fact that ∂cψ = ∂cψc to conclude that id = So ◦ To on Sd \ (N ∪ S−1

o (Ñ). Since Ñ is
(d− 1)-rectifiable and So#ν = µ we have that

µ[S−1
o (Ñ)] = ν[Ñ ] = 0.

Thus, To is invertible on Sd up to a set whose µ measure is null. �
Remark 4.7. If it is assumed only that l ∈ C1(0,∞) and µ is absolutely continuous with respect to the standard
measure on Sd then it is easy to see that ψ, ψc are differentiable a.e. on Sd. Indeed, it follows from (39), (40)
and the assumption that l ∈ C1(0,∞) that ψ, ψc are locally Lipschitz. Then by Rademacher’s theorem ψ, ψc

are differentiable a.e. Note, however, that this result is weaker than the one established in Theorem 4.6.
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