A NONLOCAL SINGULAR PERTURBATION PROBLEM WITH PERIODIC WELL POTENTIAL

Matthias Kurzke ${ }^{1}$

Abstract

For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a Γ-convergence theorem and show compactness up to translation in all L^{p} and the optimal Orlicz space for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher (1994) for the coercive two-well case. The theorem has applications to a certain thin-film limit of the micromagnetic energy.

Mathematics Subject Classification. 49J45.
Received September 2, 2004. Accepted January 4, 2005.

1. Introduction

Alberti, Bouchitté and Seppecher [1] considered on $L^{1}(I), I \subset \mathbb{R}$ an interval, the functionals

$$
\begin{equation*}
F_{\varepsilon}(u)=\varepsilon \iint_{I \times I}\left|\frac{u(x)-u(y)}{x-y}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\lambda_{\varepsilon} \int_{I} W(u) \mathrm{d} x, \tag{1.1}
\end{equation*}
$$

where $W: \mathbb{R} \rightarrow[0, \infty]$ is continuous, $W^{-1}(0)=\{\alpha, \beta\}, W(t) \geq C\left(t^{2}-1\right)$ with some $C>0$, and λ_{ε} satisfies $\varepsilon \log \lambda_{\varepsilon} \rightarrow K \in(0, \infty)$ as $\varepsilon \rightarrow 0$.

Here, the double integral represents (up to constants) the nonlocal $H^{1 / 2}$ seminorm of u. Similar functionals with local energies were studied before, see e.g. Modica [8], where the Dirichlet integral is used instead of the $H^{1 / 2}$ seminorm, and the scaling $\lambda_{\varepsilon} \sim \frac{1}{\varepsilon}$ leads to a Γ-convergence result. The study of (1.1) is motivated by the research [2], where Alberti et al. combine interior and boundary phase transitions. Regarding the Dirichlet integral as a functional on the boundary leads to the $H^{1 / 2}$ seminorm.

We study a different problem that also leads to essentially the same functional, just with a periodic potential W : Kohn and Slastikov [5] derived a reduced model for thin soft ferromagnetic films, and could show that certain rescalings of the full micromagnetic functional Γ-converge to functionals of the type

$$
\begin{equation*}
\mathcal{E}^{\alpha}(m)=\alpha \int_{\Omega}|\nabla m|^{2}+\frac{1}{2 \pi} \int_{\partial \Omega}(m \cdot n)^{2} \tag{1.2}
\end{equation*}
$$

[^0]where n denotes the normal to $\partial \Omega$, in the space of $m \in H^{1}\left(\Omega, S^{1}\right)$, for a simply connected domain $\Omega \subset \mathbb{R}^{2}$. We will analyze the behavior of $\frac{1}{\alpha|\log \alpha|} \mathcal{E}^{\alpha}$ as $\alpha \rightarrow 0$. To simplify the analytic setting, we set $m=\mathrm{e}^{\mathrm{i} u}$ with $u \in H^{1}(\Omega)$ and $n=\mathrm{i}^{\mathrm{i} g}$, with a function g that is as smooth as n except for a single jump of height -2π. This leads to the functionals
$$
\frac{1}{|\log \alpha|} \int_{\Omega}|\nabla u|^{2}+\frac{1}{2 \pi \alpha|\log \alpha|} \int_{\partial \Omega} \sin ^{2}(u-g) .
$$

Considering this functional only on harmonic functions (which corresponds to replacing the Dirichlet integral by the $H^{1 / 2}$ seminorm of the boundary values) and generalizing to arbitrary periodic wells, we have the following result:

Theorem 1.1. Let $\Omega \subset \mathbb{R}^{2}$ be a simply connected $C^{1, \beta}$ domain and denote the harmonic extension of a function $v: \partial \Omega \rightarrow \mathbb{R}$ to Ω by $h_{v}: \Omega \rightarrow \mathbb{R}$. Set for $u \in L^{1}(\partial \Omega)$

$$
\mathcal{G}^{\eta}(u):= \begin{cases}\eta \int_{\Omega}\left|\nabla h_{u}\right|^{2}+\mu_{\eta} \int_{\partial \Omega} W(u-g) & \text { if } u \in H^{1 / 2}(\partial \Omega) \tag{1.3}\\ +\infty & \text { else },\end{cases}
$$

where $W: \mathbb{R} \rightarrow[0, \infty)$ is a continuous, π-periodic function with $W^{-1}(0)=\pi \mathbb{Z}, \eta, \mu_{\eta}>0$, and $g: \partial \Omega \rightarrow \mathbb{R}$ is a function with a jump of height $2 \pi d$ such that $\mathrm{e}^{\mathrm{i} g}$ can be extended as a $H^{1}\left(N, S^{1}\right)$ map to a neighborhood N of $\partial \Omega$, so g has (after possibly moving the jump point) extensions to $H^{1}\left(\Omega \backslash B_{\rho}(a)\right)$ for any $a \in \partial \Omega, \rho>0$. Assume that $\eta \log \mu_{\eta} \rightarrow K \in(0, \infty)$ as $\eta \rightarrow 0$ and set

$$
\mathcal{G}(u)= \begin{cases}K\|D(u-g)\|(\partial \Omega) & \text { if } u-g \in B V(\partial \Omega, \pi \mathbb{Z}) \tag{1.4}\\ +\infty & \text { else } .\end{cases}
$$

Then we have:
(i) Compactness up to translation:

If $\mathcal{G}^{\eta}\left(u_{\eta}\right) \leq M<\infty$ then there exists a sequence of $z_{\eta} \in \pi \mathbb{Z}$ such that for $1 \leq p<\infty$

$$
\begin{equation*}
\left\|u_{\eta}-z_{\eta}\right\|_{L^{p}(\partial \Omega)} \leq C(p)<\infty \tag{1.5}
\end{equation*}
$$

Furthermore, $\left(u_{\eta}-z_{\eta}\right)$ is relatively compact in the strong topology of $L^{1}(\partial \Omega)$, and every cluster point u has the property that $u-g \in B V(\partial \Omega, \pi \mathbb{Z})$.
(ii) Lower bound:

$$
\text { If } u_{\eta} \rightarrow u \text { in } L^{1}(\partial \Omega), \text { then }
$$

$$
\begin{equation*}
\mathcal{G}(u) \leq \liminf _{\eta \rightarrow 0} \mathcal{G}^{\eta}\left(u_{\eta}\right) \tag{1.6}
\end{equation*}
$$

(iii) Upper bound / Construction:

Let $u \in L^{1}(\partial \Omega)$. Then there exists a sequence $u_{\eta} \rightarrow u$ in $L^{1}(\partial \Omega)$ such that

$$
\begin{equation*}
\mathcal{G}(u)=\lim _{\eta \rightarrow 0} \mathcal{G}^{\eta}\left(u_{\eta}\right) \tag{1.7}
\end{equation*}
$$

Here we have replaced $\frac{1}{|\log \alpha|}$ of our previous notation by $\eta \rightarrow 0$ and $\frac{1}{2 \pi \alpha|\log \alpha|}$ by $\mu_{\eta} \rightarrow \infty$.
Note that this is an extension of the result in [1], since the energy of a harmonic function can be calculated via the $H^{1 / 2}$ norm of its boundary trace, see Section 2 where we reduce the functional to a form more similar to (1.1). Unlike the two-well potential in [1], our periodic potential W cannot yield any a priori coercivity. However, we can still obtain compactness up to translation in all L^{p} and even determine up to constants an optimal Orlicz type space in which compactness holds, see Proposition 2.11 and Remark 2.12. The proof uses a more elaborate rearrangement result than the simple two-set rearrangement used in [1].

It is also possible to derive the Γ-convergence part of Theorem 1.1 from the result of [1] by a cutoff argument like in [3], but this approach does not lead to the compactness results obtained here.

Corollary 1.2. The functionals \mathcal{G}^{η} are equicoercive (this means "compactness") up to translation and Γ converge to \mathcal{G} with respect to all strong L^{p} topologies, $1 \leq p<\infty$.
Proof. Γ-convergence and equicoercivity in L^{1} is the content of Theorem 1.1. For L^{p}, we note that strong compactness in L^{p} is by interpolation a consequence of strong compactness in L^{1} and weak compactness in L^{q} for $q>p$, which holds by (i). The construction used for the proof of the upper bound part holds in all L^{p}.

2. LOCALIZATION OF THE FUNCTIONAL

We look at the case $\Omega=B_{1}(0)$, in which case we have an explicit expression for the energy of the harmonic extension, i.e. the $H^{1 / 2}$ seminorm of the boundary trace.
Proposition 2.1. If the results of Theorem 1.1 hold for $B_{1}(0)$, they hold for every simply connected $C^{1, \beta}$ domain.
Proof. Let $u: \partial \Omega \rightarrow \mathbb{R}$ with harmonic continuation $h_{u}: \partial \Omega \rightarrow \mathbb{R}$. Let $\psi: \overline{B_{1}(0)} \rightarrow \bar{\Omega}$ be a conformal map. By the Kellogg-Warschawski theorem (see e.g. [12], Th. 3.6), $\psi \in C^{1, \beta}\left(\overline{B_{1}(0)}\right)$.

Since the Dirichlet integral is invariant under conformal transformations, we have for $\tilde{u}=u \circ \psi$ that $h_{\tilde{u}}=\widetilde{h_{u}}$ and can calculate by the change of variables formula

$$
\mathcal{G}^{\eta}(u)=\eta \int_{B_{1}(0)}\left|\nabla h_{\tilde{u}}\right|^{2}+\mu_{\eta} \int_{S^{1}} W(\tilde{u}-\tilde{g})\left|\frac{\partial}{\partial \tau} \psi\right| .
$$

Now there are $c_{1}, c_{2}>0$ with $c_{1} \leq\left|\frac{\partial}{\partial \tau} \psi\right| \leq c_{2}$ since ψ and its inverse are C^{1} on the boundary. Thus we have that \mathcal{G}^{η} is bounded from above and below by functionals

$$
\eta \int_{B_{1}(0)}\left|\nabla h_{\tilde{u}}\right|^{2}+c_{i} \mu_{\eta} \int_{S^{1}} W(\tilde{u}-\tilde{g}),
$$

and since $\eta \log \left(c_{i} \mu_{\eta}\right) \rightarrow K$ as $\eta \rightarrow 0$ for $i=1,2$, we obtain the equality of the Γ-limits for these functionals. From this we can deduce the theorem for the \tilde{u}_{η}, but these converge if and only if the corresponding u_{η} converge.
Proposition 2.2. Let $u \in H^{1 / 2}\left(S^{1}\right)$ and $h_{u} \in H^{1}\left(B_{1}\right)$ be its harmonic continuation. Then

$$
\begin{equation*}
\int_{B_{1}(0)}\left|\nabla h_{u}\right|^{2}=\frac{1}{8 \pi} \int_{S^{1} \times S^{1}}\left|\frac{u(x)-u(y)}{\sin \frac{1}{2}(x-y)}\right|^{2} . \tag{2.1}
\end{equation*}
$$

This can be proved by expanding u as a Fourier series and doing some clever summations, see e.g. [10], Section 311. Another proof by using the periodic Hilbert transform can be found in [14], Section 3.

Definition 2.3. For $\eta>0, A \subset S^{1}$, and $u \in L^{1}(A)$, set

$$
\mathcal{F}_{g}^{\eta}(u ; A)= \begin{cases}\frac{\eta}{8 \pi} \int_{A} \int_{A}\left|\frac{u(x)-u(y)}{\sin \frac{1}{2}(x-y)}\right|^{2} \mathrm{~d} x \mathrm{~d} y+\mu_{\eta} \int_{A} W(u(x)-g(x)) \mathrm{d} x & \text { if this is finite } \tag{2.2}\\ +\infty & \text { else, }\end{cases}
$$

and

$$
\mathcal{F}_{g}(u ; A)= \begin{cases}K\|D(u-g)\|(A) & \text { if } u-g \in B V(A, \pi \mathbb{Z}) \tag{2.3}\\ +\infty & \text { else. }\end{cases}
$$

We also set $\mathcal{F}^{\eta}:=\mathcal{F}_{0}^{\eta}$ and $\mathcal{F}:=\mathcal{F}_{0}$, and write

$$
\mathcal{J}(u ; A)=\frac{1}{8 \pi} \int_{A} \int_{A}\left|\frac{u(x)-u(y)}{\sin \frac{1}{2}(x-y)}\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

for the localized form of the $H^{1 / 2}$ norm.
For these functionals we will prove the results corresponding to those for $\mathcal{G}^{\eta}=F_{g}^{\eta}\left(\cdot ; S^{1}\right)$ and $\mathcal{G}=F_{g}\left(\cdot ; S^{1}\right)$. Our main tool will be a rearrangement inequality. We use in the following the terms "decreasing" and "increasing" in the weak sense, i.e. denoting what is often called "non-increasing" and "non-decreasing", respectively.
Definition 2.4. For a measurable $f: A \rightarrow \mathbb{R}$ we define its distribution function λ_{f} by

$$
\lambda_{f}(s)=|\{x \in A:|f(x)|>s\}| .
$$

Definition 2.5. For a function $u: A \rightarrow \mathbb{R}, A=(a, b) \subset \mathbb{R}$ an interval, its decreasing rearrangement u^{*} is given by

$$
u^{*}(x)=\inf \left\{s: \lambda_{u}(s) \leq x-a\right\}
$$

Similarly the increasing rearrangement u_{*} is defined by

$$
u_{*}(x)=\inf \left\{s: \lambda_{u}(s) \leq b-x\right\}
$$

Clearly, u^{*} is decreasing and u_{*} increasing. Also, the rearrangement is equimeasurable, i.e. $\lambda_{u}=\lambda_{u^{*}}=\lambda_{u_{*}}$. See e.g. [7], Chapter 3.3.
Theorem 2.6. Let $A \subset S^{1}$ be an interval of length $|A|<\pi$. Then

$$
\begin{equation*}
\mathcal{J}\left(u_{*} ; A\right)=\mathcal{J}\left(u^{*} ; A\right) \leq \mathcal{J}(u ; A) . \tag{2.4}
\end{equation*}
$$

Proof. This follows from Theorem I. 1 in Garsia and Rodemich [4].

2.1. L^{p} and Orlicz space estimates

Proposition 2.7. Let $A \subset S^{1}$ be an interval of length $|A|<\pi$. Assume $\eta \rightarrow 0$ and let u_{η} be a sequence in $L^{1}(A)$ such that $\mathcal{F}^{\eta}\left(u_{\eta}\right) \leq M<\infty$. Then there exist $z_{\eta} \in \pi \mathbb{Z}$ such that

$$
\begin{equation*}
\left\|u_{\eta}-z_{\eta}\right\|_{L^{p}(A)} \leq C(p, A, K, M, W) . \tag{2.5}
\end{equation*}
$$

Proof. We choose a sequence of $z_{\eta} \in \pi \mathbb{Z}$ such that $\left|\left\{u_{\eta}<z_{\eta}\right\}\right| \geq \frac{|A|}{4}$ and $\left|\left\{u_{\eta}>z_{\eta}-\pi\right\}\right| \geq \frac{|A|}{4}$. It suffices to show the L^{p} bounds for $v_{\eta}:=\left(u_{\eta}-z_{\eta}\right)_{+}$and $w_{\eta}:=\left(u_{\eta}-\left(z_{\eta}-\pi\right)\right)_{-}$. As this cutoff obviously decreases energy by the assumptions on W, we have $\mathcal{F}^{\eta}\left(v_{\eta}\right) \leq \mathcal{F}^{\eta}\left(u_{\eta}\right) \leq M$ and $\mathcal{F}^{\eta}\left(w_{\eta}\right) \leq \mathcal{F}^{\eta}\left(u_{\eta}\right) \leq M$. It therefore suffices to assume $u_{\eta} \geq 0$ and $\left|\left\{u_{\eta}=0\right\}\right| \geq \frac{|A|}{4}$. Finally, since $\int_{A} W(u)=\int_{A} W\left(u_{*}\right)$ and by Theorem 2.6, we can assume all u_{η} to be increasing.

We will assume u_{η} to be nonnegative, increasing, and satisfying the bound $\left|\left\{u_{\eta}=0\right\}\right| \geq \frac{|A|}{4}$ for the rest of this subsection.

Let λ_{η} denote the distribution function of u_{η}. The L^{p} norm of u_{η} over A can then be calculated as

$$
\left\|u_{\eta}\right\|_{p}^{p}=p \int_{0}^{\infty} t^{p-1} \lambda_{\eta}(t) \mathrm{d} t
$$

Now by the Orlicz space estimate of Proposition 2.11 this is estimated as

$$
\left\|u_{\eta}\right\|_{p}^{p} \leq C_{1} \int_{0}^{\infty} t^{p-1} \exp \left(-C_{2} t\right) \mathrm{d} t \leq C(p, M, K, W, A)
$$

The following lemma contains the main computations that lead to the lower bound and compactness results.
Lemma 2.8. Let $\delta \in\left(0, \frac{\pi}{2}\right)$ and $s \in \mathbb{N}$. For $u \in H^{1 / 2}(A)$, set $a_{0}:=|\{x: u(x)<\delta\}|, a_{s}:=|\{x: u(x)>s \pi-\delta\}|$, and $\rho:=|\{x: \operatorname{dist}(u(x), \pi \mathbb{Z})>\delta\}|$. Let

$$
L(z):=\log \sin \frac{z}{2}-\log \sin \frac{|A|}{2} .
$$

Then

$$
\begin{equation*}
\mathcal{J}(u ; A) \geq \pi s^{2}\left(L\left(a_{0}+\rho\right)+L\left(a_{s}+\rho\right)\right)-\pi s\left(1-\frac{2 \delta}{\pi}\right)^{2} L(\rho) \tag{2.6}
\end{equation*}
$$

Proof. By (2.4) we can assume u to be increasing. We set

$$
\begin{aligned}
& A_{0}:=\{x: u(x)<\delta\} \\
& A_{j}:=\{x: u(x) \in(j \pi-\delta, j \pi+\delta)\} \quad \text { for } j=1, \ldots, s-1, \\
& A_{s}:=\{x: u(x)>s \pi-\delta\}
\end{aligned}
$$

and

$$
P_{j}:=\{x: u(x) \in[j \pi+\delta,(j+1) \pi-\delta]\} \quad \text { for } j=1, \ldots, s-1
$$

We also define $a_{k}:=\left|A_{k}\right|$ and $\rho_{j}=\left|P_{j}\right|$ for $k=0, \ldots, s$ and $j=1, \ldots, s-1$ respectively. By assumption we have $a_{0} \geq \frac{1}{4}|A|$.

Using the monotonicity of u, we can then estimate the $H^{1 / 2}$ norm as follows:

$$
\begin{equation*}
\mathcal{J}(u ; A) \geq \frac{1}{4 \pi} \sum_{0 \leq j<k \leq s} \int_{A_{j}} \int_{A_{k}} \frac{(u(x)-u(y))^{2}}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} \mathrm{d} x \mathrm{~d} y \tag{2.7}
\end{equation*}
$$

and using the definitions of A_{k} we arrive at

$$
\begin{equation*}
\mathcal{J}(u ; A) \geq \frac{1}{4 \pi} \sum_{0 \leq j<k \leq s}(\pi(k-j)-2 \delta)^{2} \int_{A_{j}} \int_{A_{k}} \frac{1}{\sin ^{2}\left(\frac{1}{2}(x-y)\right)} \mathrm{d} x \mathrm{~d} y \tag{2.8}
\end{equation*}
$$

For $\beta_{1}<\beta_{2}<\alpha_{1}<\alpha_{2}$, we evaluate the integral

$$
\begin{equation*}
\int_{\alpha_{1}}^{\alpha_{2}} \int_{\beta_{1}}^{\beta_{2}} \frac{1}{\sin ^{2}\left(\frac{x-y}{2}\right)} \mathrm{d} x \mathrm{~d} y=4 \log \frac{\sin \left(\frac{\alpha_{1}-\beta_{1}}{2}\right) \sin \left(\frac{\alpha_{2}-\beta_{2}}{2}\right)}{\sin \left(\frac{\alpha_{1}-\beta_{2}}{2}\right) \sin \left(\frac{\alpha_{2}-\beta_{1}}{2}\right)} \tag{2.9}
\end{equation*}
$$

As u is an increasing function, the positions of the A_{j} and P_{j} are determined by their measures only, and so (2.8) and (2.9) lead to the estimate

$$
\begin{aligned}
& \mathcal{J}(u ; A) \geq \pi \sum_{0 \leq j<k \leq s}\left(k-j-2 \frac{\delta}{\pi}\right)^{2}\left(L\left(a_{j}+\rho_{j}+\cdots+a_{k-1}+\rho_{k-1}\right)\right. \\
& \quad+L\left(\rho_{j}+a_{j+1}+\cdots+\rho_{k-1}+a_{k}\right)-L\left(a_{j}+\rho_{j}+\cdots+\rho_{k-1}+a_{k}\right) \\
&
\end{aligned}
$$

which can be further estimated below by replacing all terms of type $\sum_{i=j}^{k-1} \rho_{i}$ by $\rho:=\sum_{i=1}^{s-1} \rho_{i}$, as follows from (2.9) since this essentially amounts to moving A_{j} and A_{k} further apart, and $z \mapsto \frac{1}{\sin ^{2} \frac{z}{2}}$ is decreasing in z.

We introduce the further abbreviations

$$
Q_{d}:=\left(d-2 \frac{\delta}{\pi}\right)^{2}
$$

and

$$
T_{j}^{k}:=L\left(\rho+\sum_{i=j}^{k} a_{i}\right)
$$

Note that by definition of the empty sum, we have $T_{j}^{k}=L(\rho)$ if $j>k$.
We now calculate

$$
\begin{aligned}
\frac{1}{\pi} \mathcal{J}(u ; A) \geq & \sum_{j=0}^{s-1} \sum_{d=1}^{s-j} Q_{d}\left(T_{j}^{j+d-1}+T_{j+1}^{j+d}-T_{j}^{j+d}-T_{j+1}^{j+d-1}\right) \\
= & \sum_{j=0}^{s-1} \sum_{d=0}^{s-j-1} Q_{d+1} T_{j}^{j+d}+\sum_{j=1}^{s} \sum_{d=1}^{s-j+1} Q_{d} T_{j}^{j-1+d}-\sum_{j=0}^{s-1} \sum_{d=1}^{s-j} Q_{d} T_{j}^{j+d}-\sum_{j=1}^{s} \sum_{d=1}^{s-j+1} Q_{d} T_{j}^{j+d-2} \\
= & \sum_{j=0}^{s-1} \sum_{d=0}^{s-j-1} Q_{d+1} T_{j}^{j+d}+\sum_{j=1}^{s} \sum_{d=0}^{s-j} Q_{d+1} T_{j}^{j+d}-\sum_{j=0}^{s-1} \sum_{d=1}^{s-j} Q_{d} T_{j}^{j+d}-\sum_{j=1}^{s-j-1} \sum_{d=-1}^{s-j-1} Q_{d+2} T_{j}^{j+d} \\
= & \sum_{j=1}^{s-1} \sum_{d=1}^{s-j-1}\left(2 Q_{d+1}-Q_{d}-Q_{d+2}\right) T_{j}^{j+d}+\sum_{j=1}^{s-1} Q_{1} T_{j}^{j}+\sum_{d=0}^{s-1} Q_{d+1} T_{0}^{d}+\sum_{j=1}^{s-1} Q_{s-j+1} T_{j}^{s} \\
& +Q_{1} T_{s}^{s}-\sum_{j=1}^{s-1} Q_{s-j} T_{j}^{s}-\sum_{d=1}^{s} Q_{d} T_{0}^{d}-\sum_{j=1}^{s-1} \sum_{d=-1}^{0} Q_{d+2} T_{j}^{j+d}-Q_{1} T_{s}^{s-1} \\
= & \sum_{j=1}^{s-1} \sum_{d=1}^{s-j-1}\left(2 Q_{d+1}-Q_{d}-Q_{d+2}\right) T_{j}^{j+d}+\sum_{j=1}^{s-1}\left(Q_{1}-Q_{2}\right) T_{j}^{j}-\sum_{j=1}^{s} Q_{1} T_{j}^{j-1}+Q_{1} T_{0}^{0} \\
& +Q_{1} T_{s}^{s}-Q_{s} T_{0}^{s}+\sum_{j=1}^{s-1}\left(Q_{j+1}-Q_{j}\right) T_{0}^{j}+\sum_{j=1}^{s-1}\left(Q_{s-j+1}-Q_{s-j}\right) T_{j}^{s} .
\end{aligned}
$$

Taking into account that $2 Q_{d+1}-Q_{d}-Q_{d+2}=-2$ and $Q_{k+1}-Q_{k}=2 k+1-4 \frac{\delta}{\pi}$ this can be further simplified to

$$
\begin{align*}
\frac{1}{\pi} \mathcal{J}(u ; A) \geq & -2 \sum_{j=1}^{s-1} \sum_{d=1}^{s-j-1} T_{j}^{j+d}-\left(3-4 \frac{\delta}{\pi}\right) \sum_{j=1}^{s-1} T_{j}^{j}-\left(s-2 \frac{\delta}{\pi}\right)^{2} T_{0}^{s} \\
& +\sum_{j=1}^{s-1}\left(2 j+1-4 \frac{\delta}{\pi}\right)\left(T_{0}^{j}+T_{s-j}^{s}\right)+\left(1-2 \frac{\delta}{\pi}\right)^{2}\left(T_{0}^{0}+T_{s}^{s}\right)-s Q_{1} L(\rho) \tag{2.10}
\end{align*}
$$

As $T_{j}^{k} \leq 0$, the inequality still holds when we omit the first three terms in (2.10). For the same reason, we can omit δ in all terms but the last one. Using further $1+\sum_{j=1}^{s-1}(2 j+1)=s^{2}$ and estimating $T_{0}^{j} \geq T_{0}^{0}$ and $T_{s-j}^{s} \geq T_{s}^{s}$, we obtain

$$
\begin{equation*}
\mathcal{J}(u ; A) \geq \pi s^{2}\left(T_{0}^{0}+T_{s}^{s}\right)-\pi s Q_{1} L(\rho) \tag{2.11}
\end{equation*}
$$

and by the definitions of T and L we arrive at the claim.

Lemma 2.9. There is a constant $\eta_{1}=\eta_{1}(A)>0$ such that for all $\eta<\eta_{1}$, the distribution function λ_{η} of u_{η} satisfies for all $s \in \mathbb{N}$ with $s<\frac{1}{\pi \eta}$ the inequality

$$
\begin{equation*}
\lambda_{\eta}(\pi s) \leq 8|A|^{1-\frac{1}{s}} \exp \frac{M+C_{0}-s K}{\pi \eta s^{2}} \tag{2.12}
\end{equation*}
$$

for some $C_{0}=C_{0}(W)>0$.
Proof. Choose a $\delta>0$ small and set $\sigma=\min \{W(t): \delta \leq t \leq \pi-\delta\}>0$. Using Lemma 2.8 and the notation used there, we can estimate

$$
\begin{aligned}
M & \geq \mathcal{F}^{\eta}\left(u_{\eta} ; A\right)=\eta \mathcal{J}(u ; A)+\mu_{\eta} \int_{A} W\left(u_{\eta}\right) \\
& \geq \eta \pi s^{2}\left(T_{0}^{0}+T_{s}^{s}\right)-s \eta \pi Q_{1} L(\rho)+\mu_{\eta} \sigma \rho
\end{aligned}
$$

From the estimate $\log x \leq x$ we deduce

$$
B z \geq \log \frac{2 B z}{2}=\log (2 B)+\log \frac{z}{2} \geq \log \sin \frac{z}{2}+\log (2 B)
$$

so setting $L_{0}:=\log \sin \frac{|A|}{2}$ we have $-L(z)+B z \geq \log (2 B)+L_{0}$, and we obtain

$$
M \geq \pi s^{2} \eta\left(T_{0}^{0}+T_{s}^{s}\right)+\pi s \eta Q_{1} \log \frac{2 \mu_{\eta} \sigma}{\pi s \eta Q_{1}}+\pi s \eta Q_{1} L_{0}
$$

from which it follows that

$$
\begin{equation*}
T_{0}^{0}+T_{s}^{s} \leq \frac{1}{\pi \eta s^{2}}\left(M-\pi s Q_{1} \eta \log \mu_{\eta}-\pi s \eta Q_{1} \log \frac{1}{\pi s \eta Q_{1}}-\pi s \eta Q_{1}\left(L_{0}+\log (2 \sigma)\right)\right) \tag{2.13}
\end{equation*}
$$

By the inequality $x \log \frac{1}{x}>0$ for $0<x<1$, we can omit the term $\pi s \eta Q_{1} \log \frac{1}{\pi s \eta Q_{1}}$ in (2.13) as long as $s<\frac{1}{\pi Q_{1} \eta}$, in particular for $s<\frac{1}{\pi \eta}$. We choose δ sufficiently small so $\pi Q_{1}>\frac{4}{3}$ (this also defines σ) and η_{1} so small that $\eta \log \mu_{\eta}<\frac{3}{4} K$ for $\eta<\eta_{1}$, so $\pi Q_{1} \eta \log \mu_{\eta}>K$. For $s<\frac{1}{\pi Q_{1} \eta}$, we can also estimate $-\pi s Q_{1} \log (2 \sigma)<-\log (2 \sigma)$. Using the definitions of T, L, and L_{0}, we obtain that

$$
\begin{aligned}
\sin \frac{1}{2}\left(a_{s}+\rho\right) \sin \frac{1}{2}\left(a_{0}+\rho\right) & \leq \sin ^{2} \frac{|A|}{2} \exp \left(\frac{M-\log (2 \sigma)-s K}{\pi \eta s^{2}}-\frac{Q_{1} L_{0}}{s}\right) \\
& \leq\left(\sin \frac{|A|}{2}\right)^{2-\frac{1}{s}} \exp \frac{M-\log (2 \sigma)-s K}{\pi \eta s^{2}}
\end{aligned}
$$

Since $\frac{1}{4} z \leq \sin \frac{1}{2} z<\frac{1}{2} z$ for $z<\pi$ and $a_{0} \geq \frac{1}{4}|A|$, this shows for $s \geq 1$ that

$$
\begin{equation*}
a_{s}<8|A|^{1-\frac{1}{s}} \exp \frac{M-\log (2 \sigma)-s K}{\pi \eta s^{2}} \tag{2.14}
\end{equation*}
$$

and this finishes the proof (with $\left.C_{0}=-\log (2 \sigma)\right)$ since $\lambda_{\eta}(\pi s) \leq \lambda_{\eta}(\pi s-\delta)=a_{s}$.
Lemma 2.10 (Trudinger-Moser inequality). There are constants $\gamma, C>0$ such that every function $u \in$ $H^{1 / 2}\left(S^{1}\right)$ with $\operatorname{supp} u \subset A \subset S^{1}, A$ a small interval, satisfies the inequality

$$
\begin{equation*}
\int_{A} \exp \left(\frac{\gamma u^{2}}{\partial(u ; A)}\right) \leq C|A| \tag{2.15}
\end{equation*}
$$

Proof. For a function v supported in a fixed interval, say $[0,1]$, the Trudinger-Moser inequality (see e.g. [13], Chap. 13.4) yields

$$
\int_{[0,1]} \exp \left(\frac{\gamma v^{2}}{\|v\|_{H^{1 / 2}(\mathbb{R})}^{2}}\right) \leq C
$$

Using an appropriate Poincaré inequality, we can replace, by changing γ appropriately, the full $H^{1 / 2}$ norm by the seminorm $\|\cdot\|_{\dot{H}^{1 / 2}}$. From the scaling invariance of this seminorm, we obtain for a function supported in [0, r] that

$$
\begin{equation*}
\int_{[0, r]} \exp \left(\frac{\gamma v^{2}}{\|v\|_{\dot{H}^{1 / 2}(\mathbb{R})}^{2}}\right) \leq C r \tag{2.16}
\end{equation*}
$$

and this estimate stays valid if we calculate the seminorm on $[0, r]$ instead or all of \mathbb{R}. For $|A|=r$ sufficiently small, the square of this seminorm is equivalent to $\mathcal{J}(u ; A)$, and we obtain (2.15).

Proposition 2.11. There are constants $C_{1}, C_{2}>0$ depending on A, M, K, W such that the distribution function λ_{η} of u_{η} satisfies for η sufficiently small the estimate

$$
\begin{equation*}
\lambda_{\eta}(t) \leq C_{1} \mathrm{e}^{-C_{2} t} \tag{2.17}
\end{equation*}
$$

Proof. For $t>4 \frac{M+C_{0}}{K}, C_{0}$ the constant from Lemma 2.9, we set $s=t-2 \frac{M+C_{0}}{K} \geq \frac{t}{2}$.
From Lemma 2.9 that we use on a suitable integer N close to $2 \frac{M+C_{0}}{K}$ and Lemma 2.10 applied to $\left(u_{\eta}-N\right)_{+}$ on the interval $\left\{u_{\eta} \geq N\right\}$, we then obtain

$$
\lambda_{\eta}(t) \leq c_{1} \exp \left(-\frac{c_{2}}{\eta}-c_{3} \eta s^{2}\right) \leq c_{1} \exp \left(-c_{4} s\right) \leq c_{1} \exp \left(-\frac{c_{4}}{2} t\right)
$$

by the inequality $\frac{a}{\eta}+b \eta \geq 2 \sqrt{a b}$. Combining this with the trivial estimate $\lambda_{\eta}(t) \leq|A|$ for $t \leq 4 \frac{M+C_{0}}{K}$, we arrive at (2.17).

Remark 2.12. It is possible to construct examples showing that there can be no uniform L^{∞} bounds for sequences of bounded energy, and that the decay estimate given in Proposition 2.11 is essentially optimal. We define for $k \in \mathbb{Z}$ the sequence $u_{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

It is easy to check that $\left\|\nabla u_{k}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=k$. With $g=0$ and $v_{k}=\left.u_{k}\right|_{\partial B_{1}(0)}$, we obtain for any W satisfying the hypotheses of Theorem 1.1 that

$$
\mathcal{H}^{1}\left(\left\{x \in S^{1}: W\left(v_{k}(x)-g(x)\right) \neq 0\right\} \leq c \mathrm{e}^{-k}\right.
$$

We set $\eta=\frac{1}{k}$ and $\mu_{\eta}=\mathrm{e}^{k}$ so $\eta \log \mu_{\eta}=1$. The functions v_{k} now satisfy

$$
\mathcal{F}^{\eta}\left(v_{k}\right) \leq \frac{1}{k}\left\|\nabla u_{k}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}+\mathrm{e}^{k} c \mathrm{e}^{-k} \sup W \leq c \sup W+1
$$

so their energy is uniformly bounded, but the L^{∞} norm converges to $+\infty$. The distribution function of λ_{k} of v_{k} satisfies $\lambda_{k}(k) \approx \mathrm{e}^{-2 k}$, which corresponds up to constants to the result of Proposition 2.11.

2.2. The lower bound

Proposition 2.13. Let $A \subset S^{1}$ and $u_{\eta} \in L^{1}(A)$ be a sequence such that $\mathcal{F}^{\eta}\left(u_{\eta}\right) \leq M<\infty$ and $u_{\eta} \rightharpoonup u$ in some $L^{p}, 1 \leq p<\infty$. Then $\left(u_{\eta}\right)$ is relatively compact in the strong topology of $L^{1}(A)$.

Additionally, we have that for every sequence $u_{\eta} \rightarrow u$ in $L^{1}(A)$,

$$
\begin{equation*}
\mathcal{F}(u) \leq \liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(u_{\eta}\right) \tag{2.19}
\end{equation*}
$$

so every cluster point u belongs to $B V(A, \pi \mathbb{Z})$.
Proof. Let $\left(\nu_{x}\right)_{x \in A}$ be the Young measure generated by u_{η}. Since $\int_{A} W\left(u_{\eta}\right) \leq \frac{M}{\mu_{\eta}} \rightarrow 0$, the sequence $W\left(u_{\eta}\right)$ is relatively compact in $L^{1}(A)$, and so we can apply the fundamental theorem on Young measures (see [11], Th. 6.2 or [9], Th. 3.1) which shows

$$
\begin{equation*}
\int_{\mathbb{R}} W(t) \mathrm{d} \nu_{x}(t)=0 \quad \text { for a.e. } x \in A . \tag{2.20}
\end{equation*}
$$

and by the assumptions on u_{η} we also have

$$
\begin{equation*}
u(x)=\int_{\mathbb{R}} t \mathrm{~d} \nu_{x}(t) \quad \text { for a.e. } x \in A \tag{2.21}
\end{equation*}
$$

As $W \geq 0, W(z)=0$ exactly for $z \in \pi \mathbb{Z}$, (2.20) shows that $\operatorname{supp} \nu_{x} \subset \pi \mathbb{Z}$ for a.e. $x \in A$. Since ν_{x} is a probability measure a.e., we can find for each $j \in \mathbb{Z}$ a measurable function

$$
\begin{equation*}
\theta_{j}: S^{1} \rightarrow[0,1] \tag{2.22}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}} \theta_{j}(x)=1 \quad \text { for a.e. } x \in S^{1} \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{x}=\sum_{j \in \mathbb{Z}} \theta_{j}(x) \delta_{\pi j} . \tag{2.24}
\end{equation*}
$$

We will show that these functions θ_{j} are of class $B V(A,\{0,1\})$. To this end, we define the set

$$
\begin{equation*}
S:=\left\{x \in A: \text { there is a } j \in \mathbb{Z} \text { such that } \underset{y \rightarrow x}{\operatorname{ap}} \lim _{j}(y) \notin\{0,1\}\right\} \tag{2.25}
\end{equation*}
$$

and consider an $x_{0} \in S . \operatorname{By}(2.22)$ and (2.23) it is clear that there are $s_{1}<s_{2} \in \mathbb{Z}$ such that the corresponding approximate limits of $\theta_{s_{1}}$ and $\theta_{s_{2}}$ are neither 0 nor 1 . In a small interval $J \subset A$ centered around x_{0}, we use Lemma 2.8 with

$$
\begin{aligned}
s & =s_{2}-s_{1} \\
a_{\eta}^{0} & =\left|\left\{x \in J: u_{\eta}(x)<\pi s_{1}+\delta\right\}\right| \\
a_{\eta}^{s} & =\left|\left\{x \in J: u_{\eta}(x)>\pi s_{2}-\delta\right\}\right|, \\
\rho_{\eta} & =\mid\left\{x \in J: \operatorname{dist}\left(u_{\eta}(x), \pi \mathbb{Z}\right) \geq \delta \text { and } u_{\eta}(x) \in\left(s_{1} \pi, s_{2} \pi\right)\right\} \mid .
\end{aligned}
$$

We obtain with $Q_{1}=\left(1-\frac{2 \delta}{\pi}\right)^{2}$ and $L(z):=\log \sin \frac{z}{2}-\log \sin \frac{|J|}{2}$ the inequality

$$
\liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(u_{\eta}, J\right) \geq \eta\left(\pi s^{2}\left(L\left(a_{\eta}^{0}+\rho_{\eta}\right)+L\left(a_{\eta}^{s}+\rho_{\eta}\right)\right)-\pi s Q_{1} L\left(\rho_{\eta}\right)+\mu_{\eta} \sigma \rho_{\eta} .\right.
$$

As can be seen by suitable integrations over ν_{x} (take a continuous function that is 1 for $x<\pi s_{1}$ and 0 for $\left.x>\pi s_{1}+\delta\right), \liminf _{\eta \rightarrow 0} a_{\eta}^{0} \geq \int_{J} \theta_{s_{1}}>0$ and similarly $\lim \inf _{\eta \rightarrow 0} a_{\eta}^{s}>0$, and so we have we have $\lim _{\eta \rightarrow 0} \eta L\left(a_{\eta}^{0}+\right.$ $\left.\rho_{\eta}\right)=\lim _{\eta \rightarrow 0} \eta L\left(a_{\eta}^{s}+\rho_{\eta}\right)=0$. The limit estimate thus can be simplified to

$$
\liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(u_{\eta}, J\right) \geq \liminf _{\eta \rightarrow 0}\left(-\pi s Q_{1} \eta L\left(\rho_{\eta}\right)+\mu_{\eta} \sigma \rho_{\eta}\right)
$$

Using the estimate $-L(z)+B z \geq \log (2 B)+\log \sin \frac{|J|}{2}$, this shows

$$
\begin{aligned}
\liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(u_{\eta}, J\right) & \geq \liminf _{\eta \rightarrow 0} \pi s Q_{1} \eta\left(-L\left(\rho_{\eta}\right)+\frac{\mu_{\eta} \sigma}{\pi s Q_{1} \eta} \rho_{\eta}\right) \\
& \geq \liminf _{\eta \rightarrow 0} \pi s Q_{1} \eta \log \frac{2 \mu_{\eta} \sigma \sin \frac{|J|}{2}}{\pi s Q_{1} \eta}
\end{aligned}
$$

where the last term converges for $\eta \rightarrow 0$ since $\eta \log \mu_{\eta} \rightarrow K$ and $\eta \log \frac{C}{\eta} \rightarrow 0$ for any $C>0$, so we obtain

$$
\begin{equation*}
\liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(v_{\eta}, J\right) \geq \pi s Q_{1} K \tag{2.26}
\end{equation*}
$$

Letting $\delta \rightarrow 0$ we have $Q_{1} \rightarrow 1$ so we even have

$$
\begin{equation*}
\liminf _{\eta \rightarrow 0} \mathcal{F}^{\eta}\left(v_{\eta}, J\right) \geq \pi s K \tag{2.27}
\end{equation*}
$$

By the assumption $\mathcal{F}^{\eta}\left(v_{\eta}\right) \leq M$, we see that $s=s_{2}-s_{1}$ must be bounded. Using the superadditivity of \mathcal{F}^{η}, we also see that S must be finite. This also shows that at almost any $x \in S^{1}$, only one of the functions θ_{j} can be nonzero. In particular, ν_{x} is a Dirac measure everywhere. This shows $u \in B V\left(S^{1}, \pi \mathbb{Z}\right)$, and the limit estimate follows from adding up (2.27) with the maximum possible s around every $x \in S_{u}$.

If u_{η} has only been converging weakly in some L^{p}, then the fact that ν_{x} is Dirac improves this to strong convergence in L^{1} as claimed.

3. Extension to $g \neq 0$

Here we show how the lower bound from Theorem 1.1 (in its localized form) follows from the special case for $g=0$ that was treated above.

Let $A \subset S^{1}$ be an intervals of length $|A|<\pi$. We can choose a representative for g that has no jump in A. Setting $v_{\eta}:=u_{\eta}-g$, we have that

$$
\mathcal{F}_{g}^{\eta}\left(u_{\eta} ; A\right)=\mathcal{F}^{\eta}\left(v_{\eta}\right)+\eta \int_{A} \int_{A} \frac{\left(u_{\eta}(x)-u_{\eta}(y)\right)^{2}-\left(v_{\eta}(x)-v_{\eta}(y)\right)^{2}}{\sin ^{2} \frac{1}{2}(x-y)} \mathrm{d} x \mathrm{~d} y
$$

Now we calculate (with $u_{\eta}(x)=: u_{1}$ and $u_{\eta}(y)=: u_{2}$ etc.)

$$
\begin{equation*}
\left(u_{1}-u_{2}\right)^{2}-\left(u_{1}-g_{1}-\left(u_{2}-g_{2}\right)\right)^{2}=2\left(u_{1}-u_{2}\right)\left(g_{1}-g_{2}\right)-\left(g_{1}-g_{2}\right)^{2} \tag{3.1}
\end{equation*}
$$

By Cauchy-Schwarz inequality, we estimate

$$
\begin{aligned}
\left\lvert\, \int_{A} \int_{A} \frac{(u(x)-u(y))(g(x)-g(y))}{\sin ^{2} \frac{1}{2}(x-y)}\right. & \mathrm{d} x \mathrm{~d} y \mid \\
\leq & \left(\int_{A} \int_{A} \frac{(u(x)-u(y))^{2}}{\sin ^{2} \frac{1}{2}(x-y)} \mathrm{d} x \mathrm{~d} y\right)^{\frac{1}{2}}\left(\int_{A} \int_{A} \frac{(g(x)-g(y))^{2}}{\sin ^{2} \frac{1}{2}(x-y)} \mathrm{d} x \mathrm{~d} y\right)^{\frac{1}{2}} \leq \sqrt{\frac{M}{\eta}} c(g)
\end{aligned}
$$

since $\mathcal{F}^{\eta}(u) \leq M$ and g has a H^{1} extension to a domain containing A in its boundary, so the g-integral is bounded. This and (3.1) show

$$
\begin{equation*}
\mathcal{F}^{\eta}\left(u_{\eta} ; A\right)-\sqrt{\eta M}-\eta c(g) \mathcal{F}_{g}^{\eta}(u ; A) \leq \mathcal{F}^{\eta}\left(u_{\eta} ; A\right)+\sqrt{\eta M}+\eta c(g) \tag{3.2}
\end{equation*}
$$

so $\mathcal{F}_{g}^{\eta}(\cdot ; A)$ and $\mathcal{F}^{\eta}(\cdot ; A)$ have the same compactness behaviour and Γ-limits.
We can now obtain the Γ-lim inf and compactness results on S^{1} by covering it with small intervals A_{i} on which we use the lower bound from Proposition 2.13. This yields a lower bound for the functional on S^{1} since \mathcal{F}_{g}^{η} is superadditive.

4. The upper bound

Here we prove part (iii) of Theorem 1.1 in the case of S^{1}, which by Proposition 2.1 is enough to prove the general case. Let u be such that $v=u-g \in B V\left(S^{1}, \pi \mathbb{Z}\right)$ is a function with jump set S. Let $x_{0} \in S$ be a jump point with approximate limits $v(x-)=\pi s_{1}, v(x+)=\pi s_{2}, s_{1}, s_{2} \in \mathbb{Z}$, where we can assume w.l.o.g. $s_{2}-s_{1}=r>0$. For $\delta_{\eta} \rightarrow 0$ and $\varkappa_{\eta} \rightarrow 0$ to be chosen later, we define v_{η} in a neighborhood of x_{0} as

$$
v_{\eta}(x)= \begin{cases}\pi s_{1} & \text { if } x<x_{0} \tag{4.1}\\ \pi\left(s_{1}+j\right) & \text { if } x \in\left(x_{0}+j\left(\delta_{\eta}+\varkappa_{\eta}\right), x_{0}+j\left(\delta_{\eta}+\varkappa_{\eta}\right)+\varkappa_{\eta}\right) \quad(1 \leq j \leq r-1) \\ \pi s_{2} & \text { if } x>x_{0}+r\left(\delta_{\eta}+\varkappa_{\eta}\right),\end{cases}
$$

and linear interpolation in the remaining parts. Proceeding like this around every $x_{0} \in S$, it is easy to see that we obtain a sequence $\left(v_{\eta}\right)$ with $u_{\eta}=v_{\eta}+g \rightarrow u$ in all $L^{p}, 1 \leq p<\infty$.

Calculating $\mathcal{F}^{\eta}\left(u_{\eta}\right)$, we obtain for the single integral a bound

$$
\begin{equation*}
\int_{S^{1}} W\left(u_{\eta}-g\right) \mathrm{d} x \leq C \delta_{\eta} \tag{4.2}
\end{equation*}
$$

where $C=C\left(S,\|u\|_{\infty}\right)$.
We split the double integral over $S^{1} \times S^{1}$ for the $H^{1 / 2}$ norm up into integrations over the finitely many pairs of definition intervals. Analogously to what we did in (3.2) we can use v_{η} instead of u_{η} for the calculations as long as the $H^{1 / 2}$-norms stay bounded.

Most of the integrals over two definition intervals of v_{η} are easily seen to be $O(1)$ in δ_{η}, so they will go to 0 when multiplied with η. The only interesting terms are those arising from the constancy intervals of v_{η} near a jump point. Their contribution around one jump point can then be written (by appropriate change of variables and using the shorthand $\delta=\delta_{\eta}, \varkappa=\varkappa_{\eta}$) as

$$
\begin{equation*}
\frac{\pi}{2} \sum_{0 \leq j<k \leq r}(k-j)^{2} \int_{j(\delta+\varkappa)}^{j(\delta+\varkappa)+\varkappa} \int_{k(\delta+\varkappa)}^{k(\delta+\varkappa)+\varkappa} \frac{1}{\sin ^{2}\left(\frac{x-y}{2}\right)} \mathrm{d} x \mathrm{~d} y \tag{4.3}
\end{equation*}
$$

which can be approximated using $\sin z \sim z$ as

$$
2 \pi \sum_{0 \leq j<k \leq r}(k-j)^{2} \log \frac{(k-j)^{2}(\varkappa+\delta)^{2}}{(k-j)^{2}(\varkappa+\delta)^{2}-\varkappa^{2}}
$$

We can rewrite

$$
\frac{(k-j)^{2}(\varkappa+\delta)^{2}}{(k-j)^{2}(\varkappa+\delta)^{2}-\varkappa^{2}}=\frac{1}{1-\frac{1}{(k-j)^{2}\left(1+\frac{\delta}{\varkappa}\right)^{2}}}
$$

so we see that for $\frac{\delta}{\varkappa} \rightarrow 0$, the terms in (4.3) with $k-j>1$ will be $O(1)$. Considering the $k-j=1$ terms gives us

$$
\log \frac{(\varkappa+\delta)^{2}}{(2 \varkappa+\delta) \delta}=\log \left(\frac{\left(1+\frac{\delta}{\varkappa}\right)^{2}}{\left(2+\frac{\delta}{\varkappa}\right)} \frac{\varkappa}{\delta}\right) .
$$

Calculating for $r>1$ the contribution of the integral over the "long" intervals on both sides of a multiple jump, we have a term of the form

$$
\frac{\pi r^{2}}{2} \int_{-a}^{0} \int_{r\left(\delta_{\eta}+\varkappa_{\eta}\right)}^{a} \frac{1}{\sin ^{2}\left(\frac{x-y}{2}\right)} \mathrm{d} x \mathrm{~d} y \sim 2 \pi r^{2} \log \frac{a}{2 r\left(\delta_{\eta}+\varkappa_{\eta}\right)}=2 \pi r^{2} \log \frac{1}{\varkappa_{\eta}}+O(1)
$$

Combining everything, we see we arrive at the assertion of the theorem if only

$$
\varkappa_{\eta} \rightarrow 0, \frac{\delta_{\eta}}{\varkappa_{\eta}} \rightarrow 0, \eta \log \frac{1}{\varkappa_{\eta}} \rightarrow 0 \text { and } \eta \log \frac{\varkappa_{\eta}}{\delta_{\eta}} \rightarrow K
$$

A possible choice is

$$
\begin{equation*}
\varkappa_{\eta}=\eta \text { and } \delta_{\eta}=\frac{\eta}{\mu_{\eta}} . \tag{4.4}
\end{equation*}
$$

This finishes the proof of the upper bound part of Theorem 1.1.

Acknowledgements. The research presented in this article was carried out as part of my thesis [6] under the supervision of Prof. Stefan Müller, and I am thankful for his many helpful suggestions. During this research, I was supported by the DFG, first through the Graduiertenkolleg at the University of Leipzig, then through Priority Program 1095, and I want to express my gratitude for the support.

References

[1] G. Alberti, G. Bouchitté and P. Seppecher, Un résultat de perturbations singulières avec la norme $H^{1 / 2}$. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 333-338.
[2] G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line-tension effect. Arch. Rational Mech. Anal. 144 (1998) 1-46.
[3] A. Garroni and S. Müller, A variational model for dislocations in the line-tension limit. Preprint 76, Max Planck Institute for Mathematics in the Sciences (2004).
[4] A.M. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier (Grenoble) 24 (1974) VI 67-116.
[5] R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Rat. Mech. Anal., to appear.
[6] M. Kurzke, Analysis of boundary vortices in thin magnetic films. Ph.D. Thesis, Universität Leipzig (2004).
[7] E.H. Lieb and M. Loss, Analysis, second edition, Graduate Studies in Mathematics 14 (2001).
[8] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142.
[9] S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems (Cetraro, 1996), Springer, Berlin. Lect. Notes Math. 1713 (1999) 85-210.
[10] J.C.C. Nitsche, Vorlesungen über Minimalflächen. Grundlehren der mathematischen Wissenschaften 199 (1975).
[11] P. Pedregal, Parametrized measures and variational principles, Progre. Nonlinear Differ. Equ. Appl. 30 (1997).
[12] C. Pommerenke, Boundary behaviour of conformal maps. Grundlehren der mathematischen Wissenschaften 299 (1992).
[13] M.E. Taylor, Partial differential equations. III, Appl. Math. Sci. 117 (1997).
[14] J.F. Toland, Stokes waves in Hardy spaces and as distributions. J. Math. Pures Appl. 79 (2000) 901-917.

[^0]: Keywords and phrases. Gamma-convergence, nonlocal variational problem, micromagnetism
 ${ }^{1}$ Institute for Mathematics and its Applications, University of Minnesota, 400 Lind Hall, 207 Church Street SE, Minneapolis, MN 55455, USA; kurzke@ima.umn.edu

