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ASYMPTOTIC STABILITY OF LINEAR CONSERVATIVE SYSTEMS
WHEN COUPLED WITH DIFFUSIVE SYSTEMS

Denis Matignon
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and Christophe Prieur
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Abstract. In this paper we study linear conservative systems of finite dimension coupled with an
infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy
functional along the solutions helps us to prove the well-posedness of the system and a stability property.
But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also
illustrate the sharpness of this condition by exhibiting some systems for which we do not have the
asymptotic property.
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1. Introduction

In this paper we study an oscillator damped by a positive pseudo-differential operator of diffusive type.
This model represents the wave equation when viscous and thermal losses are concentrated in a boundary
layer near the walls of the duct; averaging the acoustical quantities on the cross-section gives rise to a ∂

1
2
t

equivalent operator (see [3, 21]), which also appears in other acoustical contexts, see e.g. [9]. This model
has been introduced earlier in [14, 15] restated in the half-line in [8] (see also [11] for a new derivation of this
equation). Taking the projection on one mode of the vibrating structure, we arrive at the model under study.
The pseudo-differential operators of diffusive type under consideration in this paper belong to the class of causal
pseudo-differential operators (in the time variable) which have a simple diagonal realization in infinite dimension
together with interesting energy balance and dissipativity properties.

We use this energy balance to prove the existence and uniqueness of solutions, and to check that the energy
of the oscillator, in closed-loop with the pseudo-differential operator, decreases (see also [10] for a more general
well-posedness problem with fractional derivatives). As the energy is minimal at the equilibrium, a possible
guess is the stability property. But, applying LaSalle’s invariance principle requires a precompactness property
(see e.g. [4, 5]), which is not easy to get a priori. More precisely, a sufficient compactness criterion, such as
[16], Theorem 3.65, does not apply in our cases, because of the unboundedness of the ξ-domain for the diffusion
equation.
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Therefore in order to prove the asymptotic stability, we resort to the stability theorem given in [1]. To be
self-contained, let us recall briefly the statement of this result:

Theorem 1.1 ([1], Stability theorem). Let us consider the infinitesimal generator A of a bounded C0-semigroup
on a reflexive Banach space. Assume that no eigenvalue of A lies on the imaginary axis. If σ(A) ∩ iR is
countable, then the semigroup generated by A is asymptotically stable, which means that the solutions of the
differential equation x′(t) = Ax(t) tend to 0 with t → ∞.

In this paper we use this stability theorem. Note that, in our case, this stability theorem is equivalent to [17],
since we work with Hilbert spaces which are reflexive Banach spaces. Moreover we can not use earlier stability
theorems such as Tauberian theorem given in [12,13,20]. Indeed, in our case, σ(A) ∩ iR is not empty. See also
the comparaison of these results in [1].

Two classes of diffusive pseudo-differential operators will be treated separately depending on their realization:
in Section 2 we consider standard diffusive operators, such as fractional integrals ∂−α

t , with α ∈ R+ and
0 < α < 1, with negative asymptotic order; whereas, in Section 3, we consider extended diffusive operators,
such as fractional derivatives ∂β

t , with β ∈ R+ and 0 < β < 1, with positive asymptotic order. Since the
functional spaces used for the realizations of standard or extended diffusive systems happen to be different, we
need to study them separately.

More precisely we study in this paper, systems of the form

θ̈ + a

(
d
dt

Dν

)
(θ̇) + bDµ(θ̇) + cθ = ue(t), (1)

where θ : [0, +∞) → C is an unknown function, Dµ and Dν are two causal pseudo-differential operators of
diffusive type with measure µ and ν respectively. We assume moreover that a, b and c are three non-negative
real numbers, with ab �= 0, and ue is an external input vanishing for sufficiently large time. The closed-loop
system we get is, for all (ξ, t) ∈ [0, +∞)2,

∂t




θ(t)
ω(t)

Φ(ξ, t)

Φ̃(ξ, t)


 =




ω

−a

∫ ∞

0

(ω(t) − ξΦ̃(ξ, t)) dν(ξ) − b

∫ ∞

0

Φ(ξ, t) dµ(ξ) − cθ(t) + ue(t)

−ξΦ(ξ, t) + ω(t)

−ξΦ̃(ξ, t) + ω(t)




,

Φ(ξ, 0) = 0,

Φ̃(ξ, 0) = 0.

(2)

Assuming that ∫ ∞

0

1
1 + ξ

dµ(ξ) < ∞, (3)

and ∫ ∞

0

1
1 + ξ

dν(ξ) < ∞, (4)

using infinite-dimensional realizations of the operators Dµ and d
dtDν , we state Φ and Φ̃ on appropriate Hilbert

spaces i.e. H := L2([0, +∞), dµ(ξ)) and H̃ := L2([0, +∞), ξ dν(ξ)) respectively, and using [1], Stability theorem,
we prove

Theorem 1.2. Let µ be a positive non-null measure satisfying (3) and such that µ({0}) = 0 and ν be a positive
non-null measure satisfying (4). Let p ≥ 1. Let ue ∈ Lp([0, +∞), dt) be such that ue(t) = 0 for sufficiently large
time.
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Then, we have the asymptotic stability property for (2) i.e., for all (θ0, ω0) ∈ C2, the solution of (2) with
initial condition (θ0, ω0, 0, 0) at t = 0 satisfies

(θ, ω, Φ, Φ̃)(t) →t→∞ 0 in C
2 × H × H̃.

Moreover we prove that this theorem is sharp, more precisely we prove by exhibiting some examples that the
assumption µ({0}) = 0 cannot be omitted and it is possible to get different qualitative behaviors. Moreover we
note that non-exponential stability may occur.

Note that system (2) has already been studied in [7] but without a proof of asymptotic stability. Diffusive
systems have been first introduced in [22], Section 5, and independently in [19]. More generally conservative
linear systems have been studied in several papers. See e.g. [23–25] where the energy balance is a key-point as
in our paper.

The paper is organized as follows. First in Section 2 we study an oscillator coupled with an infinite-
dimensional system of standard diffusive type and we prove the asymptotic property when it is true. In
Section 3, we study an oscillator coupled with a system of extended diffusive type. We state the main theorem,
i.e. the case of a diffusive system of both types in Section 4. Section 5 summarizes the main contributions of
the work and points to some open problems and future research directions.

2. An oscillator coupled with a standard diffusive system

In this section we study an oscillator damped by a pseudo-differential operator with a diffusive representation.
Fractional integrals ∂−α

t , with 0 < α < 1, with negative asymptotic order, are a special case of such standard
diffusive operators. We prove, when it is true, the asymptotic stability property in this case.

Let us first state the system under consideration in this section.

2.1. Statement of the problem

We study the following second-order mono-dimensional linear differential equation:

θ̈ + Dµ(θ̇) + cθ = ue(t), (5)

where θ : [0, +∞) → C is an unknown function, Dµ is a diffusive pseudo-differential operator with measure µ, c
is a non-negative real number and ue is an external input vanishing for sufficiently large time, i.e. we suppose
that there exists Te > 0 such that

ue(t) = 0, ∀t ≥ Te. (6)

In all the following we assume that the measure µ is positive, non-null and satisfies

cµ :=
∫ ∞

0

1
1 + ξ

dµ(ξ) < ∞. (7)

Let us consider the realization of the input-output operator Dµ in the observator form (see e.g. [19])




∂tΦ(ξ, t) = −ξΦ(ξ, t) + u(t), ∀ξ ≥ 0
Φ(., 0) = 0

y(t) := Dµ(u) =
∫ ∞

0

Φ(ξ, t) dµ(ξ)

u(t) := θ̇(t)

(8)

where Φ : [0, +∞) × [0, +∞) → C is the state of (8), u: [0, +∞) → C is the input and y: [0, +∞) → C the
observation.
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Let us recall the functional spaces where this realization makes sense. To do this let us introduce, for k ∈ N,
the subspace Hk of L2

loc(R
+, dµ), defined by

Hk =
{

φ ∈ L2
loc(R

+, dµ),
∫ ∞

0

(1 + ξ)k|φ(ξ)|2 dµ(ξ) < ∞
}

,

and denote V = H1, H = H0. We equip H with the following hermitian product, for all φ and f in H ,

〈φ, f〉H =
∫ ∞

0

φ(ξ)f(ξ) dµ(ξ).

By identification of H with its dual, we have H1 = V ↪→ H ↪→ V ′ = H−1 with continuous and dense embeddings.
Let us now introduce the linear operators defining the differential system (5) and (8).

2.2. An abstract formulation

Let us now introduce the linear operator defining (5) as a conservative ordinary differential operator in
closed-loop with the pseudo-differential operator (8):

∂t


 θ

ω
Φ


 = A


 θ

ω
Φ


 + Bue :=




ω

−cθ −
∫ ∞

0

Φ dµ

ω − ξΦ


 +


 0

ue

0


 (9)

with A : D(A) → C2 × H and B : C → C2 × H two suitable linear operators and

D(A) = {(θ, ω, φ) ∈ C
2 × V, s.t. ξ 
→ ω − ξφ(ξ) ∈ H}.

We equip C2 × H with the following hermitian product, for all (θ, ω, φ) and (x, y, f) in C2 × H ,

〈
 θ

ω
φ


 ,


 x

y
f




〉

C2×H

= cθx + ωy +
∫ ∞

0

φ(ξ)f(ξ) dµ(ξ).

Let E : C
2 × H → R be defined, for all (θ, ω, φ) ∈ C

2 × H , by

E (θ, ω, φ) =
1
2

(‖(θ, ω, φ)‖C2×H)2 . (10)

Let us compute, at least formally the time-derivative of the function E , along the solutions of (9) (it will make
sense in Sect. 2.3 below):

d
dt

E
(
θ, θ̇, Φ

)
= �(θ̇ (θ̈ + cθ)) + �

(∫ ∞

0

Φ ∂tΦdµ(ξ)
)

, (11)

= �(θ̇ ue(t)) −
∫ ∞

0

ξ|Φ|2 dµ(ξ) (12)

where � denotes the real part of a complex number. Thus, for sufficiently large time, we have d
dtE ≤ 0 (recall (6)).

This allows us to detect the asymptotic stability property which is proved, when it is true, in Section 2.4. But
let us prove first an existence result.
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2.3. Existence and uniqueness of the solutions

We prove the existence and uniqueness results of the (classical or weak) solutions of (9) using the classical
theory of semi-groups (see e.g. [6]). To do this let us start by proving the following:

Lemma 2.1. The operator −A is monotone.

Proof. Due to (9) we have, for all (θ, ω, φ) ∈ D(A),

�
〈
−A


 θ

ω
φ


 ,


 θ

ω
φ




〉

R2×H

= �
〈


−ω

cθ +
∫ ∞
0

φdµ

−ω + ξφ


 ,


 θ

ω
φ




〉

C2×H

= �(−cθω + cθω) + �
(

ω

∫ ∞

0

φdµ −
∫ ∞

0

ωφdµ

)
+ �

(∫ ∞

0

ξ|φ|2 dµ

)

=
∫ ∞

0

ξ|φ|2 dµ ≥ 0. �

We have now to prove the maximality of the operator −A. This proof is quite standard, but still, when solving
the resolvent equation:

(I −A)(θ, ω, φ)′ = (x, y, f)′,
special care must be taken to prove that the solution does belong to the appropriate functional space,
namely D(A).

Lemma 2.2. The operator −A is maximal.

Proof. This lemma is a special case of Proposition A.2 given in Appendix with λ = 1. �

Since −A is monotone and maximal and using [2], Chapter 7, we get that, for all (θ0, ω0, φ0) ∈ D(A), there
exists a unique (θ, ω, Φ) ∈ C1([0, +∞), C2 × H) ∩ C0([0, +∞),D(A)) such that

∂t(θ, ω, Φ)′ = A(θ, ω, Φ)′, (13)

with the initial condition
(θ, ω, Φ)′(t = 0) = (θ0, ω0, φ0)′. (14)

Thus the formal computation of (11)–(12) makes sense with ue = 0 and

d
dt

‖θ(t), ω(t), Φ(., t)‖C2×V ≤ 0.

Integrating this inequality gives

‖(θ(t), ω(t), Φ(., t))′‖C2×H ≤ ‖(θ0, ω0, φ0)′‖C2×H , (15)

meaning exactly that the C0-semigroup generated by A is a contraction semigroup.
Moreover, by applying e.g. [6], Theorem 3.1.3, we have, for all ue ∈ C1([0, +∞), C), and for all (θ0, θ1) ∈ C2,

the existence of a unique classical solution of (9) defined on [0, +∞) with the initial condition

θ(0) = θ0 , ω(0) = ω0 , Φ(ξ, 0) = 0, ∀ξ ∈ [0, +∞). (16)

Thus the formal computations of (11) and (12) make sense and, thanks to (6), the function E is non increasing
for t large enough.
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Let us now note that, for all p ≥ 1, for all ue ∈ Lp([0, +∞), dt) and for all (θ0, θ1) ∈ C2, thanks to [6],
Theorem 3.1.7, there exists a unique weak solution of (9) defined on [0, +∞) with the initial condition (16).

In all the following we will consider only weak solutions.
With this existence and uniqueness result at hand, let us look for the asymptotic behavior of solutions of (9).

2.4. Asymptotic stability

In this section, we use, when it is possible, a Tauberian theorem to prove the asymptotic stability property
of the system (9). We also state the main result of this section.

To the best of our knowledge, we can not apply LaSalle’s principle with the function E defined by (10) as a
Lyapunov function. The main difficulty to use LaSalle’s principle is the precompactness of the solutions of (9)
which is not clear to get a priori.

Let us find the conditions for which [1], Stability theorem, applies.
It was already checked in Section 2.3 that A generates a bounded C0-semigroup.
Let us now prove

Lemma 2.3. We have
σ(A) ∩ {iα, α ∈ R, α �= 0} = ∅.

Proof. This proof is a special case of Proposition A.2 with λ = iα, α ∈ R, α �= 0. �

Thanks to Lemma 2.3, σ(A)∩ iR is at most countable as required by the necessary conditions of [1], Stability
theorem.

Let us prove the following

Lemma 2.4. λ = 0 is an eigenvalue of A if and only if µ({0}) �= 0.

Proof. From (9) we get that (θ, ω, φ) ∈ Ker(A) if and only if




ω = 0

cθ +
∫ ∞

0

φdµ = 0

ω − ξφ = 0, for µ-almost every ξ in [0,∞)

which is equivalent to 


ω = 0
φ = 0, for µ-almost every ξ in (0,∞)

θ = −µ({0})
c

φ(0).

Thus we get the equivalence stated in Lemma 2.4. �

Remark 2.5. If µ({0}) �= 0, we get from the proof of Lemma 2.4 that the kernel of A is

C (−µ({0}), 0, φ0 ) (17)

where φ0 : [0,∞) → C is equal to 0, for ξ > 0 and equal to c for ξ = 0. This remark will be useful below.

From Lemma 2.3, Lemma 2.4 and [1], Stability theorem, we get, the asymptotic stability of (5) in closed-loop
with (8):

Theorem 2.6. Let µ be a positive non-null measure satisfying (7) and such that µ({0}) = 0. Let p ≥ 1. Let
ue ∈ Lp([0, +∞), dt) be such that ue(t) = 0 for sufficiently large time.
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Then, we have the asymptotically stability property, i.e. for all (θ0, ω0) ∈ C2, the solution of (5) in closed-loop
with (8), with initial condition (θ0, ω0, 0) at t = 0, satisfies

E(θ, θ̇, Φ)(t) →t→∞ 0,

or equivalently (θ, θ̇, Φ)(t) →t→∞ 0 in C2 × H.

Remark 2.7. The conclusion of Theorem 2.6 is sharp in the sense that we can have a non-exponential stability.
See e.g. the case dµα(ξ) = sin(πα)

π
1

ξα dξ, for all ξ > 0 and fractional differential equations with a decay which is
not of exponential type. See [18], example 2.4.2, together with [18], Theorem 2.17.

Remark 2.8. Now, when µ({0}) = C0 > 0, thanks to Lemma 2.4, λ = 0 is an eigenvalue of A, hence the
system can not be asymptotically stable. Nevertheless, the influence of the constant C0 on the subsystem (θ, ω)
can be very different. For example,

• C0 can change the frequency of oscillations and their amplitude, in the case µ = C0δ0 where δ0 is the
Dirac measure at ξ = 0;

• C0 can also create a non-zero limit state in the case µ = C0 + µα where dµα(ξ) = sin(πα)
π

1
ξα dξ , for all

ξ > 0.
The full proof of this remark is given in Appendix B, by studying both these examples.

3. An oscillator coupled with an extended diffusive system

In this section we study an oscillator damped by a pseudo-differential operator with an extended diffusive
representation. Fractional derivatives ∂β

t , with 0 < β < 1, with positive asymptotic order β are a special case
of such extended diffusive operators. We prove, when it is true, the asymptotic stability property in this case.

Let us first state the system under consideration in this section.

3.1. Statement of the problem

We study the following second-order mono-dimensional linear differential equation:

θ̈ +
(

d
dt

Dν

)
(θ̇) + cθ = ue(t), (18)

where θ : [0, +∞) → C is an unknown function, Dν is a diffusive pseudo-differential operator with measure ν
(as already introduced in Sect. 2), c is a non-negative real number and ue is an external input vanishing for
sufficiently large time, i.e. we suppose that there exists Te > 0 such that

ue(t) = 0, ∀t ≥ Te. (19)

In all the following we assume that the measure ν is positive, non-null and satisfies:

cν :=
∫ ∞

0

1
1 + ξ

dν(ξ) < ∞. (20)

Let us consider the realization of the input-output operator d
dtDν in the observator form




∂tΦ̃ = −ξΦ̃ + u(t), ∀ξ ≥ 0
Φ̃(., 0) = 0

z(t) :=
d
dt

Dν(u) =
∫ ∞

0

∂tΦ̃(ξ, t) dν(ξ)

u(t) := θ̇(t)

(21)
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where Φ̃ : [0, +∞) × [0, +∞) → C is the state of (21), u: [0, +∞) → C is the input and z: [0, +∞) → C the
observation.

Let us introduce the following subpaces of L2
loc(R

+, dν):

V =
{

φ̃ ∈ L2
loc(R

+, dν),
∫ ∞

0

(1 + ξ) |φ̃|2 dν(ξ) < ∞
}

,

H̃ =
{

φ̃ ∈ L2
loc(R

+, dν),
∫ ∞

0

ξ |φ̃|2 dν(ξ) < ∞
}

.

We equip H̃ with the following hermitian product, for all φ̃ and f̃ in H̃ ,

〈
φ̃, f̃

〉
H̃

=
∫ ∞

0

ξφ̃(ξ)f̃ (ξ) dν(ξ).

Let us now write down the linear operators defining the differential system (18) and (21).

3.2. An abstract formulation

Let us now introduce the linear operator defining (18) as a conservative ordinary differential operator in
closed-loop with the pseudo-differential operator (21):

∂t


 θ

ω

Φ̃


 = Ã


 θ

ω

Φ̃


 + B̃ue :=




ω

−cθ −
∫ ∞

0

(ω − ξΦ̃) dν

ω − ξΦ̃


 +


 0

ue

0


 (22)

with Ã : D(Ã) → C2 × H̃ and B̃ : C → C2 × H̃ two suitable linear operators and

D(Ã) = {(θ, ω, φ̃) ∈ C
2 × H̃, s.t. ξ 
→ ω − ξφ̃(ξ) ∈ V }.

We equip C2 × H̃ with the following hermitian product, for all (θ, ω, φ̃) and (x, y, f̃) in C2 × H̃ ,

〈
 θ

ω

φ̃


 ,


 x

y

f̃




〉

C2×H̃

= c θx + ωy +
∫ ∞

0

ξφ̃(ξ)f̃ (ξ) dν(ξ).

Let Ẽ : C2 × H̃ → R be the function defined, for all (θ, ω, φ̃) ∈ C2 × H̃ , by

Ẽ(θ, ω, φ̃) =
1
2

(
‖(θ, ω, φ̃)‖

C2×H̃

)2

.

Let us compute, at least formally, the time-derivative of the function Ẽ , along the solutions of (21),

d
dt

Ẽ(θ, θ̇, Φ̃) = �(θ̇ (θ̈ + cθ) + �(
∫ ∞

0

ξ Φ̃ ∂tΦ̃ dν(ξ),

= θ̇ue(t) −
∫ ∞

0

|∂tΦ̃|2 dν(ξ).

Thus, for sufficiently large time, we have d
dt Ẽ ≤ 0 (recall (19)).
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3.3. Existence and uniqueness of the solutions

We prove the existence and uniqueness results of the weak solutions of (21) using classical theory on semi-
groups. To do this let us start by proving the following:

Lemma 3.1. The operator −Ã is monotone.

Proof. Due to (22) we have, for all (θ, ω, φ̃) ∈ D(Ã),

�
〈
−Ã


 θ

ω

φ̃


 ,


 θ

ω

φ̃




〉

C2×H̃

= �
〈

 −ω

cθ +
∫ ∞
0 (ω − ξφ̃) dµ

−ω + ξφ̃


 ,


 θ

ω

φ̃




〉

C2×H̃

= �(−cθω + cθω) + �
(

ω

∫ ∞

0

(ω − ξφ̃) dν

)
+ �

(∫ ∞

0

ξ(−ω + ξφ)φ̃ dν

)

=
∫ ∞

0

|ω − ξφ̃|2 dν ≥ 0. �

We have now to prove the maximality of the operator −Ã.

Lemma 3.2. The operator −Ã is maximal.

Proof. This lemma is a special case of Proposition A.4 given in Appendix with Č = 0 and λ = 1. �
Note that Ã generates a contraction semigroup and thanks to [6], Theorem 3.1.7, for all p ≥ 1, for all

u ∈ Lp([0, +∞), dt), and for all (θ0, θ1) ∈ C2, we have the existence and the uniqueness of a weak solution
of (21) defined on [0, +∞) with initial condition

θ(0) = θ0 , θ̇(0) = θ1 , Φ̃(ξ, 0) = 0, ∀ξ ∈ [0, +∞). (23)

With this existence and uniqueness result at hand, let us look for the asymptotic stability property of solutions
of (21).

3.4. Asymptotic stability

In this section we will apply, when it is possible, [1], Stability theorem, again.
Note first that the operator Ã defines a bounded semigroup.
Let us now prove the following

Lemma 3.3. We have
σ(Ã) ∩ {iα, α ∈ R, α �= 0} = ∅.

Proof. This proof is a special case of Proposition A.4 with Č = 0 and λ = iα, α ∈ R, α �= 0. �
Thanks to Lemma 3.3, σ(Ã)∩ iR is at most countable as required by the necessary conditions of [1], Stability

theorem.
We have to study the value λ = 0 separately. Let us prove the following

Lemma 3.4. λ = 0 is an eigenvalue of Ã if and only if ν({0}) �= 0.

Proof. From (22) we get that (θ, ω, φ̃) ∈ Ker(Ã) if and only if




ω = 0,

cθ +
∫ ∞

0

ξφ̃dν = 0,

ω − ξφ̃ = 0, for ν-almost every ξ in [0,∞),
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which is equivalent to 


ω = 0,

φ̃ = 0, for ν-almost every ξ in (0,∞),
θ = 0.

Thus we get the equivalence stated in Lemma 3.4. �
Remark 3.5. From the proof of Lemma 3.4 we deduce that, if ν({0} �= 0,

Ker(Ã) = R

(
0, 0, φ̃0

)
,

with φ̃0 : [0,∞) → C is equal to 0, for all ξ > 0 and equal to 1 for ξ = 0.

From [1], Stability theorem, and Lemmas 3.3 and 3.4, we deduce the stability result:

Proposition 3.6. Let ν be a positive non-null measure satisfying (20) and such that ν({0}) = 0. Let p ≥ 1.
Let ue ∈ Lp([0, +∞), dt) be such that ue(t) = 0 for sufficiently large time.

Then we have a stability property for Ã, i.e. for all θ0 and ω0, the solution of (18) in closed-loop with (21),
with initial condition (θ0, ω0, 0), satisfies

Ẽ(θ, θ̇, Φ̃)(t) →t→∞ 0,

or equivalently (θ, θ̇, Φ̃)(t) →t→∞ 0 in C
2 × H̃.

We can in fact prove a stronger result than this proposition and we can relax the assumption ν({0}) = 0.
Indeed we have

Theorem 3.7. Let ν be a positive non-null measure satisfying (20). Let p ≥ 1. Let ue ∈ Lp([0, +∞), dt) be
such that ue(t) = 0 for sufficiently large time.

Then we have the asymptotic stability property, i.e. for all (θ0, ω0) ∈ C2, the solution of (18) in closed-loop
with (21), with initial condition (θ0, ω0, 0), satisfies

Ẽ(θ, θ̇, Φ̃)(t) →t→∞ 0,

or equivalently (θ, θ̇, Φ̃)(t) →t→∞ 0 in C2 × H̃.

Proof. In view of Proposition 3.6 we can restrict ourselves to the case ν({0}) = C > 0.
Let us first study the case where ν is a dilation of a Dirac measure i.e. ν = Cδ0 where δ0 is the Dirac measure

at ξ = 0. Then, the differential equation (18) in closed-loop with (21) is equivalent to

{
θ̈ + Cθ̇ + cθ = 0,

∂tΦ̃ + ξΦ̃ + θ̇ = 0, ∀ξ ≥ 0,

which is known to be an asymptotically stable system. Therefore we have Theorem 3.7 in the case of a Dirac
measure.

In the rest of the proof we assume that ν = Cδ0 + ν̃ where C is a strictly positive number and ν̃ is a positive
measure, non null, with

ν̃({0}) = 0, (24)
and satisfying

cν̃ :=
∫ ∞

0

1
1 + ξ

dν̃(ξ) < ∞. (25)

From (18) and (21) we get
θ̈ + Cθ̇ + Dν̃(∂tθ) + cθ = ue (26)
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which is in closed-loop with 


∂tφ̃ = −ξφ̃ + u(t)
φ̃(0) = 0

z(t) := Dν(∂tθ) =
∫ ∞

0

∂tφ̃(ξ, t) dν(ξ)

u(t) := θ̇(t)

(27)

The differential equations (26) and (27) are equivalent to

∂t


 θ

ω

Φ̃


 = Â


 θ

ω

Φ̃


 + B̃ue :=




ω

−cθ − Cω −
∫ ∞

0

(ω − ξΦ̃) dν̃

ω − ξΦ̃


 +


 0

ue

0


 (28)

with Â : D(Â) → C
2 × H̃ and B̃ : C → C

2 × H̃ two suitable linear operators and

D(Â) = D(Ã).

Since Â(θ, ω, φ̃)′ = Ã(θ, ω, φ̃)′ − C(0, ω, 0)′ with C > 0, and since −Ã is monotone, the operator −Â is also
monotone.

We have now to prove the maximality of the operator −Â.

Lemma 3.8. The operator −Â is maximal.

Proof. This proof is a special case of Proposition A.4 with Č = C and λ = 1. �

The operator Â generates a contraction semigroup and we can claim a result of existence and uniqueness of
weak solutions of (28) with initial condition

θ(0) = θ0 , ω(0) = ω0 , Φ̃(ξ, 0) = 0, ∀ξ ∈ [0, +∞). (29)

Let us prove that all conditions to apply [1], Stability theorem, are fulfilled. To do this we need to prove the
following:

Lemma 3.9. We have
σ(Â) ∩ {iα, α ∈ R, α �= 0} = ∅.

Proof. This proof is a special case of Proposition A.4 with Č = C, and λ = iα, α ∈ R, α �= 0. �

Thanks to Lemma 3.9, σ(Â)∩ iR is at most countable as required by the necessary conditions of [1], Stability
theorem.

Let us now prove that Ker(Â) is reduced to the origin.

Lemma 3.10. λ = 0 is not an eigenvalue of Â.

Proof of Lemma 3.10. From (28) we get that (θ, ω, φ̃) ∈ Ker(Â) if and only if




ω = 0,

cθ + (iα + C)ω +
∫ ∞

0

ξφ̃ dν̃ = 0,

ω − ξφ̃ = 0, for ν̃-almost every ξ in [0,∞),
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which is equivalent to 


ω = 0,
θ = 0,

φ̃ = 0, for ν̃-almost every ξ in [0,∞),

since ν̃({0}) = 0. Thus λ = 0 is not an eigenvalue of Â. �

We conclude the proof of Theorem 3.7 by using [1], Stability theorem, and Lemmas 3.9 and 3.10. �

Note finally that we can state an analogous result for a mixing of the standard diffusive operator (such as
the fractional integral) and the extended diffusive operator (such as the fractional derivative). Let us state our
result for such a system in the final section.

4. An oscillator coupled with diffusive systems of both types

In this section we study an oscillator damped by two pseudo-differential operators, one with a standard
diffusive representation, the other with an extended diffusive representation. Under some properties on the
measures, we state the asymptotic property of this system. To state our result, we use Theorems 2.6 and 3.7.

We study the following second-order mono-dimensional linear differential equation:

θ̈ + a

(
d
dt

Dν

)
(θ̇) + bDµ(θ̇) + cθ = ue(t), (30)

where θ : [0, +∞) → C is an unknown function, Dµ and Dν are two diffusive pseudo-differential operators with
measures µ and ν respectively. Let us assume also that a, b and c are three non-negative real numbers, with
ab �= 0, and ue is an external input vanishing for sufficiently large time.

We assume moreover that the measures µ and ν are positive, non-null and satisfy (7) and (20).
Let us consider (8) and (21), the realizations of the operators Dµ and d

dtDν .
We can rewrite (30) as the sum of two oscillators, one in closed-loop with (8), the other one in closed-loop

with (21). Due to Theorems 2.6 and 3.7, we have

Theorem 4.1. Let µ be a positive non-null measure satisfying (7) and such that µ({0}) = 0 and ν be a positive
non-null measure satisfying (20). Let p ≥ 1. Let ue ∈ Lp([0, +∞), dt) be such that ue(t) = 0 for sufficiently
large time.

Then, we have the asymptotic stability property, i.e. for all θ0 and ω0, the solution of (30) in closed-loop
with (8) and (21), with initial condition (θ0, ω0, 0, 0) at t = 0, satisfies

E(θ, θ̇, Φ)(t) + Ẽ(θ, θ̇, Φ̃)(t) →t→∞ 0,

or equivalently (θ, θ̇, Φ, Φ̃)(t) →t→∞ 0 in C
2 × H × H̃.

Remark 4.2. Note that, thanks to [1], Stability theorem, we prove in fact that the bounded C0-semigroup
corresponding to (2) is asymptotically stable which means that for all initial conditions (θ0, ω0, φ0, φ̃0) ∈ C2 ×
H × H̃ , we have

(θ, θ̇, Φ, Φ̃)(t) →t→∞ 0 in C
2 × H × H̃.

Now only in the case (φ0, φ̃0) = (0, 0) do we have the input-ouput equivalence of the realizations (2) with (30).
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5. Conclusion

In this paper we study a classical oscillator coupled with two causal pseudo-differential operators of diffusive
type: the first is of standard type, such as fractional integrals, whereas the second is of extended type, such
as fractional derivatives. The well-posedness of the global system is proved by showing a maximally monotone
property. The main result concerns the asymptotic stability property of the global system, for which sufficient
conditions are derived in terms of the diffusive measures. Due to the lack of compactness of the diffusive part
of the problem, LaSalle’s invariance principle cannot be used; but the study of the spectrum of the generator of
the associated semigroup allows to apply Arendt-Batty theorem. Moreover, illustrative examples are presented
with different qualitative behaviours; since the asymptotic stability does not hold in these cases, it shows the
sharpness of the main stability result.

Appendix A. Two technical results

The aim of this section is to prove two technical results, namely Propositions A.2 and A.4, we use thoughout
the paper.

First, let us note that

1
|λ + ξ| ≤ max

(
1,

1
|λ|

) √
2

1 + ξ
(31)

for all λ ∈ C such that �(λ) ≥ 0 and λ �= 0 and for all ξ > 0.
Given p and q two integers and f : R+ → C, we denote

cp,q
µ (f) =

∫ ∞

0

(1 + ξ)p

|λ + ξ|q |f |
2 dµ(ξ),

and

dp,q
µ (f) =

∫ ∞

0

(1 + ξ)p

|λ + ξ|q |f | dµ(ξ).

Lemma A.1. For all k, p and q ∈ N with p − q ≤ k, f ∈ Hk and for all λ ∈ {�(λ) ≥ 0} \ {0}, we have:

cp,q
µ (f) ≤

(√
2max

(
1,

1
|λ|

))q

‖f‖2
Hk . (32)

For all k, p and q ∈ N with p − q ≤ k−1
2 , f ∈ Hk and for all λ ∈ {�(λ) ≥ 0} \ {0}, we have:

dp,q
µ (f) ≤

(√
2max

(
1,

1
|λ|

))q √
cµ ‖f‖Hk . (33)

Proof. By using (31) and p − q − k ≤ 0, we have

cp,q
µ (f) ≤

(√
2max

(
1,

1
|λ|

))q ∫ ∞

0

(1 + ξ)p−q−k(1 + ξ)k|f |2 dµ(ξ),

≤
(√

2max
(

1,
1
|λ|

))q ∫ ∞

0

(1 + ξ)k|f |2 dµ(ξ),
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which is (32). By using the inequalities (31), p − q − k−1
2 ≤ 0, (7) and the Cauchy-Schwarz’s inequality

dp,q
µ (f) ≤

(√
2max

(
1,

1
|λ|

))q ∫ ∞

0

(1 + ξ)p−q− k−1
2

1√
1 + ξ

(1 + ξ)
k
2 |f | dµ(ξ),

≤
(√

2max
(

1,
1
|λ|

))q ∫ ∞

0

1√
1 + ξ

(1 + ξ)
k
2 |f | dµ(ξ),

≤
(√

2max
(

1,
1
|λ|

))q
√∫ ∞

0

1
1 + ξ

dµ(ξ),

√∫ ∞

0

(1 + ξ)k|f |2 dµ(ξ),

which is (33). This concludes the proof of Lemma A.1. �

With this result at hand, let us prove now the following

Proposition A.2. For all λ ∈ {�(λ) ≥ 0} \ {0}, (λI −A)−1 is a bounded operator from C2 × H to C2 × H.

Proof. Let us first note that, using (33) with p = 0, q = 1 and k = 0, we have

(∫ ∞

0

∣∣∣∣ f

λ + ξ

∣∣∣∣ dµ(ξ)
)2

≤ 2cµ max
(

1,
1

|λ|2
)
‖f‖2

H , (34)

for all f in H . Moreover, using (32) with p = 0, q = 1 and k = −1 and f = 1 we have

∫ ∞

0

∣∣∣∣ 1
λ + ξ

∣∣∣∣ dµ(ξ) ≤
√

2 max
(

1,
1
|λ|

)
cµ. (35)

Thus we have (λI −A)(θ, ω, φ)′ = (x, y, f)′, with (θ, ω, φ) ∈ D(A) and (x, y, f) ∈ C2 × H if and only if,
for all ξ ≥ 0, the following holds

λθ − ω = x, (36)

cθ +
(

λ +
∫ ∞

0

dµ(ξ)
λ + ξ

)
ω = y −

∫ ∞

0

1
λ + ξ

f dµ(ξ), (37)

φ =
f + ω

λ + ξ
· (38)

Let us first study the linear operator (θ, ω) 
→ (x, y) defined by (36)–(37). Due to (34), the second member of
the equations (36)–(37) is continuous. Moreover, it is continuously invertible if and only if

∆(λ) �= 0

where

∆(λ) := λ2 + λ

∫ ∞

0

dµ(ξ)
λ + ξ

+ c,

= λ2 + |λ|2
∫ ∞

0

dµ(ξ)
|λ + ξ|2 + λ

∫ ∞

0

ξ

|λ + ξ|2 dµ(ξ) + c.
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Two cases may been inspected:
• for λ > 0, we have ∆(λ) ≥ c > 0;
• for �(λ) �= 0 and �(λ) ≥ 0, inspecting the imaginary part of ∆(λ) gives

�(∆(λ)) = �(λ)
(

2�(λ) +
∫ ∞

0

ξ

|λ + ξ|2 dµ(ξ)
)

�= 0

where � denotes the imaginary part of a complex number.
Thus (θ, ω) 
→ (x, y) is continuously invertible.

To achieve the proof of the invertibility and the continuity of the operator (λI − A)−1, with λ ∈ {�(λ) ≥
0} \ {0}, it remains to check that

• the function φ defined by (38) lies in V . To do this, let us note that (35) implies that ξ 
→ 1
λ+ξ ∈ V .

Moreover, using (32) with p = 1, q = 2 and k = 0, we have
∫ ∞

0

(1 + ξ)
|f |2

|λ + ξ|2 dµ(ξ) < +∞;

• the function ξ 
→ ξφ − ω lies in H . Note that this function can been restated as

ξφ − ω =
ξ

λ + ξ
f − λ

λ + ξ
ω.

We have already remarked in the previous case that ξ 
→ 1
λ+ξ ∈ V ⊂ H . Moreover,

∫ ∞

0

ξ2

|λ + ξ|2 |f |
2dµ(ξ) ≤

∫ ∞

0

|f |2dµ < +∞,

since �(λ) ≥ 0. Therefore ξ 
→ ξφ − ω lies in H .
• To conclude, let us prove the continuity of the operator (x, y, f) 
→ φ ∈ V . By using (32) with p = 1,

q = 2, k = 0 and f = f and with p = 1, q = 2, k = −1 and f = 1 we have:

‖φ‖2
V =

∫ ∞

0

(1 + ξ)
|f + ω|2
|λ + ξ|2 dµ(ξ),

≤ 2
∫ ∞

0

1 + ξ

|λ + ξ|2 (|f |2 + ω2) dµ(ξ),

≤ 4 max
(

1,
1

|λ|2
) (‖f‖2

H + cµω2
)
,

≤ 4 max
(

1,
1

|λ|2
) (

1 + cµM)(|x|2 + |y|2 + ‖f‖2
H

)
,

where M is a positive constant depending only on the linear operator (x, y, f) 
→ ω defined by (36)–(37).
This achieves the proof of Proposition A.2. �

Given p and q two integers and f̃ : R+ → C, we denote

cp,q
ν (f̃) =

∫ ∞

0

ξ
(1 + ξ)p

|λ + ξ|q |f̃ |
2 dν(ξ),

and

dp,q
ν (f̃) =

∫ ∞

0

ξ
(1 + ξ)p

|λ + ξ|q |f̃ | dν(ξ).



502 D. MATIGNON AND C. PRIEUR

Lemma A.3. For all p and q ∈ N with p − q ≤ 0, f ∈ H̃ and for all λ ∈ {�(λ) ≥ 0} \ {0}, we have:

cp,q
ν (f̃) ≤

(√
2 max

(
1,

1
|λ|

))q

‖f̃‖2
H̃

. (39)

For all k, p and q ∈ N with p − q ≤ −1, f̃ ∈ H̃ and for all λ ∈ {�(λ) ≥ 0} \ {0}, we have:

dp,q
ν (f̃) ≤

(√
2max

(
1,

1
|λ|

))q √
cν ‖f̃‖H̃ . (40)

Proof. By using (31) and p − q ≤ 0, we have

cp,q
ν (f̃) ≤

(√
2 max

(
1,

1
|λ|

))q ∫ ∞

0

ξ(1 + ξ)p−q|f̃ |2 dν(ξ),

≤
(√

2 max
(

1,
1
|λ|

))q ∫ ∞

0

ξ|f̃ |2 dν(ξ),

which is (39). By using the inequalities (31), p − q + 1 ≤ 0, (20) and the Cauchy-Schwarz’s inequality

dp,q
ν (f̃) ≤

(√
2 max

(
1,

1
|λ|

))q ∫ ∞

0

ξ(1 + ξ)p−q+1 1√
1 + ξ

1√
1 + ξ

|f̃ | dν(ξ),

≤
(√

2 max
(

1,
1
|λ|

))q ∫ ∞

0

√
ξ√

1 + ξ

1√
1 + ξ

√
ξ|f̃ | dν(ξ),

≤
(√

2 max
(

1,
1
|λ|

))q
√∫ ∞

0

1
1 + ξ

dν(ξ),

√∫ ∞

0

ξ|f̃ |2 dν(ξ),

which is (40). This concludes the proof of Lemma A.3. �

Let Č ≥ 0 and Ǎ defined on D(Ã), by Ǎ(θ, ω, φ̃)′ = Ã(θ, ω, φ̃)′ − (0, Č ω, 0)′. Let us now prove an analogous
result of Proposition A.2 on Ǎ.

Proposition A.4. For all λ ∈ {�(λ) ≥ 0} \ {0}, (λI − Ǎ)−1 is a bounded operator from C2 × H̃ to C2 × H̃.

Proof. Let us first note that, using (40) with p = 0 and q = 1, we have

∫ ∞

0

∣∣∣∣∣
ξf̃

λ + ξ

∣∣∣∣∣ dν(ξ) ≤
√

2max
(

1,
1
|λ|

)√
cν‖f̃‖H̃ , (41)

for all f in H̃ . Moreover, using (20) and (31), we have

∫ ∞

0

∣∣∣∣ 1
λ + ξ

∣∣∣∣ dν(ξ) ≤
√

2max
(

1,
1
|λ|

)
cν . (42)
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Thus we have (λI − Ǎ)(θ, ω, φ̃)′ = (x, y, f̃)′, with (θ, ω, φ̃) ∈ D(Ã) and (x, y, f̃) ∈ C2 × H̃ if and only if,
for all ξ ≥ 0, the following holds

λθ − ω = x, (43)

cθ +
(

Č + λ +
∫ ∞

0

λdν(ξ)
λ + ξ

)
ω = y −

∫ ∞

0

ξ

λ + ξ
f̃ dν(ξ), (44)

φ̃ =
f̃ + ω

λ + ξ
· (45)

Let us first study the linear operator (θ, ω) 
→ (x, y) defined by (43)–(44). Due to (41), the second member of
the equations (43)–(44) is continuous. Moreover, it is continuously invertible if and only if

∆̃(λ) �= 0

where

∆̃(λ) := λČ + λ2 + λ2

∫ ∞

0

dν(ξ)
λ + ξ

+ c,

= λČ + λ2 + λ|λ|2
∫ ∞

0

dν(ξ)
|λ + ξ|2 + λ2

∫ ∞

0

ξ

|λ + ξ|2 dν(ξ) + c.

Two cases may been inspected:
• for λ > 0, we have ∆(λ) ≥ c > 0;
• for �(λ) �= 0 and �(λ) ≥ 0, inspecting the imaginary part of ∆(λ) gives

�(∆(λ)) = �(λ)
(

Č + 2�(λ) + 2�(λ)
∫ ∞

0

ξ

|λ + ξ|2 dν(ξ) + |λ|2
∫ ∞

0

1
|λ + ξ|2 dν(ξ)

)
�= 0.

Thus (θ, ω) 
→ (x, y) is continuously invertible.
To achieve the proof of the invertibility and the continuity of the operator (λI − Ǎ)−1, with λ ∈ {�(λ) ≥

0} \ {0}, it remains to check that

• the function φ̃ defined by (45) lies in H̃. To do this, let us note that (42) implies that ξ 
→ 1
λ+ξ ∈ V .

Moreover, using (39) with p = 0 and q = 2, we have

∫ ∞

0

ξ
|f̃ |2

|λ + ξ|2 dν(ξ) ≤ 2 max
(

1,
1

|λ|2
)
‖f̃‖2

H̃
; (46)

• the function ξ 
→ ξφ − ω lies in V . Note that this function can been restated as

ξφ − ω =
ξ

λ + ξ
f̃ − λ

λ + ξ
ω.

We have already remarked in the previous case that ξ 
→ 1
λ+ξ ∈ V . Moreover, using (39) with p = q = 2,

we have
∫ ∞

0

(1 + ξ)ξ2

|λ + ξ|2 |f |2dν(ξ) ≤
∫ ∞

0

(1 + ξ)2

|λ + ξ|2 ξ|f |2dν(ξ) ≤ 2 max
(

1,
1

|λ|2
)
‖f‖2

H̃
,

since �(λ) ≥ 0. Therefore ξ 
→ ξφ − ω lies in V .
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• To conclude, let us prove the continuity of the operator (x, y, f) 
→ φ ∈ H̃. By using (39) with p = 0,
q = 2 and f̃ = f̃ , and with p = 1, q = 2 and f̃(ξ) = 1

1+ξ , we have

‖φ‖2
H̃

=
∫ ∞

0

ξ
|f̃ + ω|2
|λ + ξ|2 dν(ξ),

≤ 2
∫ ∞

0

ξ

|λ + ξ|2
(
|f̃ |2 + ω2

)
dν(ξ),

≤ 4 max
(

1,
1

|λ|2
)(

‖f̃‖2
H̃

+ cνω2
)

,

≤ 4 max
(

1,
1

|λ|2
)

(1 + cνM̃)
(
|x|2 + |y|2 + ‖f̃‖2

H̃

)
,

where M̃ is a positive constant depending only on the linear operator (x, y, f̃) 
→ ω defined by (43)–(44).
This achieves the proof of Proposition A.4. �

Appendix B. Proof of Remark 2.8

The aim of this section if to prove Remark 2.8 by studying two examples.

B.1. First example: µ = C0δ0

Assume first that µ = C0δ0, where C0 is a strictly positive real number and δ0 is the Dirac measure at ξ = 0.
Then (5) and (8) imply

θ̈ + y + cθ = 0,

y(t) = C0Φ(0, t) = C0(θ(t) − θ0),

thus

θ̈ + (C0 + c)θ = C0θ0,

y(t) = C0(θ(t) − θ0),

which, of course, is not an asymptotically stable system, since

θ(t) =
C0

C0 + c
θ0 +

cθ0

C0 + c
cos

(√
C0 + c t

)
+

ω0√
C0 + c

sin
(√

C0 + c t
)

,

for the initial condition (θ0, ω0).

B.2. Second example: µ = C0δ0 + C1µα

Assume now that
µ = C0δ0 + C1µα (47)

where the non-null positive measure µα has a density dµα(ξ) = sin(πα)
π

dξ
ξα , for all ξ > 0 , for 0 < α < 1 and C0,

C1 > 0. We have (see e.g. [18]) ∫ ∞

0

µα(ξ)
s + ξ

dξ =
1
sα

, ∀s, �(s) > 0, (48)

and thus Dµα can be seen as Iα the causal fractional integral of order α. Note that µα({0}) = 0 and fulfills (7).
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System (5)–(8) is not asymptotically stable either. Indeed the θ-component of the solution does not tend
to 0 either:

Proposition B.1. Let 0 < α < 1 and C0, C1 > 0. Let p ≥ 1. Let ue ∈ Lp([0, +∞), dt) be such that ue(t) = 0
for sufficiently large time.

Then the solution of (5) in closed-loop with (8), with initial condition (θ0, ω0, 0) at t = 0, satisfies

(
θ, θ̇

)
(t) →t→∞

(
C0θ0

c + C0
, 0

)
.

Proof. Let ue in Lp([0, +∞), dt) be such that

ue(t) = 0 , ∀t ≥ Te, (49)

where Te > 0.
To prove Proposition B.1, let us note first that System (5)–(8) implies

y =
∫ ∞

0

Φ dµ,

= C0Φ(ξ = 0) + C1

∫ ∞

0

Φ dµα,

= C0(θ(t) − θ0) + yα,

where

yα := C1

∫ ∞

0

Φ dµα.

Therefore 


θ̈ + yα + (c + C0)θ = C0θ0 + ue,

∂tΦ = −ξΦ + u,

u = θ̇,

yα = C1

∫ ∞

0

Φdµα,

θ(0) = θ0,

θ̇(0) = ω0,

Φ(., t) = 0,

(50)

for the initial conditions (θ0, ω0, 0) ∈ D(A). Thanks to (48), taking the Laplace transform of (50), we have

s2θ̂ − sθ0 − ω0 +
C1

sα
(sθ̂ − θ0) + (c + C0)θ̂ =

C0θ0

s
+ ûe, (51)

where θ̂ : C+ → C is the Laplace transform of θ, ûe : C+ → C is the Laplace transform of ue and C+ =
{s, �(s) > 0}.

Let us prove that we have
s2 + C1s

1−α + c + C0 �= 0, ∀s ∈ C+. (52)
Indeed

• it is obvious on R+;
• taking the imaginary part of s2 + C1s

1−α + c + C0, for s = ρeiγ ∈ C+ \ R+, yields ρ2 sin(2γ) +
C1ρ

1−α sin((1 − α)γ), which has exactly the same sign as γ ∈ [−π
2 , π

2 ] \ {0}, and thus not zero.
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Thanks to (51) and (52), we have

sθ̂(s) =
C0θ0 + C1s

1−αθ0 + sω0 + s2θ0

c + C0 + C1s1−α + s2
+

sûe(s)
c + C0 + C1s1−α + s2

· (53)

Thanks to (49), ûe(0) =
∫ Te

0 ue(t)dt and thus lims→0, s∈C+ sûe(s) = 0. Moreover, since 0 < α < 1 and thanks
to (53), we have

lim
t→+∞ θ(t) = lim

s→0, s∈C+
sθ̂(s),

=
C0θ0

c + C0
, (54)

and

lim
t→+∞ θ̇(t) = lim

s→0,
s(sθ̂(s) − θ0),

= 0. (55)

This concludes the proof of Proposition B.1. �
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