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1. Introduction

In a recent paper Müller and Ortiz [4] have introduced the study of convergence properties of discrete
dynamics and variational integrators using the tool of Γ-convergence. The theory of discrete dynamics is a
formulation of Lagrangian mechanics in which time is considered as a discrete variable. This point of view
leads to studying discrete trajectories, the variational integrators, generated by a discrete version of Hamilton’s
principle in which the classical integral action is replaced by a sum, called discrete action. The interest of this
construction lies in the fact that, compared to the trajectories generated by more usual approximation schemes,
variational integrators converge to classical solutions in a more stable way. We refer to Marsden and West [3]
for a complete account and for more references on the topic.

In order to state and comment on the result by Müller and Ortiz [4], we introduce some definitions.
We say that a function f : R

N ×R
N →R, f = f(s, ξ), is a Lagrangian with quadratic behavior if

f ∈ C2(RN ×R
N ) with sup{|D2f(s, ξ)| : (s, ξ) ∈ R

N ×R
N} < ∞, (1)

where D2f is the matrix of all the second order partial derivatives of f . Thus, for some C > 0,

|f(s, ξ)| ≤ C(1 + |s|2 + |ξ|2), ∀(s, ξ) ∈ R
N ×R

N .

The action is the functional F : H1
loc(R; RN ) × E →R, defined by

F (u, A) :=
∫

A

f(u, u̇)dt, ∀(u, A) ∈ H1
loc(R; RN) × E ,
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where E is the family of all open bounded intervals of R. A function u is said to be stationary for the action if,

δF (u, ϕ, A) = 0, ∀A ∈ E , ∀ϕ ∈ C∞
c (A; RN ),

where the first variation of F (·, A) on u with respect to ϕ is given by

δF (u, ϕ, A) := lim
t→0

F (u + tϕ, A) − F (u, A)
t

·

For every h > 0 we fix the grid T h = {hi}i∈Z of R of step h and define the set Xh of all T h-piecewise affine
continuous functions with values in R

N . A function uh ∈ Xh is said to be h-stationary for F if

δI(uh, ϕ, A) = 0, ∀A ∈ E , ∀ϕ ∈ Xh, with spt ϕ ⊂ A.

The main theorem in Müller-Ortiz [4] is the following:

Theorem 1. Assume that f(s, ξ) = |ξ|2/2 − V (s), where V is of class C2 and |∇2V | < C on R
N . Let {uh}h

be a given sequence of h-stationary functions such that the Fourier transforms of the uh’s are in L1 and form
a compact sequence of Radon measures in the duality with Cb(R; RN ), the space of continuous and bounded
functions on R.

Then there exists u ∈ W 2,∞(R; RN ) such that

a) uh
∗
⇀ u in W 1,∞(R; RN );

b) u is stationary;
c) the Fourier transforms of the uh’s converge as measures in the flat norm to the Fourier transform of u.

The assumption made on the sequence of Fourier transforms implies that the sequence {uh}h is uniformly
bounded on L∞(R; RN ). Here we will deduce a similar property starting from the growth assumptions rather
than supposing it.

The following theorem addresses these issues in a framework suitable to treat Lagrangians f with quadratic
behavior.

Theorem 2. Let f be a Lagrangian with quadratic behavior, see (1), and let f(s, ·) be uniformly convex, that
is there exists ν > 0 such that 〈

∂2f

∂ξ2
(s, ξ)η, η

〉
≥ ν|η|2, ∀s, ξ, η ∈ R

N . (2)

Then there exists h0 = h0(C, ν) such that
a) for every (u0, ξ0) ∈ R

N ×R
N and h < h0, there exists an h-stationary uh that is h-stationary, with

uh(0) = u0, (uh(h) − uh(0))/h = ξ0. Furthermore,

sup
h<h0

‖uh‖W 1,∞(A;RN ) ≤ K < ∞, ∀A ∈ E , (3)

where K is a constant depending only on |u0|, |ξ0|, C, ν,L1(A);
b) every sequence {uh}h, with uh h-stationary and such that,

sup
h

max {|uh(0)|, |(uh(h) − uh(0))/h|} < ∞, (4)

has a subsequence that converges weakly-∗ star in W 1,∞
loc (R; RN ) to a stationary u.

In Theorem 2 we are assuming that f has the same growth in the s and ξ variables. A similar result cannot hold
if f has different growths with respect to s and ξ. For example, let us consider f(s, ξ) = ξ2/2 + |s|2+ε/(2 + ε),
ε > 0. The Euler-Lagrange equation that characterizes the stationary functions is ü = u|u|ε, which has positive
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solutions for positive initial data. By conservation of the energy, for every solution u with suitable initial data
there exists a constant C > 0 such that

t =
∫ u(t)

0

du√
2C + 2

2+εu2+ε
, ∀t ∈ [0, γ],

where [0, γ] is the maximal interval of definition of u. Since u(γ−) = ∞ we have

γ =
∫ ∞

0

du√
2C + 2

2+εu2+ε
< ∞.

The rest of the paper is devoted to the proof of Theorem 2. The first assertion in statement a) is proved in
Section 2, while the second one, namely the bound (3), is proved in Section 3. In Section 4 we prove statement
b) of Theorem 2 (here we follow [4]). In Section 5 we present a shorter proof of (3) that works for the prototype
case where f(s, ξ) = |ξ|2/2 − V (s).

2. Existence and uniqueness of h-stationary functions

As a consequence of the assumption that f is a Lagrangian with quadratic behavior, uniformly convex in the
ξ variable, there exist C, ν > 0 such that: for every s, ξ ∈ R

N ,

ν|ξ|2 − C(1 + |s|2) ≤ f(s, ξ) ≤ C(1 + |s|2 + |ξ|2), (5)∣∣∣∂f

∂s
(s, ξ)

∣∣∣+ ∣∣∣∂f

∂ξ
(s, ξ)

∣∣∣ ≤ C(1 + |s| + |ξ|), (6)

∣∣∣∂2f

∂s2
(s, ξ)

∣∣∣+ ∣∣∣∂2f

∂ξ2
(s, ξ)

∣∣∣+ ∣∣∣ ∂2f

∂s∂ξ
(s, ξ)

∣∣∣ ≤ C; (7)

for every s1, s2, ξ ∈ R
N ,

∣∣∣∂f

∂ξ
(s1, ξ) −

∂f

∂ξ
(s2, ξ)

∣∣∣ ≤ C|s1 − s2|, (8)

for every s, ξ1, ξ2 ∈ R
N , 〈

∂f

∂ξ
(s, ξ1) −

∂f

∂ξ
(s, ξ2), ξ1 − ξ2

〉
≥ ν|ξ1 − ξ2|2. (9)

We introduce the following notation for functions uh ∈ Xh. We define for every i ∈ Z

uh
i := uh(ih), ξh

i :=
uh(ih + h) − uh(ih)

h
=

uh
i+1 − uh

i

h
·

Step 1. We claim that uh ∈ Xh is h-stationary if and only if, for every i ∈ Z, it satisfies the following
discrete Euler-Lagrange equation:

0 =
∫ 1

0

t
∂f

∂s

(
[uh

i , uh
i+1](t),

uh
i+1 − uh

i

h

)
+

1
h

∂f

∂ξ

(
[uh

i , uh
i+1](t),

uh
i+1 − uh

i

h

)
dt (10)

+
∫ 1

0

(1 − t)
∂f

∂s

(
[uh

i+1, u
h
i+2](t),

uh
i+2 − uh

i+1

h

)
− 1

h

∂f

∂ξ

(
[uh

i+1, u
h
i+2](t),

uh
i+2 − uh

i+1

h

)
dt,
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where [a, b](t) := a + t(b− a) for every a, b ∈ R
N , t ∈ [0, 1]. Indeed, if u is a piecewise affine function that takes

the values a, b, c ∈ R
N at the points ih, (i + 1)h, (i + 2)h respectively, then

I(u, (ih, (i + 2)h)) =
∫ 1

0

f

(
[a, b](t),

b − a

h

)
dt +

∫ 1

0

f

(
[b, c](t),

c − b

h

)
dt =: Lh(a, b, c).

Taking a variation φ ∈ Xh which vanishes at ih and (i + 2)h is equivalent to considering the function Φ(d) :=
Lh(a, b + d, c) in that u is stationary for this variation if and only if ∇Φ(0) = 0, which gives exactly (10).

Step 2. For a, b ∈ R
N we define

Ψh
a(b) :=

∫ 1

0

∂f

∂ξ

(
[a, b](t),

b − a

h

)
dt,

Mh(a, b) :=
∫ 1

0

th
∂f

∂s

(
[a, b](t),

b − a

h

)
+

∂f

∂ξ

(
[a, b](t),

b − a

h

)
dt,

Nh(a, b) :=
∫ 1

0

h(1 − t)
∂f

∂s

(
[a, b](t),

b − a

h

)
dt.

Then (10)i can be written as

Ψh
uh

i+1
(uh

i+2) = Mh(uh
i , uh

i+1) + Nh(uh
i+1, u

h
i+2). (11)

We claim that for every a ∈ R
N , the function Ψh

a : R
N →R

N is a bijection with

Lip((Ψh
a)−1)→ 0 as h→ 0.

Indeed we have

Ψh
a(y) − Ψh

a(x) =
∫ 1

0

∂f

∂ξ

(
[a, y](t),

y − a

h

)
− ∂f

∂ξ

(
[a, x](t),

x − a

h

)
dt

=
∫ 1

0

dt

∫ 1

0

d

dr

{
∂f

∂ξ

(
[a, x + r(y − x)](t),

x + r(y − x) − a

h

)}
dr

=
∫ 1

0

dt

∫ 1

0

{
∂2f

∂s∂ξ

(
[a, x + r(y − x)](t),

x + r(y − x) − a

h

)
· (y − x)

+
∂2f

∂ξ2

(
[a, x + r(y − x)](t),

x + r(y − x) − a

h

)
· (y − x)

h

}
dr.

By the mean value theorem we can find s = s(a, x, y), ξ = ξ(a, x, y, h), such that

Ψh
a(y) − Ψh

a(x) =
∂2f

∂s∂ξ
(s, ξ) · (y − x) +

∂2f

∂ξ2
(s, ξ) · (y − x)

h
·

By (7) and (9) we have

|Ψh
a(y) − Ψh

a(x)||y − x| ≥ 〈Ψh
a(y) − Ψh

a(x), y − x〉 ≥
(ν

h
− C

)
|y − x|2. (12)

If h < ν/C the surjectivity and injectivity of Ψh
a follow from (12) at once, as well as

Lip((Ψh
a)−1) ≤

(ν

h
− C

)−1

→ 0 as h→ 0.
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As a consequence for h < ν/C small enough we have that (11)i is equivalent to the fixed point problem
uh

i+2 = Gh[uh
i , uh

i+1](u
h
i+2), where Gh[a, b] : R

N →R
N is defined by

Gh[a, b](x) := (Ψh
b )−1(Mh(a, b) + Nh(b, x)).

If h < h0 = h0(C, ν) this map is a contraction. Indeed by (7)
∣∣∣∣∣∂Nh

∂x
(b, x)

∣∣∣∣∣ ≤ h

∫ 1

0

∣∣∣∣∣∂
2f

∂s2

(
[b, x](t),

x − b

h

)
+

1
h

∂2f

∂s∂ξ

(
[b, x](t),

x − b

h

) ∣∣∣∣∣dt ≤ 2C,

and so

LipGh[a, b] ≤ Lip(Ψh
b )−1 Lip Nh(b, ·) ≤ 2C

(ν

h
− C

)−1

.

By the Banach-Caccioppoli theorem for every a, b ∈ R
N there exists a unique x ∈ R

N such that x = Gh[a, b](x).

Step 3. Let h < h0 and fix u0, ξ0 ∈ R
N . Then there exists a unique h-stationary point uh ∈ Xh such that

uh
0 = u0, ξ

h
0 = ξ0. Indeed, under these initial conditions we have uh

1 = uh
0 + hξh

0 , and then, in view of step 2, we
can uniquely determine uh

2 from uh
0 , uh

1 by solving x = Gh[uh
0 , uh

1 ](x). By induction we can define uh on [0,∞)
in such a way that (10)i∈N are satisfied. Similarly, we may define uh on (−∞, 0] so that the equations (10)i∈Z

hold.

3. Proof of local boundedness of h-stationary sequences

Step 1. For each h < h0 we consider the h-stationary point uh with uh
0 = u0 and ξh

0 = ξ0. Let us write the
ith discrete Euler-Lagrange equation as Ah

i = Bh
i where

Ah
i : =

∫ 1

0

∂f

∂ξ

(
[uh

i+1, u
h
i+2](t), ξ

h
i+1

)
− ∂f

∂ξ

(
[uh

i , uh
i+1](t), ξ

h
i

)
dt,

Bh
i : = h

∫ 1

0

t
∂f

∂s

(
[uh

i , uh
i+1](t), ξ

h
i

)
+ (1 − t)

∂f

∂s

(
[uh

i+1, u
h
i+2](t), ξ

h
i+1

)
dt.

Since |[a, b](t) − [b, c](t)| ≤ |a − b| + |b − c|, we have that

|Ah
i | ≥

∣∣∣∣∣
∫ 1

0

∂f

∂ξ

(
[uh

i+1, u
h
i+2](t), ξ

h
i+1

)
− ∂f

∂ξ

(
[uh

i+1, u
h
i+2](t), ξ

h
i

)
dt

∣∣∣∣∣
−
∣∣∣∣∣
∫ 1

0

∂f

∂ξ

(
[uh

i+1, u
h
i+2](t), ξ

h
i

)
− ∂f

∂ξ

(
[uh

i , uh
i+1](t), ξ

h
i

)
dt

∣∣∣∣∣
≥ ν|ξh

i+1 − ξh
i | − Ch(|ξh

i | + |ξh
i+1|), (13)

and by (6),
|Bh

i | ≤ Ch(1 + |uh
i | + h|ξh

i | + |ξh
i |) + Ch(1 + |uh

i+1| + h|ξh
i+1| + |ξh

i+1|). (14)

Since |uh
i | ≤ |u0| + h

∑i−1
j=0 |ξh

j | and Ah
i = Bh

i , a straightforward computation leads from (13) and (14) to

|ξh
i+1 − ξh

i | ≤
2Ch

ν

(
1 + |u0| + h

i∑
k=0

|ξh
k | + |ξh

i | + |ξh
i+1| + h|ξh

i+1|
)

.
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Let us define σh
i := max{|ξh

j | : 0 ≤ j ≤ i}. We have

j∑
i=0

|ξh
i+1 − ξh

i | ≤ 2Ch

ν

{
(j + 1)(1 + |u0|) + h

j∑
i=0

i∑
k=0

|ξh
k | +

j∑
i=0

(|ξh
i | + |ξh

i+1|) + h

j∑
i=0

|ξh
i+1|

}

≤ 2C(j + 1)h
ν

{
(1 + |u0|) + h(j + 1)σh

j + 2σh
j + hσh

j

}
+

2C

ν
(h + h2)|ξh

j+1|.

Since |ξh
j+1| ≤ |ξ0| +

∑j
i=0 |ξh

i+1 − ξh
i |, we obtain

{
1 − 2C

ν
(h + h2)

}
|ξh

j+1| ≤ |ξ0| +
2C(j + 1)h

ν

{
(1 + |u0|) + (h(j + 1) + h + 2)σh

j

}
·

Choose h0 = h0(C, ν) such that for h < h0 we have (1 − (2C/ν)(h + h2)) ≥ 1/2 and for R0 := 2h0 we have
(4(R0 + h0)C/ν)(R0 + 2h0 + 2) ≤ 1/2. For every j ∈ {0, ..., [R0/h]} we have (j + 1)h ≤ R0 + h, and thus

|ξh
j+1| ≤ 2|ξ0| +

4(R0 + h)C
ν

(1 + |u0|) +
4(R0 + h)C

ν
(R0 + 2h + 2)σh

j ≤ L + σh
j /2, (15)

if we define
L = L(u0, ξ0, C, ν) := 2|ξ0| + (4(R0 + h0)C/ν)(1 + |u0|).

By (15) we conclude that for every h < h0 and for every j ∈ {0, ..., Nh}, where Nh := [R0/h], we have

σh
j+1 ≤ max{σh

j , L + σh
j /2}· (16)

From (16) it follows that

σh
j+1 ≤ max{σh

j , L + σh
j /2} ≤ max{σh

j−1, L + σh
j−1/2, L + σh

j /2}
≤ max{σh

j−1, L + σh
j /2} ≤ ... ≤ max{σ0, L + σh

j /2}, (17)

where σh
0 = |ξh

0 | = |ξ0| =: σ0. Below we write N instead of Nh for simplicity of notations and we iterate (17) to
get,

σh
N+1 ≤ max{σ0, L + 2−1σh

N}
≤ max{σ0, L + 2−1 max{σ0, L + 2−1σh

N−1}}
= max{σ0, L + 2−1σ0, L(1 + 2−1) + 2−2σh

N−1}
≤ max{σ0 + 2L, L(1 + 2−1) + 2−2σh

N−1}
≤ max{σ0 + 2L, L(1 + 2−1) + 2−2 max{σ0, L + 2−1σh

N−2}}
≤ max{σ0 + 2L, L(1 + 2−1) + 2−2(L + 2−1σh

N−2)}
= max{σ0 + 2L, L(1 + 2−1 + 2−2) + 2−3σh

N−2}
≤ ...

≤ max


σ0 + 2L, L

N∑
j=0

2−j + 2−N+1σ0


 ≤ σ0 + 2L.

Thus, for h < h0, we have
sup

[0,R0]

|u̇h| ≤ |σh
Nh+1| ≤ σ0 + 2L,



662 F. MAGGI AND M. MORINI

which implies
sup
h<h0

‖uh‖W 1,∞([0,R0]) ≤ K(max{|u0|, |ξ0|}, C, ν), (18)

with K increasing in its first variable. To complete the proof of (3) it remains to show that for every M > 0,

sup
h<h0

‖uh‖W 1,∞([0,M ]) ≤ K∗(max{|u0|, |ξ0|}, C, ν, M). (19)

Indeed we can cover [0, M ] with a finite union of intervals of the form Ii := ti + [0, R0], ti < ti+1, t1 = 0 such
that Ii ∩ Ii+1 has at least length h0. By (18),

sup
h<h0

‖uh‖W 1,∞(I1) ≤ K(max{|u0|, |ξ0|}, C, ν).

This is the case j = 1 of the following family of inequalities indexed by j, that we are going to prove by
induction; precisely, we claim that,

sup
h<h0

‖uh‖W 1,∞(Ij) ≤ Kj(max{|u0|, |ξ0|}, C, ν) < ∞.

Let us assume this holds for j − 1. Since the problem is autonomous we can apply (18) to get

sup
h<h0

‖uh‖W 1,∞(Ij) ≤ K(max{|uh(inf Ij)|, |u̇h((inf Ij))|}, C, ν).

On the other hand, since inf Ij ∈ Ij−1, by the inductive hypothesis we have

K(max{|uh(inf Ij)|, |u̇h((inf Ij))|}, C, ν) ≤ K(Kj−1(max{|u0|, |ξ0|}, C, ν), C, ν)
=: Kj(max{|u0|, |ξ0|}, C, ν),

and the assertion is proved. Since with a finite number of steps we can cover [0, M ], (19) is established.

4. Proof of Theorem 2, part b

The proofs of this section follow closely the ideas of Müller and Ortiz [4].

Step 1. We first prove the following: there exists a constant l > 0 depending only on C and ν such that, if
Y is a linear subspace of H1

loc(R; RN ) and u ∈ Y is stationary with respect to variations in Y , i.e.,

δF (u, ϕ, A) = 0, ∀A ∈ E , ∀ϕ ∈ Y, with spt ϕ ⊂ A, (20)

then u minimizes F (·, A) among all functions v ∈ Y with u|∂A = v|∂A, for every A ∈ E such that L1(A) < l. In
fact we will need to apply this property only for Y = Xh.

Let u be such that (20) holds, A = (a, b) ∈ E and let v ∈ Y such that ϕ := v − u is zero on ∂A. Let us
consider the function

g(r) :=
∫ b

a

f(u + rϕ, u̇ + rϕ̇) dt.

By (20) we have that g′(0) = 0 and by Taylor’s Formula we obtain

∫ b

a

f(u + ϕ, u̇ + ϕ̇) dt −
∫ b

a

f(u, u̇) dt =
∫ 1

0

g′′(r)(1 − r) dr

=
∫ 1

0

(1 − r)
∫ b

a

Q[r, t](ϕ(t), ϕ̇(t)) dt dr, (21)
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where Q[r, t] : R
n ×R

n → R is the quadratic form defined by

Q[r, t](ρ, τ) :=
〈

∂2f

∂s2

(
u(t) + rϕ(t), u̇(t) + rϕ̇(t)

)
ρ, ρ

〉
+ 2

〈
∂2f

∂s∂ξ

(
u(t) + rϕ(t), u̇(t) + rϕ̇(t)

)
ρ, τ

〉

+
〈

∂2f

∂ξ2

(
u(t) + rϕ(t), u̇(t) + rϕ̇(t)

)
τ, τ

〉
·

By (7) and (2) it is easy to see that

Q[s, t](ρ, τ) ≥ ν|τ |2 − C|ρ|2 − 2C|ρ||τ | ≥ ν

2
|τ |2 − (C + 2CC′)|ρ|2,

where C′ is a constant depending only on ν and C. Therefore by (21) and by Poincaré’s Inequality we get

∫ b

a

f(u + ϕ, u̇ + ϕ̇) dt −
∫ b

a

f(u, u̇) dt ≥
∫ 1

0

(1 − r)
∫ b

a

( c

2
|ϕ̇(t)|2 − (C + 2CC′)|ϕ(t)|2

)
dt dr

≥
∫ 1

0

(1 − r)
(

c

2
π2

(b − a)2
− C − 2CC′

)∫ b

a

|ϕ(t)|2 dt dr

> 0,

where the last inequality holds provided that (b − a)2 < (cπ2)/(2C + 4CC′) =: l.

Step 2. Let us consider a sequence {uh}h with each uh h-stationary and such that (4) hold. By (3) and
by Ascoli-Arzelá compactness criterion we infer that, up to extracting a subsequence, uh

∗
⇀ u in W 1,∞

loc (R; RN ),
where u ∈ W 1,∞

loc (R; RN ). We want to prove that u is h-stationary for the action. Clearly it suffices to show
that

F (u, A) ≤ F (v, A), ∀v ∈ H1
loc(R; RN ), with spt(v − u) ⊂ A,

for every A ∈ E with L1(A) < l, where l is defined as in step 1. It is in this part of the proof that a Γ-convergence
argument is used.

Let us fix such an interval A and a function v. By (5) and by (2) we can apply De Giorgi-Ioffe lower
semicontinuity theorem ([1], [2]) to see that

F (u, A) ≤ lim inf
k →∞

F (wk, A), ∀{wk}k ⊂ H1(A; RN ), wk ⇀ u w-H1(A; RN ).

In particular
F (u, A) ≤ lim inf

h→ 0
F (uh, A). (22)

On the other hand, by Lemma 4.2.b in [4] there exists {vh}h ⊂ Xh with vh = v on ∂A such that vh → v strongly
in H1(A; RN ) (in particular the convergence is strong in L∞). By (5) and the strong convergence of the vh’s
we have that

F (v, A) = lim
h→ 0

F (vh, A). (23)

In order to prove F (u, A) ≤ F (v, A) and to conclude the proof we need to compare the behavior of {F (uh, A)}h

and {F (vh, A)}h. Clearly, if vh = uh on ∂A, we conclude by a direct application of the result in step 1 for
Y = Xh combined with (22) and (23). If this is not the case we can argue as follows. Let us consider {Ah}h ⊂ E
such that Ah = (ah, bh) ⊂ A = (a, b), Ah is compatible with T h and ah →a, bh → b. Since u(ah) − v(ah)→ 0
and u(bh) − v(bh)→ 0, there exists a sequence of affine functions {ph}h such that

vh + ph = uh on ∂Ah, ph → 0 uniformly.
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Let wh := vh + ph on Ah and wh = uh on A\Ah. By the minimality of uh on Ah proved in step 1 we now get

F (uh, Ah) ≤ F (wh, Ah).

We claim that
F (u, A) ≤ lim inf

h→ 0
F (uh, Ah), lim

h→ 0
F (wh, Ah) = F (v, A),

clearly this will conclude the proof. The first inequality comes from (22) and the fact that F (uh, A\Ah)→ 0
by (5) and (3). The second inequality holds since |F (wh, Ah) − F (vh, Ah)| = |F (vh + ph, Ah) − F (vh, Ah)|→ 0
as h→ 0. This is an easy consequence of the properties of f and of the uniform convergence of {ph}h to zero.

5. A short proof of (3) in the model case

Here we give a short proof of (3) in the model case f(s, ξ) = |ξ|2/2− V (s), where V is as in Theorem 1. Let
us consider a h-stationary uh such that uh

0 = u0 and ξh
0 = ξ0. It is easy to see that the discrete Euler-Lagrange

equations can now be written as

ξh
i+1 = h

∫ 1

0

t∇V ([uh
i , uh

i+1](t)) + (1 − t)∇V ([uh
i+1, u

h
i+2](t))dt + ξh

i .

Since the second derivatives of V are uniformly bounded on R
N we have |∇V |(s) ≤ C(1 + |s|), and so we get

|ξh
i+1| ≤ Ch(1 + |[uh

i , uh
i+1]| + |[uh

i+1, u
h
i+2]|) + |ξh

i |.

As |uh
i+1| ≤ |uh

i | + h|ξh
i | it follows that

|ξh
i+1| ≤ Ch(1 + |uh

i | + h|ξh
i | + |uh

i | + h|ξh
i | + h|ξh

i+1|) + |ξh
i |

≤ 2Ch(1 + |uh
i |) + (1 + 2Ch2)|ξh

i | + Ch2|ξh
i+1|,

so that

|ξh
i+1| ≤ Ah|ξh

i | + Bh(1 + |uh
i |), Ah :=

1 + 2Ch2

1 − Ch2
, Bh :=

2Ch

1 − Ch2
· (24)

Since |uh
i | ≤ |u0| + h

∑i−1
j=0 |ξh

j |, if we define σh
i := max{|ξh

j | : 1 ≤ j ≤ i}, we get,

|ξh
i+1| ≤ (Ah + ihBh)σh

i + Bh(1 + |u0|).

Let R > 0. For 1 ≤ i ≤ [R/h] by the previous equation we have

|ξh
i+1| ≤ (Ah + RBh)σh

i + Bh(1 + |u0|).

Since Ah > 1, setting Dh := (Ah + RBh) > 1 we conclude

σh
i+1 ≤ Dhσh

i + Bh(1 + |u0|) ≤ D2
hσh

i−1 + Bh(1 + |u0|)(1 + Dh)

≤ ... ≤ Di+1
h σ0 + Bh(1 + |u0|)

i∑
j=0

Dj
h ≤ Di+1

h (σ0 + iBh(1 + |u0|)).

Then
‖u̇h‖L∞(0,R) ≤ σh

[R/h]+1 ≤ D
[R/h]+2
h (σ0 + ([R/h] + 1)Bh(1 + |u0|)). (25)

Since
D

[R/h]+2
h = exp (([R/h] + 2) log(Ah + RBh)) = exp (([R/h] + 2)(2CRh + o(h))) ,
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and {([R/h]+1)Bh}h is bounded, we have that the right hand side of (25) is bounded for h small by a constant
depending on C, R, |u0| and |ξ0|. This proves (3) in this special case.
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References
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