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ANISOTROPIC FUNCTIONS: A GENERICITY RESULT
WITH CRYSTALLOGRAPHIC IMPLICATIONS

Victor J. Mizel1 and Alexander J. Zaslavski2

Abstract. In the 1950’s and 1960’s surface physicists/metallurgists such as Herring and Mullins
applied ingenious thermodynamic arguments to explain a number of experimentally observed surface
phenomena in crystals. These insights permitted the successful engineering of a large number of
alloys, where the major mathematical novelty was that the surface response to external stress was
anisotropic. By examining step/terrace (vicinal) surface defects it was discovered through lengthy
and tedious experiments that the stored energy density (surface tension) along a step edge was a
smooth symmetric function β of the azimuthal angle θ to the step, and that the positive function β
attains its minimum value at θ = π/2 and its maximum value at θ = 0. The function β provided
the crucial thermodynamic parameters needed for the engineering of these materials. Moreover the
minimal energy configuration of the step is determined by the values of the stiffness function β′′ +β
which ultimately leads to the magnitude and direction of surface mass flow for these materials. In the
1990’s there was a dramatic improvement in electron microscopy which permitted real time observation
of the meanderings of a step edge under Brownian heat oscillations. These observations provided
much more rapid determination of the relevant thermodynamic parameters for the step edge, even for
crystals at temperatures below their roughening temperature. Use of these tools led J. Hannon and
his coexperimenters to discover that some crystals behave in a highly anti-intuitive manner as their
temperature is varied. The present article is devoted to a model described by a class of variational
problems. The main result of the paper describes the solutions of the corresponding problem for a
generic integrand.
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1. Introduction

It is well-known in surface physics that when a crystalline substance is maintained at a temperature T above
its roughening temperature TR then the surface stored energy integrand, usually referred to as surface tension,
is a smooth function β of the azimuthal angle of orientation θ. Furthermore, β obeys the following:

β(−θ) = β(π − θ) = β(θ), 0 < β(π/2) ≤ β(θ) ≤ β(0)
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(cf. for example [1, 2, 5]). We note that given any point P on an arc in the x, y plane, the convention here is
that θ(P ) ∈ [−π, π] denotes the angle (measured counterclockwise) that the tangent line at P makes with the
positive x-axis. The issue we proceed to discuss is the relative availability of smooth surface tension functions β
for which the quantity β′′ +β, usually referred to as the stiffness, is negative at the angle θ = 0 where β attains
its maximum, i.e., β′′(0) + β(0) < 0. That condition is present in a type of Silicon crystal which exhibited very
unorthodox behavior during experimental observations involving mass transport along the surface of the crystal
(cf. [3, 4]). This phenomenon led us to undertake the present investigation.

For each function f : X → R set inf(f) = inf{f(x) : x ∈ X}·
Denote by M the set of all functions β ∈ C2(R) which satisfy the following assumption:
(A)

β(t) ≥ 0 for all t ∈ R, (1.1)

β(π/2) ≤ β(t) ≤ β(0) for all t ∈ R, (1.2)

β(t) = β(−t) for all t ∈ R, (1.3)

β(t+ π) = β(t) for all t ∈ R, (1.4)

β(0) + β′′(0) ≤ 0. (1.5)

For each β1, β2 ∈ M set

ρ(β1, β2) = sup
{
|β(i)

1 (t) − β
(i)
2 (t)| : t ∈ R, i = 0, 1, 2

}
· (1.6)

It is not difficult to see that the metric space (M, ρ) is complete.
Denote by Mr the set of all β ∈ M such that

β(t) > 0 for all t ∈ R, (1.7)

β(0) + β′′(0) < 0. (1.8)

It is obvious that Mr is nonempty.

Proposition 1.1. Mr is an open everywhere dense subset of (M, ρ).

Proof. Evidently Mr is an open subset of (M, ρ). Let us show that Mr is an everywhere dense subset of (M, ρ).
Let β ∈ M and β̃ ∈ Mr. Then for each natural number n the function β + (n)−1β̃ ∈ Mr,

(β + (n)−1β̃)(t) ≥ (n)−1β̃(t) > 0

for all t ∈ R and

(β + (n)−1β̃)(0) + (β + (n)−1β̃)′′(0) = β(0) + β′′(0) + [β̃(0) + β̃′′(0)]/n < 0.

Thus β + n−1β̃ ∈ Mr for all natural numbers n. It is easy to see that β + n−1β̃ → β as n → ∞ in (M, ρ).
Therefore Mr is an everywhere dense subset of (M, ρ). Proposition 1.1 is proved. �

Let β ∈ Mr. Define
Gβ(z) = β(arctan(z))(1 + z2)1/2, z ∈ R. (1.9)

Clearly Gβ is a continuous function and

Gβ(z) → ∞ as z → ±∞. (1.10)

Remark 1.1. Note that inf(Gβ) < β(0) (see [4]).
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The classical model for the free energy of certain crystals is given by

J(y) =
∫ S

0

β(θ)ds

where s is arclength and y is a function defined on a fixed interval [0, L] whose graph is the locus under
consideration:

y ∈W 1,1(0, L), θ = arctan(y′) ∈ [−π/2, π/2].
We can rewrite J in the form

J(y) =
∫ L

0

Gβ(y′)dx.

It was shown in [4] that y ∈W 1,1(0, L) is a minimizer of J if and only if

|y′| ∈ {z ∈ R : Gβ(z) = inf(Gβ)} a.e.

In this paper we show that for a generic function β the set

{z ∈ R : Gβ(z) = inf(Gβ)} = {zβ,−zβ}

where zβ is a unique positive number depending only on β.
Denote by F the set of all β ∈ Mr which satisfy the following condition:
There is zβ ∈ R such that

Gβ(z) > Gβ(zβ) for all z ∈ R \ {zβ,−zβ}· (1.11)
We will establish the following result.

Theorem 1.1. F is a countable intersection of open everywhere dense subsets of (M, ρ).

2. Preliminary results

Proposition 2.1. Let β ∈ Mr. Then there exist M0 > 0 and a neighborhood U of β in M such that U ⊂ Mr

and the following assertion holds:
if φ ∈ U , z ∈ R and Gφ(z) ≤ inf(Gφ) + 1, then |z| ≤M0.

Proof. There is c0 > 0 such that
β(t) ≥ c0 for all t ∈ R. (2.1)

There is a neighborhood U of β in (M, ρ) such that

U ⊂ Mr (2.2)

and for each φ ∈ U
φ(t) ≥ c0/2 for all t ∈ R, (2.3)

φ(0) ≤ 2β(0). (2.4)
Assume that φ ∈ U , z ∈ R,

Gφ(z) ≤ inf(Gφ) + 1. (2.5)
Then (2.3), (2.4) hold. By (1.9), (2.3), (2.5), (2.4)

(1 + z2)1/2c0/2 ≤ φ(arctan(z))(1 + z2)1/2 = Gφ(z) ≤ Gφ(0) + 1 = φ(0) + 1 ≤ 2β(0) + 1

and
|z| ≤ 2(2β(0) + 1)c−1

0 .
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Thus the assertion of Proposition 2.1 holds with M0 = 2(2β(0) + 1)c−1
0 . �

It is not difficult to see that the next proposition is true.

Proposition 2.2. Let β ∈ Mr, ε,M > 0. Then there exists a neighborhood U of β in M such that U ⊂ Mr

and the following assertion holds:
if φ ∈ U , z ∈ R, |z| ≤M , then

|Gφ(z) −Gβ(z)| ≤ ε.

Proposition 2.3. Let β ∈ Mr, ε > 0. Then there exists a neighborhood U of β in M such that U ⊂ Mr and
the following assertion holds:

if φ1, φ2 ∈ U , z ∈ R,
Gφ1(z) ≤ inf(Gφ1) + 1, (2.6)

then
|Gφ1(z) −Gφ2(z)| ≤ ε.

Proof. By Proposition 2.1 there exist M > 0 and a neighborhood U1 of β in (M, ρ) such that

U1 ⊂ Mr (2.7)

and the following property holds:
(P1) if φ ∈ U1, z ∈ R, Gφ(z) ≤ inf(Gφ) + 1, then |z| ≤M.
By Proposition 2.2 there is a neighborhood U of β in (M, ρ) such that

U ⊂ U1

and the following property holds:
(P2) If φ1, φ2 ∈ U , z ∈ R, |z| ≤M , then

|Gφ1(z) −Gφ2(z)| ≤ ε. (2.8)

Now assume that φ1, φ2 ∈ U , z ∈ R and (2.6) holds. By (2.6) and the property (P1),

|z| ≤M. (2.9)

By (2.9) and property (P2), the inequality (2.8) is true. Proposition 2.3 is proved. �
Proposition 2.4. Let β ∈ Mr, ε > 0. Then there exists a neighborhood U of β in M such that U ⊂ Mr and
for each φ ∈ U ,

| inf(Gφ) − inf(Gβ)| ≤ ε.

Proof. Let a neighborhood U of β in M be as guaranteed by Proposition 2.3. Let φ1, φ2 ∈ U . It is enough to
show that

inf(Gφ2) ≤ inf(Gφ1) + ε.

By the choice of U and Proposition 2.3 the inequality (2.8) holds for any z ∈ R satisfying (2.6). This implies
that

inf(Gφ2) ≤ inf{Gφ2(z) : z ∈ R and Gφ1(z) ≤ inf(Gφ1) + 1}
≤ inf{Gφ1(z) + ε : z ∈ R and Gφ1(z) ≤ inf(Gφ1) + 1}
= ε+ inf{Gφ1(z) : z ∈ R and Gφ1(z) ≤ inf(Gφ1) + 1}
= ε+ inf(Gφ1)
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and
inf(Gφ2) ≤ inf(Gφ1) + ε.

This completes the proof of Proposition 2.4. �

Proposition 2.5. Let β ∈ Mr, z̄ ∈ R,

Gβ(z) > Gβ(z̄) for all z ∈ R \ {z̄,−z̄}· (2.10)

Let ε > 0. Then there exist a neighborhood U of β in M and δ > 0 such that U ⊂ Mr and that for each φ ∈ U
and each z ∈ R satisfying

Gφ(z) ≤ inf(Gφ) + δ (2.11)

the inequality
min{|z − z̄|, |z + z̄|} ≤ ε

is true.

Proof. Let us assume the converse. Then for each natural number n there exist φn ∈ Mr and zn ∈ R such that

ρ(β, φn) ≤ 1/n, (2.12)

Gφn(zn) ≤ inf(Gφn) + 1/n (2.13)

and
min{|zn − z̄|, |zn + z̄|} > ε. (2.14)

By (2.12), (2.13) and Proposition 2.1 the sequence {zn}∞n=1 is bounded. Extracting a subsequence and reindex-
ing, if necessary, we may assume without loss of generality that there exists

z∗ = lim
n→∞ zn. (2.15)

By (2.12) and Proposition 2.4
lim

n→∞ inf(Gφn) = inf(Gβ). (2.16)

Since the sequence {zn}∞n=1 is bounded it follows from (2.12) and Proposition 2.2 that

lim
n→∞ [Gφn(zn) −Gβ(zn)] = 0. (2.17)

It follows from (2.15), (2.17), (2.13), (2.16) that

Gβ(z∗) = lim
n→∞Gβ(zn) = lim

n→∞Gφn(zn) = lim
n→∞ inf(Gφn) = inf(Gβ).

Thus
Gβ(z∗) = inf(Gβ).

By (2.10) either z∗ = z̄ or z∗ = −z̄ and

either zn → z̄ or zn → −z̄ as n→ ∞.

This contradicts (2.14). The contradiction we have reached proves Proposition 2.5. �
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3. A basic lemma

For ψ ∈ C2(R) set
||ψ||C2(R) = sup

{
|ψ(i)(t)| : t ∈ R, i = 0, 1, 2

}
·

Lemma 3.1. Let β ∈ Mr, ε > 0,
β(t) > β(π/2) for all t ∈ [0, π/2). (3.1)

Then there exist φ ∈ Mr, z̄ ∈ R such that
ρ(φ, β) ≤ ε,

Gφ(z) > Gφ(z̄) for all z ∈ R \ {z̄,−z̄}·

Proof. There is z̄ ∈ R such that
Gβ(z̄) = inf(Gβ). (3.2)

By Remark 1.1 z̄ �= 0. We may assume that
z̄ > 0. (3.3)

Set
θ̄ = arctan(z̄) ∈ (0, π/2). (3.4)

There exists ψ ∈ C∞(R) such that

0 ≤ ψ(t) ≤ 1 for all t ∈ R, ψ(t) = 0 if |t| ≥ 1, ψ(t) = 1, if |t| ≤ 1/2. (3.5)

Set
ψ1(t) = ψ(t)(1 − t2), t ∈ R. (3.6)

Clearly ψ1 ∈ C∞(R),

0 ≤ ψ1(t) ≤ 1 for all t ∈ R, ψ1(t) = 0 if |t| ≥ 1, ψ1(t) = 1 − t2, if |t| ≤ 1/2, (3.7)

1 = ψ1(0) > ψ1(t) for all t ∈ R \ {0}· (3.8)

By (3.4), (3.1), and the relation β ∈ Mr, we can choose positive constants c0, c1 such that c0 > 1, c1 < 1,

[
θ̄ − c−1

0 , θ̄ + c−1
0

] ⊂ (0, π/2), (3.9)

inf
{
β(t) : t ∈ [

θ̄ − c−1
0 , θ̄ + c−1

0

]} − β(π/2) > 4c1, c1 < − [β(0) + β′′(0)] , (3.10)

||ψ1||C2(R)c1c
2
0 < ε. (3.11)

Consider the function
ψ2(t) = c1 − c1ψ1(c0(t− θ̄)), t ∈ R. (3.12)

Clearly ψ2 ∈ C∞(R). By (3.12), (3.7)
0 ≤ ψ2(t) ≤ c1, t ∈ R, (3.13)

ψ2(t) = c1 for each t ∈ R satisfying |t− θ̄| ≥ c−1
0 . (3.14)

By (3.12), (3.8)
ψ2(θ̄) = 0, (3.15)

ψ2(t) > 0 for each t ∈ R \ {θ̄}· (3.16)
It is not difficult to see that there exists a function ψ3 : R → R such that

ψ3(t) = ψ2(t), t ∈ [0, π/2], (3.17)

ψ3(−t) = ψ3(t), t ∈ R,

ψ3(t+ π) = ψ3(t), t ∈ R.
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It is not difficult to see that ψ3 ∈ C∞(R),

0 ≤ ψ3(t) ≤ c1, t ∈ R, (3.18)

ψ3(θ̄) = 0,
ψ3(t) > 0 for all t ∈ [0, π/2] \ {θ̄}, (3.19)

ψ3(t) > 0 for all t ∈ [−π/2, 0] \ {−θ̄}·
Define

φ(t) = β(t) + ψ3(t), t ∈ R. (3.20)
Clearly φ ∈ C2(R). By (3.20), (1.1), (3.18), (1.3), (3.17), (1.4) we have

φ(t) ≥ 0 for all t ∈ R and φ(t) = φ(−t) = φ(t+ π) for all t ∈ R. (3.21)

By (3.20), the relation β ∈ Mr, (3.18)
φ(t) > 0 for all t ∈ R. (3.22)

We show that
φ(0) + φ′′(0) < 0. (3.23)

By (3.20), (3.17)

φ(0) + φ′′(0) = β(0) + β′′(0) + ψ3(0) + ψ′′
3 (0)

= β(0) + β′′(0) + ψ2(0) + ψ′′
2 (0). (3.24)

By (3.14), (3.9),
ψ2(0) = c1, ψ

′′
2 (0) = 0. (3.25)

Combined with (3.24), (3.10) this implies that

φ(0) + φ′′(0) = β(0) + β′′(0) + c1 < 0.

Thus (3.23) is true. We show that
φ(π/2) ≤ φ(t) ≤ φ(0) (3.26)

for all t ∈ R. Clearly it is enough to show that this inequality holds for all t ∈ [0, π/2].
Let t ∈ [0, π/2]. Then by (3.20), (3.17)

φ(t) = β(t) + ψ2(t). (3.27)

By (3.27), (3.13), (3.25), (1.2), (3.17), (3.20)

φ(t) ≤ β(t) + c1 = β(t) + ψ2(0) ≤ β(0) + ψ2(0)

= β(0) + ψ3(0) = φ(0).

Thus
φ(t) ≤ φ(0). (3.28)

By (3.20), (3.17), (3.14), (3.9)

φ(π/2) = β(π/2) + ψ2(π/2) = β(π/2) + c1. (3.29)

There are two cases:
(a) |t− θ̄| ≥ c−1

0 ; (b) |t− θ̄| < c−1
0 .
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Consider the case (a). Then it follows from (3.17), (3.14) that

ψ3(t) = ψ2(t) = c1.

Combined with (3.20), (1.2), (3.29) this implies that

φ(t) = β(t) + c1 ≥ β(π/2) + c1 = φ(π/2)

and
φ(t) ≥ φ(π/2). (3.30)

Consider the case (b) with
|t− θ̄| < c−1

0 . (3.31)

By (3.20), (3.17), (3.31), (3.13), (3.10), (3.29)

φ(t) = β(t) + ψ2(t) ≥ β(t) > β(π/2) + 4c1 > φ(π/2)

and (3.30) is true. Thus (3.30) is true in both cases. (3.30), (3.28) imply (3.26).
We have shown that φ ∈ Mr. By (1.6), (3.20), (3.17), (3.13), (3.11), (3.12)

ρ(β, φ) = sup{ψ3(t), |ψ′
3(t)|, |ψ′′

3 (t)| : t ∈ [−π/2, π/2]}
= sup{ψ2(t), |ψ′

2(t)|, |ψ′′
2 (t)| : t ∈ [0, π/2]}

≤ max
{
c1, ||ψ1||C2(R)c1c0, ||ψ1||C2(R)c1c

2
0

}
= c1c

2
0||ψ1||C2 < ε.

Thus
ρ(φ, β) < ε. (3.32)

We have
φ(t) ≥ β(t) for all t ∈ R. (3.33)

This implies that
Gφ(t) ≥ Gβ(t) for all t ∈ R. (3.34)

By (1.9), (3.4), (3.20), (3.17), (3.15), (3.2)

Gφ(z̄) = φ(arctan(z̄))(1 + z̄2)1/2 = φ(θ̄)(1 + z̄2)1/2

= (β + ψ3)(θ̄)(1 + z̄2)1/2 = β(θ̄)(1 + z̄2)1/2 = Gβ(z̄) = inf(Gβ). (3.35)

(3.35), (3.34) imply that
inf(Gφ) = inf(Gβ) = Gφ(z̄) = Gβ(z̄). (3.36)

Let
z ∈ R \ {z̄,−z̄}· (3.37)

It follows from (1.9), (3.20) that

Gφ(z) = φ(arctan(z))(1 + z)1/2 = β(arctan(z))(1 + z2)1/2

+ ψ3(arctan(z))(1 + z2)1/2 = Gβ(z) + ψ(arctan(z))(1 + z2)1/2. (3.38)

By (3.37), (3.19)
ψ3(arctan(z)) > 0.
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Combined with (3.38), (3.36) this inequality implies that

Gφ(z) > Gβ(z) ≥ Gβ(z̄) = Gφ(z̄).

Lemma 3.1 is proved. �

Lemma 3.2. Let β ∈ Mr, ε > 0. Then there exists β̃ ∈ Mr such that ρ(β, β̃) < ε, β̃(t) > β̃(π/2) for all
t ∈ [0, π/2).

Proof. Consider the function
β0(t) = cos(2t) + 3/2, t ∈ R.

Clearly β0 ∈ Mr. For all t ∈ [0, π/2)

β0(t) = cos(2t) + 3/2 > (cosπ) + 3/2 = β0(π/2).

For each natural number n set
βn(t) = β(t) + n−1β0(t), t ∈ R.

Clearly for all natural n, βn ∈ Mr, βn(t) > βn(π/2) for all t ∈ [0, π/2),

βn → β as n→ ∞ in (M, ρ).

Lemma 3.2 is proved. �
Lemmas 3.1 and 3.2 imply

Lemma 3.3 (basic lemma). Let β ∈ Mr, ε > 0. Then there exists φ ∈ Mr, z̄ ∈ R such that ρ(φ, β) < ε,

Gφ(z) > Gφ(z̄) for all z ∈ R \ {z̄,−z̄}.

4. Proof of Theorem 1.1

By Proposition 1.1 and Lemma 3.3, F is an everywhere dense subset of (M, ρ). Let β ∈ F , zβ > 0
satisfy (1.11), n be a natural number.

By Proposition 2.5 there are an open neighborhood U(β, n) of β in (M, ρ) and a number δ(β, n) > 0 such
that

U(β, n) ⊂ Mr

and the following property holds:
(P3) if φ ∈ U(β, n), z ∈ R, Gφ(z) ≤ inf(Gφ) + δ(β, n), then

min{|z − zβ |, |z + zβ |} ≤ 1/n.

Set
F0 = ∩∞

n=1 ∪ {U(β, n) : β ∈ F , n is a natural number}· (4.1)

Clearly F ⊂ F0 and F0 is a countable intersection of open everywhere dense subsets of (M, ρ). Let φ ∈ F0,
z1, z2 ∈ [0,∞),

Gφ(z1) = Gφ(z2) = inf(Gβ). (4.2)

Let n ≥ 1 be an integer. By (4.1) there is β ∈ F such that

φ ∈ U(β, n). (4.3)
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By (4.3), (P3), (4.2),

|zi − zβ | ≤ 1/n, i = 1, 2,

|z1 − z2| ≤ 2/n.

Since n is any natural number we conclude that z1 = z2, φ ∈ F and F0 = F . This completes the proof of
Theorem 1.1.
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