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Abstract. The soil water movement model governed by the initial-boundary value problem for a
quasilinear 1-D parabolic equation with nonlinear coefficients is considered. The generalized statement
of the problem is formulated. The solvability of the problem is proved in a certain class of functional
spaces. The data assimilation problem for this model is analysed. The numerical results are presented.
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1. Introduction

Today, the concept of “climate system” has been accepted by more and more people. Change of climate is the
synthetic results of the individual change of atmosphere, ocean, land surface and sea-ice and their interactions.
Many climate models are being used for research. Compared with the atmosphere and ocean, the research on
the land surface process needs development urgently so as to improve the whole quality of the climate model.
With the implementation of the outside observation experiments such as HAPEX, etc., the land surface data
are given, which is of great help to the land surface process research on two aspects: one is the recognition of
detail physical process of changes on the land surface, the other is the model construction.

The land surface physical process is the interaction between the land surface and atmosphere through the
material and energy’s input and output, which can take effect on the climate change. It mainly refers to the
exchange of water and the heat flux. These processes are divided into two types according to the land surface
cover: one is the interaction of bare soil and the atmosphere, the other is of the plant and atmosphere. In this
paper, we focus on the water movement in the even, isothermal and unsaturated soil, which takes evaporation
as the driven force.

In the land surface process, the exchanges of water and the heat flux are connected together. The solar
radiation heats the soil surface, which improve the evaporation and the soil water moving. The evaporated
vapor enters air and also heats air when it condenses. So, in the water-cycle on the land surface (evaporation,
precipitation, run-off and infiltration), the soil water movement with evaporation’s effect plays the important
role.

Keywords and phrases. Variational data assimilation, soil water movement, quasilinear parabolic problem, solvability, numerical
analysis.
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As a lower boundary to the atmosphere, when this process is coupled into a climate model, the prediction of
the soil wetness should be done. This is an initial-value problem. The quality of the initial field is crucial to the
forecast result. The soil water movement is a strongly nonlinear process, and the data on soil wetness is scarce,
so to take the most use of this limited data and provide a good initial field to modelling is a very prominent
problem. Fortunately, variational assimilation is a promising way to realize this.

Presently, the problems of data assimilation are being studied on the basis of adjoint equations by many
researchers [2, 4, 15, 18, 25, 29]. In this paper, we consider the data assimilation problem for the soil water
movement model, and using the technique developed in [2, 15, 29], give the numerical analysis of the problem.

In the paper, the statement of the problem is given in Section 2. In Section 3, the solvability is proved. Data
assimilation for this model is discussed in Section 4. Some numerical results are presented in Section 5.

2. Statement of the problem

In this model, the soil water movement in the horizontal direction is not considered. So, the model is a z-t
model, and it is governed by the following quasilinear parabolic equation [16]:

∂θ

∂t
=

∂

∂z

(
D(θ)

∂θ

∂z

)
− ∂K(θ)

∂z
(1)

with the nonlinear coefficients
D(θ) =

−bΦsKs

θs

(
θ

θs

)b+2

, (2)

K(θ) = Ks

(
θ

θs

)2b+3

, (3)

where θ = θ(t, z) is the soil wetness, z is the vertical direction. In this model, downward is positive and the
depth of soil is L, t is the time coordinate. The functions D(θ) and K(θ) are the diffusion coefficient and
conductivity, respectively. The subscript “s” means “saturation”, the constants Φs,Ks, θs are corresponding
soil potential, conductivity and wetness when soil is saturated, Ks, θs > 0,Φs < 0, b is a positive soil parameter.
The coefficients D(θ) and K(θ) may be defined also by other formulas, for example, [16]:

D(θ) = D0exp (−β(θ0 − θ)) , K(θ) = Ksexp (−β(θs − θ)) , β > 0. (3a)

The initial condition is:
t = 0, 0 ≤ z ≤ L, θ(0, z) = θ0(z), (4)

and the boundary conditions are:

t > 0, z = 0, D(θ)
∂θ

∂z
−K(θ) = Ep, if θ ≥ θk

t > 0, z = 0, D(θ)
∂θ

∂z
−K(θ) =

θ

θk
Ep, if 0 < θ < θk (5)

t > 0, z = L, θ(t, L) = θ1(t),
where Ep is the potential evaporation controlled by the air condition, θk is a parameter which gives the soil’s
capability of holding water. It is smaller than the saturated wetness. In physics, when θ ≥ θk, it means the soil
is wet enough, so evaporation is wholly controlled by air. While θ < θk, the soil wetness also becomes a factor
which decides the evaporation. In this phase, evaporation should be related to wetness. Here, for simplicity,
linear relation is taken. According to this fact, the upper boundary condition in the model is divided into two
parts. The functions θ0(z), θ1(t) are assumed to be prescribed.

Assume the wetness observation in a time interval be available. To assimilate its initial state, the cost function
is formulated:

J(θ0) =
∫ T

0

〈(θ(θ0) − θo), w(t)(θ(θ0) − θo)〉dt, (6)
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where (0, T ) is the assimilating interval, θo is the observational data, and w(t) is the weight factor. The goal
is to find θ∗0 that makes J(θ0) get the minimum. This is an optimal control problem which may be solved
by the gradient method. The gradient of J with respect to θ0 may be calculated by the adjoint method,
following [2, 4, 15, 18, 25, 29].

3. Solvability of the initial-boundary value problem

Consider the initial-boundary value problem for quasilinear 1-D parabolic equation of the form:

∂θ

∂t
− ∂

∂z
D
∂θ

∂z
+
∂K

∂z
= f(t, z), t ∈ (0, T ), z ∈ (0, L)

θ |t=0= θ0(z), θ |z=L= θ1(t),
(
D
∂θ

∂z
−K

)
|z=0= φ(t), (7)

where θ = θ(t, z) is the unknown function, the coeffients D = D(θ),K = K(θ), and the functions f(t, z), θ0(z),
θ1(t), φ(t) are assumed to be prescribed, t ∈ (0, T ), z ∈ (0, L), L, T <∞.

The issues related to the statement, solvability, and regularity properties of the quasilinear parabolic
problems have been reported by many authors, the well-known monographs and surveys [3,9–12,19,20,24,27,28]
among them. The results on existence and uniqueness of weak solutions of the initial-boundary value problems
for quasilinear parabolic equations in the general form are given in the monograph [11].

In this paper, we consider the initial-boundary value problem for the quasilinear parabolic equation of the
form (7) with the coefficients D(θ),K(θ) depending on the solution, and with nonlinear boundary condition
at z = 0. The generalized statement of the problem is formulated. The existence and uniqueness of the weak
solution is proved in a specific class of functional spaces.

3.1. Transformation of the problem. Functional spaces. Generalized formulation

By the Kirchoff transformation

u =
∫ θ

0

D(s) ds

the problem (7) is reduced to the form:

C(u)
∂u

∂t
− ∂2u

∂z2 +
∂K̃(u)
∂z

= f(t, z), t ∈ (0, T ), z ∈ (0, L)

u |t=0= u0(z), u |z=L= u1(t),
(
∂u

∂z
− K̃(u)

)
|z=0= φ(t), (8)

where C(u) = 1/D(θ), K̃(u) = K(θ), ui =
∫ θi

0 D(s)ds, i = 0, 1. Below, we consider the problem (8), and the
functions C(u), K̃(u) are assumed to be measurable, and bounded almost everywhere, and

0 < C0 ≤ C(u) ≤ C1 <∞, |K̃(u)| ≤ k1, k1 = const > 0. (9)

We assume also that K̃ is differentiable almost everywhere and

∣∣∣∣∣∂K̃∂u
∣∣∣∣∣ ≤ k2, k2 = const > 0. (10)
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We rewrite the problem (8) in the form:

∂u

∂t
− α

∂2u

∂z2 + (αC(u) − 1)
∂u

∂t
+ α

∂K̃(u)
∂z

= αf(t, z), t ∈ (0, T ), z ∈ (0, L)

u |t=0= u0, u |z=L= u1,

(
∂u

∂z
− K̃(u)

)
|z=0= φ, (11)

where α = 2/(C0 + C1).
Let ū be the solution of the linear problem:

∂ū

∂t
− α

∂2ū

∂z2 = αf, t ∈ (0, T ), z ∈ (0, L)

ū |t=0= u0, ū |z=L= u1,

(
∂ū

∂z

)
|z=0= 0. (12)

It is well-known that for sufficiently regular functions u0, u1, f , there exits a unique solution to the problem (12).
Subtracting (12) from (11) we obtain the problem for the remainder ũ = u− ū:

∂ũ

∂t
− α

∂2ũ

∂z2 + (αC(ū + ũ) − 1)
∂(ū+ ũ)

∂t
+ α

∂K̃(ū + ũ)
∂z

= 0, t ∈ (0, T ), z ∈ (0, L)

ũ |t=0= 0, ũ |z=L= 0,
(
∂ũ

∂z
− K̃(ū + ũ)

)
|z=0= φ. (13)

Below, assuming that ū is known, we will investigate the problem (13). To introduce the generalized statement of
the problem and its operator formulation, let us consider the spaceX = L2(0, L) of real-valued functions that are
Lebesgue square integrable on (0, L), and the space X1 =

{
u(z) ∈W 2

2 (0, L) : u |z=L= 0,
(
∂u
∂z

)
|z=0= 0

}
, where

W 2
2 (0, L) is the Sobolev space of functions of L2(0, L) that have square-integrable first and second derivatives

with respect to z. Let us introduce also the spaces Y = L2(0, T ;X), Y1 = L2(0, T ;X1) of abstract functions
v(t) with values in X,X1, respectively, and the spaces

W =
{
v ∈ Y1 :

dv
dt

∈ Y

}
, WT = {v ∈W : v |t=T = 0}·

For simplicity, we omit the sub-index in the scalar product and assume that (·, ·)L2(0,T ;X) = (·, ·). Let us intro-
duce the following generalized statement of the problem (13).

Definition 3.1. The function ũ ∈ Y is said to be the weak solution of the problem (13) if the relation holds:

−
(
ũ,
∂w

∂t

)
− α

(
ũ,
∂2w

∂z2

)
+
(
C̃(ũ+ ū),

∂w

∂t

)
− α

(
K̃(ũ+ ū),

∂w

∂z

)

= −
∫ L

0

C̃(u0)w |t=0 dz − α

∫ T

0

φ(t)w |z=0 dt, ∀w ∈WT , (14)

where C̃(u) = u− αC̃1(u), C̃1(u) =
∫ u

0 C(s)ds.

Remark 3.1. The equality (14) is obtained by multiplying the equation (13) scalarly by w, integrating by
parts and taking into account the boundary conditions.
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3.2. Operator formulation of the problem. Properties of nonlinear operator

We denote by A : Y → Y the linear operator with the domain of definition D(A) = Y1, defined by the
formula:

Aϕ = −α∂
2ϕ

∂z2 , ϕ ∈ Y1.

The norm in WT may be taken as follows [20]:

‖w‖WT =
∥∥∥∥−dw

dt
+A∗w

∥∥∥∥
Y

,

where the operator A∗ : Y → Y is adjoint to A; in the case under consideration, A∗ is identical to A. (Note
that the space X∗ is identified with X , and (L2(0, T ;X))∗ ≡ L2(0, T ;X).)

The problem (14) may be written in the operator form: find ũ ∈ Y such that

−
(
ũ,
∂w

∂t

)
+ (ũ, Aw) + (F (ũ+ ū), w) = q(w), ∀w ∈ WT , (15)

where q(w) = − ∫ L

0 C̃(u0)w|t=0 dz − α
∫ T

0 φ(t)w|z=0 dt, and F (ũ) is the nonlinear operator defined by the
formula:

(F (u), w) =
(
C̃(u),

∂w

∂t

)
− α

(
K̃(u),

∂w

∂z

)
, w ∈ WT . (16)

Remark 3.2. If u0 ∈ L2(0, L), φ ∈ L2(0, T ), then

|q(w)| ≤
√
T‖C̃(u0)

∥∥
L2(0,L)

∥∥ ∂w
∂t

‖Y + α
√
L‖φ‖L2(0,T )

∥∥∥∥∂w∂z
∥∥∥∥

Y

,

and the integrals in the right-hand side of (14), (15) have sense for w ∈WT .

Let us analyze the properties of the operator F .

Lemma 3.1. The operator F is bounded from Y into W ∗
T .

Proof. By virtue of (9), we get |C̃(u)| ≤ (1 + αC1)|u|, then
∣∣∣∣
(
C̃(ũ),

∂w

∂t

)∣∣∣∣ ≤ (1 + αC1) ‖u‖Y

∥∥∥∥∂w∂t
∥∥∥∥

Y

. (17)

Following [26], it is readily seen that

∥∥∥∥dw
dt

∥∥∥∥
Y

≤ ‖w‖WT , ‖Aw‖Y ≤ ‖w‖WT . (18)

Since
∂ψ

∂z
= −

∫ L

z

∂2ψ

∂z2 dz, ψ ∈ WT ,

then, from (9), we get

∣∣∣∣
(
K̃(u),

∂w

∂z

)∣∣∣∣ ≤ k1

√
TL

L

2

∥∥∥∥∂2w

∂z2

∥∥∥∥
Y

= k1

√
TL

L

2α
‖Aw‖Y . (19)
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From (17)–(19), we obtain the inequality

|(F (u), w)| ≤
[
(1 + αC1)‖u‖Y + k1

√
TL

L

2

]
‖w‖WT , u ∈ Y, w ∈ WT ,

which implies that F : Y →W ∗
T is bounded. �

Lemma 3.2. At any point u ∈ Y , the operator F has the Gateaux derivative F
′
(u) defined by the formula

(F
′
(u)v, w) =

(
v,
∂w

∂t

)
− α

(
C(u)v,

∂w

∂t

)
− α

(
∂K̃

∂u
v,
∂w

∂z

)
, v ∈ Y, ∀w ∈ WT . (20)

The operator F
′
(u) is bounded from Y into W ∗

T , and

‖F ′
(u)v‖W∗

T
≤ k‖v‖Y , (21)

where k = sup
t,z

|1 − αC(u)| + k2L ≤ C1−C0
C1+C0

+ k2L, and the constants C0, C1, k2 are defined in (8,9).

Proof. The existence of F
′
(u) is proved by using the definition of the Gateaux derivative, following [21].

From (20), we get ∣∣∣∣
(
v,
∂w

∂t

)
− α

(
C(u)v,

∂w

∂t

)∣∣∣∣ ≤ sup
t,z

|1 − αC(u)| · ‖v‖Y

∥∥∥∥∂w∂t
∥∥∥∥

Y

,∣∣∣∣∣
(
∂K̃

∂u
v,
∂w

∂z

)∣∣∣∣∣ ≤ k2‖v‖Y

∥∥∥∥∂w∂z
∥∥∥∥

Y

≤ k2L‖v‖Y

∥∥∥∥∂2w

∂z2

∥∥∥∥
Y

=
k2L

α
‖v‖Y ‖w‖WT ,

which, in view of (8), implies the estimate (21). �

Remark 3.3. Note that the right-hand side q(w) of equation (15) is a linear bounded functional on WT , that
is, q ∈W ∗

T . In view of this fact, the equation (15) may be treated as an operator equation in W ∗
T .

3.3. The linear problem

Consider the linear problem, obtained from (15) for F ≡ 0, with some right-hand side g ∈ W ∗
T : find R ∈ Y

such that

−
(
R,

dw
dt

)
+ (R,Aw) = (g, w) ∀w ∈WT . (22)

Lemma 3.3. For any g ∈ W ∗
T , there exists a unique solution R ∈ Y to the problem (22) such that

‖R‖Y ≤ ‖g‖W∗
T
. (23)

Proof. The existence is proved by following the arguments of [21] with use of the Lax-Milgram lemma. To prove
the estimate (23), note that (22) entails(

R,−dw
dt

+Aw

)
= (g, w) ∀w ∈ WT .

It is known [20] that the space WT is isomorphic to Y by virtue of the equality

v = −dw
dt

+Aw, w ∈WT , v ∈ Y.
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Then,

‖R‖Y = sup
v∈Y

(R, v)
‖v‖Y

= sup
w∈WT

(
R,−dw

dt
+Aw

)
∥∥∥∥−dw

dt
+Aw

∥∥∥∥
Y

= sup
w∈WT

(g, w)
‖w‖WT

= ‖g‖W∗
T
.

The lemma is proved. �

3.4. Solvability of nonlinear problem

In this subsection, we prove the following

Theorem 3.1. Let u0 ∈ L2(0, L), φ ∈ L2(0, T ), ū ∈ Y , and the hypotheses (9, 10) be satisfied with (C1 −
C0)/(C1 + C0) + k2L < 1. Then the problem (15) has a unique solution ũ ∈ Y .

Proof. To solve the problem (15), we consider the following iterative process:

−
(
ũ(n+1),

∂w

∂t

)
+
(
ũ(n+1), Aw

)
+
(
F (ũ(n) + ū), w

)
= q(w), ∀w ∈ WT , (24)

with an initial approximation ũ(0) ∈ Y . The remainder v(n) = ũ(n+1)− ũ(n) is the solution to the linear problem
of the form (22), then using Lemmas 3.3 and 3.2, we obtain the estimate for ‖v(n)‖Y :

‖v(n)‖Y ≤ ‖F (ũ(n) + ū) − F (ũ(n−1) + ū)‖W∗
T
≤ k‖v(n−1)‖Y , (25)

with the constant k defined in (21).
By applying successively the inequality (25) we show that the following estimate holds for any integers n

and m:

‖ũ(n+m) − ũ(n)‖Y ≤ a
kn − kn+m

1 − k
, (26)

where a = ‖ũ(0)‖Y + ‖F (ũ(0) + ū)‖W∗
T
.

By the hypothesis, k < 1, therefore, the inequality (26) implies that the sequence ũ(n) is convergent in Y .
Hence, there exists an element ũ ∈ Y such that lim

n→∞ ũ(n) = ũ. Going to the limit for m → ∞ in (26), we get
the following estimate for the convergence rate:

‖ũ− ũ(n)‖Y ≤ a
kn

1 − k
· (27)

Since ũ(n) → ũ as n→ ∞, and the operators of the problem (15) are bounded from Y into W ∗
T , it is easily seen

that ũ is a solution to the problem (15).
Let us show that the solution of the problem (15) is unique. Suppose there exist two solutions ũ1 and ũ2 to

the problem (15). Then we obtain the following problem for the remainder ũ1 − ũ2:

−
(
ũ1 − ũ2,

∂w

∂t

)
+ (ũ1 − ũ2, Aw) = − (F (ũ1 + ū), w) + (F (ũ2 + ū), w) , w ∈ WT .

Using Lemmas 3.3 and 3.2, we get
‖ũ1 − ũ2‖Y ≤ k‖ũ1 − ũ2‖Y . (28)

If k < 1, the inequality (28) may hold only when ũ1 = ũ2. This ends the proof. �



338 F.-X. LE DIMET ET AL.

Remark 3.4. The hypothesis ū ∈ Y is satisfied if, for example, u0 ∈ L2(0, L),u1 = 0, f ∈ W ∗
T .

The condition of the boundedness of the coefficients C(u), K̃(u), ∂K̃
∂u are satisfied for some applied problems,

the problems of the soil water movement among them [16].
The iterative process (24) is well-known as the successive approximation method; it may be used for numerical

solution of the problem. Its convergence rate is defined by the formula (27).

4. The problem of data assimilation

In this section, we consider the following data assimilation problem: find the initial condition θ0 and the
solution θ such that

∂θ

∂t
− ∂

∂z
D
∂θ

∂z
+
∂K

∂z
= 0, t ∈ (0, T ), z ∈ (0, L)θ|t=0 = θ0, θ|z=L = θ1,

(
D
∂θ

∂z
−K

)∣∣∣
z=0

= φ(θ|z=0) (29)

J(θ0) = inf
v
J(v), (30)

where

J(θ0) =
ε

2
‖θ0‖2

X +
1
2

∫ T

0

‖θ − θo‖2
X dt, (31)

ε ≥ 0 is the regularization parameter, θo is the observational data function, φ is the nonlinear function arisen
from (5), X = L2(0, L) is the space introduced in Section 3.

On the basis of Theorem 3.1, we can prove the solvability of the problem (29,30). Below, we assume all the
hypotheses of Section 3 be satisfied, and φ ≡ φ(t) ∈ L2(0, T ). The following theorem holds.

Theorem 4.1. Let θo ∈ Y,(C1 − C0)/(C1 + C0) + k2L < 1. Then, for ε > 0, there exists a solution θ0 ∈ X to
the problem (29) and (30).

Proof. Let vn be a sequence minimizing J(v), i.e. J(vn) → infv∈X J(v), n→ ∞. Since J(v) ≥ ε
2‖v‖2

X , ∀v ∈ X ,
then for ε > 0, the sequence vn is bounded: ‖vn‖X ≤ const. Hence, there exists a weakly convergent subsequence
vn (we denote it also vn). The Hilbert space X is weakly closed, therefore, there exists an element v̄ ∈ X such
that vn → v̄ (weakly in X), that is, (vn, p)X → (v̄, p)X , ∀p ∈ X .

Let θn and θ be the solutions of the original problem (29) for θn|t=0 = vn and θ|t=0 = v̄, respectively. Using
the Kirchoff transformation un =

∫ θn

0 D(s) ds, u =
∫ θ

0 D(s) ds and following the arguments of Section 3, we
come [as in (15)] to the problem for the remainder:

−
(
un − u,

∂w

∂t

)
+ (un − u,Aw) + (F (un) − F (u), w) = qn(w), ∀w ∈WT , (32)

where qn(w) = α
∫ L

0 (vn − v̄)w|t=0 dz. The problem (32) may be written in the form:

(
un − u,−∂w

∂t
+Aw + (F

′
(ξ))∗w

)
= qn(w), ∀w ∈WT , (33)

where ξ ∈ Y , and (F
′
(ξ))∗ : WT → Y is the operator adjoint to F

′
(ξ).

Consider p ∈ Y and introduce the following auxiliary problem:

−∂w
∂t

+Aw + (F
′
(ξ))∗w = p

w|t=T = 0. (34)
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Following the proof of Theorem 3.1, we can show that for any p ∈ Y there exists a unique solution w ∈ WT to
the problem (34), and

‖w‖WT = ‖p− (F
′
(ξ))∗w‖Y ≤ ‖p‖Y + k‖w‖WT .

Hence,

‖w‖WT ≤ 1
1 − k

‖p‖Y , p ∈ Y.

Since qn(w) → 0, n → ∞, then from (33), we get (un − u, p) → 0, p ∈ Y . By this is meant that un → u
(weakly in Y ), and, therefore, θn → θ (weakly in Y ). The functional S(·) = ‖ · ‖2 is known [18] to be lower
semi-continuous in the weak topology, then

lim inf J(vn) ≥ J(v̄),

and, therefore,
inf
v∈X

J(v) ≥ J(v̄).

Hence,
inf
v∈X

J(v) = J(v̄),

that is, v̄ gets the minimum to the functional J(v). This proves the theorem. �
The necessary optimality condition [18] reduces the problem (29,30) to the following system for finding θ, θ∗,

and θ0:

∂θ

∂t
− ∂

∂z
D
∂θ

∂z
+
∂K

∂z
= 0, t ∈ (0, T ), z ∈ (0, L)θ|t=0 = θ0, θ|z=L = θ1,

(
D
∂θ

∂z
−K

)∣∣∣
z=0

= φ(θ|z=0) (35)

−∂θ
∗

∂t
−D∂

2θ∗

∂z2 − ∂K

∂θ

∂θ∗

∂z
= θo−θ, t ∈ (0, T ), z ∈ (0, L)θ∗|t=T = 0, θ∗|z=L = 0,

(
D
∂θ∗

∂z
− φ

′
θ∗
) ∣∣∣

z=0
= 0 (36)

∇J(θ0) ≡ εθ0 − θ∗|t=0 = 0. (37)
The solvability of the original problem (35) has been investigated in Section 3. The adjoint problem (36) is a
linear 1-D parabolic problem with the bounded coefficients and its solution properties are well-known [10]. The
solvability of the whole system (35)–(37) follows from Theorem 4.1.

To solve (35)–(37) one may use the gradient methods, the gradient of functional J being calculated succes-
sively by the formulas (35)–(37).

To be sure that the initial value function obtained with assimilation gets the unique minimum to the functional
J it is reasonable to use the second order adjoint analysis [29], considering the Hessian of the problem.

Let us rewrite the problem (35)–(37) in the operator form:

∂θ

∂t
= F (θ), t ∈ (0, T )

θ|t=0 = θ0 (38)

−∂θ
∗

∂t
− (F

′
(θ))∗θ∗ = θo − θ, t ∈ (0, T )

θ∗|t=T = 0 (39)

εθ0 − θ∗|t=0 = 0, (40)

where F (θ), (F
′
(θ))∗ are the corresponding operators of the problems (35,36).

After solving the system (38)–(40), we get three functions θ, θ∗ and θ0. Then, the Hessian H(θ0) of the
problem is defined successively by the following steps [29]:
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1) for a given v ∈ X find ψ as the solution to the problem

dψ
dt

= F
′
(θ)ψ (41)

ψ|t=0 = v; (42)

2) using ψ and θ∗, find ψ∗ as the solution of the adjoint problem:

−dψ∗

dt
−
(
F

′
(θ)
)∗
ψ∗ =

[
∂2F

∂θ2
ψ

]∗
θ∗ − ψ, ψ∗|t=T = 0; (43)

3) put
H(θ0)v = εv − ψ∗|t=0. (44)

The Hessian H(θ0) is symmetric. To study its positiveness, consider the scalar product (H(θ0)v, v) in X . By
definition, we have

(H(θ0)v, v) = (εv − ψ∗|t=0, v) = ε(v, v) − (ψ∗|t=0, ψ|t=0).

Since the problem (43) is adjoint to (42), we get

(ψ∗|t=0, ψ|t=0) =
∫ T

0

(
ψ,

(
∂2F

∂θ2
ψ

)∗
θ∗ − ψ

)
dt.

Hence,

(H(θ0)v, v) = ε(v, v) +
∫ T

0

(ψ, ψ) dt−
∫ T

0

(
∂2F

∂θ2
ψψ, θ∗

)
dt. (45)

The function ψ is the solution to the linear problem (41)–(42). It is known [26] that the following estimate for
ψ is valid: ∫ T

0

‖ψ‖2 dt ≤M(v, v), (46)

where

M =
∫ T

0

e−
∫ t
0 λmin(τ) dτ ,

and λmin is the lower bound of the spectrum of the operator F
′
(θ) + (F

′
(θ))∗.

If the operator
(

∂2F
∂θ2 ◦

)∗
θ∗ is bounded, i.e.

∥∥∥∥∥
(
∂2F

∂θ2
ψ

)∗
θ∗
∥∥∥∥∥ ≤ h‖ψ‖, h = const > 0, (47)

then, ∣∣∣∣∣
∫ T

0

(
∂2F

∂θ2
ψψ, θ∗

)
dt

∣∣∣∣∣ ≤ h

∫ T

0

‖ψ‖2 dt ≤ hM(v, v), (48)

and
(H(θ0)v, v) ≥ (ε− hM)(v, v), (49)

i.e. for hM < ε the operator H(θ0) is positive definite.
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The inequality (47) is satisfied for our model under the hypothesis that the solutions θ, θ∗ of the problems (35,
36) are regular enough. Thus, for instance, when the coefficients D and K are taken in the form (3a), we get∥∥∥∥∥

(
∂2F

∂θ2
ψ

)∗
θ∗
∥∥∥∥∥

Y

= β

∥∥∥∥D∂2θ∗

∂z2 ψ +K
′ ∂θ∗

∂z
ψ

∥∥∥∥
Y

= β

∥∥∥∥(θo − θ)ψ +
∂θ∗

∂t
ψ

∥∥∥∥
Y

≤ h‖ψ‖Y , (50)

where h = β

(
‖θ − θo‖L∞ +

∥∥∥∂θ∗
∂t

∥∥∥
L∞

)
, and L∞ = L∞((0, T )× (0, L)).

The condition hM < ε may be verified in calculations. However, one should remember that this condition
is only sufficient, and in practice it may turn more preferable to compute the eigenvalues of the Hessian by the
technique of [29].

5. Numerical results

The soil water assimilation is studied numerically in this section. The following experiments belong to
identical twin framework: observation is generated from the model and the optimal initial field is retrieved by
seeking the minimum of the cost function (31) with ε = 0.

The numerical model is designed by finite difference scheme, and its resolution is ∆z = 0.05 m; the time step
is ∆t = 0.6 min. In variational data assimilation, the cost function is taken as

Jd(θ0) =
1
2

K∑
k=0

〈θk − θo
k, θk − θo

k〉 , (51)

where θk is model state at t = k∆t and θo
k the corresponding observed data at the same time.

5.1. The evaluation of VDA system

The assimilation is realized through searching the minimum of the cost function iteratively by a descent
gradient method. The gradient can be got from the backward integration of the adjoint model and its accuracy
should be checked before used in the optimization algorithm. Here the gradient check criteria is taken as Navon
et al. [23]:

R(α) =
J(x+ α∇J/‖∇J‖) − J(x)

α‖∇J‖ , (52)

lim
α→0

R(α) = 1. (53)

The check result is as following:

α R
1.000000000000000E-001 1.467237924961184
1.000000000000000E-002 1.064499862508060
1.000000000000000E-003 1.006638330725731
1.000000000000000E-004 1.000663935343485
1.000000000000000E-005 1.000066412649290
1.000000000000000E-006 1.000006640769757
1.000000000000000E-007 1.000000665333111
1.000000000000000E-008 1.000000147527289
1.000000000000000E-009 9.999998988580549E-001
1.000000000000000E-010 9.999871876912144E-001

This verifies that the gradient obtained from the adjoint model is correct and the minimization procedure
M1QN3 [7] is applied in our study.
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5.1.1. Assimilation with perfect data

Here, we want to know if the initial field is very noisy, can it be adjusted from the good observation? The
initial reference state, superposed on a Gaussian distributed random error is used as the first guess. The
magnitude of the error is about 20% of the one of the initial reference state. The assimilation window is
24 hours, and the data are provided every 6 hours.

Case 1. The lower part of soil is wetter than the upper. The numerical result is shown in Figure 1, where
Figure 1a gives the initial reference state, and the x-axis is soil wetness; Figure 1b presents the change of cost
function, and the x-axis is iterative step number; Figure 1c gives the variation of the norm of the gradient of
the functional Jd with the iterative step number.
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Figure 1. In case 1, (a) the initial reference state; (b) the variation of cost function; (c) the
variation of gradient norm.

Case 2. The upper part of soil is wetter than the lower. The numerical result is shown in Figure 2, whose
interpretation being the same as for Figure 1.
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Figure 2. In case 2, (a) the initial reference state; (b) the variation of cost function; (c) the
variation of gradient norm.

5.1.2. Assimilation with noisy data

The previous experiments demonstrate that the model’s assimilation ability is acceptable. In fact, the
observations are always not perfect. So, more experiments should be carried out for situations with noisy data.
The following is in this line. The model generated the reference state. Then, the reference state with a 5%
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Gaussian random perturbation is taken as the observation. That is, the observation error is not zero as the
above.
Case 3. The reference state at 6 h is taken as the first guess field for assimilation. The result is shown in
Figure 3, where Figure 3a gives the initial reference state of soil wetness; Figure 3b and Figure 3c present the
change of cost function and gradient norm with the iterative step number, respectively.
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Figure 3. In case 3, (a) the initial reference state; (b) the variation of cost function; (c) the
variation of gradient norm.

Case 4. The reference state at 12 h is taken as the initial guess for assimilation. The minimization progress is
presented in Figure 4, whose interpretation being the same as for Figure 3.
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Figure 4. In case 4, (a) the initial reference state; (b) the variation of cost function; (c) the
variation of gradient norm.

From these experiments, we can see that the assimilation technique works well for the soil water movement
model under consideration. Further, the uniqueness of the assimilation result and the convergence rate of the
minimization progress is studied in the context of the second order adjoint.

5.2. The uniqueness and convergence rate analysis

Gill et al. [8] pointed out that the convergence rate of minimization process is related to the conditional
number of the Hessian matrix of the cost function: the larger the conditional number is, the lower the convergence
rate. This problem has been widely investigated in the atmospheric field [5,6,17,29]. It is also clear that if the
Hessian is positive, the solution of the optimal control problem is unique [14,29]. In this soil water assimilation
problem, as noted in Section 4, the Hessian H(θ0) is a real symmetric matrix in practice. So all of its eigenvalues
can be calculated out by Jacobi method and the uniqueness of the solution and the convergence rate of cost
function can be studied together.
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The construction of the second order adjoint model can be found in [13]. The assimilation window is 24 hours,
and the observation interval (∆T obs) is 12, 6, 3, 2 and 1h, respectively. The formula of the cost function is
the same as (51). An even soil moisture state is taken as the first guess for each case. In the experiments, the
minimal eigenvalue and the conditional number of the Hessian matrix are calculated and the total number of
iterative steps noted. The result is in the following table:

Observation Minimal Conditional Number of
interval eigenvalue number iteration

12 h 0.212 432.5 7
6 h 0.219 451.1 11
3 h 0.226 497.3 17
2 h 0.231 547.6 18
1 h 0.210 815.2 22

It can be seen that in each case, the minimal eigenvalue of the Hessian is greater than zero. This means all of
the eigenvalues are positive, as well as the Hessian. So it can be concluded the assimilation solution is unique.
Comparing the conditional number and the number of iteration, the relationship that the latter increasing larger
according to the former is clear. Further, considering the observation interval, it can be found that the more
frequent the observed data used, the more the time cost. This demonstrates the intuitive opinion that using
the observation as much as possible in assimilation is not appropriate in view of practice.

The variation of cost function and norm of gradient during the minimization progress in each case is shown
in the following figure.

(a) (b)

Figure 5. The variation of cost function (a) and norm of gradient (b) with the iterative step number.
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