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ON THE PANEITZ ENERGY ON STANDARD THREE SPHERE
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Abstract. We prove that the Paneitz energy on the standard three-sphere S3 is bounded from below
and extremal metrics must be conformally equivalent to the standard metric.
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1. Introduction

The study of the Q-curvature equations, a natural generalization of the Yamabe equation to higher order
equation, began with the work of Paneitz [8], Branson [2] and Fefferman-Graham [5]. Several authors ([4, 6, 7, 10])
have studied this equation in dimensions higher than four due to the natural constraints from Sobolev inequal-
ities. In [11], Xu and Yang first call attention to the problem in dimension three and started their preliminary
study of the fourth order Paneitz equation in dimension three. The Paneitz operator on a three dimensional
manifold M3 is defined by

Pg = (−∆g)2 + δ

(
5
4
Rgg − 4Ricg

)
d − 1

2
Qg,

where the Q-curvature is given by

Qg = −2|Ricg|2 +
23
32

R2
g − 1

4
∆Rg.

Under a conformal change of metrics g1 = φ−4g with φ > 0, the Paneitz operator has the following property:

Pg1 (w) = φ7Pg(φw), ∀w ∈ W 2,2(M3). (1.1)

Therefore, similar to the scalar curvature problems, the Q-curvature problems are related to the following fourth
order nonlinear equation:

P (u) = −1
2
Qg1u

−7. (1.2)

It should be noted that the negative power −7 = n+4
n−4 only appears in the case of dimension n = 3. A similar

situation arises for the conformally laplacian equation in dimension one [1].
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In [11], Xu and Yang studied equation (1.2) in three dimensional manifolds on which the Paneitz operator
is positively. These do not include the standard three sphere, on which the Paneitz operator has a negatively
eigenvalue. The difficulty comes from the verification that the Paneitz energy is bounded from below. In this
note, we solve this problem and obtain the Liouvillve type theorem about the extremal metrics on the Paneitz
energy on S3.

For a given positive function φ(x) ∈ W 2,2(S3), the Paneitz energy is defined by

I(φ) =

∫
S3 Pφ · φ(∫

S3 φ−6
)−1/3

=

∫
S3

(|∆φ|2 − 1
2 |∇φ|2 − 15

16 |φ|2
)

(∫
S3 φ−6

)−1/3
, (1.3)

where P = (−∆)2 + 1
2∆ − 15

16 is the Paneitz operator with respect to the standard metric gS3 , see, e.g. the
paper of Xu and Yang [11].

We are going to prove the following.

Theorem 1.1.

inf
φ>0,φ∈W 2,2(S3)

I(φ) = −15
16

· (2π)4/3

is attained by u(x), where u(x) is of the form that u−4gS3 is the pullback of the standard metric via a conformal
transformation.

Remark 1.1. The above theorem actually implies the following sharp inequality for the Paneitz operator: for
any positive function φ ∈ W 2,2(S3),

∫
S3

(
|∆φ|2 − 1

2
|∇φ|2 − 15

16
|φ|2

)
≥ −15

16
· (2π)4/3 ·

(∫
S3

φ−6

)−1/3

,

and the equality holds if and only if φ(x) is of the form that φ−4gS3 is the pullback of the standard metric via
a conformal transformation.

We shall sketch our arguments as follows. Let {wk}∞i=1 ∈ C∞(S3) be a positive minimizing sequence with
‖wk‖L−6 = 1. Based on Talenti’s theorem of symmetrization for Laplace operator [9], we first obtain, in
Section 2, a rotationally symmetric minimizing sequence from {wk}∞k=1; then in Section 3, we use the conformal
invariant property of P to obtain a bounded minimizing sequence {hk}∞k=1, which eventually converges to a
minimizer h∞ in W 2,2(S3). A technical lemma is proved in the last section. Throughout the note, we denote N ,
S as the north and south poles of S3, respectively. We may also use the common C to represent various constants.

2. Symmetrization

In this section, we prove

Proposition 2.1. Let w be a positive smooth function on S3 with ‖w‖L−6 = 1 and
∫

S3 Pw · w < 0. For any
ε > 0, there is a rotationally symmetric positive function w# ∈ W 2,2(S3) such that

I(w#) ≤ I(w) + ε.

Proof. Without loss of generality, we may assume that w(N) = maxS3 w(x). For fixed ε, we choose small δ1

such that for δ < δ1, ∣∣∣∣∣
∫

Bδ(N)

Pw · w
∣∣∣∣∣ +

∣∣∣∣∣
∫

Bδ(N)

w−6

∣∣∣∣∣ ≤ ε

100
, (2.4)

where and throughout this section, we denote Bδ(x) as the geodesic ball of radius δ with center at x.
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Consider w1 = w · η + (1 − η) · w(N), where

η =
{

0, dist(x, N) ≤ δ
1, dist(x, N) ≥ 2δ

and |∇η| ≤ 10/δ. From the definition of P we have

|
∫

B2δ(N)

Pw1 · w1| ≤
∣∣∣∣∣
∫

B2δ(N)

(
|∆w1|2 − 1

2
|∇w1|2 − 15

16
|w1|2

)∣∣∣∣∣
+

∣∣∣∣∣
∫

∂B2δ(N)

(
∂w1

∂ν
· ∆w1 +

∂∆w1

∂ν
· w1

)∣∣∣∣∣
≤ Cδ3 ·

(
max
B2δ

|∆w1|2 + max
B2δ

|∇w1|2 + C

)

+ Cδ2 ·
(

max
∂B2δ

|∂∆w1/∂ν| + max
∂B2δ

|∇w1 · ∆w1|
)

. (2.5)

At the maximal point N of w, we have

|∇w(x)| = O(1)δ, w(x) − w(N) = O(1)δ2, ∀x ∈ B2δ(N).

Thus for x ∈ B2δ(N),
∆w1 = w · ∆η − w(N) · ∆η + 2∇w · ∇η + ∆w · η ≤ C.

On the boundary ∂B2δ(N)

∂∆w1/∂ν ≤ C

δ
·

It follows from (2.5) that ∣∣∣∣∣
∫

B2δ(N)

Pw1 · w1

∣∣∣∣∣ ≤ Cδ. (2.6)

We thus can choose δ2 ≤ δ1 such that for δ < δ2,

I(w1) ≤ I(w) +
ε

100
· (2.7)

Therefore, without loss of generality, we can assume that for fixed δ̄ < δ2

w(x) = w(N) ∀x ∈ Bδ̄(N). (2.8)

Next, we reduce the problem onto R
3 via the stereographic projection Φ : x ∈ S3 → y ∈ R

3, given by

xi =
2yi

1 + |y|2 , for i = 1, 2, 3; x4 =
|y|2 − 1
|y|2 + 1

·

Let v(y) be the positive function such that

gS3 =
4∑

i=1

dx2
i =

(
2

1 + |y|2
)2

dy2 := v−4dy2 := v−4g0.
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From (2.6) and (1.1) we have for δ < δ2,

ε

100
≥

∣∣∣∣∣
∫

Bδ(N)

Pw · wdvg

∣∣∣∣∣ =

∣∣∣∣∣
∫

Bδ(N)

P0(vw) · vwdvg0

∣∣∣∣∣
=

∣∣∣∣∣
∫

Bc
Rδ

(0)

(−∆0)2(wv) · (wv)

∣∣∣∣∣ dy, (2.9)

where Bc
Rδ

(0) is the exterior ball of radius Rδ centered at the origin in R
3 and ∂BRδ

:= Φ(∂Bδ(N)). Integrating
by parts, we have ∣∣∣∣∣

∫
BRδ

(0)

(−∆)2(wv) · (wv)

∣∣∣∣∣ =
∫

BRδ
(0)

|∆(wv)|2 −
∫

∂BRδ
(0)

∂(wv)
∂ν

· ∆(wv)

+
∫

∂BRδ
(0)

∂(∆(wv))
∂ν

· (wv). (2.10)

Throughout the rest of this section, we fix R̄ to be the radius of the ball Φ(∂Bδ̄(N)); And we always choose
δ < δ̄ (thus Rδ > R̄). For convenience, we denote a := w(N). Since w(x) = a in Bδ̄(N), we know from (2.8)
that w(y) = a for |y| ≥ R̄. Thus, in Bc

R̄
⊂ R

3 one can check that

wv(y) =
a√
2

(
1 + |y|2)1/2

;
∂(wv)

∂ν
(y) =

a√
2

(
1 + |y|2)−1/2 |y|,

and

∆(wv)(y) =
a√
2

(
3 + 2|y|2) · (1 + |y|2)− 3

2 ;
∂(∆(wv))

∂ν
(y) =

a√
2

(
5 + 2|y|3) · (1 + |y|2)− 5

2 . (2.11)

Therefore on boundary ∂BR(0) for any R > R̄,

wv(y) =
aR√

2

[
1 + (1 + o(1))R−2

]
; (2.12)

∂(wv)
∂ν

(y) =
a√
2

[
1 − (1 + o(1))R−2

]
; (2.13)

∆(wv)(y) =
√

2a
R

· (1 + o(1)R−2
)
; (2.14)

∂∆((wv))
∂ν

(y) = −
√

2a
R2

· (1 + o(1)R−2
)
, (2.15)

where o(1) → 0 as R → ∞. It follows that

−
∫

∂BR(0)

∂(wv)
∂ν

· ∆(wv) +
∫

∂BR(0)

∂(∆(wv))
∂ν

· (wv) = −6ω3a
2R + o(1)R−1, (2.16)

where ω3 = 4π/3 is the volume of the unit ball in R
3.

We start the symmetrization procedure for (wv)(y) in the ball BR(0) for any fixed R > R̄. Let h(y) := wv(y).
Notice h(R) = max|y|≤R h(y). We consider τ(y) = h(R) − h(y) for y ∈ BR(0), and let τ# be the positive
solution to {

∆τ# = (∆τ)∗ in BR(0)

τ#(R) = 0,
(2.17)
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where (∆τ)∗ is the non-increasing radially symmetric rearrangement of |∆τ |. Let τ∗ be the non-increasing
symmetric rearrangement of τ in BR(0), then τ∗(y) = h(R) − h∗(y) for y ∈ BR(0), where h∗(y) is the non-
decreasing symmetric rearrangement of h(y) in BR(0). Since τ(y) = 0 on the boundary ∂BR(0), it follows from
a theorem of Talenti [9] that

τ#(y) ≥ τ∗(y) = h(R) − h∗(y) ∀y ∈ BR(0).

Let
h# = h(R) − τ#, (2.18)

then {
∆h# = −(∆τ)∗ = −(|∆h|)∗ in BR(0)

h# ≤ h∗ in BR(0).
(2.19)

Thus, for r < R, ∫
Br(0)

|∆(wv)#|2 =
∫

Br(0)

|(|∆h|)∗|2 =
∫

Br(0)

|∆h|2 =
∫

Br(0)

|∆(wv)|2. (2.20)

Lemma 2.1. If we choose R ≥ 3R̄, and define (wv)# in BR(0), then on the boundary ∂BR−2R̄(0), we have the
following equalities

(wv)#
(|y| = R − 2R̄

)
=

a
(
R − 2R̄

)
√

2

[
1 +

O(1)(
R − 2R̄

)2

]
; (2.21)

∂(wv)#

∂ν

(|y| = R − 2R̄
)

=
a√
2

+
O(1)(

R − 2R̄
)2 ; (2.22)

∆(wv)#
(|y| = R − 2R̄

)
=

√
2a

R − 2R̄
+

O(1)(
R − 2R̄

)4 , (2.23)

where O(1) is a bounded term (bounded by a uniform constant independent of R). In addition, there is a
sequence of radii Ri → ∞ such that if we define (wv)# in BRi(0), then on the boundary ∂BRi−2R̄(0)

∂∆((wv)#)
∂ν

(|y| = Ri − 2R̄
)

= −
√

2a(
Ri − 2R̄

)2 +
O(1)(

Ri − 2R̄
)4 , (2.24)

where O(1) is a bounded term (bounded by a uniform constant independent of Ri).

We relegate the proof of Lemma 2.1 to the last section. We now define (wv)# as before in BRi(0). From
Lemma 2.1, one can check that

−
∫

∂BRi−2R̄

∂(wv)#

∂ν
· ∆(wv)# +

∫
∂BRi−2R̄

∂(∆(wv)#)
∂ν

· (wv)# = −6ω3

(
Ri − 2R̄

)
a2 +

O(1)(
Ri − 2R̄

) · (2.25)

For a small positive number γ � 1, we can choose a radially symmetric positive function w̃ ∈ W 2,2
loc (R3) such that

w̃(y) =




(wv)# |y| ≤ Ri − 2R̄

a(1 + y2)1/2

√
2

|y| ≥ Ri − 2R̄ + γ,

and ∀y ∈ BRi−2R̄+γ(0) \ BRi−2R̄(0),

w̃(y) ≤ CRi, |∆w̃(y)|2 ≤ CR−2
i , (−∆)2w̃(y) ≤ CR−3

i .
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The existence of such w̃ is guaranteed by (2.12)–(2.15) and Lemma 2.1. We thus choose γ < γ1 for some
small γ1, such that for sufficiently large Ri,∫

BRi−2R̄+γ(0)\BRi−2R̄(0)

|∆w̃|2dy +
∫

BRi−2R̄+γ(0)\BRi−2R̄(0)

w̃(−∆)2w̃dy ≤ ε

100
· (2.26)

Finally, we define w# = w̃/v on S3 and have: for large enough Ri,∫
S3

Pw · wdvg+
ε

100
=

∫
BRi−2R̄

(−∆)2(wv) · (wv)dvg0 (by (2.9))

=
∫

BRi−2R̄

(−∆)2(wv)# · (wv)#dvg0+
ε

50
(by (2.10), (2.16), (2.20) and (2.25))

=
∫

BRi−2R̄+γ

(−∆)2w̃ · w̃dvg0+
ε

25
(by (2.26))

=
∫

S3\Φ−1(BRi−2R̄+γ)

Pw# · w#dvg+
ε

25

=
∫

S3
Pw# · w#dvg+

ε

10
,

(2.27)
where we use the fact that w#(y) = a in Φ−1(BRi−2R̄+γ) in the last equality.

On the other hand, from (2.19) and the definition of w#, we have

(∫
S3

(w#)−6dvg

)1/3

≥
(∫

S3
w−6dvg

)1/3

− ε

10
· (2.28)

Notice that
∫

S3 Pw · w < 0, we thus obtain Proposition 2.1 from (2.27) and (2.28). �

3. Convergence

Existence of extremal functions

Let {wk}∞k=1 be a minimizing sequence of inf I(u) with the following properties:

wk > 0,

∫
S3

w−6
k = 1. (3.29)

We shall consider two cases.

Case 1. Up to a subsequence of {wk}∞k=1,

||wk||L∞ ≤ C < ∞. (3.30)

As a consequence we have: ||wk||L2 ≤ C. i Since
∫

S3 Pwk · wk ≤ 0, it follows from Bochner’s formula that

∫
S3

Pwk · wk =
∫

S3

{∣∣∇2wk

∣∣2 +
3
2
|∇wk|2 − 15

16
w2

k

}
,

thus ||wk||W 2,2 ≤ C. Therefore wk → wo weakly in W 2,2(S3). From Sobolev embedding theorem, we know
that wo ∈ C0, 1

2 (S3), and wo ≥ 0. We claim that wo > 0 on S3. Otherwise, there is a point x0 ∈ S3 such that
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wo(x0) = 0. This together with wo ∈ C0, 1
2 (S3) yields∫

S3
w−6

o = ∞.

On the other hand, from Fatou’s lemma, we have∫
S3

w−6
o =

∫
S3

limk→∞w−6
k ≤ limk→∞

∫
S3

w−6
k = 1.

in contradiction to the previous assertion. Thus wo > 0. It follows that for any ε > 0, as k becomes sufficiently
large, w−6

k ≤ w−6
o + ε. From the dominated convergence theorem, we obtain:

∫
S3

w−6
o =

∫
S3

limk→∞w−6
k = limk→∞

∫
S3

w−6
k = 1.

Also, by semi-continuity we have ∫
S3

Pwo · wo ≤ limk→∞

∫
S3

Pwk · wk,

these yield
I(wo) ≤ inf I(u),

that is: wo is a minimizer.

Case 2. ||wk||L∞ is not bounded, that is
||wk||L∞ → ∞. (3.31)

We will construct another minimizing sequence which is uniformly bounded. Due to Proposition 2.1, we can
assume that wk(x) is rotationally symmetric and wk(x(y)) ·v(y) is non-decreasing in |y| in any ball BR(0) ⊂ R

3

as k → ∞.
Define

λk = wk(S) · w−1
k (N); xλky = Φ−1(λky), (3.32)

and

zk(x) := λ
−1/2
k wk(xλky) ·

(
1 + |λky|2
1 + |y|2

)1/2

, (3.33)

where x = Φ−1(y). It is easy to check that

I(zk) = I(wk), and
∫

S3
z−6

k = 1. (3.34)

Therefore {zk}∞k=1 is a minimizing sequence. We need the following two lemmas.

Lemma 3.1. Let

Lo =
{
ϕ ∈ W 2,2(S3) \ {0} : ϕ(x) ≥ 0, but ϕ(x) is not strictly positive

}
,

and
Lb =

{
ϕ ∈ Lo : {x ∈ S3 : ϕ(x) = 0} has positive measure

} ·
Then

inf
ϕ∈Lo

∫
S3 Pϕ · ϕ∫

S3 ϕ2
≥ 0, (3.35)
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and there is a Λ1 > 0, such that

inf
ϕ∈Lb

∫
S3 Pϕ · ϕ∫

S3 ϕ2
≥ Λ1. (3.36)

Proof. We first prove (3.35) by contradiction. If (3.35) is not true, then there are a function u(x) ∈ C∞(S3)
and a point x̄ ∈ S3 satisfying u(x̄) = 0, u(x) ≥ 0,

∫
S3 u2 = 1, and

∫
S3

Pu · u ≤ 1
2

inf
ϕ∈Lo

I(ϕ) < 0.

Since x̄ is the minimal point of u(x), |∇u(x̄)| = 0. Using the stereographic projection with the north pole at x̄
and integrating by parts, we obtain∫

S3
Pu · u =

∫
R3

∆2(uv(y)) =
∫

R3
[∆(uv(y))]2 ≥ 0,

where v(y) =
√

(1 + |y|2)/2. Contradiction.
Notice that for any fixed R > 0,

inf
φ∈C∞

o (BR(0))

∫
BR(0) |∆φ|2∫
BR(0) |φ|2

≥ Λ(R) > 0,

we can obtain (3.36) using a similar argument. �
Lemma 3.2. Let G(y) = G(|y|) ≥ 0 be a positive radially symmetric function in R

3i \ {0}. If G(r) ∈ L∞
loc(R

3)
and satisfies {

∆2G = 0, in R
3 \ {0}

limr→∞
G(r)

r ≤ C.
(3.37)

Then either G(r) > 0 at r = 0 or G(r) = ar for 0 ≤ r < ∞, where a is some positive constant.

Proof. From the general solution to the equation, it follows that G(r) is given by

G(r) =
C1

r
+ C2 + C3r + C4r

2.

Since G ∈ L∞
loc(R

3), we find that C1 = 0. From limr→∞ G(r)/r ≤ C, we find that C4 = 0. If G(0) = 0, then
C2 = 0, thus G(r) = C3r, where C3 must be positive since G(r) > 0 for 0 < r < ∞. This proves the lemma. �

Return to the construction of a uniformly bounded minimizing sequence. For any k, we check that

zk(N) = zk(S) = [wk(S) · wk(N)]1/2. (3.38)

If ||zk||L∞ ≤ C up to a subsequence, we then can obtain a minimizer as in Case 1.
We are left to handle the case of ||zk||L∞ → ∞. Assume that zk(x̄k) = maxS3 zk(x), and define

hk(x) :=
zk(x)
zk(x̄k)

·

Then 0 < hk ≤ 1 and hk(x̄k) = 1. Moreover, {hk}∞k=1 is again a minimizing sequence of inf I(u). Therefore, up
to a subsequence of k,

hk → h∞ weakly in W 2,2, hk → h∞ in L2,
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for some h∞ ∈ W 2,2(S3) with h∞(N) = h∞(S), h∞(x̄) = 1, where x̄ is a limit point of {x̄k}. Also, it is obvious
that h∞ is rotationally symmetric. If h∞ > 0, it is a minimizer. We need to rule out the possibility that h∞
vanishes somewhere. We claim that h∞(x) > 0 for all x ∈ S3 \ {N, S}. Suppose this is not so. If 1/C < λk < C
for some positive constant, due to the monotonicity property of wk, h∞ may vanish in a small neighborhood of
some point on S3, which yields (due to Lem. 3.1) that

∫
S3 Ph∞ · h∞ > 0, contradiction! If λk → 0 or λk → ∞

up to a subsequence of k, then h∞(N) = h∞(S) = 0; it is not difficult to see (using Lem. 3.1) that h∞ must
satisfy (3.37). But this contradicts Lemma 3.2. We therefore complete the proof of the existence of a minimizer
for inf I(u). �

Classification of extremal function

Let uo(x) be an extremal function for Paneitz energy with the maximal point at the north pole. Denote
v(y) =

√
(1 + |y|2)/2. Using the stereographic projection, we know that w(y) = uo(x(y))v(y) is a positive

solution to the following equation: {
∆2w = Ew−7 in R

3

w(y) → C|y| as |y| → ∞ (3.39)

for some positive constants E and C. It was proved by Choi and Xu [3] that

w(y) = C
√

(1 + λ|y − y0|2)

for some positive constants C and λ, and any point y0 ∈ R
3. This yields that

inf
φ>0,φ∈W 2,2(S3)

I(φ) = −15
16

· (2π)4/3,

and u−4
o gS3 is a pullback of the standard metric on S3 via a conformal transformation. We therefore complete

the proof of the theorem. �

4. Proof of Lemma 2.1

Define
t = (∆(wv))∗

(|z| = R − 2R̄
)
. (4.40)

For fixed R̄, t is a function of R. We need to study the set {y ∈ R
3 : |∆(wv)| > t}·

Let
tR =

a√
2

(
3 + 2|R|2) · (1 + |R|2)−3/2

,

ω3 be the volume of the unit ball in R
3, and mt = vol{y ∈ BR̄ : |∆(wv)| ≤ t}·

We first claim that t ≥ tR. If not, t < tR. This implies that (using (2.11))

mes{y ∈ BR : ∆(wv))∗ < t} = mes{y ∈ BR : |∆(wv)| < t}
= mes{y ∈ BR̄ : |∆(wv)| < t}
= mtR

≤ R̄3ω3.

It follows from (4.40) that

mes{y ∈ BR : ∆(wv))∗ < t} = vol(BR) − vol(BR−2R̄) > R̄3ω3.

This is in contradiction with the previous assertion.
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Since (2.11) holds for all y ∈ BR(0)\BR̄(0), we see that for almost every s ≥ t, the level set {y : |∆(wv)| = s}
consists of {

y :
a√
2
(3 + 2|y|2) · (1 + |y|2)−3/2 = s

}
and some other level surface in a bounded (independent of t) subset of BR̄(0). Therefore, we have

vol{y ∈ R
3 : |∆(wv)| > s} = r3

sω3 − ms, (4.41)

where rs satisfies
a√
2

(
3 + 2|rs|2

) · (1 + |rs|2
)−3/2

= s, (4.42)

thus

rs =
√

2a
s

(
1 + os(1)s2

)
, (4.43)

where os(1) → 0 as s → 0.
If (∆(wv))∗(|z|) = s for some s ≥ tR, we have

mes{y ∈ BR : ∆(wv))∗ > s} = mes{y ∈ BR : |∆(wv)| > s}
− mes{y ∈ BR̄ : |∆(wv)| < s}·

That is |z|3 ·ω3 = r3
sω3−ms. Using Cs to represent various uniformly bounded constants (bounded by a constant

depending only on R̄), we have (also using (4.43))

|z| = (r3
s + Cs)1/3

=
√

2a

s
+ Css

2.

Thus

s =
√

2a

|z| +
Cs

|z|4 · (4.44)

Since t ≥ tR, it follows that for |z| ≤ R − 2R̄,

∆(wv)#(z) = (∆(wv))∗(z) =
√

2a
|z| +

Cs

|z|4 · (4.45)

This yields (2.23).
If (∆(wv))∗(|z|) = s for some s ≤ tR, we have

mes{y ∈ BR : ∆(wv))∗ > s} = vol(BR) − mes{y ∈ BR̄ : |∆(wv)| < s}·

That is |z|3 · ω3 = R3ω3 − ms. Since R = rtR , we have

|z| = (R3 + Cs)1/3

=
√

2a

tR
+ Cst

2
R.

That is

tR =
√

2a

|z| +
Cs

|z|4 · (4.46)
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We hereby have

s = ∆(wv)#(z) = (∆(wv))∗(z)




=
√

2a
|z| +

Cs

|z|4 , for s ≥ tR

≤
√

2a
|z| +

Cs

|z|4 , for s ≤ tR.

Notice that s = tR is equivalent to

|z| = R

(
1 +

Cs

R3

)
·

We thus have

∆(wv)#(z) = (∆(wv))∗(z)




=
√

2a
|z| +

Cs

|z|4 , for |z| ≤ R

(
1 +

Cs

R3

)

≤
√

2a
|z| +

Cs

|z|4 , for |z| ≥ R

(
1 +

Cs

R3

)
·

(4.47)

If we define

ϕ(r) :=
d
dr

(wv)#(r) for r = |z|,
from (4.47) we have

(r2ϕ)′ =
√

2ar +
Cs

r2
, for r ∈ [

2, R − 2R̄
)
.

Integrating the above from r = 2 to r = |y| ≤ R − 2R̄ yields ϕ(|y|) = a√
2

+ Cs

|y|2 · Thus

∂

∂ν
(wv)#(|y| = R − 2R̄) =

a√
2

+
CR

(R − 2R̄)2
, (4.48)

where CR is a uniformly bounded term. This yields (2.22).
Similarly, using (4.47), we have

(r2ϕ)′




=
√

2ar +
Cs

r2
for r ≤ R

(
1 +

Cs

R3

)

≤ √
2ar +

Cs

r2
for r ≥ R

(
1 +

Cs

R3

)
·

Thus
∂

∂ν
(wv)#(|y| = r) =

a√
2

+
O(1)
r2

for r ∈ [2, R). (4.49)

Since

(wv)#(R) = wv(R) =
aR√

2

[
1 + (1 + o(1))R−2/2

]
,

we obtain (2.21) by integrating (4.49).
Finally, we prove (2.24). Again, we need to study the set {y ∈ R

3 : |∆(wv)| > s} for s ≥ tR. If
(∆(wv))∗(z) = s, then |z|3ω3 = r3

sω3 − ms. We have

r3
s = |z|3 + msω

−1
3 (4.50)

thus

rs = |z| + Cs

|z|2 · (4.51)
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From (4.50) we have

dr3
s

d|z| = 3|z|2 +
1
ω3

· dms

ds
· ds

d|z| ·

Thus
drs

d|z| =
|z|2
r2
s

+
1

3r2
sω3

· dms

ds
· ds

d|z| · (4.52)

Notice that ∫ ∞

0

m′
s(s)ds ≤ R̄3ω3 < ∞,

we know that there is a sequence si → 0 as i → ∞, such that

m′
s(s) ≤

1
s2

for s = si. (4.53)

For these si, there are corresponding rsi and |zi|, which satisfy

dms

ds
<

1
s2

i

≤ Cr2
si

.

Notice that
ds

d|z| =
ds

drs
· drs

d|z| ·

And from (4.42), we have

ds

drs
= −

√
2a

r2
s

(1 + Csr
−2
s ).

Therefore

ds

d|z| (|z| = |zi|) = −
√

2a

r2
si

(
1 + Csr

−2
si

) · ( |zi|2
r2
si

+
1

3r2
sω3

· dms

ds
· ds
d|z|

)
·

Using (4.51) we obtain

∂

∂ν
(∆(wv))#(|z| = |zi|) =

∂

∂ν
(∆(wv))∗(|z| = |zi|)

=
ds

d|z|(|z| = |zi|)

= −
√

2a

z2
si

+
Cs

|zi|4 ·

We therefore complete the proof of Lemma 2.1. �
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