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Abstract. We consider the pseudo-p-Laplacian, an anisotropic version of the p-Laplacian operator
for p 6= 2. We study relevant properties of its first eigenfunction for finite p and the limit problem as
p→∞.
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1. Introduction

Imagine a nonlinear elastic membrane, fixed on a boundary ∂Ω of a plane domain Ω. If u(x) denotes its
vertical displacement, and if its deformation energy is given by

∫
Ω |∇u|p dx, then a minimizer of the Rayleigh

quotient ∫
Ω

|∇u|p dx∫
Ω

|u|p dx

on W 1,p
0 (Ω) satisfies the Euler–Lagrange equation

−∆pu = λp |u|p−2u in Ω. (1.1)

Here ∆pu = div(|∇u|p−2∇u) is the well-known p-Laplace operator. This eigenvalue problem has been exten-
sively studied in the literature. A somewhat surprising recent result is that (as p → ∞) the limit equation
reads

min { |∇u| − Λ∞u, −∆∞u} = 0. (1.2)

Here ∆∞u =
∑

i,j uxiuxj uxixj , Λ∞ = limp→∞ Λp and Λp = λ
1/p
p (see [19, 26]). Although the function d(x, ∂Ω)

minimizes ||∇u||∞/||u||∞, it is not always a viscosity solution of (1.2), see [26].
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If the membrane is woven out of elastic strings in a rectangular fashion, then its deformation energy is
given by ∫

Ω

∑
i

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p

dx. (1.3)

A minimizer of ∫
Ω

∑
i

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p

dx

∫
Ω

|u|p dx

on W 1,p
0 (Ω), if it exists, will satisfy the equation

−∆̃pu = λ̃p |u|p−2u (1.4)

with

∆̃pu =
∑

i

∂

∂xi

(∣∣∣∣ ∂u

∂xi

∣∣∣∣
p−2

∂u

∂xi

)
(1.5)

as the pseudo-p-Laplacian operator. This operator has been around for while and is treated for instance
in [37] (pp. 106 and 155) or [45, 46]. The physical interpretation of the associated energy is our invention. It
is the purpose of this paper to investigate ground state solutions of (1.4) in any dimension n. Considerable
attention is also given to the limit equation (as p →∞)

min
{

max
k

|uxk
| − Λ̃∞u, −∆̃∞u

}
= 0. (1.6)

Here Λ̃p = λ̃
1/p
p , Λ̃∞ = lim Λ̃p and ∆̃∞u =

∑
j∈I(∇u(x)) |uxj |2uxjxj with

I(ξ) =
{

k ∈ N | 1 ≤ k ≤ n, max
j=1,...,n

|ξj | = |ξk|
}

for ξ ∈ R
n. (1.7)

It is well-known, that the infinite-Laplacian operator ∆∞ is closely related to finding a minimal Lipschitz
extension of a given function φ ∈ C0,1(∂Ω) into Ω. We shall give a related geometric interpretation of the
anisotropic operator ∆̃∞.

In our treatment we were inspired by analogous results on the torsion problem

−∆pu = 1 (1.8)
which has the limit equation (as p →∞)

min { |∇u| − 1, −∆∞u } = 0 (1.9)
and d(x, ∂Ω) as a solution to the limit problem. (see [10, 28] and (6.2) in [22].)

The corresponding pseudo torsion problem
−∆̃pu = 1 (1.10)

has limit equation (as p →∞)

min


max

k
|uxk

| − 1, −
∑

j∈I(∇u(x))

|uxj |2uxjxj


 = 0 (1.11)

with I(∇u) as in (1.7) (see (6.3) in [22]).

Our paper is organized as follows. In Section 2 we prove the existence, uniqueness and regularity of weak
and viscosity solutions. In Section 3 we derive the limit equation for p → ∞. In Section 4 we provide some
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instructive examples. Section 5 deals with ∆̃∞, its geometric interpretation and minimal Lipschitz extensions.
Section 6 is dedicated to a concavity result and Section 7 addresses symmetry questions for symmetric domains.

For later reference let us list some facts in the case that n = 1, in which both p-Laplace and pseudo-p-Laplace
coincide, because then ∆pu = ∆̃pu = (|u′|p−2u′)′ = (p−1)|u′|p−2u′′ for C2–functions. These are taken from [36],
see also [18]. Let (a, b) ⊂ R and

µp = inf
W 1,p

0 ((a,b))

||v′||pp
||v||pp · (1.12)

Then the minimizing function wp solves

(p− 1)|w′p|p−2w′′p + µp|wp|p−2wp = 0 in (a, b), (1.13)

with wp(a) = wp(b) = 0. Moreover, wp is of class C1,α and

µp = (p− 1)
[

2
b− a

∫ 1

0

dt

(1− tp)1/p

]p

· (1.14)

A straightforward calculation gives

µ1/p
p =

2π(p− 1)1/p

(b − a)p sin(π
p )

, (1.15)

and µ
1/p
p = µ

1/q
q if 1/p + 1/q = 1.

2. Existence, uniqueness and regularity of solutions

If we minimize the functional

Jp(v) =
∫

Ω

n∑
j=1

∣∣∣∣ ∂v

∂xj

∣∣∣∣
p

dx on K := { v ∈ W 1,p
0 (Ω) | ||v||Lp(Ω) = 1 }, (2.1)

then via standard arguments (see [39]) a minimizer up exists for every p > 1 and it is a weak solution to the
equation (1.4), i.e. ∫

Ω

n∑
j=1

∣∣∣∣∂up

∂xj

∣∣∣∣
p−2

∂up

∂xj
· ∂v

∂xj
dx = λ̃p

∫
Ω

|up|p−2up · v dx (2.2)

for any v ∈ W 1,p
0 (Ω). Here λ̃p = Jp(up). Note that Λ̃p := λ̃

1/p
p is the minimum of the Rayleigh quotient

Rp(v) :=


∫

Ω

n∑
j=1

∣∣∣∣ ∂v

∂xj

∣∣∣∣
p

dx




1/p

||v||p (2.3)

on W 1,p
0 (Ω) \ {0}. Without loss of generality we may assume that up is nonnegative. Otherwise we can replace

it by its modulus. Moreover any nonnegative weak solution of (2.2) is necessarily bounded, as can be shown
by adapting the arguments from [35]. The nonnegativity and boundedness of up are helpful in deriving its
positivity everywhere, which follows from a Harnack-type inequality due to Trudinger [43].

If p > n, then up is Hölder continuous because of the Sobolev-embedding theorem. But even for general
p > 1, one can show its Hölder continuity by a different argument of Sakaguchi, see Lemma 2.3 below. Since
Sakaguchi’s proof requires uniqueness of up, let us first prove uniqueness.
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Lemma 2.1. The positive minimizer of (2.1) is unique.

A proof of this lemma was given in [4] (Th. 5), but only under the additional smoothness assumption
up ∈ C1(Ω). Our proof does not need this assumption and follows [29] (Prop. 4) and [9], see also [1, 3, 12, 16, 40]
for related results on the p-Laplace operator. We simply observe that for positive functions v the functional
Jp(v) is convex in vp. In fact under the substitution w = vp the side constraint in K is linear, and the functional
transforms into

Jp(v) = p−p

∫
Ω

w1−p
n∑

j=1

∣∣∣∣ ∂w

∂xj

∣∣∣∣
p

dx =: p−p
n∑

j=1

Ej(w),

with

Ej(w) =
∫

Ω

w1−p

∣∣∣∣ ∂w

∂xj

∣∣∣∣
p

dx.

Note that the integrand of Ej can be written as h(w, y) = w1−pyp with y standing for |∂w/∂xj |. This function
of two variables is convex, since the trace of its Hessian D2h is positive and the determinant of its Hessian
vanishes. In fact,

trace D2h = (p− 1)pw−p−1yp + p(p− 1)w1−pyp−2 > 0

and
detD2h = p2(p− 1)2

[
w−p−1yp w1−pyp−2 − w−2py2p−2

]
= 0.

Let us now show how uniqueness of a minimizer u follows from this convexity property. If there are two solutions
u and U of (2.1), then for t ∈ [0, 1] the test function ut = η1/p with η := tup + (1 − t)Up is admissible in (2.1),
because

∫
Ω

up
t dx = t

∫
Ω

up dx + (1− t)
∫
Ω

Up dx = 1.
Now we calculate ∇ut = η−1+1/p[tup−1∇u + (1− t)Up−1∇U ], so that

∣∣∣∣∂ut

∂xj

∣∣∣∣
p

= η1−p|tup−1uxj + (1 − t)Up−1Uxj |p

= η

∣∣∣∣ tup

η

uxj

u
+

(1 − t)Up

η

Uxj

U

∣∣∣∣
p

= η

∣∣∣∣s(x)
uxj

u
+ (1 − s(x))

Uxj

U

∣∣∣∣
p

with s(x) :=
tup

tup + (1 − t)Up
∈ (0, 1)

≤ η

[
s(x)

∣∣∣uxj

u

∣∣∣+ (1− s(x))
∣∣∣∣Uxj

U

∣∣∣∣
]p

≤ η

[
s(x)

∣∣∣uxj

u

∣∣∣p + (1− s(x))
∣∣∣∣Uxj

U

∣∣∣∣
p]

= t up
∣∣∣uxj

u

∣∣∣p + (1− t) Up

∣∣∣∣Uxj

U

∣∣∣∣
p

= t |uxj |p + (1− t) |Uxj |p
and ∫

Ω

∣∣∣∣ ∂

∂xj
ut

∣∣∣∣
p

dx ≤ t

∫
Ω

∣∣∣∣ ∂

∂xj
u

∣∣∣∣
p

dx + (1− t)
∫

Ω

∣∣∣∣ ∂

∂xj
U

∣∣∣∣
p

dx. (2.4)

This shows that Jp(ut) ≤ tJp(u)+(1− t)Jp(U). Because u and U are both solutions of (2.1), so is ut. Therefore
equality must hold in (2.4) for every j = 1, . . . , n, i.e.

∇u

u
=
∇U

U
a.e. in Ω. (2.5)

But (2.5) implies that ∇(u/U) = 0 a.e. in Ω, so that u = (const.) · U . Finally the norm constraint in (2.1)
implies that u = U . This completes the proof of Lemma 2.1.
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Remark 2.2. Let us remark in passing that this convexity argument can be used to prove uniqueness for
positive solutions to a more general class of problems, namely

∆̃pu + f(x, u) = 0 in Ω, (2.6)

with u = 0 on ∂Ω, provided f : Ω× [0,∞) satisfies the hypotheses
(a) for a.e. x ∈ Ω the map r1−pf(x, r) is strictly decreasing in r ∈ [0,∞);
(b) There exists c > 0 with f(x, r) ≤ c(rp−1 + 1) for a.e. x ∈ Ω and r ∈ [0,∞).

To prove uniqueness for problem (2.6), one has to observe that solutions are critical points of a functional

Hp(v) :=
∫

Ω


1

p

(∑
j

|vxj |p
)
− F (x, v)


 dx

with F (x, v) :=
∫ v

0
f(x, |s|) ds. Because of (b), the functional Hp is well defined on W 1,p

0 (Ω). By definition it
is even in v and its first part convex in vp. The second part − ∫ F (x, v) dx is even strictly convex in vp due
to (a). Hence Hp can have at most one positive critical point. Corresponding results for the p-Laplacian were
stated in [12] in case p = 2 and in [16] for general p, but under an additional assumption on f .

Lemma 2.3. The nonnegative minimizer of (2.1) is Hölder-continuous.

Let us give two proofs. For the first proof we note that up minimizes the functional Jp(v) − λ̃p

∫
Ω

vp dx

on W 1,p
0 (Ω) and we observe that the norms (

∑n
i=1 |ξi|p)1/p and (

∑n
i=1 |ξi|2)p/2 are equivalent, and refer to

Theorems 2.1 and 3.1 in [20].
For the second proof we follow ideas from [40] and fix p ∈ (1,∞). The unique solution u of the degenerate

equation (2.1) is approximated by uε, where uε is minimizes

∫
Ω

n∑
j=1

(
εv2 +

∂v

∂xj

2)p/2

dx on K := { v ∈ W 1,p
0 (Ω) | ||v||Lp(Ω) = 1 }· (2.7)

The Euler–Lagrange equation associated to (2.7) reads

−
n∑

j=1

[(εu2 + u2
xj

)(p−2)/2 uxj ]xj = λ|u|p−2u− ε

n∑
j=1

(εu2 + u2
xj

)(p−2)/2 u (2.8)

and has the advantage of being nondegenerate elliptic. In contrast to (1.4) this equation (2.8) satisfies structural
assumptions which lead to a priori estimates independent of ε > 0. To be specific, the set {uε} is uniformly
bounded in W 1,p

0 (Ω) as ε → 0 and has a weakly convergent subsequence converging to the minimizer u of (2.1).
From Lemma 9.6 in [21] (p. 213f) or Theorem 7.1 in [31] (p. 286f) applied to (2.8) we have a uniform bound
of uε in L∞(Ω). This allows us to apply Theorem 1.1 in [31] (p. 251) and to conclude that uε has a bound
in Cα(Ω) uniformly in ε for some α ∈ (0, 1) depending on p. So these functions uε converge uniformly by the
Ascoli–Arzelà theorem, because they are uniformly bounded and uniformly Hölder continuous. Moreover they
converge to the unique (positive normalized) solution of (1.4) which is therefore in Cα(Ω) as well. This ends
the proof of Lemma 2.3.

Example 2.4. In cartesian coordinates the operator ∆̃p is separable. So an Ansatz of the form u(z, y) =
v(z)w(y) with nonnegative v and w and z = (x1, . . . , xj), y = (xj+1 . . . , xn) gives

∆̃pu = wp−1(y)∆̃pu(z) + up−1(z)∆̃pw(y). (2.9)
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As a consequence of this the first eigenfunction up and eigenvalue λp on a cube C := (a, b)n (or square) is
given by

up(x) =
n∏

j=1

wp(xj) and λ̃p(C) = nµp, (2.10)

where wp and µp are defined in (1.13) and (1.14).

The next item will be viscosity solutions. As in [26] we plan to show that every weak solution is a viscosity
solution. For every z ∈ R, q ∈ R

n and for every real symmetric n× n matrix X we consider the equation

Fp(z, q, X) = −(p− 1)
n∑

j=1

[|qj |p−2Xjj

]− λ̃p|z|p−2z = 0. (2.11)

For p ≥ 2 the function Fp is continuous, while for p ∈ (1, 2) Fp is singular at every q in a Cartesian plane
{qk = 0}. In this respect the pseudo-Laplace operator is more singular than the p-Laplace operator, for which the
corresponding Fp is singular only at one point q = 0. The upper and lower semicontinuous envelopes F ∗

p and Fp∗
of Fp coincide with Fp for p ≥ 2 and are obviously modified to +∞ and −∞ on N := {(z, q, X) | mink |qk| = 0 }.
Definition 2.5. We call u ∈ C(Ω) a viscosity subsolution (resp. supersolution) of (2.11) if

Fp∗(φ(x),∇φ(x), D2φ(x)) ≤ 0
(
resp. F ∗

p (φ(x),∇φ(x), D2φ(x)) ≥ 0
)

(2.12)

for every φ ∈ C2(Ω) with u − φ attaining a local maximum (resp. minimum) zero at x. We call u a viscosity
solution of (2.11) if it is both a viscosity subsolution and a viscosity supersolution of (2.11).

Lemma 2.6. For p ≥ 2 every (weak) solution of (2.2) is a viscosity solution of (2.11).

For the proof we check first if u is a viscosity subsolution. Without loss of generality fix x0 ∈ Ω and choose
φ ∈ C2(Ω) such that u(x0) = φ(x0) and u(x) < φ(x) for x 6= x0. We want to show that

−(p− 1)
n∑

k=1

[∣∣∣∣ ∂φ

∂xk
(x0)

∣∣∣∣
p−2

∂2φ

∂x2
k

(x0)

]
− λ̃p |φ(x0)|p−2

φ(x0) ≤ 0, (2.13)

and argue by contradiction. Otherwise there exists a small neighborhood of Br(x0), in which (2.13) is violated.
Set M = sup{φ(x) − u(x) | x ∈ ∂Br(x0)} and Φ = φ−M/2. Then Φ > u on ∂Br(x0), Φ(x0) < u(x0) and

−
n∑

k=1

(|Φxk
|p−2Φxk

)
xk

> λ̃p |φ(x)|p−2
φ(x) in Br(x0). (2.14)

If we multiply (2.14) by (u − Φ)+ and integrate by parts, we obtain

∫
{u>Φ}

n∑
k=1

|Φxk
|p−2Φxk

(u− Φ)xk
dx > λ̃p

∫
{u>Φ}

|φ|p−2φ(u − Φ) dx. (2.15)

Now we exploit the fact that u is a weak solution of (2.2) and pick v = (u − Φ)+, extended by zero outside
Br(x0), as a test function in (2.2). Then

∫
{u>Φ}

n∑
k=1

|uxk
|p−2uxk

(u− Φ)xk
dx = λ̃p

∫
{u>Φ}

|u|p−2u(u− Φ) dx. (2.16)
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Subtracting (2.15) from (2.16) we obtain

∫
{u>Φ}

n∑
k=1

(|uxk
|p−2uxk

−|Φxk
|p−2Φxk

)
(u− Φ)xk

dx < λ̃p

∫
{u>Φ}

(|u|p−2u− |φ|p−2φ)(u − Φ) dx. (2.17)

But the right hand side of (2.17) is nonpositive while the left hand side is nonnegative. Therefore { u(x) >
Φ(x)} = ∅, a contradiction to Φ(x0) < u(x0). This proves that u is a viscosity subsolution. The proof that u is
also a viscosity supersolution is left as an exercise to the reader.

Remark 2.7. If p ∈ (1, 2) we need to modify Fp. If at least one of the φxk
(x0) vanishes, the left hand side

of of (2.13) would become +∞; a problem that we cannot resolve so easily. In the context of the p-Laplace
operator, Ohmuma and Sato [38] have circumvented this difficulty by changing the differential equation into
−|∇u|(∆pu− Λp|u|p−2u) = 0. In order to change (2.11) correspondingly, we could replace it by

Gp(z, q, X) = min
k
{|qk|}


−(p− 1)

n∑
j=1

[|qj |p−2Xjj

]− Λ̃p|z|p−2z


 . (2.18)

Then Gp is continuous in its arguments. However, a word of caution is in order. If one multiplies a differential
equation (even with an everywhere positive smooth factor), the set of its viscosity solutions can change dramat-
ically, see [30] (p. 243f). A better known example for this effect are the (practically identical) eikonal equations
|∇u| = 1 and −|∇u| = −1, whose viscosity solutions are quite different, see [14].

Now we will prove local Lipschitz regularity, when p ≥ 2, of viscosity (super)solutions to the pseudo-p-
Laplacian equation −∆̃pu = 0. This result is obtained by means of a local version of the Harnack inequality.
We show essentially that the signed L1-distance function

δ(x) = dist1(x, ∂Qr(ξ))

= inf




n∑
j=1

|xj − yj | | y ∈ ∂Qr(ξ)




= r −
n∑

j=1

|xj − ξj |, (2.19)

where

Qr(ξ) =


x ∈ R

n :
n∑

j=1

|xj − ξj | < r




is a diamond shaped “ball” of radius r with center in ξ, acts locally as a barrier for viscosity solutions of
−∆̃pu ≥ 0. The key point in the proof of Theorem 2.9 is the following lemma.

Lemma 2.8. Let us consider δα(x) = r −∑n
j=1 |xj − ξj |αj where α = (αj)n

j=1 is a vector in R
n such that

0 < αj < 1 for every j = 1, ..., n. Then, for every x ∈ Qr(ξ)\A, with

A := { x ∈ Qr(ξ) : xj = ξj for some j } ∪ ∂Qr(ξ) ,

we have

∆̃pδα(x) = (p− 1)
n∑

j=1

αp−1
j (1− αj)|xj − ξj |(αj−1)(p−1)−1 > 0. (2.20)
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For the proof we just have to compute

Dxjδα(x) = −αj |xj − ξj |αj−1

(
xj − ξj

|xj − ξj |
)

Dxjxj δα(x) = αj(1− αj)|xj − ξj |αj−2,

from which the claim follows.

Theorem 2.9. Let Qr(ξ) ⊂ Ω and δ(x) as in (2.19). If u ≥ 0 is a viscosity solution of −∆̃pu(x) ≥ 0 and
u(ξ) > 0, then (i) and (ii) hold for every x ∈ Qr(ξ)

(i) u(x) ≥ u(ξ)
δ(x)
δ(ξ)

;

(ii) u(x)− u(ξ) ≥ −
(∑n

j=1 |xj − ξj |
)

/k, with k = δ(ξ)/u(ξ) = r/u(ξ).

To prove this theorem take 0 < c < k and define

ω(x) :=
c

r
u(x)− δ(x)

r
·

We have {
ω(ξ) =

c

r
u(ξ)− δ(ξ)

r
<

k

r
u(ξ)− 1 = 0

ω(x) ≥ 0 on ∂Qr(ξ),

thus the function ω(x) attains its negative minimum in the interior of Qr(ξ). We claim that this minimum is
attained in ξ. In fact, otherwise suppose that

min
Qr(ξ)

ω(x) = ω(xc) < ω(ξ).

Let us define for 0 < αj < 1, j = 1, ..., n,

ωα(x) =
c

r
u(x)− δα(x)

r

and set α = inf{ αj | j = 1, . . . , n }. For x ∈ Qr(ξ), choosing α sufficiently close to 1, the following inequality
holds after a lenghty but straightforward calculation

∣∣∣∣∣∣
n∑

j=1

(|xj − ξj |αj − |xj − ξj |)
∣∣∣∣∣∣ ≤ const. (1 − α). (2.21)

Thus the function ωα is close to ω and satisfies for a suitable choice of α < 1
 ωα(ξ) =

c

r
u(ξ)− δα(ξ)

r
< 0

ωα(x) ≥ 0 on ∂Qr(ξ),

so it attains a strict negative minimum in a point xc,α in the interior of Qr(ξ). Using (2.21) and modifying α
(if necessary) we can assume also

|ωα(xc)− ω(xc)| < ω(ξ)− ω(xc).
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The last inequality implies obviously that xc,α 6= ξ. Now we can assume that xc,α 6∈ A, where A is the set
previously defined on which δα is not C2. If not, by a continuity argument we can consider another α, nearer 1,
for which xc,α 6∈ A. Also the function

r

c
ωα(x) = u(x)− δα(x)

c
assumes its negative minimum at xc,α 6∈ A. The function u(x) is a viscosity solution of −∆̃pu(x) ≥ 0, and the
function ϕ(x) = (δα(x) + ru(xc,α)) /c is of class C2 in a neighbor of xc,α and by construction is a suitable test
function for u in xc,α. This implies

−∆̃p [ϕ(x)] = −1
c
∆̃p [δα(x)] ≥ 0.

But this last inequality is clearly in contrast with Lemma 2.8. This means that the minimum of ωα is attained
in ξ, as claimed. Then also ω attains its minimum in ξ, so

ω(x) =
c

r
u(x)− δ(x)

r
≥ c

r
u(ξ)− δ(ξ)

r
=

c

r
u(ξ)− 1.

From the previous inequality, letting c → k,we obtain,

ku(x)− δ(x) ≥ ku(ξ)− δ(ξ) (2.22)

which gives in turn
ku(x) ≥ δ(x).

This last inequality, when we replace k with his expression δ(ξ)/u(ξ), implies (i).
It follows from inequality (2.22)

ku(x)− ku(ξ) ≥ δ(x) − δ(ξ) = −
n∑

j=1

|xj − ξj |

which is exactly (ii).

Remark 2.10. By means of (i) in Theorem 2.9 it is not difficult to show that the set T = {x ∈ Ω : u(x) > 0},
where u is the viscosity (super)solution of the pseudo-p-Laplacian, is open and closed in Ω. Thanks to Lemma
2.6, we got a new proof of the strict positivity of up, the first eigenfunction of the pseudo-p-Laplacian operator.

Remark 2.11. As in [11] inequality (ii) in Theorem 2.9 gives us local Lipschitz continuity of every viscosity
solution to −∆̃pu(x) ≥ 0. Consider y ∈ Ω and 0 < r ≤ δ(y). Let x be a point lying in Qr/4(y). From (ii) in
Theorem 2.9 we have (for every x ∈ Qr(y))

−u(y)
r

(
n∑

i=1

|xi − yi|
)
≤ u(x)− u(y).

Now y ∈ Qr/2(x) ⊆ Qr(y), and proceeding as before but changing the rule of x and y we get (for every
y ∈ Qr/2(x))

−u(x)
r/2

(
n∑

i=1

|xi − yi|
)
≤ u(y)− u(x).

Putting together those two inequalities we obtain

−u(y)
r

(
n∑

i=1

|xi − yi|
)
≤ u(x)− u(y) ≤ 2u(x)

r

(
n∑

i=1

|xi − yi|
)

.
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By applying (i) in Theorem 2.9 to Qr/2 and observing that
∑n

i=1 |xi − yi| < r/4 we get

u(x)
2

≤ u(y).

Then we have, for every x ∈ Qr/4(y)

−u(y)
2

(
n∑

i=1

|xi − yi|
)
≤ u(x)− u(y) ≤ 4u(y)

r

(
n∑

i=1

|xi − yi|
)

and so local Lipschitz continuity follows

|u(x)− u(y)| ≤ 4
r

(
sup

t∈Qr(y)

u(t)

)(
n∑

i=1

|xi − yi|
)

.

We can extend this property to any nonnegative viscosity eigenfunction and in particular to the weak first
eigenfunction by means of Lemma 2.6. Let us remark that the result must be local because if for a non-negative
u we have −∆̃pu ≥ 0, then for every Λ > 0 also Λu verifies the same inequality. Moreover, for p = 2 and plane
domains with reentrant corners the Lipschitz-constant blows up as ξ approaches such a corner.

3. The limit eigenvalue equation for p →∞
In this chapter we study the sequence {Λ̃p}, {up} of normalized eigenvalues and eigenfunctions as p → ∞.

In particular we will derive the equation which is satisfied by the cluster points u∞ of up. Let us consider a
bounded domain Ω ⊂ R

n. The L1-distance function to the boundary δ(x) introduced in the previous chapter is
Lipschitz continuous, satisfies maxk |δxk

(x)| = 1 almost everywhere in Ω and it is equal to zero on the boundary
of Ω. We have then for every ϕ ∈ W 1,∞

0 (Ω) and y ∈ ∂Ω

|ϕ(x)| = |ϕ(x) − ϕ(y)| ≤ max
k
||ϕxk

||∞δ1(x)

which implies
1

||δ1||∞ ≤ ||maxk |ϕxk
| ||∞

||ϕ||∞ · (3.1)

Now let us define

Λ̃∞ :=
||maxk |δxk

| ||∞
||δ||∞ · (3.2)

Therefore Λ̃∞ is a geometric quantity related to Ω. It is the inverse of the radius of the largest L1 ball inside
Ω. We can prove the following Lemma 3.1, which explains the analytic meaning of Λ̃∞.

Lemma 3.1. The following limit holds (
lim

p→∞ λ̃1/p
p =

)
lim

p→∞ Λ̃p = Λ̃∞,

where Λ̃p = Rp(up).

From the definition of the Rayleigh quotient (see (2.3)) and δ(x) we get

Λ̃p ≤ 1
||δ||p
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which implies
lim sup

p→∞
Λ̃p ≤ Λ̃∞.

In order to obtain the opposite inequality, we observe that ||∇up||p ≤ C < ∞ uniformly in p, because δ(x) can
be used as a test function in any of the Rayleigh quotients. But then (see also [10] and [26]) Hölder’s inequality
allows us to conclude that ||∇up||m ≤ C < ∞ for p > m > n. We can thus select a subsequence (still denoted
by {up}) converging strongly in Cα and weakly in W 1,m to a cluster point u∞ of the original sequence. This
function u∞ is a viscosity supersolution of −∆̃∞u = 0, and so by means of Theorem 5.4 (see Rem. 5.5) we know
that u∞ > 0 in Ω. From the lower semicontinuity of the Rayleigh quotient we get now

(∑n
i=1

∫
Ω |u∞,xi|q

)1/q

||u∞||q ≤ lim inf
p→∞

(∑n
i=1

∫
Ω |up,xi |q

)1/q

||up||q ·

Multiplying and dividing the last inequality by ||up||p, we get by Hölder’s inequality that for p > q we have

(∑n
i=1

∫
Ω |u∞,xi |q

)1/q

||u∞||q ≤ lim inf
p→∞

(
Λ̃p
||up||p
||up||q

)
·

By taking first the limit in p and next the limit in q and using (3.1) we conclude that Λ̃∞ ≤ lim infp→∞ Λ̃p,
which completes the proof of the lemma.

Now we derive the limit equation, which the cluster points of the sequence up must satisfy.

Theorem 3.2. Every cluster point u∞ of the sequence {up} is a viscosity solution of the equation

F∞(u,∇u, D2u) = min
{

max
k

|uxk
| − Λ̃∞u, −∆̃∞u

}
= 0.

We show first the result for viscosity supersolutions. We consider a subsequence {up} converging uniformly
in Ω to a function u∞. Let us fix a point ξ ∈ Ω and a function ϕ ∈ C2 such that u∞(ξ) = ϕ(ξ) and u∞(x) > ϕ(x)
for x 6= ξ. Also fix BR(ξ) ⊂⊂ Ω. If 0 < r < R we have

inf{u∞(x)− ϕ(x) | x ∈ BR(ξ)\Br(ξ)} > 0.

The sequence {up} converges uniformly, so for sufficiently large p we have

inf{up(x) − ϕ(x) | x ∈ BR(ξ)\Br(ξ)} > up(ξ)− ϕ(ξ).

For those p we have
inf{up(x)− ϕ(x) | x ∈ BR(ξ)} = up(xp)− ϕ(xp)

with xp ∈ Br(ξ), and obviously xp → ξ when p →∞. The function up is a viscosity solution of (2.11), therefore
according to (2.12)

−
n∑

j=1

(p− 1)|ϕxj (xp)|p−2ϕxjxj(xp) ≥ Λ̃p
p|ϕ(xp)|p−2ϕ(xp). (3.3)

Now u∞(ξ) > 0, but then also ϕ(xp) > 0 for sufficiently large p and by (3.3) maxk |ϕxk
(xp)| 6= 0 for large p.

Dividing both members of (3.3) by the term (p−1) [maxk |ϕxk
(xp)|]p−4 we obtain (all the functions are evaluated

in xp)

−
n∑

j=1

( |ϕxj |
maxk |ϕxk

|
)p−4

|ϕxj |2ϕxjxj ≥
(

Λ̃pϕ

maxk |ϕxk
|

)p−4
Λ̃4

pϕ
3

p− 1
· (3.4)
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Let us take the limit for p →∞ in (3.4). We obtain the following necessary condition:

Λ̃∞ϕ(ξ)
maxk |ϕxk

(ξ)| ≤ 1, (3.5)

and taking in account (3.5), letting p →∞ in (3.4) we obtain

−∆̃∞ϕ(ξ) = −
∑

j∈I(Dϕ(ξ))

|ϕxj (ξ)|2ϕxjxj (ξ) ≥ 0. (3.6)

Inequalities (3.5) and (3.6) must hold together, and therefore the cluster points u∞ of the sequence up must
satisfy, in the viscosity sense, the following equation

min
{

max
k

|ϕxk
(ξ)| − Λ̃∞ϕ(ξ), −∆̃∞ϕ(ξ)

}
≥ 0. (3.7)

This shows that u∞ is a viscosity supersolution of

F∞(u,∇u, D2u) = min
{

max
k

|uxk
| − Λ̃∞u, −∆̃∞u

}
= 0.

Let us run the proof for subsolutions. Fix a point ξ ∈ Ω and a function ϕ ∈ C2 such that u∞(ξ) = ϕ(ξ) and
u∞(x) < ϕ(x) for x 6= ξ. We have to show that

min
{

max
k

|ϕxk
(ξ)| − Λ̃∞ϕ(ξ), −∆̃∞ϕ(ξ)

}
≤ 0.

Clearly if
(
maxk |ϕxk

(ξ)| − Λ̃∞ϕ(ξ)
)
≤ 0, then there is nothing to prove. Therefore we assume (maxk |ϕxk

(ξ)|−
Λ̃∞ϕ(ξ)

)
> 0, i.e.

Λ̃∞ϕ(ξ)
maxk |ϕxk

(ξ)| < 1. (3.8)

As in the supersolution case, repeating step by step the proof but reversing the inequality between left and right
member, we get (the functions are all evaluated in xp, which is now the maximum point of up(x)− ϕ(x))

−
n∑

j=1

( |ϕxj |
maxk |ϕxk

|
)p−4

|ϕxj |2ϕxjxj ≤
(

Λ̃pϕ

maxk |ϕxk
|

)p−4
Λ̃4

pϕ
3

p− 1
·

Letting p →∞ and taking into account (3.8) we get

−∆̃∞ϕ(ξ) ≤ 0,

which ends the proof.

We do not know how to prove uniqueness of solutions to the Dirichlet problem for F∞(u,∇u, D2u) = 0, but
as in [26], we are able to obtain a comparison result. In the setting of viscosity solutions given in [14], the
function F∞ is degenerate elliptic but not proper. Therefore the standard theory cannot be applied directly.
The strict positivity of up for 1 < p ≤ ∞ allows us to consider in place of F∞(u,∇u, D2u) = 0 a new equation
satisfied by w∞ = log u∞ (see [26, 40]). Let us write

G∞(∇w, D2w) = 0, (3.9)
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where

G∞(∇w, D2w) = min


max

k
|wxk

| − Λ̃∞, −∆̃∞w −
∑

j∈I(∇w)

|wxj |4



and the set I(∇w) is defined as before. We claim that if u is a viscosity supersolution (subsolution) of
F∞(u, ∇u, D2u) = 0, then w = log u is a viscosity supersolution (subsolution) of G∞(∇w, D2w) = 0.
Let us take ξ ∈ Ω and ϕ ∈ C2 such that ϕ(ξ) = w(ξ) and ϕ(ξ) < w(x) for x 6= ξ. The function θ(x) = eϕ(x) is
a good test function for u in ξ. Then we have

min
{

max
k

|θxk
(ξ)| − Λ̃∞θ(ξ), −∆̃∞θ(ξ)

}
≥ 0.

We write the last inequality in terms of ϕ(x) as

min


 eϕ

(
maxk |ϕxk

|−Λ̃∞
)

(ξ), −e3ϕ


∆̃∞ϕ(ξ)+

∑
j∈I(Dϕ)

|ϕxj |4

 (ξ)


≥ 0,

and the claim follows. The proof for subsolutions is symmetric.
Now we can study G∞(∇w, D2w) = 0, which (in contrast to F∞ = 0) is now proper.

Theorem 3.3. Let Ω be a bounded domain, u be a uniformly continuous viscosity subsolution and v be a
uniformly continuous viscosity supersolution of (3.9) in Ω. Then the following equality holds:

sup
x∈Ω

(u(x)− v(x)) = sup
x∈∂Ω

(u(x)− v(x)). (3.10)

There is no loss of generality if we assume u, v ≥ 0. Otherwise we add constants to u and v. We proceed by
contradiction. Suppose that (3.10) is false, then

sup
x∈Ω

(u(x)− v(x)) > sup
x∈∂Ω

(u(x)− v(x)). (3.11)

To obtain a contradiction, we construct a new supersolution w having the following properties:
(i) ||v − w||∞ is small enough to preserve the inequality (3.11);
(ii) w is a strict supersolution of (3.9).

With those properties in mind, we introduce the following function (see [26])

f(z) =
1
α

log (1 + A (eαz − 1)) ,

where α, A > 1. This function was shown to satisfy a) through d) in [26]:
a) f ′(z) > 1 for every z ≥ 0;
b) fA is invertible and (fA)−1 = (fA−1) for every z ≥ 0;
c) 1− [f ′(z)]−1 + [f ′(z)]−2f ′′(z) < 0 for every z ≥ 0;
d) 0 < f(z)− 1 < (A− 1)/α for every z ≥ 0.

We define w = f(v). Taking A sufficiently close to 1, property (i) holds easily. Let us check (ii). Let ξ ∈ Ω and
ϕ ∈ C2 such that ϕ(ξ) = w(ξ) and ϕ(x) ≤ w(x) for x 6= ξ. Set θ = f−1(ϕ). The function f−1 is monotone
increasing, and so θ is a good test function for v at ξ. But v is a supersolution of (3.9), therefore

min


max

k
|θxk

| − Λ̃∞, −∆̃∞θ(ξ)−
∑

j∈I(Dθ(ξ))

|θxj (ξ)|4

 ≥ 0. (3.12)
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It follows from (3.12) that
max

k
|θxk

(P )| − Λ̃∞ ≥ 0, (3.13)

−∆̃∞θ(ξ) −
∑

j∈I(Dθ(ξ))

|θxj (ξ)|4 ≥ 0. (3.14)

But if we write explicitly

θxj = [f ′(θ)]−1ϕxj

θxjxj = [f ′(θ)]−1ϕxjxj − [f ′(θ)]−3f ′′ϕ2
xj

we get from (3.13)
max

k
|θxk

(ξ)| ≥ f ′(θ(ξ))Λ̃∞ (3.15)

max
k

|θxk
(ξ)| − Λ̃∞ ≥ [f ′(θ(ξ)) − 1]Λ̃∞. (3.16)

With some calculus we obtain from (3.14)

−∆̃∞ϕ(ξ) −
∑

j∈I(Dϕ(ξ))

|ϕxj (ξ)|4 ≥ −
[
1− 1

f ′
+

f ′′

(f ′)2

]
(θ(ξ))

∑
j∈I(Dϕ(ξ))

|ϕxj (ξ)|4.

Using c), (3.15) and θ(ξ) = v(ξ) we get from the previous inequality

−∆̃∞ϕ(ξ)−
∑

j∈I(Dϕ(ξ))

|ϕxj (ξ)|4 ≥ −
[
1− 1

f ′
+

f ′′

f ′2

]
(v(ξ))(f ′(v(ξ)))4Λ̃4

∞. (3.17)

From (3.16) and (3.17) we obtain

min


max

k
|ϕxk

(ξ)| − Λ̃∞ ,−∆̃∞θ(ξ) −
∑

j∈I(Dθ(ξ))

|θxj (ξ)|4

 ≥ ρ(ξ) > 0, (3.18)

where we have defined

ρ(x)= min
{

[f ′(θ(x))−1]Λ̃∞, −
[
1− 1

f ′(v(x))
+

f ′′(v(x))
(f ′(v(x)))2

]
(f ′(v(x)))4Λ̃4

∞

}
·

Inequality (3.18) and properties a) and c) tell us that w is a strict supersolution.
Now the contradiction follows easily by standard techniques for viscosity solutions, see [14]. Let us sketch

the conclusion. We consider (xt, yt) a minimum point of the function

u(x)− w(y)− t

2
|x− y|2

in Ω× Ω. Up to a subsequence, we have that

xt → ξ and yt → ξ,

where ξ ∈ Ω is a maximum point of (u−w) in Ω. But inequality (3.11) holds, so ξ lies in the interior. We apply
the max principle for semicontinuous function (see Chap. 3 in [14] for this results and for the definition of the
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semijets J
2,+

(u(xt)) and J
2,−

(w(xt))), which ensure the existence of real symmetric matrices Xt, Yt such that

(t(xt − yt); Xt) ∈ J
2,+

(u(xt))

(t(xt − yt); Yt) ∈ J
2,−

(w(xt))
(Xtν, ν)− (Ytµ, µ) ≥ 3t|ν − µ|2.

Now u is a subsolution of G∞ = 0, so
G∞ (t(xt − yt); Xt) ≤ 0. (3.19)

Since w is a strict supersolution of G∞ = 0, we get from (3.18)

G∞ (t(xt − yt); Yt) ≥ ρ(xt) > 0. (3.20)

Now (3.19) and (3.20) give after some calculation

ρ(xt) ≤ 0,

which is obviously a contradiction. This completes the proof.

Remark 3.4. Theorem 3.3 also holds when one of the functions takes the value −∞ on the whole boundary.

A useful application of Theorem 3.3 is the following characterization of Λ̃∞.

Theorem 3.5. Let Ω be a bounded convex domain. If u is a continuous positive solution in Ω of

F∞(u, ∇u, D2u) = min
{

max
k
|uxk

| − Λu, −∆̃∞u

}
= 0, (3.21)

with zero boundary value, then Λ = Λ̃∞.

Let us observe that, if Λ ≤ 0, then equation (3.21) reduces to −∆̃∞u = 0 with zero Dirichlet boundary
conditions, whose only solution (see Rem. 5.3) is u = 0 on the whole Ω. Therefore necessarily Λ > 0.

In the next step we show that Λ ≤ Λ̃∞. Let us fix a point ξ ∈ Ω such that

dist1(ξ, ∂Ω) =
[
Λ̃∞
]−1

.

We can assume that ξ = 0. If, ex absurdum, Λ > Λ̃∞, then the rhombus

R1/Λ(ξ) =


x ∈ R

n :
n∑

j=1

|xj − ξj | < 1/Λ




is strictly contained in Ω, and more precisely ∂Ω ∩ ∂R1/Λ(ξ) = ∅. Let δ(x) = dist1(ξ, ∂R1/Λ(ξ)). But Cδ(x)
and u(x) are solution of (3.21) in the rhombus R1/Λ(ξ) for any positive constant C. The comparison principle
(observe that u > 0 on the boundary of the rhombus) in Theorem 3.3 gives us

log Cδ(x) ≤ log u(x) in R1/Λ(ξ),

which is clearly a contradiction for large values of C.Thus 0 < Λ ≤ Λ̃∞.
Let us finally show that Λ = Λ̃∞ by contradiction. Suppose Λ < Λ̃∞. Introduce Ωε = Ω + Rε(0), and for

small value of ε we have Λ̃∞(Ωε) > Λ. Now consider a rombus Q1/Λ such that Ωε ∩Q1/Λ = ∅, and connect with
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a narrow tube this rhombus with the domain Ωε. Let ΩΛ the set obtained joining Ωε with Q1/Λ and with the
narrow tube. We have, by construction, that

max
y∈ΩΛ

dist1(x, y) = Λ

and ∂Ω∪∂ΩΛ = ∅. Let uΛ a positive ∞−eigenfunction on ΩΛ: again, by the comparison principle (remark that
uΛ > 0 on ∂Ω) we get for C > 0

log CuΛ(x) ≥ log u(x)
for x ∈ Ω. Letting C → 0+ we arrive at a contradiction, which completes the proof of the theorem.

Remark 3.6. We can prove (see [26]) Theorem 3.5 in more general domain Ω satisfying the property ∂Ω = ∂Ω
(i.e. non-punctured domain). Juutinen [25] obtained a proof of this result for a general domain Ω, but his
argument is related to a comparison result proved in [24] for the ∞-Laplacian that actually, in the case of
∞-pseudoLaplacian, we don’t know if it holds.

4. Some examples

In order to better understand the limiting case as p → ∞ we shall now study special domains Ω ⊂ R
2. In

this section up is a weak first eigenfuctions for the pseudo-p-Laplace operator, and a point in Ω has Cartesian
components x and y.

Example 4.1. Consider the square S := {(x, y) | max{|x|, |y|} < 1} .
We know that the function distance to the boundary (see (2.19) for the definition of dist1)

δS(x, y) = dist1((x, y), ∂S) = min{1− |x|, 1 − |y|} ∀(x, y) ∈ S (4.1)

is a minimizer for the Rayleigh quotient R∞ defined in (3.1). Nevertheless we claim that δS is not a genuine
∞-eigenfunction for S (we adopt here a definition given in [26], where “genuine” is equivalent to be a viscosity
solution of the limit Eq. (1.6)). To this end we will show that δS does not solve (1.6) in the viscosity sense,
which in this case becomes (observe that Λ̃∞ = 1/||δS||∞ = 1)

min
{

max{|ux|, |uy|} − u, −∆̃∞u
}

= 0. (4.2)

It is not difficult to verify that δS(x, y) is a viscosity supersolution of (4.2). Also we note that the term
[max{|ux|, |uy|} − u] acts only in the origin. We show that, along the ridge (the set where the function δS is
not C1: in this example it is S ∩ {(x, y) | |x| = |y|}), δS is not a viscosity subsolution of (4.2). Let us consider
the point (1/3, 1/3) and the following function of class C2

ϕ(x, y) =
1
3
− 1

5

(
x− 1

3

)
− 4

5

(
y − 1

3

)
+ 4

(
x− 1

3

)2

−
(

y − 1
3

)2

·

It is simple to verify that
(i) ϕ(1/3, 1/3) = 2/3 = δS(1/3, 1/3);
(ii) ϕ(x, y) > δS(x, y) for (x, y) 6= (1/3, 1/3).

Elementary calculations show that

min
{

max
{∣∣∣∣ϕx

(
1
3
,
1
3

)∣∣∣∣ ,
∣∣∣∣ϕy

(
1
3
,
1
3

)∣∣∣∣
}
− ϕ

(
1
3
,
1
3

)
, −∆̃∞ϕ

(
1
3
,
1
3

)}
> 0,

and this proves our claim. But for the set S we are able to compute explicitly a “genuine” viscosity solution of
(4.2) (which is another minimizer of the Rayleigh quotient).
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Proposition 4.2. A “genuine” solution of (4.2) in S is given by

u∞(x, y) = (1− |x|)(1 − |y|). (4.3)

In Section 2, Example 2.4 we have shown how to construct the first eigenfuction up for the pseudo-p-Laplacian
on the square. If we compute the uniform limit as p →∞ of this sequence of functions we find that the unique
limit point is the function u∞ given in (4.3). According to our analysis u∞ must solve the limit equation (4.2)
in the viscosity sense , and therefore it is the only “genuine” (in the sense above) first eigenfuction for the
pseudo-∞-Laplacian. Let us prove this ad hoc. In points where u∞ is of class C2, the thesis follows by a
simple computation (observe that the second derivatives of u∞ w.r.t x and w.r.t y are identically 0). The term
[max{|ux|, |uy|} − u] is active only in the origin, as before.

The function u∞ is a viscosity supersolution (in points where u∞ is not C1, the set of test functions is empty).
Let us proceed with the check for viscosity subsolutions. We have only to test points where u∞ is not C1,

namely points along the coordinate axes inside the square. For simplicity we do the computations just for the
point (1/3, 0). Let us consider a function ϕ(x, y) of class C2 such that

(i) ϕ(1/3, 0) = u∞(1/3, 0);
(ii) ϕ(x, y) > u∞(x, y) for every (x, y) 6= (1/3, 0).

Clearly for such functions we can construct the tangent plane in (1/3, 0). The possible tangent planes for ϕ in
(1/3, 0) are

p(x, y) = 1− x + λy, |λ| ≤ 2
3
·

Then, for every admissible λ, we have

max{|ϕx|(1/3, 0), |ϕy|(1/3, 0)} = |ϕx(1/3, 0)| = 1.

But if we consider the restriction {(x, y) ∈ S | y = 0}, we observe that ϕxx(1/3, 0) ≥ 0, so the thesis follows
because we have −∆̃∞ϕ(1/3, 0) ≤ 0.

Example 4.3. Let us consider the rhombus R := {(x, y) | |x|+ |y| < 1}. We have evidently Λ̃∞ = 1. Let us
introduce the function distance to the boundary

δR(x, y) = dist1((x, y), ∂R) = 1− |x| − |y| ∀(x, y) ∈ R. (4.4)

The ridge (of δR) is the intersection of R with the coordinate axes and, as before, δR is a minimizer of the
Rayleigh quotient.

Proposition 4.4. The function δR defined in (4.4) is a “genuine” eigenfunction of the pseudo-∞-Laplacian
on R.

We verify that δR satisfies equation (4.2) in the viscosity sense. First of all we observe that in the point (0, 0)
(and only in this point) the term [max{|ux|, |uy|} − u] is active. Clearly δR is a viscosity supersolution of (4.2),
because in any regular point (outside the ridge) the function δR is of class C2, while on the ridge the set of
admissible test functions is empty.

It remains to show that δR is a viscosity subsolution. Again we need to verify this fact only for points
(x0, y0) 6= (0, 0) which lie on the ridge. In order to simplify the computations we fix (x0, y0) = (1/3, 0). Let us
consider a function ϕ(x, y) of class C2 such that

(i) ϕ(1/3, 0) = δR(1/3, 0);
(ii) ϕ(x, y) > δR(x, y) for (x, y) 6= (1/3, 0).

Let us prove that −∆̃∞ϕ(1/3, 0) ≤ 0.
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This function ϕ has a tangent plane in (1/3, 0), and this plane must contain (see (i) and (ii)) the straight
line through (0, 0, 1) and (1, 0, 0). The equation of such planes is given by

p(x, y) = 1− x− αy

where |α| ≤ 1 (see (ii)). When |α| < 1, then

max{|ϕx(1/3, 0)|, |ϕy(1/3, 0)|} = |ϕx(1/3, 0)| = 1.

But condition (ii) implies also
ϕxx(1/3, 0) ≥ 0

and then we get −∆̃∞ϕ(1/3, 0) = −ϕxx(1/3, 0) ≤ 0, as required. When |α| = 1, we have

|ϕx(1/3, 0)| = |ϕy(1/3, 0)|} = 1.

Condition (ii) implies
ϕxx(1/3, 0) ≥ 0 and ϕyy(1/3, 0) ≥ 0.

As before we obtain −∆̃∞ϕ(1/3, 0) ≤ 0, and then the thesis follows.

Remark 4.5. We do not know if this function is the unique “genuine” viscosity solution.

Remark 4.6. The viscosity solution in the rhombus is a linear function, while in the square we found a
quadratic viscosity solution. The rhombus is a “special” domain for our distance function and it seems to be
the only domain for which the function L1-distance to the boundary is a genuine ∞-eigenfunction.

Example 4.7. Let us consider the disk of radius 1 centered in the origin D = {(x, y) | x2 + y2 < 1}. As in the
first example, we will show that the function distance to the boundary

δD(x, y) =
√

1− [min{|x|, |y|}]2 −max{|x|, |y|}

is not a “genuine” eigenfunction, i.e. it does not solve, in the sense of viscosity, equation (4.2) inside D (see
Rem. 4.6 in this regard). In particular, δD fails the subsolution test. In fact, if we consider the point on the
ridge (3/5, 3/5) together with the function

ϕ(x, y) =
1
5
− 11

12

(
x− 3

5

)
− 5

6

(
y − 3

5

)
− 1

2

(
x− 3

5

)2

we can show that δD fails to be a viscosity subsolution of (4.2) in the above point.
We do not know any “genuine” ∞-eigenfunction for the disk.

5. A geometric interpretation of ∆̃∞

In this chapter we give a geometrical meaning to the limit for p →∞ for solutions to the Dirichlet problem{
−∆̃pu = −∑n

j=1

(|uxj |p−2uxj

)
xj

= 0 on Ω
u = g on ∂Ω

(5.1)

where Ω ⊆ R
n is a bounded domain and g ∈ Lip(∂Ω) (we will define later this function space). This is inspired

by Jensen [24], where a similar discussion is given for the p-Laplacian operator. In [5] Aronsson introduced the
definition of a Minimal Lipschitz Extension (briefly MLE), that is a function u ∈ W 1,∞(Ω) such that

||∇u||L∞(Ω) ≤ ||∇w||L∞(Ω), ∀w s.t. (u− w) ∈ W 1,∞
0 (Ω). (5.2)



46 M. BELLONI AND B. KAWOHL

When the domain has a sufficiently regular boundary, we can say that u is a MLE of g into Ω, where g = u|∂Ω.
Such an extension exists but is obviously not unique. But Aronsson provided also the definition of Absolutely
Minimizing Lipschitz Extension (briefly AMLE), that is a function u ∈ W 1,∞(Ω) such that for every D ⊂⊂ Ω

||∇u||L∞(D) ≤ ||∇w||L∞(D), ∀w s.t. (u− w) ∈ W 1,∞
0 (D). (5.3)

Now the uniqueness of AMLE becomes an interesting problem. Aronsson proved in [5] that an AMLE of class
C2 ∩Lip(Ω) is unique, but this is not enough because in [6] he constructed an AMLE of class C4/3 but not C2.
This means that the class C2 of “classical” solutions is in general too small to solve the AMLE problem. A
natural question is the following: what is the Euler equation of (5.3)? The approach in [5] was to consider the
minimal p-harmonic extension, i.e. a function u ∈ W 1,p(Ω) such that

||∇u||Lp(Ω) ≤ ||∇w||Lp(Ω), ∀w s.t. (u− w) ∈ W 1,∞
0 (Ω), (5.4)

or, equivalently (for finite p !), for every D ⊂⊂ Ω

||∇u||Lp(D) ≤ ||∇w||Lp(D), ∀w s.t. (u− w) ∈ W 1,p
0 (D). (5.5)

The inequality in (5.5) can be read as absolutely minimal p-harmonic extension, but for finite p the solutions
of (5.4) and (5.5) are the same. Now the Euler equation of (5.5) is given by

{−∆pu = −∑n
j=1

(|∇u|p−2∇u
)
xj

= 0 on Ω
u = g on ∂Ω.

(5.6)

If we (formally) expand the derivatives and (formally) divide both members by (p − 2)|∇u|p−4; after sending
(formally) p →∞ in (5.6) we get

∆∞u =
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0. (5.7)

The limit equation (5.7) can then be interpreted as the Euler equation of (5.3), as (5.3) is the limit for p →∞
of (5.5). The operator ∆∞ is called the ∞-Laplacian. Jensen [24] showed that given a function g ∈ Lip(∂Ω)

(i) there exists an AMLE of g into Ω;
(ii) every AMLE on Ω is a solution of (5.7);
(iii) the viscosity solution of (5.7) with Dirichlet datum g is unique, and in this sense the AMLE is uniquely

determined.

Observe that the definition of Lipschitz function depends on the metric that we consider in R
n. A real valued

function is Lipschitz continuous with Lipschitz constant L if |u(x) − u(y)| ≤ L|x − y|. Here |x − y| is the
Euclidean distance and L = ||∇u||∞, but other distances are conceivable. If we introduce the following (cab
driver’s) distance function

d(x, y) =
n∑

i=1

|xi − yi|,

the Lipschitz constant in |u(x) − u(y)| ≤ L d(x, y) is given by the number L = supx maxi |uxi(x)|, i.e. the
formal limit as p →∞ of

|||∇u|||Lp(Ω) =

(
n∑

i=1

∫
Ω

|∂u/∂xi|p dx

)1/p

, (5.8)

an equivalent Lp norm of ∇u.
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For later reference, we define also the (pseudo-distance) function

dΩ(x, y) = lim inf
(ξ,η)→(x,y)

inf

{∫ 1

0

n∑
i=1

∣∣∣∣dβi

dt

∣∣∣∣ dt : β ∈ C1([0, 1], Ω), β(0) = ξ β(1) = η

}
(5.9)

(this function is not a distance, in general, because it does not verify the triangle inequality in a set like
{(x1, x2) | x2

1 + x2
2 < 1}\{[−1/2, 1/2]× {0}} ) and the function space

Lip(∂Ω) =

{
g ∈ C(∂Ω) | sup

x,y∈∂Ω

( |g(x)− g(y)|
dΩ(x, y)

)
< ∞

}
· (5.10)

The Euler equation related to the variational problem in (5.5), with || · || replaced by ||| · ||| from (5.8), is exactly
the one in (5.1). Let us expand the derivative (formally) in (5.1) obtaining

−(p− 1)
n∑

i=1

|uxi|p−2uxixi = 0. (5.11)

Dividing both members of (5.11) (formally) by (p− 1)[maxk |uxk
|]p−4 and letting (formally) p →∞ we obtain

−∆̃∞u(x) = −
∑

j∈I(∇u(x))

|uxj (x)|2uxjxj (x) = 0 (5.12)

where I(ξ) = { k ∈ N | 1 ≤ k ≤ n, maxj=1,...,n |ξj | = |ξk| } for ξ ∈ R
n. (see also [22], Eq. (6.3)) and ∆̃∞ is

the pseudo-∞-Laplacian operator. Equation (5.12) can therefore be interpreted as the Euler equation related
to the AMLE problem. In fact we will now show the following:

if u ∈ C2 ∩W 1,∞ satisfies (5.3) with || · || replaced by ||| · ||| and

|||∇u|||L∞(D) = max
k=1,...,n

||uxk
||L∞(D)

for every D ⊂⊂ Ω (i.e. if u is an AMLE), then u solves (5.12).

We fix a point ξ ∈ Ω, and we can suppose ξ = 0. Then we take B(0, ε) ⊂ Ω and we define

w(x) = u(x) +
γ

2
ε2 − γ

2
|x|2.

Taylor expansions yield (i, j = 1, ..., n)




u(x) = u(ξ) + pixi +
1
2
µijxixj + o(|x|2)

w(x) = u(ξ) +
γ

2
ε2 + pixi +

1
2
(µij − δijγ)xixj + o(|x|2).

Calculus gives 
 ||uxj ||L∞(B(0,ε)) = |pj |+ ε

√∑n
i=1 µ2

ij + o(ε)

||wxj ||L∞(B(0,ε)) = |pj |+ ε
√∑n

i=1(µij − δijγ)2 + o(ε).
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Now u is an AMLE, and observing that for sufficiently small ε we have I(∇u(B(0, ε)) = I(∇w(B(0, ε)) =
I(∇u(0), (5.3) translates into

0 ≤ 1
#I(∇u(0))


 ∑

j∈I(∇u(0))

||wxj ||L∞(B(0,ε)) −
∑

j∈I(∇u(0))

||uxj ||L∞(B(0,ε))




≤ ε

#I(∇u(0))

∑
j∈I(∇u(0))



√√√√ n∑

i=1

(µij − δijγ)2 −
√√√√ n∑

i=1

µ2
ij


+ o(ε)

=: εf(γ) + o(ε).

Dividing this inequality by ε and letting ε → 0, we obtain f(γ) ≥ 0 for every real γ. But u is an AMLE
(0 = f(0) ≤ f(γ)), and the function f is of class C1, therefore we have

df

dγ
(0) = 0.

The last equality translates into
−

∑
j∈I(∇u(0))

uxjxj = 0,

but this equation is exactly equation (5.12), apart from a constant factor. Let us make some remarks.

Remark 5.1. The limit equation depends strongly on the metric (i.e. on the definition of a Lipschitz function):
with the Euclidean metric we obtain the ∞-Laplacian operator while under our choice we get the so-called
pseudo-∞-Laplacian.

Remark 5.2. In the points where the gradient is identically zero, equation (5.12) does not make sense. This
observation is not new. In fact Aronsson proved [5] (see also [24]):

Let u ∈ C2(Ω) be a nonconstant solution of (5.7), then |∇u| > 0 in Ω.
Points where the gradient vanishes are points where there is a loss of regularity: in equation (5.12) this fact

become more apparent than in equation (5.7). See also the work of Crandall et al. [13] in this regard.

Remark 5.3. The Dirichlet problem for equation (5.12) has a unique viscosity solution. This follows from a
result of Barles and Busca [8], which generalizes Jensen’s uniqueness theorem.

From the proof of Lemma 2.8 we have

∆̃∞δα(x) =
∑

j∈I(Dδα)

α3
j (1− αj)|xj − ξj |3αj−4 > 0, ∀ x ∈ Qr(ξ)\A. (5.13)

Via inequality (5.13) we have the following result (see [11] for the corresponding result on the ∞-Laplacian
case).

Theorem 5.4. Under the assumptionss of Theorem 2.9, if u ≥ 0 is a viscosity solution of −∆̃∞u(x) ≥ 0 and
u(ξ) > 0, then

(i) u(x) ≥ u(ξ)δ(x)/δ(ξ) for every x ∈ Qr(ξ), where as before δ is the distance to the boundary of Qr(ξ);
(ii) u(x)− u(ξ) ≥ −

(∑n
j=1 |xj − ξj |

)
/k, for every x ∈ Qr(ξ), where k = δ(ξ)/u(ξ).

We omit the proof, which is essentally the same as that of Theorem 2.9.

Remark 5.5. Remark 2.10 and Remark 2.11 hold word by word and therefore nonnegative viscosity (su-
per)solutions of (5.12) are locally Lipschitz continuous and are either trivial or strictly positive in Ω.
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6. Concavity

Let us now return to the case of finite p ∈ (1,∞) and to the unique weak solutions of (1.4). Sakaguchi proved
that u(p−1)/p is concave if u solves (1.8), and Ishibashi and Koike proved it for solutions of (1.10). Moreover,
Sakaguchi proved that the solutions of (1.1) are all log-concave, i.e. log u is always concave. It is the purpose
of this section to prove log-concavity for solutions of (1.4).

Theorem 6.1. If Ω is convex, then the solution of (1.4) (and thus also of (1.6)) is log-concave.

For the proof we follow ideas from [40], see also [27], and fix p ∈ (1,∞). The normalized solution u (with
||u||p = 1) of the degenerate equation (1.4) is approximated by uε, where uε is normalized and solves

−
n∑

j=1

[(εu2 + u2
xj

)(p−2)/2 uxj ]xj = Λ|u|p−2u− ε
n∑

j=1

(εu2 + u2
xj

)(p−2)/2 u. (6.1)

As explained in the proof of Lemma 2.3 above, these functions uε converge uniformly by the Ascoli–Arzelà
theorem, because they are uniformly bounded and uniformly Hölder continuous. Moreover they converge to the
unique (positive normalized) solution of (1.4). Since log-concavity is preserved under uniform convergence it
suffices to prove log-concavity of the solutions to the regularized equation (6.1).

To this end we set vε = log uε and notice that vε satisfies the regular elliptic equation

−
n∑

j=1

[(ε + v2
xj

)(p−2)/2 vxj ]xj = Λ +
n∑

j=1

[
(ε + v2

xj
)(p−2)/2

(
(p− 1)v2

xj
− ε
)]

, (6.2)

whose coefficients and right hand side depend only on ∇v. Now one has to observe that vε is a classical
solution, because (6.2) is nondegenerate elliptic and fortunately there are the necessary estimates from [32]
or [44]. Therefore a theorem of Korevaar applies as in the case of the usual p-Laplace operator, see [40] for more
details.

Remark 6.2. For the benefit of the reader let us remark in passing, that the corresponding proof of Theorem
6.1 in [22] contains several typographical errors (which do not affect the validity of the theorem). In fact, the
assumption p > n is not needed and can be replaced by p > 1. Moreover, setting I1 = ∅ in [22], equation (5.5),
this equation must read

−
∑
k∈I2

(A(vxk
)vxk

)xk
= Ĝε(v, Dv)

with

A(r) =

(
ε +

(
p− 1

p

)2

r2

)(p−2)/2

for r ∈ R

and

Ĝε(r, q) =
1
v

p− 1
p2

{
1 +

∑
k∈I2

(
p2

p− 1
q2
k − ε

)
A(qk)

}
for (r, q) ∈ R

1+n.

7. Symmetry

In the present section we remain in the case of finite p ∈ (1,∞) and with the (unique) weak solutions.

Remark 7.1. Mohammed Moussa from Kenitra City in Morocco has asked one of us if the first eigenfunction
on a ball is radially symmetric. The answer to this question is negative, because any radial positive eigenfunc-
tion u(r) would have to satisfy u′(r) ≤ 0 and

−(p− 1)
( |u′(r)|

r

)p−2∑
i

[
u′′(r)

r2
xi

2 +
u′

r
− u′(r)

r3
xi

2

]
|xi|p−2 = λpu

p−1 ,



50 M. BELLONI AND B. KAWOHL

or after a partial separation of variables

∑
i

[(
u′(r)

r

)′
|xi|p + u′(r) |xi|p−2

]
= g(r) := − λp

p− 1
up−1 rp−1 |u′(r)|2−p .

Let us show that for p 6= 2 this leads to a contradiction. In fact, for the choices x = (r, 0, . . . , 0) and x =
(r sin θ, r cos θ, 0, . . . , 0) we obtain two equations for two unknowns (u′/r)′ and u′. Elementary algebra gives
now

u′(r) = −g(r)r2−p 1− | sin θ|p − | cos θ|p
| cos θ|2 | sin θ|p−2 + | sin θ|2 | cos θ|p−2

= −g(r)r2−p h(θ)

with h(θ) independent of r. Now numerical evidence suggests that for most p the factor h does indeed depend
on θ, in which case we have a contradiction. But even if h happens to be constant hp, which is the case for
p = 6, we arrive at the absurd fact that

|u′(r)|p−1 = − hpλp

p− 1
up−1 r or u′(r) = c(p) u r1/(p−1) .

An integration of this last equation shows that its solution cannot have compact support.

Since the first eigenfunction on a ball is never radially symmetric, does it have any symmetries at all? The
pseudo-p-Laplacian operator is not invariant under rotations, but only invariant under reflections in cartesian
directions (exchanging xi by −xi) or in diagonal directions (permuting xi with xj). Due to their uniqueness
this must be reflected in its first eigenfunctions. Therefore on a disk any positive p-eigenfunction has level sets
which are convex (due to Sect. 6) and symmetric (due to its uniqueness). In other words, on a ball in R

n with
center in the origin the function up is Steiner-symmetric with respect to every cartesian plane xi = 0 or diagonal
plane xi = xj .

Some of this statement prevails if Ω is less symmetric and if one employs rearrangement arguments as in [27].

Theorem 7.2. Let Ω ⊂ R
n be Steiner symmetric with respect to a cartesian plane xi = 0 or a diagonal plane

xi = xj, and let u ∈ W 1,p
0 (Ω) and u∗ its Steiner-symmetrization. Then for every i = 1, . . . , n

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣
p

dx ≥
∫

Ω

∣∣∣∣∂u∗

∂xi

∣∣∣∣
p

dx. (7.1)

This theorem implies that eigenfunctions on special Steiner-symmetric domains must be Steiner symmetric,
because they minimize the corresponding Rayleigh quotients. For cartesian planes the theorem is a special case
of Theorem 2.31 and Corollary 2.32 in [27]. Note that it does not deal with symmetries in other than cartesian
directions.

Remark 7.3. One may wonder what happens to expressions like
∫ |uxi|p dx under Schwarz symmetrization.

Let us dispel any hopes about analogues to Theorem 7.2 for this kind of symmetrization by providing a coun-
terexample that we learned from Talenti [41]. Let f : R → R+ be a positive, smooth, decreasing and rapidly
decaying function, α a positive parameter and u defined in R

2 by u(x, y) = f(α−2x2 +α2y2). Then a calculation
shows ∫

R2

∣∣∣∣∂u

∂x

∣∣∣∣
p

dxdy = α−p · 4p · [Γ((p + 1)/2)]2

Γ(p + 1)
·
∫ ∞

0

tp/2|f ′(t)|p dt,

so that ∫
R2

∣∣∣∣∂u

∂x

∣∣∣∣
p

dxdy

can be made arbitrarily small by taking α large enough, while the corresponding integral for the Schwarz-
symmetrization u∗ of u is the one that is attained for α = 1.
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Symmetrization methods are also used to prove Faber–Krahn type results for the p-Laplacian operator. These
state that among all domains of given volume the first eigenvalue λp(Ω) is minimized by a ball of same volume.
What about λ̃p(Ω) as a function of the domain? After all, even for the function u in Remark 7.3 the Rayleigh
quotient (2.3) is minimal at α = 1, i.e. in the radially symmetric case. This question is answered as follows

Theorem 7.4. Among all domains of given volume, the `q ball (given by { x ∈ R
n |∑j |xj |q ≤ c} with

suitable c) minimizes λ̃p(Ω), where 1
p + 1

q = 1.

This theorem is consequence of a special case of a fundamental result on convex rearrangement, in which
level sets of u are replaced by sets of equal volume and prescribed convex shape K, see Theorem 3.1 and the
example (with p = 4) on p. 287 in [2]. Under such rearrangement, and K is homothetic to the dual of the unit
ball `p, the numerator in the Rayleigh quotient is shown to decrease, while the denominator stays invariant.

In terms of plane domains, as p → ∞ or as the strings in our woven membrane become more and more
elastic, K must approach the shape of a rhombus if λp(K) is minimal among all domains of given area. On the
other hand for p → 1 the membrane with smallest fundamental eigenvalue attains the shape of a square.
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Notes added in proofs
Last week Thierry Champion from Toulon kindly pointed out to us that in passing from (3.4) to (3.6) we had jumped

too fast to the conclusion. This gap in the argument can be bridged by applying the (somewhat lengthy but apparetnly
unavoidable) reasoning in [22], Section 3. The same applies to the two formulas after (3.8) of our paper.

Since the acceptance of this manuscript some of its results have been generalized to a more general class of operators,
see M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, Wolf shape and related questions for strongly nonlinear
elliptic operators, Journ. Appl. Math. Phys. (ZAMP), to appear.

References

[1] W. Allegretto and Yin Xi Huang, A Picone’s identity for the p-Laplacian and applications. Nonlin. Anal. TMA 32 (1998)
819-830.

[2] A. Alvino, V. Ferone, G. Trombetti and P.L. Lions, Convex symmetrization and applications. Ann. Inst. H. Poincaré Anal.
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(2000) 227-248.

[5] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Math. 6 (1967) 551-561.
[6] G. Aronsson, On the partial differential equation u2

xuxx + 2uxuyuxy + u2
yuyy = 0. Ark. Math. 7 (1968) 395-425.

[7] G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian. Ann. Fac. Sci. Toulouse 9 (1988) 65-75.
[8] G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order

term. Comm. Partial Differential Equations 26 (2001) 2323-2337.
[9] M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the p-Laplace operator. Manuscripta Math. 109

(2002) 229-231.
[10] T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p→∞ of ∆pup = f and related extremal problems. Rend. Sem.

Mat., Fasciolo Speciale Nonlinear PDE’s. Univ. Torino (1989) 15-68.
[11] T. Bhattacharya, An elementary proof of the Harnack inequality for non-negative infinity-superharmonic functions. Electron.

J. Differential Equations 2001 (2001) 1-8.
[12] H. Brezis and L.Oswald, Remarks on sublinear problems. Nonlinear Anal. 10 (1986) 55-64.
[13] M.G. Crandall, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial

Differential Equations 13 (2001) 123-139.



52 M. BELLONI AND B. KAWOHL

[14] M.G. Crandall, H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. (N.S.) 27 (1992) 1-67.

[15] Y.G. Chen, Y. Giga and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.
J. Differ. Geom. 33 (1991) 749-786.
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