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A POSITIVE SOLUTION FOR AN ASYMPTOTICALLY LINEAR ELLIPTIC
PROBLEM ON RN AUTONOMOUS AT INFINITY ∗
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Abstract. In this paper we establish the existence of a positive solution for an asymptotically linear
elliptic problem on R

N . The main difficulties to overcome are the lack of a priori bounds for Palais–
Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make
use of techniques introduced by Lions in his work on concentration compactness. For the second we
show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be
used in order to regain compactness.
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1. Introduction

In this paper we study the existence of a positive solution u ∈ H1(RN ) for an equation of the form

−∆u+ V (x)u = f(u), x ∈ RN , (1.1)

where N ≥ 2 and we assume on the potential V ∈ C(RN ,R)

(V1) there exists α > 0 such that V (x) ≥ α for all x ∈ RN ;
(V2) lim|x|→∞ V (x) = V (∞) ∈ (0,∞)

and on the nonlinear term f ∈ C(R+,R)

(f1) f(s)s−1 → 0 as s→ 0+;
(f2) There is a ∈]0,∞[ such that f(s)s−1 → a as s→ +∞ and

a > inf σ(−∆ + V (x)),

where σ(−∆ + V (x)) denotes the spectrum of the self-adjoint operator −∆ + V (x) : H2(RN )→ L2(RN ).

Keywords and phrases: Elliptic equations, asymptotically linear problems in RN , lack of compactness.

∗ The second author is partially supported by Waseda University Grant for Special Research Project 2001A-098.
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The main features of problem (1.1) is that the nonlinearity is asymptotically linear and that the associated
problem at “infinity” is autonomous. Our main results are the following:

Theorem 1.1. Assume that (V1), (V2), (f1), (f2) hold and that for F (s) =
∫ s

0
f(t)dt,

(f3) there exists δ > 0 such that 2F (s)s−2 ≤ V (∞)− δ for all s ∈ R+.
Then (1.1) has a positive solution.

Theorem 1.2. Assume that (V1), (V2) hold with
(V3) V (x) ≤ V (∞) for all x ∈ RN
and that (f1), (f2) hold with
(f4) Defining G : R+ → R by G(s) = 1

2f(s)s− F (s),
(i) G(s) ≥ 0 for all s ≥ 0;
(ii) there exists δ > 0 such that

2F (s)s−2 ≥ V (∞)− δ =⇒ G(s) ≥ δ.

Then (1.1) has a positive solution.

Remark 1.3. 1) The condition G(s) ≥ 0,∀s ≥ 0 implies that 2F (s)s−2 is a non-decreasing function. Thus as
a special case (f3) holds under the conditions: G(s) ≥ 0,∀s ≥ 0 and a < V (∞).

2) Condition (f4) holds if f(s)s−1 is a non-decreasing function of s ≥ 0. In fact, if f(s)s−1 is non-decreasing,
condition (f1) implies G(s) > 0, ∀ s > 0 and G(s) is a non-decreasing function of s ≥ 0.

3) Under the setting of Theorem 1.2, we can also show the existence of a least energy solution. See Theorem 4.5
in Section 4.

Theorems 1.1 and 1.2 will be proved by a variational approach. Because we look for positive solutions, we may
assume without restriction that f(s) = 0 for all s ≤ 0. We associate with (1.1) the functional I : H1(RN )→ R
defined by

I(u) =
1
2

∫
RN

(|∇u|2 + V (x)u2) dx−
∫
RN

F (u) dx.

We shall work on H1(RN ) ≡ H with the norm

||u||2 =
∫
RN

(|∇u|2 + V (x)u2)dx

which, because of (V1), is equivalent to the standard H1(RN ) norm. We also use the notation:

||u||p =
(∫

RN
|u|p dx

)1/p

for all p ∈ (1,∞).

Under conditions (f1) and (f2) we are able to prove, this is the contents of Lemmas 2.1 and 2.3, that I has a
Mountain Pass geometry (MP geometry for short). Namely setting

Γ = {γ ∈ C([0, 1],H), γ(0) = 0 and I(γ(1)) < 0},

we have Γ 6= ∅ and
c ≡ inf

γ∈Γ
max
t∈[0,1]

I(γ(t)) > 0.
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The value c ∈ R is called the Mountain Pass level (MP level for short) for I. Ekeland’s principle implies that
there exists a Cerami sequence at the MP level c, namely a sequence {un} ⊂ H such that

I(un)→ c and ||I ′(un)||H−1(1 + ||un||)→ 0 as n→∞.

At this point to get an existence result it clearly suffices to show that {un} is bounded and then that {un} has
a convergent subsequence whose limit is a non-trivial critical point of I. These two steps constitute the heart
of the proofs of Theorems 1.1 and 1.2.

The difficulty to prove that {un} is bounded is linked to the fact that we are considering an asymptotically
linear problem. To get boundedness of {un}, in most works the following superlinear condition is assumed:

∃µ > 2 : 0 < µF (s) ≤ f(s)s for all s > 0. (1.2)

This condition is introduced by Ambrosetti and Rabinowitz [1]. We remark that (1.2) implies
lim infs→∞ f(s)/sµ−1 > 0 and thus our equation does not satisfy (1.2).

There are very few works on asymptotically linear problems on unbounded domains. We believe that the first
result is due to Stuart and Zhou [11]. They study a problem of the type of (1.1) assuming that it has a radial
symmetry. Thanks to this assumption, the problem is somehow set in R and possesses a stronger compactness.

More closely related to the present paper is the work of the first author [7] in which a problem of the form

−∆u+Ku = f(x, u), x ∈ RN

is studied, where K > 0 is a constant and f(x, s) is asymptotically linear in s and periodic in x ∈ RN .
Subsequently, taking advantages of some techniques introduced in [7], an extended study of radially symmetric
problems on RN was done in [12]. Finally we wish to mention [13] where a first order Hamiltonian system with
an asymptotically linear part is studied.

As in [7] our proof of the boundedness of {un} relies on the work of Lions [8] on the concentration compactness
principle. It is however more delicate now because of the spectral structure of (1.1) and the fact that (1.1) is
not enjoying a translation invariance. The argument roughly goes as follows. We assume, by contradiction, that
‖un‖ → ∞. Then setting wn = un‖un‖−1 there is a subsequence of {wn} with wn ⇀ w ≥ 0 in H satisfying the
alternative:

1. (non-vanishing) there exist α > 0, R <∞ and {yn} ⊂ RN such that

lim
n→∞

∫
yn+BR

w2
n dx ≥ α > 0.

2. (vanishing) for any R > 0

lim
n→∞

sup
y∈RN

∫
y+BR

w2
n dx = 0.

Here we use the notation : BR = {x ∈ RN ; |x| ≤ R}.
We prove that neither of the two cases can occur and this gives us the desired contradiction. To show that

non-vanishing (1) cannot occur, we need to distinguish the cases {yn} is bounded and |yn| → ∞. When {yn} is
bounded, we show that w 6= 0 and satisfies the equation

−∆w + V (x)w = aw, x ∈ RN .

Namely w ≥ 0 is an eigenvector associated to an eigenvalue strictly above the infimum of the spectrum of
−∆ + V (x). We show, by a spectral argument, that this is impossible. When |yn| → ∞, we show that the
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sequence w̃n(·) = wn(· − yn) weakly converge to a function w̃ 6= 0 satisfying

−∆w̃ + V (∞)w̃ = aw̃.

Here again we get a contradiction since the operator −∆ has no eigenfunction in H1(RN ). Next we show
that either (f3) or (f4) permit us to rule out the vanishing (2). This is quite straightforward when (f3) holds.
When (f4) is satisfied, we need a more delicate argument. On one hand, since {un} is a Cerami sequence we
have that ∫

RN
G(un)dx

is bounded uniformly. On the other hand, condition (f4) will imply that these integrals must go to +∞ as
n→∞.

Concerning the second difficulty, namely to prove that our bounded sequence {un} converges to a non-trivial
critical point of I, we need to show a strict inequality between the “energy” of our problem and the one of the
associated “problem at infinity”. To be more precise, let Ĩ : H → R be the functional defined by

Ĩ(u) =
1
2

∫
RN

(|∇u|2 + V (∞)u2) dx−
∫
RN

F (u) dx

and set
m̃ = inf

{
Ĩ(u); u 6= 0 and Ĩ ′(u) = 0

}
·

We set m̃ =∞ if Ĩ has no non-trivial critical points. We shall prove that un ⇀ u 6= 0 with I ′(u) = 0 if

c < m̃. (1.3)

If Ĩ has no non-trivial critical points, (1.3) is trivially satisfied. We will see that it takes place if (f3) holds.
When Ĩ has non-trivial critical points, the following fact is important to show (1.3):

m̃ ≥ inf
γ∈Γ̃

max
t∈[0,1]

Ĩ(γ(t)),

where Γ̃ = {γ ∈ C([0, 1],H); γ(0) = 0, Ĩ(γ(1)) < 0}. These types of estimates are usually shown under the
assumption that s→ f(s)s−1 is non-decreasing. Under this condition we can use the “natural constraint”:

M =
{
u ∈ H \ {0}; Ĩ ′(u)u = 0

}
·

M is somehow radially homeomorphic to the unit sphere and it is then easy to see that, in addition,

m̃ = inf
u∈M

Ĩ(u) = inf
u∈M

max
t>0

Ĩ(tu).

For results in that direction we mention, for example [10]. Also in [9] an existence result, Theorem 4.27,
comparable to our relies, although indirectly, on the presence of a smooth natural constraint.

In contrast to these works, we do not use the monotonicity of f(s)/s but instead we take advantage of
dilation t→ u(x/t) properties. Key to our approach is the use of results on autonomous problems established
by Berestycki and Lions [2] when N ≥ 3 and Berestycki et al. [3] when N = 2. In particular we use their result
saying that, under an almost necessary condition on h, any autonomous problem of the form

−∆u = h(u)

possesses a least energy solution satisfying Pohozaev identity. Roughly speaking we use the fact that the problem
at infinity is autonomous to show the existence of a path γ ∈ Γ satisfying maxt∈[0,1] I(γ(t)) < m̃.
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We remark that the approach we present here works for general nonlinearities f , not simply for the asymp-
totically linear ones. Also we believe it could be proved fruitful in other situations as, for example, singular
perturbation problems.

Notation. Throughout the article the letter C will denote various positive constants whose exact value may
change from line to line but are not essential to the analysis of the problem. Also if we take a subsequence of a
sequence {un} we shall denote it again {un}.

2. A Mountain Pass Geometry for I

In this section we prove that, under the assumptions (V1), (f1), (f2), I possesses a MP geometry. Since
I(0) = 0, it is a consequence of the two following results:

Lemma 2.1. Assume that (V1), (f1), (f2) hold. Then I(u) = 1
2 ||u||2 + o(‖u‖2), I ′(u)u = ||u||2 + o(||u||2) as

u→ 0 in H.

Proof. We fix a p ∈]2, 2N
N−2 [. For any ε > 0 it follows from (f1) and (f2) that there exists a Cε > 0 such that

|f(s)| ≤ ε|s|+ Cε|s|p−1 for all s ∈ R (2.1)

or also

|F (s)| ≤ ε

2
|s|2 +

Cε
p
|s|p for all s ∈ R. (2.2)

Hence, for any u ∈ H, we have ∣∣∣∣∫
RN

F (u) dx
∣∣∣∣ ≤ ε

2
‖u‖22 +

Cε
p
‖u‖pp.

Recalling the Sobolev embedding H1(RN ) ↪→ Lp(RN ), this implies that
∫
RN F (u) dx = o(‖u‖2) as u→ 0 in H.

In a similar way, we have
∫
RN f(u)u dx = o(||u||2) as u→ 0 in H. This gives the conclusion of Lemma 2.1.

Corollary 2.2. Under the assumptions (V1), (f1), (f2) there exists ρ0 > 0 such that
(i) for any non-trivial critical point u of I,

||u|| ≥ ρ0;
(ii) for any Palais-Smale sequence {un} at level b 6= 0,

lim inf
n→∞

||un|| ≥ ρ0.

Lemma 2.3. Assume that (V1), (f1), (f2) hold. Then we can find a v ∈ H, v 6= 0 satisfying I(v) < 0.

Proof. The operator −∆+V (x) being self-adjoint, the infimum of its spectrum can be characterized as (see [4],
Prop. VI.9)

inf σ(−∆ + V (x)) = inf
u∈H:||u||2=1

〈−∆u+ V (x)u, u〉 = inf
u∈H:||u||2=1

||u||2 (2.3)

where 〈·, ·〉 is the scalar product of L2(RN ). Since by assumption inf σ(−∆+V (x)) < a, we thus can find ũ ∈ H
such that ||ũ||2 = 1 and ||ũ||2 < a. Replacing if necessary ũ by |ũ|, we can suppose without restriction that
ũ ≥ 0 a.e. on RN . To prove the lemma, it suffices to show that

lim
t→+∞

I(tũ)
t2

< 0. (2.4)
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First, let us establish that

lim
t→+∞

∫
RN

F (tũ)
t2

dx =
1
2
a. (2.5)

To prove (2.5), it is convenient to separate the cases ũ(x) > 0 and ũ(x) = 0 (without loss of generality we can
assume that ũ is defined everywhere on RN ). Let x be such that ũ(x) > 0. We have, by (f2),

lim
t→+∞

F (tũ(x))
t2

= lim
t→+∞

F (tũ(x))
(tũ(x))2

(ũ(x))2 =
1
2
a(ũ(x))2. (2.6)

Now let x be such that ũ(x) = 0. Then

F (tũ(x))
t2

= 0 =
1
2
a(ũ(x))2 for all t > 0. (2.7)

Thus combining (2.6) and (2.7) we obtain that

lim
t→+∞

F (tũ(x))
t2

=
1
2
a(ũ(x))2 a.e. on RN . (2.8)

On the other hand, by (f1), (f2), there exists a constant C > 0 such that

0 ≤ f(s)
s
≤ C for all s ∈ R (2.9)

and thus

0 ≤ F (s)
s2
≤ C

2
for all s ∈ R. (2.10)

Consequently

0 ≤ F (tũ(x))
t2

≤ C

2
(ũ(x))2 a.e. on RN . (2.11)

Now, (2.8) and (2.11) allow us to apply Lebesgue’s theorem to get

lim
t→+∞

∫
RN

F (tũ(x))
t2

dx =
1
2
a

∫
RN

(ũ(x))2 dx =
1
2
a, (2.12)

that is (2.5). Then, we easily deduce that

lim
t→+∞

I(tũ)
t2

=
1
2
||ũ||2 − lim

t→+∞

∫
RN

F (tũ(x))
t2

dx =
1
2

(||ũ||2 − a) < 0

and the lemma is proved.

Remark 2.4. As we shall see in Section 4, if there exists s0 > 0 such that 2F (s0)s−2
0 > V (∞), Lemma 2.3 can

be proved in a simpler way.

Since the functional I has a MP geometry, we deduce (see [6]) the existence of a Cerami sequence at the MP
level c, namely of a {un} ⊂ H such that

I(un)→ c and ||I ′(un)||H−1(1 + ||un||)→ 0 as n→∞.
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3. Boundedness of {un}
In this section we establish that {un} is bounded. Seeking a contradiction, we assume, throughout this

section, that a subsequence of {un} (still denoted by {un}) satisfies ‖un‖ → ∞ and we set wn = un‖un‖−1.
Clearly, {wn} is bounded and, up to a subsequence, satisfies the alternative:

1. (non-vanishing) there exist α > 0, R <∞ and {yn} ⊂ RN such that

lim
n→∞

∫
yn+BR

w2
n dx ≥ α > 0.

2. (vanishing) for all R > 0

lim
n→∞

sup
y∈RN

∫
y+BR

w2
n dx = 0.

We prove that none of the two cases can occur, getting so the desired contradiction.

Lemma 3.1. Assume that (V1), (V2), (f1), (f2) and either (f3) or (f4) hold. Then the vanishing of {wn} is
impossible.

Proof. We develop a contradiction argument assuming that {wn} vanishes. Then we immediately get, using
(V2), that ∫

RN
(V (x) − V (∞))w2

n dx→ 0 as n→∞.

Thus

lim
n→∞

∫
RN
|∇wn|2 + V (∞)w2

n dx = lim
n→∞

||wn||2 = 1

and, in particular,

lim
n→∞

∫
RN

w2
n dx ≤ 1

V (∞)
· (3.1)

Also, since I(un)→ c, we have that I(un)||un||−2 → 0 which can be written as

lim
n→∞

∫
RN

F (un)
u2
n

w2
n dx =

1
2
· (3.2)

Combining (3.1) and (3.2), we immediately get a contradiction when (f3) holds. Now assuming that (f4) holds,
we set for δ > 0 given in (f4)

Ωn =
{
x ∈ RN :

F (un(x))
un(x)2

≤ 1
2

(V (∞)− δ)
}
·

Then, for all n ∈ N, ∫
Ωn

F (un)
u2
n

w2
n dx ≤ 1

2
(V (∞)− δ)

∫
Ωn

w2
n dx

and, passing to the limit, we deduce using (3.1), (3.2) that necessarily

lim inf
n→∞

∫
RN\Ωn

F (un)
u2
n

w2
n dx ≥ δ

2V (∞)
> 0. (3.3)
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We claim that

lim sup
n→∞

|RN\Ωn| =∞. (3.4)

To check this we assume by contradiction that lim supn→∞ |RN\Ωn| <∞. On one hand, using (2.10) it follows
that ∫

RN\Ωn

F (un)
u2
n

w2
n dx ≤ C

∫
RN\Ωn

w2
n dx. (3.5)

On the other hand we recall that any bounded vanishing sequence {vn} ⊂ H satisfies vn → 0 strongly in Lq(RN )
for any q ∈]2, 2N

N−2 [ (a proof of this result is given in Lem. 2.18 of [5] and is a special case of Lem. I.1 of [8]).
Thus, using Hölder inequality, we get under the assumption lim supn→∞ |RN\Ωn| <∞ that

lim
n→∞

∫
RN\Ωn

w2
n dx = 0.

Then (3.5) contradicts (3.3) and this proves (3.4). Now observe that since, G(s) ≥ 0, ∀s ∈ R∫
RN

G(un) dx ≥
∫
RN\Ωn

G(un) dx ≥ δ |RN\Ωn|.

Thus lim supn→∞
∫
RN G(un) dx = +∞. But, because {un} is a Cerami sequence,∫

RN
G(un) dx = I(un)− 1

2
I ′(un)un → c.

This contradiction proves the lemma.

We now have to prove that the non-vanishing of {wn} can not occur either. Still by contradiction we assume
that {wn} is non-vanishing. At this point it is convenient to distinguish the cases {yn} bounded or unbounded.

Lemma 3.2. Assume that (V1), (V2), (f1), (f2) hold and that {yn} is bounded. Then the non-vanishing of
{wn} is impossible.

Proof. The sequence {wn} being bounded, up to a subsequence, wn ⇀ w ∈ H.

Step 1. The weak limit w is non-negative.
Since {wn} is non-vanishing and {yn} bounded, we have w 6= 0. Also since {un} is a Cerami sequence

−∆un + V (x)un = f(un) + εn in H−1(RN )

with εn → 0 in H−1(RN ). Thus

−∆wn + V (x)wn =
f(un)
un

wn +
εn
||un||

· (3.6)

Multiplying (3.6) by w−n ≡ max{−wn, 0} and integrating, we get∫
RN

(|∇w−n |2 + V (x)|w−n |2) dx =
∫
RN

εn
||un||

w−n dx,
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that is

||w−n ||2 =
∫
RN

εn
||un||

w−n dx· (3.7)

Since {w−n } is also bounded, we have ∫
RN

εn
||un||

w−n dx→ 0.

Therefore, by (3.7), ||w−n || → 0. We deduce that wn → w = w+ a.e. on RN .

Step 2. w is an eigenvector of −∆ + V (x) associated to the eigenvalue a.
To prove that −∆w + V (x)w = aw it is sufficient to show that for any ϕ ∈ C∞0 (RN )∫

RN
[∇w∇ϕ+ V (x)wϕ] dx = a

∫
RN

wϕ dx. (3.8)

Let ϕ ∈ C∞0 (RN ) be arbitrary but fixed. Multiplying (3.6) by ϕ and integrating, we obtain∫
RN

[∇wn∇ϕ+ V (x)wnϕ] dx =
∫
RN

f(un)
un

wnϕ dx+
∫
RN

εn
||un||

ϕ dx. (3.9)

Clearly ∫
RN

εn
||un||

ϕ dx→ 0 (3.10)

and also since {wn} converges weakly to w in H,∫
RN

[∇wn∇ϕ+ V (x)wnϕ] dx→
∫
RN

[∇w∇ϕ + V (x)wϕ] dx. (3.11)

We claim that ∫
RN

f(un)
un

wnϕ dx→ a

∫
RN

wϕ dx. (3.12)

If (3.12) holds, then combining (3.9)–(3.12), we get (3.8) and the proof of Step 2 is completed. Thus let us
prove (3.12). First, we shall establish that

f(un)
un

wn → aw, a.e. in RN . (3.13)

In this aim, it is convenient to distinguish the two cases w(x) = 0 and w(x) 6= 0 (without restriction we can
suppose that w is defined everywhere on RN ). Let x ∈ RN be such that w(x) = 0. By (2.9),

0 ≤
∣∣∣∣f(un(x))
un(x)

wn(x)
∣∣∣∣ ≤ C|wn(x)|,

and since wn(x)→ w(x) = 0, we get

f(un(x))
un(x)

wn(x)→ 0 = aw(x).
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Let x ∈ RN be such that w(x) 6= 0. Then necessarily un(x)→ +∞. Thus by (f2)

f(un(x))
un(x)

→ a.

Consequently, also in this case,

f(un(x))
un(x)

wn(x)→ aw(x)

and this proves (3.13).
Denote by Ω ⊂ RN a compact set such that supp ϕ ⊂ Ω. The compactness of the Sobolev embedding

H1(Ω) ↪→ L1(Ω) implies wn → w strongly in L1(Ω). Thus in particular, after taking a subsequence if necessary,
there exists h ∈ L1(Ω) such that

|wn(x)| ≤ h(x) a.e. x ∈ Ω

(see Th. IV.9 in [4]) and using again (2.9) we have for all n ∈ N,∣∣∣∣f(un)
un

wn

∣∣∣∣ ≤ C|wn| ≤ Ch, a.e. x ∈ Ω. (3.14)

Now (3.13) and (3.14) allows to apply Lebesgue’s theorem and we get

∫
RN

f(un)
un

wnϕ dx =
∫

Ω

f(un)
un

wnϕ dx→ a

∫
Ω

wϕ dx = a

∫
RN

wϕ dx,

namely (3.12). This ends Step 2.

Step 3. When a > inf σ(−∆ + V (x)), the operator −∆ + V (x) has no non-negative eigenvector associated to
the eigenvalue a.

Seeking a contradiction, suppose that u ∈ H is non-negative and satisfies

−∆u+ V (x)u = au in RN .

First, we fix a constant A such that

inf σ(−∆ + V (x)) < A < a.

By the variational characterization of inf σ(−∆ + V (x)), there exists v ∈ H satisfying

||v||2
||v||22

< A.

Thus, since C∞0 (RN ) is dense in H, we may assume v ∈ C∞0 (RN ). Now, let R > 0 be such that supp v ⊂ BR and
consider the Dirichlet problem for −∆ + V (x) on BR. Denote by l the infimum of the spectrum of −∆ + V (x)
on BR. By construction,

l ≤ ||v||
2

||v||22
< A < a. (3.15)
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On the other hand, l is an eigenvalue of −∆ + V (x) associated to an eigenvector vR > 0 on BR. Note that,
moreover, we have ∂vR

∂n ≤ 0. Then, integrating twice by parts.

l〈u, vR〉BR = 〈u, (−∆ + V (x))vR〉BR
=

∫
BR

∇u∇vR dx−
∫
∂BR

∂vR
∂n

u dσ +
∫
BR

V (x)uvR dx

≥
∫
BR

∇u∇vR dx+
∫
BR

V (x)uvR dx

=
∫
BR

(−∆u)vR dx−
∫
∂BR

∂u

∂n
vR dσ +

∫
BR

V (x)uvR dx

=
∫
BR

(−∆u)vR dx+
∫
BR

V (x)uvR dx

= 〈(−∆ + V (x))u, vR〉BR = a〈u, vR〉BR ,

where 〈·, ·〉BR denotes the scalar product of L2(BR). But since u ≥ 0 and vR > 0, we have < u, vR >BR> 0,
and thus the above calculation shows that l ≥ a in contradiction with (3.15). This completes Step 3.

Combining Steps 1, 2 and 3, Lemma 3.2 is proved.

Lemma 3.3. Assume that (V1), (V2), (f1), (f2) hold and that, up to a subsequence, |yn| → ∞. Then the
non-vanishing of {wn} is impossible.

Proof. Setting ũn(x) = un(x+ yn) and w̃n(x) = w(x+ yn) we have, from (3.6), that,

−∆w̃n + V (x+ yn)w̃n =
f(ũn)
ũn

w̃n +
ε̃n
||un||

(3.16)

with ε̃n → 0 in H−1(RN ). Up to a subsequence, w̃n ⇀ w̃ weakly in H and by construction w̃ 6= 0. We shall
prove that w̃ satisfies

−∆w̃ + V (∞)w̃ = aw̃ (3.17)

and, since −∆ has no eigenvector on RN , this will provide us the desired contradiction. To prove (3.17), it is
sufficient to establish that for any ϕ ∈ C∞0 (RN ),∫

RN
[∇w̃∇ϕ+ V (∞)w̃ϕ] dx = a

∫
RN

w̃ϕ dx.

Let ϕ ∈ C∞0 (RN ) be arbitrary but fixed. Multiplying (3.16) by ϕ and integrating, we obtain∫
RN

[∇w̃n∇ϕ+ V (x+ yn)w̃nϕ] dx =
∫
RN

f(ũn)
ũn

w̃nϕ dx+
∫
RN

ε̃n
||un||

ϕ dx.

We clearly have ∫
RN

ε̃n
||un||

ϕ dx→ 0 and
∫
RN
∇w̃n∇ϕ dx→

∫
RN
∇w̃∇ϕ dx.

Next we show
∫
RN V (x + yn)w̃nϕdx →

∫
RN V (∞)w̃nϕdx. Denote by Ω ⊂ RN a compact set such that

suppϕ ⊂ Ω. By (V2), we see V (x+ yn)→ V (∞) uniformly on Ω. Thus∫
Ω

(V (x+ yn)− V (∞))w̃nϕdx→ 0.
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Therefore

lim
n→∞

∫
RN

V (x+ yn)w̃nϕdx = lim
n→∞

V (∞)
∫
RN

w̃nϕdx = V (∞)
∫
RN

w̃ϕdx.

At this point to end the proof we just need to show that∫
RN

f(ũn)
ũn

w̃nϕ dx→ a

∫
RN

w̃ϕ dx.

This is done exactly as in Lemma 3.2.

Remark 3.4. The proof that {un} is bounded carries on to any Cerami sequence i.e. to any sequence {un} ⊂ H
such that {I(un)} is bounded and ||I ′(un)||H−1(1 + ||un||)→ 0.

4. A non-trivial critical point for I

In this section we prove that, up to a subsequence, our bounded Cerami sequence {un} converges weakly to
a non-trivial critical point of I. For this we shall study autonomous problems and make use of classical results
due to Berestycki and Lions [2] when N ≥ 3 and Berestycki et al. [3] when N = 2. For the convenience of
readers, we state their results here. We remark that we do not state them in their full generality. We consider
the equation

−∆u = h(u) in RN (4.1)

where it is assumed on h that

(h0) h : R→ R is continuous and odd;
(h1) there exists a limit lims→0+ h(s)/s ∈]−∞, 0[;
(h2) when N ≥ 3, it holds that lims→∞ |h(s)|s−

N+2
N−2 = 0.

When N = 2, for any α > 0 there exists a Cα > 0 such that |h(s)| ≤ Cαeαs
2

for all s ∈ R.

Associated to (4.1) is the functional J : H → R given by

J(u) =
∫
RN

1
2
|∇u|2 −H(u) dx,

where H(u) =
∫ u

0 h(s) ds. We say that a solution w of (4.1) is a least energy solution if J(w) = m, where

m = inf{J(u);u 6= 0 and J ′(u) = 0}·

Proposition 4.1. ([2,3]) Assume (h0)–(h2). Then J is well defined and we have

(i) (4.1) has a non-trivial solution if and only if H(s0) > 0 for some s0 > 0;
(ii) if H(s0) > 0 for some s0 > 0, then m > 0 and there exists a least energy solution w of (4.1) which satisfies

w > 0 on RN and, as any critical point of J, the Pohozaev identity:

(N − 2)
∫
RN
|∇w|2dx = 2N

∫
RN

H(w) dx.
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The key to our compactness result is the following observation, which complements the results of Proposition 4.1:

Proposition 4.2. Assume (h0)–(h2) and H(s0) > 0 for some s0 > 0. Let v be a critical point of (4.1) with
v(x) > 0 for all x ∈ RN . Then, there exists a path γ ∈ C([0, 1],H) such that γ(t)(x) > 0 for all x ∈ RN ,
t ∈ (0, 1], γ(0) = 0, J(γ(1)) < 0, v ∈ γ([0, 1]) and

max
t∈[0,1]

J(γ(t)) = J(v).

In particular, for the least energy solution w obtained in Proposition 4.1, we have

inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ J(w).

The proof of Proposition 4.2 will be given in the Appendix.
Now we return to our problem (1.1) and we consider the associated “problem at infinity”, i.e., the autonomous

problem:

−∆u+ V (∞)u = f(u) in RN . (4.2)

Since any solution of (4.2) is non-negative, we can regard it as a solution of (4.1) with

h(s) =
{
−V (∞)s+ f(s), for s ≥ 0,
−h(−s), for s < 0.

Thus we can observe that a least energy solution for (4.2) – which we may assume positive – is also a least
energy solution of (4.2) and the converse is also true.

Remark 4.3. Applying Proposition 4.1(i) to h(s) = −V (∞)s + f(s), we see that under condition (f3), Ĩ has
no non-trivial critical points.

Lemma 4.4. Assume that (V1), (V2), (f1), (f2) hold. Let {un} ⊂ H be a bounded PS sequence for I at the
level c. Then, up to a subsequence, un ⇀ u 6= 0 with I ′(u) = 0 if either one of the following conditions hold:

(i) (f3) is satisfied;
(ii) (f4) holds and

V (x) ≤ V (∞) for all x ∈ RN and V (x) 6≡ V (∞). (4.3)

Proof. Since {un} is bounded in H, we can assume that, up to a subsequence, un ⇀ u. Let us prove that
I ′(u) = 0. Noting that C∞0 (RN ) is dense in H, it suffices to check that I ′(u)ϕ = 0 for all ϕ ∈ C∞0 (RN ). Let
(·, ·) denote the inner product on H associated to our chosen norm. Then

I ′(un)ϕ− I ′(u)ϕ = (un − u, ϕ)−
∫
RN

(f(un)− f(u))ϕ dx→ 0

since un ⇀ u weakly in H and strongly in Lqloc(RN ) for q ∈ [2, 2N
N−2 [. Thus recalling that I ′(un)→ 0 we indeed

have that I ′(u) = 0. At this point if u 6= 0 the lemma is proved. Thus we assume that u = 0. We claim that in
this case {un} is also a PS sequence for Ĩ at the level c. Indeed, as n→∞,

Ĩ(un)− I(un) =
∫
RN

(V (∞)− V (x))u2
n dx→ 0
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since V (x)→ V (∞) as |x| → ∞ and un → 0 in L2
loc(RN ). Also, for the same reasons, we have

sup
||v||≤1

|(Ĩ ′(un)− I ′(un), v)| = sup
||v||≤1

∣∣∣∣∫
RN

(V (∞)− V (x))unv dx
∣∣∣∣→ 0.

Next we claim that {un} does not vanish. Indeed on one hand by (2.1) we have for any u ∈ H∫
RN
|f(u)u|dx ≤ ε||u||22 + Cε||u||pp

and thus, if {un} vanishes, we get that ∫
RN

f(un)un dx→ 0.

On the other hand, since I ′(un)un → 0, we have

||un||2 −
∫
RN

f(un)un dx→ 0.

So if we assume that {un} vanishes, we arrive at the conclusion that ||un|| → 0 in a contradiction with
Corollary 2.2(ii).

Thus {un} is a non-vanishing sequence. Namely there exist α > 0, R > 0 and {yn} ⊂ RN such that

lim
n→∞

∫
yn+BR

u2
n dx ≥ α > 0.

Let ũn(x) = un(x+ yn). Since {un} is a PS sequence for Ĩ, this is also the case of {ũn}. Arguing as in the case
of {un} we get that ũn ⇀ ũ, up to a subsequence, with Ĩ ′(ũ) = 0. Since {ũn} is non-vanishing we also have
that ũ 6= 0.

At this point if (i) is satisfied, Ĩ has no non-trivial critical points (see Rem. 4.3) and we obtain a contradiction.
If (ii) holds, we have that G(s) ≥ 0 for all s ∈ R and we get from Fatou’s lemma that

c = lim sup
n→∞

[
Ĩ(ũn)− 1

2
Ĩ ′(ũn)ũn

]
= lim
n→∞

∫
RN

G(ũn) dx ≥
∫
RN

G(ũ) dx = Ĩ(ũ)− 1
2
Ĩ ′(ũ)ũ = Ĩ(ũ).

Namely ũ 6= 0 is a critical point of Ĩ satisfying Ĩ(ũ) ≤ c. By the strong maximum principle ũ > 0 on RN . Then,
by Proposition 4.2, we can find a path γ(t) ∈ C([0, 1],H) such that γ(t)(x) > 0, ∀x ∈ RN , ∀ t ∈ (0, 1], γ(0) = 0,
Ĩ(γ(1)) < 0, ũ ∈ γ([0, 1]) and

max
t∈[0,1]

Ĩ(γ(t)) = Ĩ(ũ).

Since we have assumed (4.3), we have

I(γ(t)) < Ĩ(γ(t)) for all t ∈ (0, 1].

Thus

c ≤ max
t∈[0,1]

I(γ(t)) < max
t∈[0,1]

Ĩ(γ(t)) ≤ c.

This is a contradiction.
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End of the proofs of Theorems 1.1 and 1.2. Except for a special case V (x) ≡ V (∞) in Theorem 1.2,
Theorems 1.1 and 1.2 follow from Lemma 4.4. Thus we consider the case V (x) ≡ V (∞).

Since, in this case, σ(−∆+V (∞)) = [V (∞),∞), we have a > V (∞) from (f2). Thus H(s) = F (s)− 1
2V (∞)s2

satisfies H(s0) > 0 for sufficiently large s0 > 0 and we deduce the existence of a non-trivial critical point from
Proposition 4.1.

At the end of this section, we show the existence of a least energy solution in the setting of Theorem 1.2.

Theorem 4.5. Under the assumptions of Theorem 1.2, (1.1) has a least energy solution. More precisely, there
exists a solution w ∈ H such that I(w) = m, where

m = inf{I(u); u 6= 0 and I ′(u) = 0} ·

Proof. First we observe that m = inf{I(u); u 6= 0 and I ′(u) = 0} satisfies

0 ≤ m ≤ c,

where c is the MP level for I. In fact, by (f4)(i), we have for any critical point u of I

I(u) = I(u)− 1
2
I ′(u)u =

∫
RN

G(u) dx ≥ 0

and thus m ≥ 0. On the other hand, in Lemma 4.4 we obtained a non-trivial critical point u of I as a weak
limit of a bounded PS sequence {un} for I at level c. Thus again from (f4)(i) and Fatou’s lemma we have

I(u) = I(u)− 1
2
I ′(u)u =

∫
RN

G(u) dx ≤ lim inf
n→∞

∫
RN

G(un) dx = lim inf
n→∞

I(un)− 1
2
I ′(un)un = c.

Therefore we have m ∈ [0, c].
Next let {vn} be a sequence of non-trivial critical points of I satisfying

I(vn)→ m ∈ [0, c].

By Corollary 2.2(i), we have lim infn→∞ ||vn|| ≥ ρ0 > 0. Repeating the arguments in the previous sections,
we can see that {vn} is bounded and vn weakly converges to a function w 6= 0. It is easy to see that w is a
non-trivial critical point of I and thus I(w) ≥ m. On the other hand, using (f4)(i) and Fatou’s lemma again,
we can see that

I(w) ≤ lim inf
n→∞

I(vn) = m.

Therefore we have I(w) = m.

5. Appendix: Proof of Proposition 4.2

In this appendix we give a proof of Proposition 4.2. In the proof the following scale change plays an important
role. For a non-trivial critical point v ∈ H1(RN ) of J , we set

vt(x) = v(x/t) for t > 0.

For any t > 0, vt has the following properties which can be checked through direct calculation.

Lemma 5.1. (i) ||∇vt||22 = tN−2||∇v||22.
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(ii) For any continuous function F satisfying lim sups→0+ |F (s)|/s2 <∞.∫
RN

F (vt) dx = tN
∫
RN

F (v) dx.

(iii) ||vt||qq = tN ||v||qq for all q ∈ [2,∞).

Proof of Proposition 4.2 for N ≥ 3. By the Pohozaev identity, we have
∫
RN H(v) dx = N−2

2N ||∇v||22. Thus

J(vt) =
tN−2

2
||∇v||22 − tN

∫
RN

H(v) dx =
(

1
2
tN−2 − N − 2

2N
tN
)
||∇v||22.

We can see easily that

(i) maxt>0 J(vt) = J(v);
(ii) J(vt)→ −∞ as t→∞;
(iii) ||vt||2H1(RN ) = ||∇vt||22 + ||vt||22 = tN−2||∇v||22 + tN ||v||22 → 0 as t→ 0.

We choose L > 1 such that J(vL) < 0 and set γ(t) = vLt for t ∈ (0, 1], γ(0) = 0. This is the desired path.

Next we deal with the case N = 2. First we observe

Lemma 5.2. Assume N = 2. Then, for any t > 0,

(i) ||∇vt||22 = ||∇v||22;
(ii) For any continuous function F (s) satisfying lim sups→0+ F (s)/s2 <∞.∫

RN
F (vt) dx = t2

∫
RN

F (v) dx.

(iii)
∫
R2 H(vt) dx = 0;

(iv) J(vt) = J(v);
(v)

∫
R2 h(vt)vt dx = t2||∇v||22.

Proof. (i)–(ii) are special cases of (i)-(ii) of Lemma 5.1. (iii) is a consequence of Pohozaev identity and (ii). (iv)
is obtained directly from (i) and (iii). To see (v), we remark that v is a solution of (4.1). Thus

||∇v||22 =
∫
R2
h(v)v dx

and, as a special case of (ii), we have∫
R2
h(vt)vt dx = t2

∫
R2
h(v)v dx = t2||∇v||22.

Proof of Proposition 4.2 for N = 2. When N = 2, construction of a path γ(t) is rather complicated. First we
join 0 and v.
Step 1. A path γ joining v to 0.

Recalling the conditions (h1), (h2), we can find constants α, C > 0 such that

|h(s)| ≤ Ceαs
2 |s| for all s ∈ R.
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Now we compute d
dθJ(θvt), assuming that θ ∈ [0, 1],

d
dθ
J(θvt) = θ ||∇vt||22 −

∫
R2
h(θvt)vt dx ≥ θ ||∇vt||22 − θC

∫
R2

eαθv
2
t v2
t dx

≥ θ ||∇vt||22 − θC
∫
R2

eαv
2
t v2
t dx = θ

(
||∇v||22 − Ct2

∫
R2

eαv
2
v2 dx

)
.

We choose t0 ∈ (0, 1) sufficiently small so that

||∇v||22 − Ct20
∫
R2

eαv
2
v2 dx > 0.

For such a t0, we have

d
dθ
J(θvt0) ≥ 0, ∀ θ ∈ [0, 1].

Thus first we join v and vt0 along the curve t 7→ vt and next vt0 and 0 along a line θ 7→ θvt0 , we can easily see
that this is a desired path.

Step 2. A path joining v and ∞.
We fix t1 > 1 and first compute d

dθ

∣∣
θ=1

J(θvt1) and d
dθ

∣∣
θ=1

∫
R2 H(θvt1) dx.

d
dθ

∣∣∣∣
θ=1

J(θvt1) = ||∇vt1 ||22 −
∫
R2
h(vt1)vt1 dx = ||∇v||22 − t12||∇v||22 < 0,

d
dθ

∣∣∣∣
θ=1

∫
R2
H(θvt1) dx =

∫
R2
h(vt1)vt1 dx = t1

2||∇v||22 > 0.

Thus for a θ1 ∈ (1,∞) sufficiently close to 1, we have

J(θvt1) ≤ J(vt1) = J(v) ∀ θ ∈ [1, θ1],∫
R2
H(θ1vt1) dx >

∫
R2
H(vt1) dx = 0.

Next we consider (θ1vt1)t = θ1vt1t for t ≥ 1. We have

J(θ1vt1t) =
θ2

1

2
||∇vt1 ||22 − t2

∫
R2
H(θ1vt1) dx.

Thus J(θ1vt1t) is a decreasing function of t and J(θ1vt1t)→ −∞ as t→∞. Therefore we join v and vt1 along
a curve t 7→ vt, next join vt1 to θ1vt1 along a line θ 7→ θvt1 , finally join θ1vt1 to θ1vt1t2 (t2 � 1) along a curve
t 7→ θ1vt1t. We can easily see that this is a desired path.

The first author thanks Professor C.A. Stuart for providing him a simpler proof of Step 3 of Lemma 3.1. The authors
also thank Professor Z.Q. Wang for pointing to them the interest to show the existence of a least energy solution in
Theorem 4.5.
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Sci. Paris Sér. I Math. 297 (1983) 307-310.
[4] H. Brezis, Analyse fonctionnelle. Masson (1983).
[5] V. Coti Zelati and P.H. Rabinowitz, Homoclinic type solutions for a semilinear elliptic PDE on RN . Comm. Pure Appl. Math.

XIV (1992) 1217-1269.
[6] I. Ekeland, Convexity methods in Hamiltonian Mechanics. Springer (1990).
[7] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on

R
N . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809.

[8] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Parts I and II.
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