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EXPONENTIAL STABILITY AND TRANSFER FUNCTIONS
OF PROCESSES GOVERNED BY SYMMETRIC HYPERBOLIC SYSTEMS
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Abstract. In this paper we study the frequency and time domain behaviour of a heat exchanger
network system. The system is governed by hyperbolic partial differential equations. Both the control
operator and the observation operator are unbounded but admissible. Using the theory of symmetric
hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger
network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the
system is regular and derive various properties of its transfer functions, which are potentially useful
for controller design. Our results remain valid for a wide class of processes governed by symmetric
hyperbolic systems.
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1. Introduction

In all chemical engineering processes which have heat, mass or momentum transfer, there exist gradients in
spatial directions. Some processes are specifically designed to take advantage of gradients along the axis of flow.
The tubular reactor, the shell and tube heat exchangers and the packed mass exchange columns all achieve their
objectives in this way [9]. The dynamics of most of these processes must be described by partial differential
equations (PDE’s), resulting in distributed parameter systems. In this paper we study frequency and time
domain behaviour of a class of hyperbolic systems represented by a countercurrent heat exchanger network.
This class of systems covers classical countercurrent heat exchangers [9], packed mass exchange columns [9, 38]
and irrigation canals [2, 5, 40]. Our approach is essentially infinite-dimensional: the analysis will be carried out
based on PDE models, in contrast to the discrete approximation method, which results in finite-dimensional
models (cf. Hangos et al. [11]).

The network of countercurrent heat exchangers to be considered is governed by two sets of hyperbolic partial
differential equations: 

∂R1
∂t

= m1
∂R1
∂x
−K1(R1 −R2) + b1(x)u(t)

∂R2
∂t

= −m2
∂R2
∂x

+K2(R1 −R2)
(1.1)
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on the domain (x, t) ∈ (0, l1)× R+ (where R+ = (0,+∞)), and
∂T1

∂t
= (1− β)m1

∂T1

∂x
−K1(T1 − T2) + b2(x)u(t)

∂T2

∂t
= −m2

∂T2

∂x
+K2(T1 − T2)

(1.2)

on the domain (x, t) ∈ (l1, l2)× R+. (For the sake of simplicity we write Ri for Ri(x, t), i = 1, 2 and similarly
for Ti.) These PDE’s are coupled by the boundary conditions

R1(l1, t) = (1− β)T1(l1, t)
R2(l1, t) = T2(l1, t)
T1(l2, t) = 0
R2(0, t) = d(t).

(1.3)

We consider the following output:

y(t) = T2(l2, t). (1.4)

In the above equations mi, Ki, li with i = 1,2 and β are positive constants such that l2 > l1 > 0 and 0 < β < 1.
The state variables Ri(x, t) and Ti(x, t), i = 1, 2 are deviations of the temperatures of fluids from their steady
state values. (The reader is referred to Gauthier and Xu [10] for a detailed list of variables in the equations
together with their physical meaning.) This heat exchanger model has been constructed in [10] in order to
simulate the qualitative input-output behaviour of an industrial furnace. It consists of two countercurrent
heat exchangers connected in cascade. When we consider fluid flow rates as control variables, the resulting
control system is bilinear. Linearizing the bilinear system around a steady state point we get the linear system
described above. Hence the functions b1(x) and b2(x) are continuously differentiable and determined uniquely
by the steady state value (see [10]). The control variable u(t) represents the variation of the fluid flow rate. The
disturbance variable d(t), representing the variation of the fluid inlet temperature, enters into the boundary
condition (1.3). Thus the equations (1.1–1.4) describe an infinite-dimensional linear system with boundary and
distributed input and boundary output. As shown in [10], the system is non-minimum phase: the transfer
function from u to y has zeros in the open right half-plane. The H∞ control theory developed in [8] has been
applied in [10] to this system for minimizing the worst effect of the disturbance d(t) on the output y(t). The
industrial interest of the resulting H∞ controller has been explained in [10].

In this paper we show how the system (1.1–1.3) is transformed into a dissipative symmetric hyperbolic system.
Then we prove that the associated semigroup is exponentially stable using a theorem of Rauch and Taylor [25].
We prove that the system (1.1–1.4) is regular in the sense of Weiss [32]. The regularity of the controlled
and observed system with exponential stability of the semigroup guarantees that the transfer functions P (s)
and W (s) (corresponding to the input-output mappings u → y and d → y, respectively) are in H∞ (that is,
analytic and bounded on the open right half-plane). This gives a positive answer to some of the open questions
in [10]. The fact that the system under consideration is regular has useful consequences on the design of feedback
controllers for the system. The cascade connection of two regular systems is again regular. The class of regular
linear systems is closed under feedback (see [31]). The most important consequence is that internal stability
and external stability are equivalent for a regular system which is both stabilizable and detectable, as proved
in Rebarber [26] (see also Morris [19], Weiss and Curtain [33]).

As pointed out in Ydstie and Alonso [42], many thermodynamic processes satisfying a system of conservation
laws are governed in particular by symmetric hyperbolic systems of PDE’s. We propose studying the problem
of stability and well-posedness for this class of systems based on the heat exchanger network. We propose a
new proof of the theorem of Rauch and Taylor under an additional assumption by using the direct method of
Lyapunov. The advantage of this method is its simplicity and the fact that it is not limited to one space variable.
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The direct method of Lyapunov allows us to attack symmetric hyperbolic systems in higher dimensions and
degenerate hyperbolic cases that the theory in [25] cannot treat, see our Examples in Section 2.

Countercurrent heat exchanger systems are usually supposed to be stable by process engineers without
mathematical proof. From [42], for a strictly dissipative process with the action satisfying the Clausius–Planck
property the state variable tends to a passive state as time goes to infinity. In particular, a countercurrent heat
exchanger is a dissipative process. However the infinite-dimensional feature of the systems makes it necessary to
investigate if the stability is structural and exponential. The exponential stability of the classical heat exchang-
ers has been proved in [35] by the direct method of Lyapunov when the diffusion term is taken into account
in the flow. For the hyperbolic case (without diffusion) only strong stability has been obtained in [35] by the
decomposition theorem of [1]. In [36] we have established exponential stability for the hyperbolic case using
Huang’s theorem [13] (or Prüss’s theorem [23]). Here, the application of the theory of symmetric hyperbolic sys-
tems makes it possible to prove exponential stability for a much wider class of processes. In particular, networks
of heat exchangers formed by cascade connection are in this class. Many processes such as tubular reactors,
gas absorbers and irrigation canals can be modeled as symmetric hyperbolic systems (see [2, 5, 9, 27,39,40]
and [35]). Using the recent representation theory as developed in Weiss [32] we are able to characterize the
transfer functions in terms of the semigroup operator, control operator and observation operator. Moreover we
find the inner-outer factorization for some of them. This characterization is useful for various controller designs,
see Logemann et al. [17], Logemann and Townley [18], Staffans [29] and Weiss and Curtain [33]. While the class
of PDE models that we investigate is related to process systems with one spatial coordinate, no diffusion (only
convective transport) and no source (only heat exchange), our theoretical results can be extended to deal with
nonlinearities and energy transformations that take place in a reactive system (cf. Xu and Feng [34, 41]). For
more aspects of nonlinear hyperbolic systems the reader is referred to Coron et al. [5] and Li [16] as well as the
references there.

Since the work [25] of Rauch and Taylor in 1974 important developments have been achieved for stability
in the field of symmetric hyperbolic systems on Rd (cf. Kreiss et al. [14], Oritiz [20] and the references there).
We should mention the recent research carried out by Kreiss et al. [14] and Oritiz [20] in this direction. In
Kreiss et al. [14] asymptotic stability has been studied for solutions which are periodic w.r.t. space variables
or equivalently with bounded open cubic domain subject to periodic boundary conditions. It has been shown
that some eigenvalue condition for the symbols of the first order partial differential operator implies exponential
stability of the corresponding symmetric hyperbolic system. Roughly speaking, after the Fourier series transform
w.r.t. the space variables (the PDE becoming ODE w.r.t. time) they have exploited the Lyapunov method in the
frequency domain in order to establish the stability result. The stability problem that we consider is concerned
with initial-boundary symmetric hyperbolic systems. We have both initial condition and boundary condition
to be satisfied. If we assume the so-called eigenvalue condition in our case exponential stability is somehow
trivial. In [20], motivated by physical systems describing dissipative relativistic fluids Ortiz has considered
the stability problem for symmetric hyperbolic PDE on the whole Euclidean space Rd. It has been proved in
Ortiz [20] that if d ≥ 3 some similar eigenvalue condition on the constant coefficients system symbol implies
the decay of the solution to zero as time goes to infinity. The result has been established using the Laplace
transform w.r.t. time and the Fourier transform w.r.t. space. Once more the condition is too restrictive for
our initial-boundary case. Our approach for stability is different: we exploit the Lyapunov method in the time
domain. Our result is concerned with boundary dissipations. When the boundary is really dissipative we expect
exponential stability. As the same as in Kreiss et al. [14] and in Ortiz [20] our stability result remains valid for
small nonlinear perturbations. The contribution of our paper is proposing appropriate Lyapunov functionals
for some initial-boundary symmetric hyperbolic systems and proving the well-posedness of these systems with
control and observation. The result that we obtain in the time domain gives us informations on the frequency
domain.

Our paper is organized as follows. In Section 2 the stability result of Rauch and Taylor is presented for
dissipative symmetric hyperbolic systems. We propose an alternative proof using Lyapunov functionals, under
an additional symmetry assumption. In Section 3 we transform the equations (1.1–1.3) into a symmetric
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hyperbolic system. Exponential stability is established for the system by applying the result presented in
Section 2. We prove that the system, with distributed and/or boundary control and boundary observation, is
well-posed. In Section 4 we prove further that the system is regular and give explicit expression for its transfer
functions and the associated feedthrough operators. The inner-outer factorization and various properties are
deduced for some of them. Section 4 contains conclusions.

2. Symmetric hyperbolic systems without control

In the first part of this section we present our general idea for the proof of the Rauch and Taylor theorem.
In the second part we illustrate possible generalizations of our idea via two examples. The first example is
concerned with degenerate hyperbolic systems and the second one is concerned with hyperbolic systems of more
than two independent variables.

Consider a symmetric hyperbolic system of the form:
∂R(x, t)
∂t

= A(x)
∂R(x, t)
∂x

+B(x)R(x, t), (x, t) ∈ (0, 1)× R+

R−(0, t) = D0R
+(0, t)

R+(1, t) = D1R
−(1, t)

R(x, 0) = R0(x),

(2.1)

where R(x, t) is an n× 1 vector function for (x, t) ∈ (0, 1)× R+, partitioned as

R(x, t) =
(
R−(x, t)
R+(x, t)

)
with R−(x, t) ∈ Rp and R+(x, t) ∈ Rq, respectively and p+q = n. B(x) is a real n×n matrix function and A(x)
is a diagonal matrix function for x ∈ [0, 1], and D0 and D1 are real constant matrices. The diagonal matrix
A(x) is partitioned as

A(x) =
(
A−(x) 0
0 A+(x)

)
with

A−(x) = diag(λ1(x), λ2(x), ..., λp(x))

and

A+(x) = diag(λp+1(x), λp+2(x), ..., λp+q(x)).

We denote by Λ∗ the transposed matrix of Λ or the adjoint operator of Λ, as will be clear from the context,
and by Ax(x) the derivative of A(x). We denote by I the identity operator on any space. We assume that the
following hypotheses are satisfied:
H.1) B(·) ∈ C0([0, 1];Rn×n) and A(·) ∈ C1([0, 1];Rn×n).
H.2) λi(x) < 0, i = 1, 2, ..., p and λp+i(x) > 0, i = 1, 2, ..., q, for any x ∈ [0, 1].
H.3) For each x ∈ [0, 1],

B(x) +B∗(x)−Ax(x) ≤ 0, (2.2)

A−(1) +D∗1A
+(1)D1 ≤ −r− · I (2.3)
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and

A+(0) +D∗0A
−(0)D0 ≥ r+ · I, (2.4)

where r− ≥ 0 and r+ ≥ 0 are constants such that r− + r+ > 0.
Let the state space of system (2.1) be the real Hilbert space X = (L2(0, 1))n equipped with the inner product:

〈f, g〉X =
∫ 1

0

n∑
k=1

fk(x)gk(x)dx.

Theorem 1 (Rauch and Taylor [25]). Let H.1–H.3 be satisfied for the system (2.1). Then, for each R0 ∈ X
the system has a unique solution R(·, t) ∈ C ([0,+∞);X). Moreover the semigroup of bounded linear operators
U(t) on X such that R(·, t) = U(t)R0 is exponentially stable:

‖U(t)‖L(X) ≤Me−ωt

for some constants M,ω > 0.

Remark 1. The equations (2.1) are hyperbolic with two independent variables, and the proof in [25] uses the
method of characteristics. Here, we propose an alternative proof for a subclass of the systems in (2.1) where
B(x) is symmetric: B∗(x) = B(x) for all x ∈ [0, 1], using a Lyapunov function. The advantage of the direct
method of Lyapunov is its simplicity and its potential usefulness for hyperbolic systems in more than one space
variable. We demonstrate this by proving exponential stability of a symmetric hyperbolic system defined on an
open bounded domain in R2.

Remark 2. For the exponential stability with C1 topology on X (instead of the L2 topology), of nonlinear
systems similar to (2.1), the reader is referred to Li [16].

Proof of Theorem 1. Suppose that B(x) is symmetric in (2.1). Let us consider the following candidate of
Lyapunov function:

Vθ(R(·, t)) =
∫ 1

0

R∗(x, t)exp
(
θ

∫ x

0

A(ξ)dξ
)
R(x, t)dx, θ ∈ R.

For each θ > 0,
√
Vθ(f) induces on X a norm of f which is equivalent to the norm ‖f‖X on X . From (2.3)

and (2.4) in H.3, we take r− > 0 without loss of generality. Define the unbounded operator A associated with
the system (2.1) by

D(A) =
{
f =

(
f−

f+

)
∈
(
H1(0, 1)

)p+q ∣∣∣∣ f−(0) = D0f
+(0)

f+(1) = D1f
−(1)

}
(2.5)

and for all f ∈ D(A),

Af(x) = A(x)
∂

∂x
f(x) +B(x)f(x). (2.6)

From [25] and [27] it is known that with H.1, H.2, A is the generator of a C0-semigroup of bounded linear
operators on X . Then H.3 implies that this semigroup is contractive.
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For each initial condition R0 ∈ D(A) we compute the derivative of Vθ(R(·, t)) along a trajectory of (2.1):

dVθ(R(·, t))
dt

= −θ
∫ 1

0

R∗(x, t)A2(x)exp
(
θ

∫ x

0

A(ξ)dξ
)
R(x, t)dx

+R∗(1, t)exp
(
θ

∫ 1

0

A(ξ)dξ
)
A(1)R(1, t)−R∗(0, t)A(0)R(0, t)

+
∫ 1

0

R∗(x, t)(2B(x) −Ax(x))exp
(
θ

∫ x

0

A(ξ)dξ
)
R(x, t)dx.

(2.7)

From the second equation in (2.1) and (2.4), we obtain:

R∗(0, t)A(0)R(0, t) = (R+(0, t))∗(A+(0) +D∗0A
−(0)D0)R+(0, t) ≥ 0. (2.8)

Each matrix being diagonal, using the second and third equations of (2.1) we can write

R∗(1, t)exp
(
θ

∫ 1

0

A(ξ)dξ
)
A(1)R(1, t) =

{
exp

(
θ

2

∫ 1

0

A−(ξ)dξ
)
R−(1, t)

}∗
{
A−(1) +D∗1A

+(1)D1 +
[
exp

(
−θ

2

∫ 1

0

A−(ξ)dξ
)
D∗1A

+(1)exp
(
θ

∫ 1

0

A+(ξ)dξ
)
D1·

exp
(
−θ

2

∫ 1

0

A−(ξ)dξ
)
−D∗1A+(1)D1

]}
exp

(
θ

2

∫ 1

0

A−(ξ)dξ
)
R−(1, t).

(2.9)

In (2.9), the matrix in the square brackets is continuously differentiable and equal to zero for θ = 0. Thus,
equation (2.3) implies that there is a θ1 > 0 such that for any 0 < θ < θ1,

R∗(1, t)exp
(
θ

∫ 1

0

A(ξ)dξ
)
A(1)R(1, t) ≤ −r

−
2

∥∥∥∥exp
(
θ
2

∫ 1

0

A−(ξ)dξ
)
R−(1, t)

∥∥∥∥2

Rp
. (2.10)

For the last term in (2.7), we can write

R∗(x, t)(2B(x) −Ax(x))exp
(
θ

∫ x

0

A(ξ)dξ
)
R(x, t)

= R∗(x, t)exp
(
θ

2

∫ x

0

A(ξ)dξ
)

(2B(x)−Ax(x))exp
(
θ

2

∫ x

0

A(ξ)dξ
)
R(x, t)

+R∗(x, t)exp
(
θ

2

∫ x

0

A(ξ)dξ
)
G(θ, x)exp

(
θ

2

∫ x

0

A(ξ)dξ
)
R(x, t),

(2.11)

where

G(θ, x) = exp
(
−θ

2

∫ x

0

A(ξ)dξ
)

(2B(x) −Ax(x))exp
(
θ

2

∫ x

0

A(ξ)dξ
)
− (2B(x)−Ax(x)). (2.12)

Note that for any w ∈ Rn, w∗G(θ, x)w is continuously differentiable with respect to θ, and

w∗G(0, x)w = 0, (2.13)

w∗
∂

∂θ
G(0, x)w = 0. (2.14)
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(We have used the fact thatB(x) is symmetric in order to prove (2.14).) Using the last conditions and integrating
by parts we can write

w∗G(θ, x)w =
∫ θ

0

(θ − η)
∂2

∂η2 (w∗G(η, x)w) dη, for all w ∈ Rn. (2.15)

Then, for any w ∈ Rn,

w∗G(θ, x)w ≤ θ2

2
‖w‖2Rn sup

η∈[0,θ]

∥∥∥∥ ∂2

∂η2G(η, x)
∥∥∥∥
L(Rn)

. (2.16)

From (2.12), there is a K1 > 0 such that

sup
η∈[0,θ]

∥∥∥∥ ∂2

∂η2G(η, x)
∥∥∥∥
L(Rn)

≤ K1, (2.17)

for any x ∈ [0, 1] and 0 < θ ≤ θ1. Substituting (2.2, 2.12, 2.16) and (2.17) into (2.11) yields

R∗(x, t)(2B(x) −Ax(x))exp
(
θ

∫ x

0

A(ξ)dξ
)
R(x, t) ≤ K1θ2

∥∥∥∥exp
(
θ
2

∫ x

0

A(ξ)dξ
)
R(x, t)

∥∥∥∥2

Rn
. (2.18)

Substituting (2.8, 2.10) and (2.18) into (2.7) gives

dVθ(R(·, t))
dt

≤ −θ(λ2
min −K1θ)Vθ(R(·, t)), (2.19)

where λ2
min = minx∈[0,1],1≤k≤n λ

2
i (x), which is positive by H.2. Choose 0 < θ∗ < θ1 such that λ2

min − K1θ
∗

≥ λ2
min/2. It follows from (2.19) that

dVθ∗(R(·, t))
dt

≤ −
(
θ∗λ2

min

2

)
Vθ∗(R(·, t)),

or,

Vθ∗(R(·, t)) ≤ exp
(
−tθ∗λ2

min/2
)
Vθ∗(R0). (2.20)

The last estimate implies exponential stability of the semigroup from the fact that
√
Vθ∗(·) defines an equivalent

norm on X . �
Remark 3. Although we have not been able to prove the general Theorem 1 of Rauch and Taylor using our
Lyapunov functional, the direct method of Lyapunov allows us to attack symmetric hyperbolic systems in higher
dimension and degenerate hyperbolic cases that the theory in [25] cannot treat. In the sequel we present some
examples to address the issue of possible applications. Because the mathematical complexity goes beyond the
scope of the paper, the stability problem of symmetric hyperbolic systems in higher dimension will be presented
elsewhere. However, the essential ideas are presented in the following examples:

Example 1. The hyperbolic system we consider describes the dynamic of temperatures τi(x, t) (i = 1, ..., 4)
in a classical countercurrent heat exchanger when the diffusion effect is neglected both in the fluids and in the
separation wall (cf. Xu and Gauthier [35]). The system is governed by

∂

∂t
τ(x, t) = Λ

∂

∂x
τ(x, t) + Ξ τ(x, t), (x, t) ∈ (0, 1)× R+ (2.21)
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where

τ =


τ1
τ2
τ3
τ4

 , Λ = diag(−ρ1, 0, ρ2, 0), Ξ =


−h1 h1 0 0
h2 −(h2 + h3) h3 0
0 h4 −(h4 + h5) h5

0 0 h6 −h6

 .

Note that all the constants ρ1, ρ2 and hj (j = 1, ..., 4) are positive without any other constraint. The boundary
and initial conditions are given by

τ1(0, t) = τ3(1, t) = 0, τ(x, 0) = τ0(x). (2.22)

It is important to make the following remark. (i) Λ is singular because it has two eigenvalues equal to zero.
Hence we call the system degenerate. In [25] Rauch and Taylor have assumed Λ to be nonsingular when the
method of characteristics has been used. (ii) Ξ is also singular. Because of the properties (i, ii) direct application
of Theorem 1 is not possible. However, using an appropriate Lyapunov functional we can still establish the
following result. Let X =

(
L2(0, 1)

)4.

Theorem 2. The system (2.21) is exponentially stable on the state space X.

Proof of Theorem 2. First, by some nonsingular diagonal matrix transformation we put the matrix Ξ into the
following symmetric form while Λ is invariant (see [35]):

Ξ =


−h1

√
h1h2 0 0√

h1h2 −(h2 + h3)
√
h3h4 0

0
√
h3h4 −(h4 + h5)

√
h5h6

0 0
√
h5h6 −h6

 . (2.23)

It is easy to see that the linear operator A = Λ ∂
∂x

+Ξ with domain D(A) = {f ∈ (H1(0, 1))4 | f1(0) = f3(1) = 0}
is the generator of a C0 semigroup of contractions on X . Let us consider the Lyapunov functional Vθ : X → R+

defined as follows:

Vθ(φ) =
∫ 1

0

φ∗(x)ex θΛφ(x)dx.

Take a smooth initial condition τ0 in X . By computing the time derivative of the Lyapunov functional along
the trajectory we obtain

V̇θ(τ) = τ(x, t)∗ΛexθΛτ(x, t)
∣∣1
0
−
∫ 1

0

τ(x, t)∗e(x/2)θΛ
[
θΛ2 − 2 Ξ

]
e(x/2)θΛτ(x, t)dx

+
∫ 1

0

τ(x, t)∗e(x/2)θΛΠ(x, θ)e(x/2)θΛτ(x, t)dx, (2.24)

where

Π(x, θ) = e(x/2)θΛΞe−(x/2)θΛ + e−(x/2)θΛΞe(x/2)θΛ − 2Ξ. (2.25)

In (2.24) the first term is negative by the boundary condition. By (2.23) there exists some large constant m > 1
such that

z∗(θΛ2 − 2Ξ)z ≥ θ

m
z∗z, ∀ z ∈ R4, ∀ θ ∈ (0, 1). (2.26)
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From (2.25) we have some constant κ > 0 such that∫ 1

0

τ(x, t)∗e(x/2)θΛΠ(x, θ)e(x/2)θΛτ(x, t)dx ≤ κ θ2 Vθ(τ), ∀ θ ∈ (0, 1). (2.27)

Substituting (2.26) and (2.27) into (2.24) we can find some small θ ∈ (0, 1) such that

V̇θ(τ) ≤ − θ

2m
Vθ(τ).

The last inequality implies exponential stability of the system (2.21). �

Example 2. In this example we consider a class of dissipative (symmetric) hyperbolic systems with several
space variables. Using the Lyapunov method we propose a sufficient condition that guarantees exponential
stability for this class of systems. We also give an numeric example of the class. Let Ω be a bounded open
and connected subset in Rm. We assume that the boundary ∂Ω is C∞. Let S(x) denote a linear subspace of
constant dimension in RN which is smoothly varying on ∂Ω. We consider the linear differential operator

L =
m∑
j=1

Lj(x)∂j + Ξ(x)

where ∂j denotes the partial derivative w.r.t. xj and all Lj(x), Ξ(x) ∈ RN×N are supposed to be C∞(Ω). We
assume that all Lj(x) are symmetric and the linear operator L is formally dissipative, i.e., the following matrix
is non-positive on Ω:

Ξ∗(x) + Ξ(x) −
m∑
j=1

∂jLj(x) ≤ 0, ∀ x ∈ Ω.

We set n(x) = (n1(x), ..., nm(x)) equal to the outer unit normal to Ω at x ∈ ∂Ω. The boundary matrix ` is
defined by

`(x) =
m∑
j=1

nj(x)Lj(x), ∀ x ∈ ∂Ω.

For the simplicity we assume ` to be non-singular at all points of ∂Ω. We take S to be maximal non-positive,
i.e.,

u∗`(x)u ≤ 0, ∀ u ∈ S(x), ∀ x ∈ ∂Ω, (2.28)

and S(x) is not properly contained in any other subspace having this property. Define the domain D(L) as
follows:

D(L) =
{
f = (f1, ..., fN )∗ | fj ∈ C1(Ω) ∩ C(Ω); f(x) ∈ S(x), ∀x ∈ ∂Ω

}
·

Let X =
(
L2(Ω)

)N . Using density of C∞0 (Ω) in L2(Ω) and the Green formula in 〈Lf, g〉X we can prove the
following result:

Lemma 1. The linear operator L is closable, i.e., it has a unique closed extension noted by L̃.

Lemma 2. The operator L̃ is the generator of a C0 semigroup of contractions on X.
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Proof of Lemma 2. We prove first that L̃ is dissipative and then that (I − L̃) is surjective. Hence L̃ is the
generator of a C0 semigroup of contractions on X . Since L is formally dissipative and S is non-positive, for all
f ∈ D(L) the following holds:

〈L̃f, f〉X ≤ 0. (2.29)

Since D(L) is a core of D(L̃), the inequality (2.29) remains true for all f ∈ D(L̃). Hence L̃ is dissipative. Given
g ∈ X we look for some f ∈ D(L̃) such that

(I − L̃)f = g. (2.30)

From Lax and Phillips [15] (see also Chen [3]) we know that for each g ∈ X , there exists some strongly converging
sequence (fn) in D(L) such that (Lfn) converges strongly to g. By definition the limit f of (fn) belongs to
D(L̃) and satisfies the equation (2.30). Hence (I − L̃) is surjective. �

Now we consider the evolution system on X{
ϕ̇(t) = L̃ϕ(t)
ϕ(0) = ϕ0.

(2.31)

The main result in this Example 2 is the following:

Theorem 3. Suppose that all the above assumptions are satisfied. Then the semigroup generated by L̃ is
exponentially stable if there exist some constants θ > 0 and αj ∈ R, j = 1, ...,m, such that

D(x, θ, α) = Ξ∗(x) + Ξ(x) −
m∑
j=1

∂jLj(x)− θ
m∑
j=1

αjLj(x) < 0, ∀ x ∈ Ω. (2.32)

Proof of Theorem 3. Taking ϕ0 ∈ D(L̃) we have ϕ ∈ C1([0,∞);X). Consider the Lyapunov functional Vθ:
X → R+ such that

Vθ(ϕ(t)) =
∫

Ω

ϕ∗(t)w(θ, x)ϕ(t)dx

where w(θ, x) = exp (θΣmk=1αkxk). Differentiating the functional along the trajectory of (2.31) gives us

V̇ (ϕ(t)) =
∫

Ω

{(
L̃ϕ
)∗
w(θ, x)ϕ + ϕ∗w(θ, x)L̃ϕ

}
dx.

For each t the computation of the last integral is carried out on some sequence in D(L) which approximates
ϕ(t) in the sense of the graph topology. Then we pass it to limit. Using the fact that S is non-positive it is easy
to see that

V̇ (ϕ(t)) ≤
∫

Ω

ϕ∗w(θ, x)D(x, θ, α)ϕdx. (2.33)

If the condition (2.32) is satisfied then (2.33) implies exponential stability of the semigroup. �
A numeric example is given by the open disc in R2:

Ω =
{
x ∈ R2

∣∣ x2
1 + x2

2 < 1
}
·
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Let X =
(
L2(Ω)

)2
(equipped with the usual inner product:

∫
Ω f
∗(x)g(x)dx). Consider the following matrices:

G =
(
x2 + 1 x1

x1 −x2 + 1

)
, L1 =

(
0 1
1 0

)
, L2 =

(
1 0
0 −1

)
, Ξ =

(
0 0
0 −c

)
.

Let S(x) be the subspace in R2 given by S(x) = Ker(G). The boundary matrix `(x) =
(
x2 x1

x1 −x2

)
has two

eigenvalues: λ1 = −1 and λ2 = 1 on ∂Ω. Moreover the two corresponding eigenspaces are orthogonal to each
other. The maximal subspace of u in R2 satisfying (2.28) is the eigenspace corresponding to λ1. Hence S(x) is
maximal and non-positive. Since all the conditions required by Theorem 3 are satisfied, the numeric system is
exponentially stable when minx∈Ω c(x) > 0.

Remark 4. Assume our hypothesis satisfied. For each ϕ0 ∈ L2(Ω) there exists a unique ϕ ∈ L2((0, T ) × Ω)
which satisfies the equation (2.33) in the weak sense in L2((0, T ) × Ω), ∀ T > 0 (cf. Rauch [24]). In addition
ϕ ∈ C([0,∞);L2(Ω)) and converges exponentially to zero in L2(Ω) as t → ∞. However the regularity for the
solutions of (2.33) has not been addressed here. The interested reader is referred to Lax and Phillips [15] and
to Rauch [24] for more general situations.

3. Exponential stability and well-posedness of the network

In this section we show that the heat exchanger network (1.1–1.3) can be transformed into the form (2.1). We
prove exponential stability of the system by applying Theorem 1. Then we show that the system is well-posed.

3.1. Exponential stability of the network

Now, we show how to transform the heat exchanger system (1.1–1.4) into the form (2.1). First, the following
transformation allows to normalize the space variable to the interval [0, 1]:

φ(x, t) =


φ1(x, t)
φ2(x, t)
φ3(x, t)
φ4(x, t)

 =


R2(l1x, t)
T1((l1 − l2)x+ l2, t)
R1(l1x, t)
T2((l1 − l2)x+ l2, t)

 . (3.1)

Then the system (1.1–1.4) is equivalent to

∂φ(x, t)
∂t

= A1
∂φ(x, t)
∂x

+B1φ(x, t) + b(x)u(t), (x, t) ∈ (0, 1)× R+(
φ1

φ2

)
(0, t) =

(
1
0

)
d(t)(

φ3

φ4

)
(1, t) =

(
0 1− β
1 0

)(
φ1

φ2

)
(1, t)

y(t) = φ4(0, t),

(3.2)

where A1 and B1 are constant matrices:

A1 = diag
(
−m2

l1
,− (1− β)m1

l2 − l1
,
m1

l1
,
m2

l2 − l1

)
, (3.3)
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B1 =


−K2 0 K2 0

0 −K1 0 K1

K1 0 −K1 0
0 K2 0 −K2

 , (3.4)

and

b(x) = (0, b2((l1 − l2)x+ l2), b1(l1x), 0)∗ .

Note that B1 is not symmetric in (3.4). Set

$ =

√
l1

(l2 − l1)(1− r) · (3.5)

The following linear (diagonal) transformation Λ applied to (3.2) makesB1 symmetric by keeping A1 unchanged:

Λ(φ1, φ2, φ3, φ4) =

(
$φ1,

√
K2

K1
φ2, $

√
K2

K1
φ3, φ4

)
, (3.6)

where r ∈ [0, β] is an arbitrary constant such that the boundary condition becomes dissipative (see (2.3)
and (3.13) below). We set

B2 = ΛB1Λ−1 =


−K2 0

√
K1K2 0

0 −K1 0
√
K1K2√

K1K2 0 −K1 0
0

√
K1K2 0 −K2

 , (3.7)

b̃1(x) =
(

0,
√
K2/K1 b2((l1 − l2)x+ l2), $

√
K2/K1 b1(l1x), 0

)∗
, (3.8)

b̃2 = $

(
1
0

)
, (3.9)

and

D̃1 =
(

0 (1− β)$
$−1 0

)
. (3.10)

Keeping the same notation, the transformation (3.6) applied to (3.2) leads to:

∂φ(x, t)
∂t

= A1
∂φ(x, t)
∂x

+B2φ(x, t) + b̃1(x)u(t), (x, t) ∈ (0, 1)× R+(
φ1

φ2

)
(0, t) = b̃2 · d(t)(

φ3

φ4

)
(1, t) = D̃1

(
φ1

φ2

)
(1, t)

y(t) = φ4(0, t).

(3.11)

We obtain a control system with two inputs and an output. The state space is X = (L2(0, 1))4 with the
corresponding inner product. We denote by U and Y the control space and the observation space: U = R2 and
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Y = R, respectively. Let A be the unbounded operator defined by

D(A) =
{
f ∈ (H1(0, 1))4

∣∣∣∣ ( f1

f2

)
(0) = 0,

(
f3

f4

)
(1) = D̃1

(
f1

f2

)
(1)
}

and for each f ∈ D(A),

Af(x) = A1
∂f(x)
∂x

+B2f(x). (3.12)

Theorem 4. The operator A is the generator of a C0-semigroup (denoted etA) of contractions on X which is
exponentially stable.

Proof of Theorem 4. The conditions H.1, H.2, (2.2) and (2.4) in H.3 are satisfied with r+ > 0 because B2 is
dissipative and D0 = 0. The condition (2.3) is also satisfied for all 0 ≤ r ≤ β:

A−1 + D̃∗1A
+
1 D̃1 =

 −
rm2

l1
0

0 − (1− β)m1(β − r)
(l2 − l1)(1− r)

 ≤ 0. (3.13)

The statement now follows from Theorem 1. �
Remark 5. From Theorem 4, zero is in the resolvent set ρ(A) and the growth bound ω0(A) of the considered
semigroup is negative. Recall that

ω0(A) = lim
t→+∞

t−1 ln ‖etA‖.

Now we recall some standard notation that we will use in the following sections. Suppose that 0 ∈ ρ(A), which is
the case for (2.1). We define the Hilbert spacesX1 andX−1 as follows: X1 isD(A) with the norm ‖f‖1 = ‖Af‖X
and X−1 is the completion of X with respect to the norm ‖f‖−1 = ‖A−1f‖X . We have X1 ⊂ X ⊂ X−1, densely
and with continuous embeddings. The operator A has a unique extension on the whole space X because it is
defined on a dense set D(A) in X and continuous from X to X−1. The semigroup etA can be extended to a
C0-semigroup on X−1 whose generator is the extended operator A ∈ L(X,X−1). Let D(A∗) be the Hilbert
space normed with ‖A∗ ·‖X . We define the duality product on X−1×D(A∗) by continuous extension of the inner
product on X : For all h ∈ X and all g ∈ D(A∗), 〈h, g〉X−1,D(A∗) = 〈h, g〉X . The mapping J : X−1 → D′(A∗)
(topological dual of D(A∗)) such that Jh(f) = 〈h, f〉X−1,D(A∗) is an isomorphism. Moreover, it is easy to see
that for all f ∈ X and all g ∈ D(A∗),〈

etAAf, g
〉
X−1,D(A∗) =

〈
f, etA

∗A∗g
〉
X
, ∀ t ≥ 0. (3.14)

For each α ∈ R, Cα denotes the open right half-plane defined by

Cα = {λ ∈ C | <e(λ) > α} ·

3.2. Well-posedness of the network with control and observation

In this subsection we prove that the system (3.11) is well-posed in the sense of Salamon [28] and Weiss
[31]. Roughly speaking the system is well-posed if the following mappings are continuous for all T > 0: the
control-to-state mapping (u, d) ∈ L2((0, T );U) → φ(·, T ) ∈ X , the state-to-observation mapping φ0 ∈ X → y
∈ L2((0, T );Y ) and the control-to-observation mapping (u, d) ∈ L2((0, T );U) → y ∈ L2((0, T );Y ). For an
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abstract definition of well-posed systems see, for example [28,31] and [33]. Although the proof is presented for
our particular system, our method is valid for symmetric hyperbolic systems of the form (2.1).

Since the system is well-posed, there is a unique transfer function H(s)

H(s) = [P (s),W (s)]

which is analytic and bounded on some open right half-plane Cα. As our semigroup is exponentially stable,
according to the general theory developed in [32] we know that α must be negative. Hence our transfer functions
P (s) and W (s) are analytic and bounded on the closed right half-plane. This result is useful for controller design
in the frequency domain (see [7, 8] and [10]).

Note that the system (3.11) has an input which is via boundary control and that the observation is on the
boundary. In order to represent such a system we need to consider the adjoint operator A∗ of A. Let A∗ be
defined by

D(A∗) =
{
f ∈ (H1(0, 1))4

∣∣∣∣ ( f3

f4

)
(0) = 0,

(
f1

f2

)
(1) = Dadj

(
f3

f4

)
(1)
}

(3.15)

where

Dadj = −(A−1 )−1D̃∗1A
+
1 =

 0

√
l1(1− r)
l2 − l1√

l2 − l1
l1(1− r) 0

 (3.16)

and for each f ∈ D(A∗),

A∗f(x) = −A1
∂f(x)
∂x

+B2f(x). (3.17)

Define the observation operator Cadj ∈ L(D(A∗), Y ) such that Cadjf = % · f1(0), where % = m2[(1 − r)l1(l2
−l1)]−1/2. Therefore the linear form Cadj(A∗)−1 is continuous from X to R. From the representation theorem
of Riesz there is a unique element ξadj ∈ X such that Cadj(A∗)−1f = 〈ξadj, f〉X for all f ∈ X . We claim
that ξadj ∈ (H1(0, 1))4. The interested reader is referred to the Appendix for a proof. Of course the adjoint

semigroup etA
∗

is exponentially stable.
We consider the dual system corresponding to (3.11) (with u = 0 and without observation) as follows:

∂ψ
∂t

= −A∗ψ,
ψ(·, T ) = ψ0,

yadj(t) = (Cadj ψ)(t).

(3.18)

Let U2 be the control space for the second component of the control: U2 = R. We define the state-to-observation
mapping ΘT : X → L2((0, T );U2) such that for all ψ0 ∈ D(A∗),

ΘT ψ0(t) = Cadj e(T−t)A∗ψ0.

Lemma 3. The linear mapping ΘT is continuous for each T > 0: there exist some positive constants K > 0
and γ > 0 such that

‖ΘT ‖L(X,L2((0,T );U2)) ≤ KeTγ . (3.19)
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Proof of Lemma 3. Since the domain of (A∗)n is dense in X for any n ∈ N, we take ψ0 such that ψ(·, t)
= e(T−t)A∗ψ0 is the strong solution of (3.18). Denote by λk, k = 1, 2, . . . , 4 the eigenvalues of A1 in (3.3).
Hence λk < 0 and λk+2 > 0, k = 1, 2. We take the inner product of the both sides in (3.18) with the multiplier

m(x, t) = [(1− x) · ψ1(x, t), (1− x) · ψ2(x, t), x · ψ3(x, t), x · ψ4(x, t)]∗ .

Integrating by parts on (0, 1)× (0, T ) we get∫ T

0

Y(t)dt =
∫ 1

0

[Z(x, T )−Z(x, 0)] dx+
∫ T

0

∫ 1

0

Q(x, t)dxdt, (3.20)

where

Y(t) =
2∑
k=1

{
λk+2ψ

2
k+2(1, t)− λkψ2

k(0, t)
}
,

Z(x, t) =
2∑
k=1

{
(1− x) · ψ2

k(x, t) + x · ψ2
k+2(x, t)

}
and

Q(x, t) =
2∑
k=1

{
λk+2ψ

2
k+2(x, t)− λkψ2

k(x, t)
}

+ 2m(x, t)∗B2ψ(x, t).

Since A∗ is the generator of a C0-semigroup the following holds for some constants M ≥ 1 and γ > 0:

‖ψ(·, t)‖ ≤Me(T−t)γ‖ψ0‖. (3.21)

Using (3.21) and the Cauchy inequality in (3.20) we obtain inequality (3.19), and so prove the lemma. �
Define the observation operator C ∈ L(X1, Y ) and the control operator B = [B1 B2] ∈ L(U,X−1) such that

Cf = f4(0) and [B1 B2] = [̃b1 Aξadj], respectively. One of our main results is the following:

Theorem 5. System (3.11) is well-posed. Moreover, if the initial data φ0 = 0 then

y(t) = C
∫ t

0

e(t−τ)A B
[
u(τ)
d(τ)

]
dτ, ∀ (u, d) ∈ C∞0 ((0,+∞);U),

and if (u, d) = 0 then y(t) = CetAφ0, ∀ φ0 ∈ D(A).

Proof of Theorem 5. For (u, d) = 0 we prove the continuity of the state-to-observation mapping as the same
as in the proof of Lemma 3 (using the multiplier in (3.25)). To prove the continuity of the control-to-state
mapping we take ψ0 = 0 and (u, d) ∈ C∞0 ((0,+∞);U) which is dense in L2((0, T );U). Since the first part of
the control operator is bounded and the corresponding control-to-state mapping is continuous and bounded like
(3.19). Hence we set u = 0. We claim that for any d ∈ C∞0 ((0,+∞);U2), equation (3.11) has a unique (classical)
solution (see the definition in Pazy [21], pp. 105-110). (Recall that U2 has been defined before Lem. 3.) Indeed,
consider the following affine transformation

φ̃(x, t) = φ(x, t) −
(

(1− x) · b̃2 · d(t)
0

)
.
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Then φ̃(x, t) satisfies the following PDE 
∂φ̃

∂t
= Aφ̃+ f(t)

φ̃(·, 0) = 0,

(3.22)

where f ∈ C∞0 ((0,+∞);X). It is easy to check that (3.22) has a unique solution and it is also a solution
of (3.11). The uniqueness of solution is obvious for (3.11).

Taking the inner product
∫ T

0
〈φ(·, t), ψ(·, t)〉Xdt in (3.18) and integrating by parts we obtain

〈φ(·, T ), ψ0〉X = 〈d, ΘTψ0〉L2((0,T );U2) , ∀ψ0 ∈ D(A∗). (3.23)

Since D(A∗) is dense in X , by Lemma 3 we have φ(·, T ) = Θ∗T d. Hence the control-to-state mapping is bounded.
Recalling that ‖Θ∗T ‖ = ‖ΘT‖ we get easily some constants K ≥ 1 and γ > 0 such that

‖φ(·, T )‖ ≤ KeγT
∥∥∥∥( u

d

)∥∥∥∥
L2((0,T );U)

, ∀ T ≥ 0. (3.24)

Using the standard notation introduced at the end of the last subsection with (3.23) we find the expression
of φ(·, T ) for d ∈ C∞0 ((0,+∞);U2):

φ(·, T ) =
∫ T

0

e(t−τ)AA ξadjd(τ)dτ.

The rest is to prove the continuity of the control-to-observation mapping. We apply to (3.11) the similar
reasoning with the multiplier m(x, t) as in the proof of Lemma 3

m(x, t) =
(

x · φ−(x, t)
(1− x) · φ+(x, t)

)
. (3.25)

Using (3.24) and the Cauchy inequality we prove the existence of some constants K ≥ 1 and γ > 0 such that

‖y‖L2((0,T );Y ) ≤ KeγT
∥∥∥∥( u

d

)∥∥∥∥
L2((0,T );U)

.

Hence the system is well-posed. �

4. Regularity, transfer functions and inner-outer factorization

A regular system is a well-posed system such that for every v ∈ U , the following limit exists in Y :

lim
s→ +∞
s ∈ R

H(s) v = D v. (4.1)

If the system is regular, D ∈ L(U, Y ). One advantage of regular systems is that the transfer functions can be
expressed in terms of the operators in the state equation as for finite-dimensional systems. As a consequence
the well developed system and control theory in finite dimensions has been generalized for regulars systems
(see [17,18,29] and [33]).
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Let CΛ be the Λ-extension of C ∈ L(X1, Y ) defined by

CΛ z = lim
λ→ +∞
λ ∈ R

λ · C (λ I −A)−1 z.

Hence X1 ⊂ D (CΛ) ⊂ X , see Weiss [31] for more details.

Theorem 6. The system described by (3.11) is regular. Moreover its feedthrough operator D is zero and its
transfer function H(s) is given by

H(s) = CΛ (sI −A)−1 B (4.2)

for all s ∈ C with <e(s) > ω0(A).

Proof of Theorem 6. The control-to-observation operator being a shift invariant bounded operator from
L2([0,+∞);U) to L2([0,+∞);Y ), there is a unique L(U, Y )-valued function H(s) analytic and bounded on
C0 such that ŷ(s) = H(s)[û(s), d̂(s)]∗ for all s ∈ C0. If we prove D = 0 in (4.1) then the system is regular. The
identity (4.2) for a regular system follows from [31] and [32].

We sketch only the proof that D = 0. Consider the simplified (diagonal) system with additional control and
additional observation as follows: 

∂φ

∂t
= A1

∂φ

∂x
+ b̃1u(t) + v(·, t),(

φ1

φ2

)
(0, t) = b̃2 · d(t)(

φ3

φ4

)
(1, t) = D̃1

(
φ1

φ2

)
(1, t)

ỹ(t) =
(
φ4(0, t)
φ(·, t)

)
.

(4.3)

It is easy to see that the first part of Theorem 5 is valid for (4.3). System (3.11) can be seen as the closed-loop
system of (4.3) with the output feedback [u, d, v]∗ = Kỹ + [ũ, d̃, ṽ]∗, where

K =
(

0 0
0 B2

)
.

We prove that (4.3) is regular with the feedthrough operator D̃ = 0. We prove also that K is an admissible
feedback operator (see [31] for the definition) and I − D̃ ·K is invertible. Then (3.11) is regular and D = 0 as
easily computed by DK = (I − D̃ ·K)−1D̃.

To prove D̃ = 0 take the Laplace transform in (4.3). Then the obtained differential equation is explicitly
solvable. Denote by H̃(s) the transfer function (û, d̂, v̂)→ ̂̃y. It is easy to see that there is some constant K > 0
such that the following holds:

sup
ω∈R

∥∥∥∥∥∥H̃(σ + i ω) ·

 u
d
v

∥∥∥∥∥∥
Y×X

≤
(
K

σ

)∥∥∥∥∥∥
 u

d
v

∥∥∥∥∥∥
U×X

, ∀ σ > 0. (4.4)

Using Proposition 4.9 of [31] one proves the theorem. We leave the details to the reader. �



438 C.-Z. XU AND G. SALLET

The following result is a direct consequence of the regularity of system (3.11):

Proposition 1. System (3.11) can be written as follows:


dφ(t)

d t
= Aφ(t) + B1 u(t) + B2 d(t),

y(t) = CΛ φ(t),

(4.5)

where the first equation holds in X−1 for every (u, d) ∈ L2([0,+∞);U) and for almost every t ≥ 0, and the
second holds in Y for almost every t ≥ 0.

Let H∞(C0) be the Banach space of analytic functions on C0 such that for any f ∈ H∞(C0),

‖f‖∞ = sup
σ>0

sup
ω∈R
|f(σ + i ω)| <∞.

Let H2(C0) be the Hilbert space of analytic functions on C0 such that for any f ∈ H2(C0),

‖f‖22 = sup
σ>0

∫
R
|f(σ + i ω)|2dω <∞.

An element m in H∞(C0) is called inner if |m(s)| ≤ 1 on C0 and |m(s)| = 1 a.e. on iR. An element
in H∞(C0) is called outer if it maps H2(C0) by multiplication onto a dense subset in H2(C0), see Staffans [29],
Hoffman [12] or Foias et al. [7] for more general definitions. From Theorem 6 we have the plant transfer function
P (s) = CΛ (sI−A)−1 B1 and the disturbance transfer function W (s) = CΛ (sI−A)−1 B2. In the H∞ controller
design it is necessary to have the inner-outer factorization ofW (s) (see [8] and [7]). The inner-outer factorization
of P (s) is more involved, which we will address elsewhere. Generally speaking, P (s) and W (s) being irrational,
it might be difficult to get their inner-outer factorization. Here we show that the strict properness of P (s) and
the inner-outer factorization of W (s) are obtained directly from the structure of the system.

Theorem 7. (i) P , W ∈ H∞(C0); (ii) P (s) tends uniformly to zero as |s| goes to infinity inside each half-plane
<e(s) ≥ δ ≥ 0; (iii) W (s) = exp

(
− l2 sm2

)
·WO(s), where WO(s) is outer.

Proof of Theorem 7. (i) follows from Theorems 5 and 4 and the application of [32]. (ii) Remark that
(s I −A)−1φ =

∫∞
0

e−stetAφ for all φ ∈ X and <e(s) > ω0(A). Using the definition of CΛ and the Lebesgue’s
dominated convergence theorem we have

CΛ(s I −A)−1B1 =
∫ ∞

0

e−stCΛetAB1dt, ∀ <e(s) > ω0(A).

By the properties of well-posedness and exponential stability CΛetAB1 belongs to L2
−ε(R+) for some ε > 0

(cf. Curtain [6]). By means of the Paley–Wiener theorem (see p. 131 in [12]) P (s − ε) is in H2(C0). Each
function (in particular, our P (s − ε) here) in H2(C0) tends uniformly to zero as |s| goes to infinity inside any
closed plane <e(s) ≥ δ > 0 (see p. 125, Ref. [12]). (iii) Let WO(s) = W (s)exp

(
l2 s
m2

)
. We prove that both WO

and W−1
O are in H∞(C0). Then the theorem is proved.
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We set

M1(s) =


l1(K2 + s)

m2

l1
√
K1K2

m2

l1
√
K1K2

m1
− l1(K1 + s)

m1

 ,

M2(s) =


− (l2 − l1)(K1 + s)

m1(1− β)
− (l2 − l1)

√
K1K2

m1(1− β)

− (l2 − l1)
√
K1K2

m2

(l2 − l1)(K2 + s)
m2

 .
(4.6)

Taking the Laplace transform in (3.11) and re-arranging the components we obtain the following un-coupled
differential systems:

∂
∂x

(
φ̂1

φ̂3

)
= M1(s)

(
φ̂1

φ̂3

)
∂
∂x

(
φ̂2

φ̂4

)
= M2(s)

(
φ̂2

φ̂4

) (4.7)

satisfying the boundary conditions:

(
φ̂2(0)
φ̂4(0)

)
=
(

0
1

)
ŷ(s)

(
φ̂1(1)
φ̂3(1)

)
= $

[
0 1
1− β 0

](
φ̂2(1)
φ̂4(1)

)
d̂(s) = $−1φ̂1(0).

(4.8)

(Recall that $ has been defined in (3.5).) The unique solution of (4.7) gives W−1(s) as follows:

W−1(s) = [1, 0]eM1(s)

[
0 1
1− β 0

]
eM2(s)

[
0
1

]
. (4.9)

We set

M̃1(s) = diag
(

0, −l1
(

1
m1

+
1
m2

)
s

)
,

M̃2(s) = diag
(
−(l2 − l1)

(
1

m1(1− β)
+

1
m2

)
s, 0
)
.

We write 
M1(s)−

(
d l1m2

)
s = M̃1(s) + C1

M2(s)−
(
l2 − l1
m2

)
s = M̃2(s) + C2,
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where C1 and C2 are constant matrices independent of s. It is easy to see that∥∥∥exp
(
M̃k(s) + Ck

)∥∥∥
L(R2)

≤ exp
(
‖Ck‖L(R2)

)
, ∀ k = 1, 2.

Using this inequality in (4.9) we prove that

W−1
O (·) = W−1(·)exp

(
−l2 ·
m2

)
∈ H∞(C0).

Now it is sufficient to prove that WO(s) is analytic and bounded on some right half-plane because, from (i),
WO(s) is analytic and bounded on any fixed stripe 0 < <e(s) ≤ δ <∞. For this purpose we use again our idea
in the proof of Theorem 6. Using the same notation as there we can write

W (s) = [1 0]
(
I − H̃(s)K

)−1

H̃(s)
[

1
0

]
.

It is easy to see that exp
(
l2·
m2

)
H̃ ∈ H∞(C0). By (4.4), W (s)exp

(
l2 s
m2

)
is analytic and bounded on some right

half-plane. �

Remark 6. The inner factor of W (s) (which is a delay term) corresponds to the necessary time for the distur-
bance to arrive at the output in the heat exchanger network.

5. Conclusions

We have studied the dynamics of a heat exchanger network system in the frequency and time domain.
This process is representative for a class of hyperbolic systems encountered in chemical engineering, such as
heat exchangers, gas absorbers and irrigation canals. The paper shows how this system is transformed into a
classical symmetric hyperbolic system, allowing us to prove exponential stability using the theorem of Rauch
and Taylor. We have also proposed Lyapunov function candidates for proving the exponential stability of some
other hyperbolic systems. The heat exchanger system has an unbounded control operator and an unbounded
observation operator. We have shown that the system is regular and its transfer functions are in H∞. We
have given the inner-outer factorization of some of them. Although the paper is a case study, the theory
and the method that we have proposed in the paper are general and can be applied for a class of processes
governed by symmetric hyperbolic systems. The results presented here are essential for various controller design
methods (cf. H∞ controllers [7, 8, 10], optimal feedback controllers [29], output feedback controllers [6, 31, 33]
and PI controllers [17,18,22,37]) to be applied for this class of processes.

6. Appendix

Computing ξadj is equivalent to solving the following differential equation



∂g(x)
∂x = A−1

1 B2g(x) −A−1
1 f(x)

g3(0) = g4(0) = 0[
g1(1)
g2(1)

]
= Dadj

[
g3(1)
g4(1)

]
〈ξadj, f〉H = % · g1(0).
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We set e1 = (1, 0, 0, 0) and N1 = A−1
1 . Let N2 be the 2× 4 matrice such that N2 = [I |Dadj]. The differential

equation has a unique solution g ∈ D(A∗) for each f ∈ H. By direct computation we find that

g1(0) = % · e1 ·
{[

I
0

](
N2 eN1·B2

[
I
0

])−1

N2 − I
}∫ 1

0

eN1·B2(1−τ)N1f(τ)dτ.

Thus we obtain

(ξadj(x))∗ = % · e1 ·
{[

I
0

](
N2 eN1·B2

[
I
0

])−1

N2 − I
}

eN1·B2(1−x)N1.

Obviously ξadj(x) is an analytic function of x. �
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