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SOLVABILITY AND NUMERICAL ALGORITHMS FOR A CLASS
OF VARIATIONAL DATA ASSIMILATION PROBLEMS
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Abstract. A class of variational data assimilation problems on reconstructing the initial-value func-
tions is considered for the models governed by quasilinear evolution equations. The optimality system
is reduced to the equation for the control function. The properties of the control equation are studied
and the solvability theorems are proved for linear and quasilinear data assimilation problems. The
iterative algorithms for solving the problem are formulated and justified.
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Introduction

The investigation of global changes of the Earth System has increased the interest to the observation data
assimilation and data processing problems, which are applied to the modeling, retrospective analysis, and fore-
casting various physical and geophysical processes. From the mathematical standpoint, these problems may be
formulated as the optimal control problems. Starting with the studies of Bellman and Pontryagin, these prob-
lems attract the attention of many researchers. New essential ideas were contributed to the optimization theory
and methods by French mathematical school. In this connection, we must mention the works by J.-L. Lions and
his disciples, which became fundamental, dedicated to investigation of problems on controllability, insensitive
optimal control, nonlinear sentinels for distributed systems. The general approach (Hilbert Uniqueness Method)
developed by J.-L. Lions makes it possible to prove the existence of controls in linear and nonlinear systems.

In this paper, a class of variational data assimilation problems on reconstructing the initial-value functions
is considered for the models governed by quasilinear evolution equations. The properties of the equation for
the control function are studied and the solvability theorems are proved for linear and quasilinear optimality
systems. The iterative algorithms for solving the problem are formulated and justified. The results given in
the paper are a logical development of some ideas and aspects concerning the methods for solving the systems
considered in [1, 14–16].

1. Statement of the problem

Let H and X be real separable Hilbert spaces such that X is imbedded into H continuously and densely, H∗,
X∗ are the spaces adjoint to H , X , respectively. We assume that H ≡ H∗, (·, ·)L2(0,T ;H) = (·, ·), ‖ · ‖ = (·, ·)1/2.

Keywords and phrases: Variational data assimilation, quasilinear evolution problem, optimality system, control equation, solv-
ability, iterative algorithms.
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Let us consider also the spaces Y 0 = L2(0, T ; H), Y = L2(0, T ; X), Y ∗ = L2(0, T ; X∗) of abstract functions
f(t) with the values in H , X , X∗, respectively, and the space

W =
{
f ∈ L2(0, T ; X) :

df
dt

∈ L2(0, T ; X∗)
}
,

‖f‖W =

(∥∥∥∥df
dt

∥∥∥∥2

L2(0,T ; X∗)

+ ‖f‖2
L2(0,T ; X)

)1/2

.

Let a(t;ϕ, ψ) be a bilinear form defined for any t ∈ [0, T ], ϕ, ψ ∈ X and satisfied the inequalities:

|a(t;ϕ, ψ)| ≤ c1‖ϕ‖X ‖ψ‖X , c1 = const > 0, (1.1)

c2‖ϕ‖2
X ≤ a(t;ϕ,ϕ) , c2 = const > 0, ∀ t ∈ [0, T ], ∀ ϕ, ψ ∈ X. (1.2)

By A(t) ∈ L(Y, Y ∗) we denote the operator generated by this form:

(A(t)ϕ, ψ)H = a(t;ϕ, ψ) ∀ ϕ, ψ ∈ X. (1.3)

Consider the following quasilinear evolution problem:{ dϕ
dt

+A(t)ϕ+ τF (ϕ) = f(t) , t ∈ (0, T )

ϕ(0) = u,
(1.4)

where f ∈ Y ∗, u ∈ H , τ ∈ [−τ0, τ0] is a parameter, τ0 ∈ R+, F (ϕ) is a nonlinear Frechet differentiable operator,
F : Y → Y ∗. Introduce a functional of u ∈ H of the form:

S(u) =
α

2
‖u‖2

H +
1
2
‖Bϕ− ϕ̂‖2

Z , (1.5)

where α = const ≥ 0, Z is a Hilbert space (observational space) with the scalar product (·, ·)Z and the norm
‖ · ‖Z = (·, ·)1/2

Z , B : Y → Z is a linear bounded operator, ϕ̂ ∈ Z. The function ϕ̂ is generally determined by a
priory observational data. The weight coefficient α is normally called a regularization parameter [23].

Consider the following data assimilation problem: for given f ∈ Y ∗, ϕ̂ ∈ Z, find u ∈ H, ϕ ∈W such that
dϕ
dt +A(t)ϕ + τF (ϕ) = f, t ∈ (0, T )

ϕ(0) = u
S(u) = min

ũ∈H
S(ũ).

(1.6)

The problems of the form (1.6) were studied by Pontryagin [18], J.-L. Lions [8, 10] and many others (see,
e.g. [1–3, 5, 7, 13–17,19]).

The necessary optimality condition [8] reduces the problem (1.6) to the system for finding the functions
ϕ, ϕ∗ ∈ W, u ∈ H, of the form:

dϕ
dt

+A(t)ϕ + τF (ϕ) = f, t ∈ (0, T ); ϕ(0) = u, (1.7)

−dϕ∗

dt
+A∗(t)ϕ∗ + τ(F ′(ϕ))∗ϕ∗ = Cϕ̂−Kϕ, t ∈ (0, T ); ϕ∗(T ) = 0, (1.8)

αu − ϕ∗(0) = 0, (1.9)
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where (F ′(ϕ))∗ : Y → Y ∗ is the operator adjoint to the Frechet derivative of F at the point ϕ ∈ W , A∗(t) :
Y → Y ∗ is adjoint to A(t), K : Y → Y ∗, C : Z → Y ∗ are linear bounded operators, K = CB, C is defined by
the equality (Cθ, ψ) = (θ,Bψ)Z ∀ θ ∈ Z,ψ ∈ Y, and equations (1.7, 1.8) are considered in the space Y ∗.

The solvability of the systems of the form (1.7–1.9) was studied by J.-L. Lions [8,10], and other authors (see,
e.g. [1,11,22] etc.) In this paper, following [1,22], we reduce the problem to the equation for the control function,
study its properties in linear case, discuss the solvability of the optimality system, and present numerical
algorithms to solve it.

2. Properties of linear problem

Consider the problem (1.7–1.9) for τ = 0. The solutions of problems (1.7, 1.8) for τ = 0 may by repre-
sented [9] as

ϕ = G0u+G1f, ϕ∗ = G
(T )
1 (Cϕ̂−Kϕ), (2.1)

where G0 : H → W, G1 : Y ∗ → W, G
(T )
1 : Y ∗ → W are linear bounded operators. Eliminating ϕ,ϕ∗

from (1.7–1.9) for τ = 0, we come to the equation for the control u:

Lu = P, (2.2)

where the operator L : H → H and the right-hand side P are defined by

L = αE + T0G
(T )
1 KG0, P = T0G

(T )
1 Cϕ̂− T0G

(T )
1 KG1f, (2.3)

E is the identity operator, T0 : W → H is the trace operator: T0ϕ = ϕ|t=0.
Consider the operator L for α = 0 and denote it by L̄. Let G0 : H → W be the operator from (2.1), where

the element G0u is defined as the solution of (1.7) for τ = 0, f = 0. The following statement holds.

Lemma 2.1. The operator L̄ : H → H is continuous, self-adjoint, and positive semi-definite:

(L̄v, v)H ≥ 0 ∀v ∈ H.

If the operator BG0 : H → Z is invertible, the operator L̄ is positive: (L̄v, v)H > 0 ∀v ∈ H, v 6= 0.

Proof. Let ρ ∈ H and ϕ = G0 ρ. Then

L̄ρ = T0G
(T )
1 Kϕ.

Since [9]

‖ϕ‖W ≤ c1 ‖ρ‖H, c1 = const > 0,

and similarly for ϕ∗ = G
(T )
1 Kϕ

‖ϕ∗‖W ≤ c2 ‖Kϕ‖Y ∗ , c2 = const > 0,

and by definition of K,

‖Kϕ‖Y ∗ ≤ ‖CB‖ ‖ϕ‖W ,
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then

‖ϕ∗‖W ≤ c3 ‖ρ‖H, c3 = const > 0.

The imbedding of W into C0([0, T ];H) is continuous [9], hence

‖T0 ϕ
∗‖H = ‖ϕ∗(0)‖H ≤ c4 ‖ϕ∗‖W , c4 = const > 0,

therefore, for L̄ρ = T0 ϕ
∗ we get the inequality

‖L̄ρ‖H ≤ ‖ρ‖H ,

which implies the continuity of L̄. Obviously, L̄ is self-adjoint. The positive definiteness or semi-definiteness of
L̄ follow from the equalities:

(L̄ρ, ρ)H = (T0G
(T )
1 KG0 ρ, ρ)H = (Kϕ,ϕ) = (Bϕ,Bϕ)Z = ‖BG0ρ‖2

Z .

The lemma is proved.

Corollary 2.1. If the operator BG0 : H → Z is invertible, then
(I) the range R(L̄) of the operator L̄ is dense in H;
(II) the equation L̄u = P is solvable uniquely and densely in H.

Remark 2.1. In the case when Z = Rn, n ∈ N, and the observational operator B : Y → Z is given by the
formula Bϕ = ((ϕ, p1), ..., (ϕ, pn))T , where pi ∈ Y ∗, i = 1, ..., n, the operators C : Z → Y , K : Y → Y ∗ in (1.8)
are defined by

Cθ =
n∑

i=1

θipi, Kϕ =
n∑

i=1

(ϕ, pi)pi, (2.4)

where θ = (θ1, ..., θn)T ∈ Z. Then (Kϕ,ψ) = (Kψ,ϕ) and (Kψ,ψ) =
n∑

i=1

(ψ, pi)2 ≥ 0 ∀ϕ, ψ ∈ Y .

Remark 2.2. In case of “complete observation”, when Z = Y 0, B = E (the identity operator), we have
C = E,K = E, and the operator L̄ is positive.

Introduce the following additional restriction on the operator A(t):

Hypothesis (A): For any p ∈ Y 0 the solution ϕ∗ of the adjoint problem

−dϕ∗

dt
+A∗(t)ϕ∗ = p, t ∈ (0, T ); ϕ∗(T ) = 0

satisfies the inequality ‖ϕ∗(0)‖X ≤ c‖p‖Y 0 , c = const > 0.

Remark 2.3. The Hypothesis (A) is satisfied for a wide class of operators A(t), among them – the second-order
elliptic operators in uniformly parabolic problems [6], for instance, in the case when

H = L2(Ω), X =
0

W 1
2 (Ω), Y = L2(0, T ;

0

W 1
2 (Ω)), Y 0 = L2((0, T )× Ω)

and A ∈ L(Y, Y ∗) is the operator defined by the bilinear form:

(Aϕ,ψ)H = a(t;ϕ, ψ) ∀ ϕ, ψ ∈
0

W 1
2 (Ω),
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where Ω ⊂ Rn is a bounded domain with a piece-wise regular boundary, 2 ≤ n ≤ 4,

a(t;ϕ, ψ) =
∫

Ω

 n∑
i,j=1

aij
∂ϕ

∂xi

∂ψ

∂xj
+

n∑
i=1

ai
∂ϕ

∂xi
ψ + aϕψ

 dx,

a(t, x), aij(t, x), ai(t, x) ∈ L∞((0, T ) × Ω), i, j = 1, n, x ∈ Ω,

a(t, x) ≥ 0,
n∑

i=1

∂ai

∂xi
= 0,

n∑
i,j=1

aijλiλj ≥ γ

n∑
i=1

λ2
i ∀ λi ∈ R, γ = const > 0.

Lemma 2.2. Let X be compactly imbedded into H, the Hypothesis (A) be satisfied, and the operator K : Y 0

→ Y 0 be bounded. Then the operator L̄ : H → H is compact.

Proof. Let us prove that L̄ maps a bounded set of H into a compact set. Consider u ∈ H such that ‖u‖H

≤ c0, c0 = const > 0. Let ϕ = G0u, ϕ
∗ = G

(T )
1 Kϕ, then L̄u = ϕ∗(0). Since

‖ϕ‖W ≤ c1 ‖u‖H , ‖ϕ∗‖W ≤ c2 ‖Kϕ‖Y ∗ , c1, c2 = const > 0,

and by the Hypothesis (A),

‖ϕ∗(0)‖X ≤ c‖Kϕ‖Y 0 , c = const > 0,

then, due to the boundedness of K : Y 0 → Y 0, we get

‖L̄u‖X ≤ c3‖u‖H ≤ c3c0,

where c3 = const > 0. However, X is compactly imbedded into H , hence the set M = {L̄u : ‖u‖H ≤ c0} is
compact in H , i.e. the operator L̄ : H → H is compact.

Corollary 2.2. Under the hypotheses of Lemma 2.2 there exists an orthonormal basis in H of eigenfunctions
of the operator L̄.

Lemma 2.3. For the spectrum σ(L̄) of the operator L̄ the estimate

0 ≤ σ(L̄) ≤ ν2 ‖B‖2 (2.5)

holds with the constant ν from the inequality ‖ϕ‖Y ≤ ν ‖u‖H, where u ∈ H, and ϕ = G0u is the solution of the

problem dϕ
dt +A(t)ϕ = 0, t ∈ (0, T ); ϕ(0) = u.

Proof. To estimate the spectrum of the self-adjoint operator L̄ consider (L̄u, u) for u ∈ H . Let ϕ = G0u,
ϕ∗ = G

(T )
1 ϕ, then

(L̄u, u)H = (ϕ∗(0), u)H = (Kϕ,ϕ) = ‖Bϕ‖2
Z ≤ ‖B‖2 ‖ϕ‖2

Y ≤ ν2‖B‖2 ‖u‖2
H.

Hence,

σ(L̄) ≤ sup
u∈H, u6=0

(L̄u, u)
(u, u)

≤ ν2 ‖B‖2.

This ends the proof.
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Remark 2.4. In some cases (when, for example, A is self-adjoint and independent of t), for ν we can put ν = 1.

For case of complete observation, from Lemmas 2.1, 2.2 we have the following:

Lemma 2.4. Let Z = Y 0, B = E (the identity operator), X be compactly imbedded into H and the Hypothe-
sis (A) be satisfied. Then the following statements hold:

(I) the operator L̄−1 : H → H exists, being unbounded. Zero is the point of the continuous spectrum of
the operator L̄;

(II) the equation L̄u = P is solvable in H if and only if

∞∑
k=1

µ−2
k (P, uk)2H <∞, (2.6)

where uk is the orthonormal system of the eigenfunctions of the compact operator L̄, corresponding to
the eigenvalues µk.

If K = E, for the spectrum σ(L) of the operator L defined by (2.2) the following estimates hold [21]:

m ≤ σ(L) ≤M, (2.7)

where

m = α+

T∫
0

e
−

tR

0
λmax(τ)dτ

dt, M = α+

T∫
0

e
−

tR

0
λmin(τ)dτ

dt,

and λmin, λmax are the lower and upper bounds, respectively, of the spectrum of the operator A+A∗.
If K = E, and A(t) = A : H → H is a linear closed operator independent of time, being unbounded self-

adjoint positive definite operator in H with the compact inverse, then the eigenvalues µk of the operator L̄ are
defined by the formula [21]:

µk =
1 − e−2λkT

2λk
,

where λk are the eigenvalues of the operator A. Then in (2.7) λmin = 2λ1, λmax = ∞, and m, M are given in
the explicit form:

m = α, M = α+
1 − e−2λ1T

2λ1
(2.8)

where λ1 is the least eigenvalue of the operator A.

3. Solvability results

It follows from Lemma 2.1 that for α > 0 the operator L : H → H is positive definite (i.e. coercive). Then,
we come to the solvability theorems for linear and nonlinear problem (1.7–1.9):

Theorem 3.1. Let f ∈ Y ∗, ϕ̂ ∈ Z. Then for α > 0 the problem (1.7–1.9) for τ = 0 has a unique solution
ϕ0 ∈W, ϕ∗

0 ∈ W, u0 ∈ H, and the following estimate holds:

‖ϕ0‖W + ‖ϕ∗
0‖W + ‖u0‖H ≤ c0(‖Cϕ̂‖Y ∗ + ‖f‖Y ∗), c0 = const > 0. (3.1)
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Theorem 3.2. Let u ∈ H, ϕ̂ ∈ Z and for some R > 0 the inequalities

‖F ′(ξ)‖Y →Y ∗ ≤ k1, ‖F ′(ξ) − F ′(η)‖Y →Y ∗ ≤ k2‖ξ − η‖W (3.2)

are satisfied for any ξ, η ∈ B(ϕ0, R) = {ϕ ∈ Y : ‖ϕ− ϕ0‖W ≤ R}, where ki = ki(ϕ0, R) = const > 0. Then for
|τ | ≤ τ0, with

τ0 = 1/c0[k1 + k2(R + ‖ϕ∗
0‖W ) +

1
R

(‖F (ϕ0)‖Y ∗ + k1‖ϕ∗
0‖W )]−1, (3.3)

the problem (1.2–1.4) has a unique solution (ϕ,ϕ∗, u) ∈W ×W ×H.

Proof. Theorem 3.1 follows from Lemma 2.1 and the well-known results on solvability of linear optimal control
problems [1, 8]. To prove Theorem 3.2, consider the problem for the remainders ϕ̃ = ϕ − ϕ0, ϕ̃

∗ = ϕ∗ − ϕ∗
0,

ũ = u−u0, where (ϕ0, ϕ
∗
0, u0) is the solution to the problem (1.7–1.9) for τ = 0. The problem for ϕ̃, ϕ̃∗, ũ reads:

dϕ̃
dt

+A(t)ϕ̃+ τF (ϕ0 + ϕ̃) = 0, t ∈ (0, T ); ϕ̃(0) = ũ, (3.4)

−dϕ̃∗

dt
+A∗(t)ϕ̃∗ + τ(F ′(ϕ0 + ϕ̃))∗(ϕ∗

0 + ϕ̃∗) = −Kϕ̃, t ∈ (0, T ); ϕ̃∗(T ) = 0, (3.5)

αũ − ϕ̃∗(0) = 0. (3.6)

Consider the following iterative process:

dϕ̃(n+1)

dt
+A(t)ϕ̃(n+1) + τF (ϕ̃(n) + ϕ0) = 0, t ∈ (0, T ); ϕ̃(n+1)(0) = ũ(n+1), (3.7)

−dϕ̃∗(n+1)

dt
+A∗(t)ϕ̃∗(n+1) + τ(F ′(ϕ̃(n) + ϕ0))∗(ϕ̃∗(n) + ϕ∗

0) = −Kϕ̃(n+1), ϕ̃∗(n+1)(T ) = 0, (3.8)

αũ(n+1) − ϕ̃∗(n+1)(0) = 0 (3.9)

for ‖ϕ̃(0)‖W + ‖ϕ̃∗(0)‖W ≤ R. Since (for a fixed n) ϕ̃(n+1), ϕ̃∗(n+1), ũ(n+1) is the solution of the linear problem,
then, in view of (3.1), it is easily seen that

‖ϕ̃(n+1)‖W + ‖ϕ̃∗(n+1)‖W + ‖ũ(n+1)‖H ≤ k|τ |(‖ϕ̃(n)‖W + ‖ϕ̃∗(n)‖W ) + f0,

where

k = c0(k1 + k2(R + ‖ϕ∗
0‖W )), f0 = c0|τ |(‖F (ϕ0)‖Y ∗ + k1‖ϕ∗

0‖W ).

By successive use of the last inequality, we get

‖ϕ̃(n)‖W + ‖ϕ̃∗(n)‖W + ‖ũ(n)‖H ≤ (k|τ |)n(‖ϕ̃(0)‖W + ‖ϕ̃∗(0)‖W )

+1 − (k|τ |)n

1 − k|τ | f0 ≤ (k|τ |)nR+ 1 − (k|τ |)n

1 − k|τ | f0 ≤ R
(3.10)
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if |τ | ≤ τ0. Then, consider the problem for ϕ̃(n+1) − ϕ̃(n), ϕ̃∗(n+1) − ϕ̃∗(n), ũ(n+1) − ũ(n). This leads to the
estimate:

‖ϕ̃(n+1) − ϕ̃(n)‖W + ‖ϕ̃∗(n+1) − ϕ̃∗(n)‖W + ‖ũ(n+1) − ũ(n)‖H ≤ k|τ |(‖ϕ̃(n) − ϕ̃(n−1)‖W + ‖ϕ̃∗(n) − ϕ̃∗(n−1)‖W ),

which implies

ϕ̃(n) → ϕ̃, ϕ̃∗(n) → ϕ̃∗, ũ(n) → ũ as n→ ∞, for |τ | ≤ τ0,

where ϕ̃, ϕ̃∗, ũ is the solution to the problem (3.4–3.6), and the convergence rate estimate holds:

‖ϕ̃(n) − ϕ̃‖W + ‖ϕ̃∗(n) − ϕ̃∗‖W + ‖ũ(n) − ũ‖H ≤ c
(k|τ |)n

1 − k|τ | (3.11)

with c = const > 0. It is easily seen that for |τ | ≤ τ0 this solution is unique and satisfies the condition
‖ϕ̃‖W + ‖ϕ̃∗‖W + ‖ũ‖H ≤ R. Thus, under the hypotheses of theorem, there exists a unique solution of the
problem (1.7–1.9). Theorem is proved.

Remark 3.1. If the operator F (ϕ) is analytic, then the functions (ϕ,ϕ∗, u) are represented as the series in the
powers of τ :

ϕ = ϕ0 +
∞∑

i=1

τ iϕi , ϕ∗ = ϕ∗
0 +

∞∑
i=1

τ iϕ∗
i , u = u0 +

∞∑
i=1

τ iui,

convergent for |τ | < τ0 in W,W,H , respectively, where ϕi, ϕ
∗
i , ui may be found by the small parameter

method [11].

The interval of the values of τ , for which the nonlinear problem (1.2–1.4) is solvable, may be enlarged by
introducing additional restrictions on the functions ϕ̂, f , following [22].

4. Numerical algorithms

To solve (1.7–1.9) one may use the successive approximation method (3.7–3.9). Each step of this method
involves a linear data assimilation problem of the form (1.7–1.9) for τ = 0. To solve it we consider a class of
iterative algorithms:

dϕk

dt
+A(t)ϕk = f, t ∈ (0, T ); ϕk(0) = uk, (4.1)

−dϕ∗k

dt
+ A∗(t)ϕ∗k = Cϕ̂−Kϕk, t ∈ (0, T ); ϕ∗k(T ) = 0, (4.2)

uk+1 = uk − αk+1Bk(αuk − ϕ∗k
∣∣
t=0

) + βk+1Ck(uk − uk−1), (4.3)

where Bk, Ck : H → H are some operators, and αk+1, βk+1 the iterative parameters.
Let γ = ν2‖B‖2 with ν defined in (2.5). We introduce the following notations:

τopt = 2(2α+ γ)−1, θ = (2α+ γ)γ−1, (4.4)

τk = 2(2α+ γ − γ cosωkπ)−1, k = 1, 2, . . . , s, (4.5)
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αk+1 =


2(2α+ γ)−1, k = 0

4γ−1 Tk(θ)
Tk+1(θ)

, k > 0;

βk+1 =


0, k = 0

Tk−1(θ)
Tk+1(θ)

, k > 0,
(4.6)

ek =


0, k = 0

pk‖ξk‖2
H/‖ξk−1‖2

H , k > 0,
(4.7)

pk+1 = α + (Kηk, ηk)/‖ξk‖2
H − ek, k = 0, 1, . . . , (4.8)

where ωk = (2i− 1)/2s, Tk is the k-th degree Chebyshev polynomial of the first kind, ξk = αuk − ϕ∗k(0), and

ηk is the solution of the problem dηk

dt +Aηk = 0, t ∈ (0, T ); ηk(0) = ξk.

Theorem 4.1. (I) If αk+1 = τ, Bk = E, βk+1 = 0, 0 < τ < 2/(α + γ), then the iterative process (4.1–4.3) is
convergent. For τ = τopt defined by (4.4) the following convergence rate estimates are valid:

‖ϕ− ϕk‖W ≤ c1qk, ‖ϕ∗ − ϕ∗k‖W ≤ c2qk, ‖u− uk‖H ≤ c3qk, (4.9)

where qk = 1/θk, θ is given by (4.4), and the constants c1, c2, c3, c4 do not depend on the number of iterations
and on the functions ϕ,ϕk, ϕ∗, ϕ∗k, u, uk, k > 0.

(II) If Bk = E, βk+1 = 0, and αk+1 = τk, where the parameters τk are defined by (4.5) and repeated cyclically
with the period s, then the error in the iterative process (4.1–4.3) is suppressed after each cycle of the length s.
After k = ls iterations the error estimates (4.9) are valid with qk = (Ts(θ))−l.

(III) If Bk = Ck = E and αk+1, βk+1 are defined by (4.6), then the error in the algorithm (4.1–4.3) is suppressed
for each k ≥ 1, and the estimates (4.9) hold for qk = (Tk(θ))−1.

(IV) If Bk = Ck = E and αk+1 = 1/pk+1, βk+1 = ek/pk+1, where ek, pk+1 are defined by (4.7, 4.8), then the
iterative process (4.1–4.3) is convergent, and the convergence rate estimates (4.9) are valid with qk = (Tk(θ))−1.

Proof. It is not difficult to show [14] that the iterative process (4.1–4.3) is equivalent to the following iterative
algorithm

uk+1 = uk − αk+1Bk(Luk − P ) + βk+1Ck(uk − uk−1) (4.10)

for solving the control equation Lu = P , where L and P are defined in (2.2).
According to Lemma 2.3, the bounds of the spectrum of the control operator L are given by

m
def= inf

u∈H, u6=0

(Lu, u)
(u, u)

≥ α, M
def= sup

u∈H, u6=0

(Lu, u)
(u, u)

≤ α+ ν2‖B‖2. (4.11)
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Thus, for α > 0 for solving the equation Lu = P we may use the well-known iterative algorithms with optimal
choice of parameters. The theory of these methods is well developed [12]. Taking into account the explicit form
of the bounds for m and M from (4.11) and applying for the equation Lu = P the simple iterative method, the
Chebyshev acceleration methods (s-cyclic and two-step ones), and the conjugate gradient method in the form
(4.10), we arrive at the conclusions of theorem, using the well-known convergence results [12] for these methods.

Remark 4.1. In case of complete observation, whenZ = Y 0, B = E,K = E, for the spectrum of the operatorL
the estimates (2.7) are valid, and in the formulas for iterative parameters (4.4–4.8) we may take

γ =

T∫
0

e
−

tR

0
λmin(τ)dτ

dt. (4.12)

If, moreover, the operator A is self-adjoint and independent of t, we can put, due to (2.8), γ = (1−e−2λ1T )/(2λ1).

The numerical analysis of the above-formulated iterative algorithms has been done in [17] for the data
assimilation problem with a linear parabolic state equation.

In case αk = 1/α, Bk = E, βk = 0, the iterative algorithm (4.1–4.3) coincides with the Krylov–Chernousko
method [4].
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